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1. Mahler measure

Definition 1 For P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is defined by

m(P ) =
1

(2πi)n

∫

Tn

log |P (x1, . . . , xn)|dx1

x1
. . .

dxn

xn
. (1)

This integral is not singular and m(P ) always exists.
Because of Jensen’s formula:

∫ 1

0
log |e2πiθ − α|dθ = log+ |α|, (2)

1we have a simple expression for the Mahler measure of one-variable polynomials:

m(P ) = log |ad| +
d

∑

n=1

log+ |αn| for P (x) = ad

d
∏

n=1

(x − αn).

2. Examples of Mahler measures in several variables

For two and three variables, several examples are known. The first and simplest examples
in two and three variables were given by Smyth [19] and also [1]:

m(1 + x + y) =
1

π
D(ζ6) =

3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1) (3)

m(1 + x + y + z) =
7

2π2
ζ(3) (4)

Other kinds of examples are the families studied by Boyd– Rodriguez-Villegas [18]

m

(

x +
1

x
+ y +

1

y
− k

)

?
=

L′(Ek, 0)

Bk
k ∈ N

m

(

x +
1

x
+ y +

1

y
− 4

)

= 2L′(χ−4,−1)

m

(

x +
1

x
+ y +

1

y
− 4

√
2

)

= L′(A, 0)

1log+
x = log max{1, x} for x ∈ R≥0
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Where Bk is a rational number, and Ek is the elliptic curve with corresponds to the zero
set of the polynomial. When k = 4 the curve has genus zero. When k = 4

√
2 the elliptic

curve is
A : y2 = x3 − 44x + 112,

which has complex multiplication.

3. Polylogarithms

Many examples should be understood in the context of polylogarithms.

Definition 2 The kth polylogarithm is the function defined by the power series

Lik(x) :=
∞

∑

n=1

xn

nk
x ∈ C, |x| < 1. (5)

This function can be continued analytically to C \ [1,∞).
In order to avoid discontinuities, and to extend polylogarithms to the whole complex

plane, several modifications have been proposed. Zagier [22] considers the following version:

Pk(x) := Rek





k
∑

j=0

2jBj

j!
(log |x|)jLik−j(x)



 , (6)

where Bj is the jth Bernoulli number, Li0(x) ≡ −1
2 and Rek denotes Re or Im depending

on whether k is odd or even.
This function is one-valued, real analytic in P1(C) \ {0, 1,∞} and continuous in P1(C).

Moreover, Pk satisfy very clean functional equations. The simplest ones are

Pk

(

1

x

)

= (−1)k−1Pk(x) Pk(x̄) = (−1)k−1Pk(x).

There are also lots of functional equations which depend on the index k. For instance, for
k = 2, we have the Bloch–Wigner dilogarithm,

D(x) := Im(Li2(x)) + arg(1 − x) log |x|

which satisfies the well-known five-term relation

D(x) + D(1 − xy) + D(y) + D

(

1 − y

1 − xy

)

+ D

(

1 − x

1 − xy

)

= 0. (7)

4. Mahler measure and hyperbolic volumes

A generalization of Smyth’s first result was due to Cassaigne and Maillot [17]: for a, b, c ∈
C∗,

πm(a + bx + cy) =







D
(∣

∣

a
b

∣

∣ eiγ
)

+ α log |a| + β log |b| + γ log |c| 4

π log max{|a|, |b|, |c|} not 4
(8)

where 4 stands for the statement that |a|, |b|, and |c| are the lengths of the sides of a
triangle, and α, β, and γ are the angles opposite to the sides of lengths |a|, |b|, and |c|
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Figure 1: The main term in Cassaigne – Maillot formula is the volume of the ideal hyperbolic
tetrahedron over the triangle.

respectively. The term with the dilogarithm can be interpreted as the volume of the ideal
hyperbolic tetrahedron which has the triangle as basis and the fourth vertex is infinity. See
figure 1.

Another example was due to Vandervelde [20]. He studied the polynomials whose
equation can be expressed as

y =
bx + d

ax + c
.

When a, b, c, d ∈ R∗, the Mahler measure of this polynomial is the sum of some logarithms
and two dilogarithm terms, which can be interpreted as the volume of the ideal polyhedra
built over a cyclic quadrilateral of sides |a|, |b|, |c| and |d|.

We have studied the case of

y =
xn − 1

t(xm − 1)
=

xn−1 + . . . + 1

t(xm−1 + . . . + 1)

and obtained a similar result, the Mahler measure is given by a formula whose dilogarithm
terms are the volumes of ideal polyhedra that are constructed over all the possible polygons
with m sides of length |t| and n sides of length 1.

Moreover, this phenomenon is similar to the A-polynomial phenomenon described by
Boyd [3] and Boyd and Rodriguez Villegas [5] as we showed that this polynomial can be
thought as an analogous for an A-polynomial. More specifically, we showed that it may be
obtained a factor of the resultant of certain gluing and completeness equations (conveniently
modified by the deformation parameters) in the similar way as A-polynomials are obtained.

5. More examples of Mahler measures in several variables

For more than three variables, very little is known.

Theorem 3 For n ≥ 1 we have:

π2nm

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n

1 + x2n

)

z

)

=
n

∑

h=1

sn−h(22, . . . , (2n − 2)2)

(2n − 1)!
π2n−2h(2h)!

22h+1 − 1

2
ζ(2h + 1) (9)
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For n ≥ 0:

π2n+1m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x2n+1

1 + x2n+1

)

z

)

=
n

∑

h=0

sn−h(12, . . . , (2n − 1)2)

(2n)!
22h+1π2n−2h(2h + 1)!L(χ−4, 2h + 2) (10)

There are analogous (but more complicated) formulas for

m

(

1 + x +

(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

)

(1 + y)z

)

m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

)

x +

(

1 −
(

1 − x1

1 + x1

)

. . .

(

1 − xn

1 + xn

))

y

)

Where

sl(a1, . . . , ak) =







1 if l = 0
∑

i1<...<il
ai1 . . . ail if 0 < l ≤ k

0 if k < l

(11)

are the elementary symmetric polynomials, i. e.,

k
∏

i=1

(x + ai) =
k

∑

l=0

sl(a1, . . . , ak)x
k−l (12)

For example,

π3m

(

1 +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

) (

1 − x3

1 + x3

)

z

)

= 24L(χ−4, 4) + π2L(χ−4, 2) (13)

π4m

(

1 +

(

1 − x1

1 + x1

)

. . .

(

1 − x4

1 + x4

)

z

)

= 62ζ(5) +
14π2

3
ζ(3) (14)

π4m

(

1 + x +

(

1 − x1

1 + x1

) (

1 − x2

1 + x2

)

(1 + y)z

)

= 93ζ(5) (15)

(16)

6. Examples coming from the world of resultants

Let us mention some examples of Mahler measure of resultants (this will be part of a joint
work with D’Andrea [7]).

Theorem 4

m(Res{0,m,n}) = m(Rest(x + ytm + tn, z + wtm + tn)) = m

(

z − (1 − x)m(1 − y)n−m

(1 − xy)n

)

=
2

π2
(−mP3(ϕ

n) − nP3(−ϕm) + mP3 (φn) + nP3 (φm))

where ϕ is the real root of xn + xn−m − 1 = 0 such that 0 ≤ ϕ ≤ 1, and φ is the real root
of xn − xn−m − 1 = 0 such that 1 ≤ φ. In particular, for m = 1, n = 2,

m(P ) =
4

π2
(P3(φ) − P3(−φ)) (17)
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where φ2 + φ − 1 = 0 and 0 ≤ φ ≤ 1 (in other words, φ = −1+
√

5
2 ). Moreover, using the

numerical identity
ζ
Q(

√
5)(3)

ζ(3)

?
=

1√
5
(P3(φ) − P3(−φ))

(see Zagier [21]), then

m(Res{0,1,2})
?
=

4
√

5ζ
Q(

√
5)(3)

π2ζ(3)

Theorem 5

m(Res{(0,0),(1,0),(0,1)}) = m





∣

∣

∣

∣

∣

∣

x y z
u v w
r s t

∣

∣

∣

∣

∣

∣





= m((1 − x)(1 − y) − (1 − z)(1 − w)) =
9ζ(3)

2π2

7. Beilinson’s conjectures

One of the main problems in Number Theory is finding rational (or integral) solutions
of polynomial equations with rational coefficients (global solutions). In spite of the failure
of the local-global principle in general, there are several theorems and conjectures which
predict that one may obtain global information from local information and that that re-
lation is made through values of L-functions. These statements include the Dirichlet class
number formula, the Birch–Swinnerton-Dyer conjecture, and more generally, Bloch’s and
Beilinson’s conjectures.

Typically, there are four elements involved in this setting: an arithmetic-geometric
object X (typically, an algebraic variety), its L-function (which codify local information),
a finitely generated abelian group K, and a regulator map K → R. When K has rank 1,
Beilinson’s conjectures predict that the L′

X(0) is, up to a rational number, equal to a value
of the regulator.

For instance, for a number field F , Dirichlet class number formula states that

lim
s→1

(s − 1)ζF (s) =
2r1(2π)r2hF regF

ωF

√

|DF |
.

Here, X = OF (the ring of integers), LX = ζF , and the group is O∗
F . Hence, when F is a

real quadratic field, Dirichlet class number formula may be written as ζ ′F (0) is equal to, up
to a rational number, log |ε|, for some ε ∈ O∗

F .

8. An algebraic integration for Mahler measure

The appearance of L-functions in Mahler measures formulas is a common phenomenon.
Deninger [8] interpreted the Mahler measure as a Deligne period of a mixed motive. More
specifically, in two variables, and under certain conditions, he proved that

m(P ) = reg(ξi),

where reg is the determinant of the regulator matrix, which we are evaluating in some class
in an appropriate group in K-theory.
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Rodriguez-Villegas [18] has worked out the details for two variables. This was further
developed by Boyd and Rodriguez-Villegas [4], [5].

More specifically one has

m(P ) = m(P ∗) − 1

2π

∫

γ

η(x, y), (18)

where
η(x, y) = log |x|d arg y − log |y|d arg x (19)

is a differential form that is ”essentially” defined in the curve C determined by the zeros
of P . This form is essentially the regulator.

One has a crutial property:

Theorem 6

η(x, 1 − x) = dD(x). (20)

Because of the above property, there is a condition that tells us when η(x, y) is exact,
namely:

x ∧ y =
∑

j

rj zj ∧ (1 − zj)

in
∧2(C(C)∗) ⊗ Q, in other words, {x, y} = 0 in K2(C(C)) ⊗ Q.
Under those circunstances,

η(x, y) = d





∑

j

rjD(zj)



 = dD





∑

j

rj [zj ]



 .

We have γ ⊂ C such that

∂γ =
∑

k

εk[wk] εk = ±1

where wk ∈ C(C), |x(wk)| = |y(wk)| = 1. Then

2πm(P ) = D(ξ) for ξ =
∑

k

∑

j

rj [zj(wk)].

We could summarize the whole picture as follows:

. . . → (K3(Q̄) ⊃)K3(∂γ) → K2(C, ∂γ) → K2(C) → . . .

∂γ = C ∩ T2

There are two ”nice” situations:

• η(x, y) is exact, then {x, y} ∈ K3(∂γ). In this case we have ∂γ 6= ∅, we use Stokes’
Theorem and we finish with an element K3(∂γ) ⊂ K3(Q̄), leading to dilogarithms
and zeta functions (of number fields), due to theorems by Borel, Bloch, Suslim and
others.

• ∂γ = ∅, then {x, y} ∈ K2(C). In this case, we have η(x, y) is not exact and we get
essentially the L-series of a curve, leading to examples of Beilinson’s conjectures.

6



In general, we may get combinations of both situations.

9. The three-variable case

We are going to extend this situation to three variables. We will take

η(x, y, z) = log |x|
(

1

3
d log |y|d log |z| − d arg y d arg z

)

+ log |y|
(

1

3
d log |z|d log |x| − d arg z d arg x

)

+log |z|
(

1

3
d log |x|d log |y| − d arg xd arg y

)

Then η verifies

dη(x, y, z) = Re

(

dx

x
∧ dy

y
∧ dz

z

)

,

so it is closed.
We can express the Mahler measure of P

m(P ) = m(P ∗) − 1

(2π)2

∫

Γ
η(x, y, z).

Where
Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = 1, |z| ≥ 1}.

We are integrating on a subset of S = {P (x, y, z) = 0}. The differential form is defined in
this surface minus the set of zeros and poles of x, y and z, but that will not interfere our
purposes, since we will be dealing with the cases when η(x, y, z) is exact and that implies
trivial tame symbols thus the element in the cohomology can be extended to S.

As in the two-variable case, we would like to apply Stokes’ Theorem.
Let us take a look at Smyth’s case, we can express the polynomial as P (x, y, z) =

(1 − x) + (1 − y)z. We get:

m(P ) = m(1 − y) +
1

(2πi)2

∫

T2

log+

∣

∣

∣

∣

1 − x

1 − y

∣

∣

∣

∣

dx

x

dy

y
= − 1

(2π)2

∫

Γ
η(x, y, z).

In general, we have
η(x, 1 − x, y) = dω(x, y),

where

ω(x, y) = −D(x)d arg y +
1

3
log |y|(log |1 − x|d log |x| − log |x|d log |1 − x|).

Suppose we have

x ∧ y ∧ z =
∑

ri xi ∧ (1 − xi) ∧ yi

in
∧3(C(S)∗) ⊗ Q.
Then

∫

Γ
η(x, y, z) =

∑

ri

∫

Γ
η(xi, 1 − xi, yi) =

∑

ri

∫

∂Γ
ω(xi, yi).

In Smyth’s case, this corresponds to

x ∧ y ∧ z = − x ∧ (1 − x) ∧ y − y ∧ (1 − y) ∧ x,
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in other words,
η(x, y, z) = −η(x, 1 − x, y) − η(y, 1 − y, x).

Back to the general picture, ∂Γ = {P (x, y, z) = 0} ∩ {|x| = |y| = |z| = 1}. When
P ∈ Q[x, y, z], Γ can be thought as

γ = {P (x, y, z) = P (x−1, y−1, z−1) = 0} ∩ {|x| = |y| = 1}.

Note that we are integrating now on a path inside the curve C = {P (x, y, z) = P (x−1, y−1, z−1) =
0}. The differential form ω is defined in this new curve (this way of thinking the integral
over a new curve has been proposed by Maillot). Now it makes sense to try to apply Stokes’
Theorem again. We have

ω(x, x) = dP3(x).

Suppose we have

[x]2 ⊗ y =
∑

ri[xi]2 ⊗ xi

in (B2(C(C)) ⊗ C(C)∗)Q.
Then, as before:

∫

γ

ω(x, y) =
∑

ri P3(xi)|∂γ .

Back to Smyth’s case, in order to compute C we set (1−x)(1−x−1)
(1−y)(1−y−1)

= 1 and we get

C = {x = y} ∪ {xy = 1} in this example, and

−[x]2 ⊗ y − [y]2 ⊗ x = ±2[x]2 ⊗ x.

We integrate in the set described by the following picture

π

π

π

_

π_

Then

m((1 − x) + (1 − y)z) =
1

4π2

∫

γ

ω(x, y) + ω(y, x) =
1

4π2
8(P3(1) − P3(−1)) =

7

2π2
ζ(3).

10. The K-theory conditions

We follow Goncharov, [9], [10]. Given a field F , we define subgroups Ri(F ) ⊂ Z[P1
F ] as

R1(F ) := [x] + [y] − [xy]

R2(F ) := [x] + [y] + [1 − xy] +

[

1 − x

1 − xy

]

+

[

1 − y

1 − xy

]

R3(F ) := certain functional equation of the trilogarithm
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Define

Bi(F ) := Z[P1
F ]/Ri(F ) (21)

The idea is that Bi(F ) is the place where Pi naturally acts. We have the following
complexes:

BF (3) : B3(F )
δ3
1−→ B2(F ) ⊗ F ∗ δ3

2−→ ∧3F ∗

BF (2) : B2(F )
δ2
1−→ ∧2F ∗

BF (1) : F ∗

(Bi(F ) is placed in degree 1).

δ3
1([x]3) = [x]2 ⊗ x δ3

2([x]2 ⊗ y) = x ∧ (1 − x) ∧ y δ2
1([x]2) = x ∧ (1 − x)

Proposition 7

H1(BF (1)) ∼= K1(F ) (22)

H1(BF (2))Q
∼= K ind

3 (F )Q (23)

H2(BF (2)) ∼= K2(F ) (24)

H3(BF (3)) ∼= KM
3 (F ) (25)

Goncharov [9] conjectures:

H i(BF (3) ⊗ Q) ∼= K
[3−i]
6−i (F )Q

Where K
[i]
n (F )Q is a certain quotient in a filtration of Kn(F )Q.

Note that our first condition is that

x ∧ y ∧ z = 0 in H3(BQ(S)(3) ⊗ Q) ∼= K
[0]
3 (Q(S))Q

∼= KM
3 (Q(S)) ⊗ Q

and the second condition is

[xi]2 ⊗ yi = 0 in H2(BQ(C)(3) ⊗ Q)
?∼= K

[1]
4 (Q(C))Q

Hence, the conditions can be translated as certain elements in different K-theories must be
zero, which is analogous to the two-variable case.

We could summarize this picture as follows. We first integrate in this picture

. . . → K4(∂Γ) → K3(S, ∂Γ) → K3(S) → . . .

∂Γ = S ∩ T3

As before, we have two situations. All the examples we have talked about fit into the
situation when η(x, y, z) is exact and ∂Γ 6= ∅. Then we finish with an element in K4(∂Γ).

Then we go to

. . . → (K5(Q̄) ⊃)K5(∂γ) → K4(C, ∂γ) → K4(C) → . . .

9



∂γ = C ∩ T2

Again we have two possibilities, but in our context, ω(x, y) is exact and we finish with an
element in K5(∂γ) ⊂ K5(Q̄) leading to trilogarithms and zeta functions, due to Zagier’s
conjecture and Borel’s theorem.

11. Conclusion

The next picture shows how Mahler measure interacts with several elements (some
have been discussed here and some have not). We can see the key role of Mahler measure
in the relation among special values of L-functions and regulators (which are related via
Beilinson’s conjectures), heights, and hyperbolic manifolds (that are related by Beilinson’s
conjectures as well). It is our general goal to bring more light to the nature of these
relationships.

Regulator

Heights

L−functions

Mahler measureHyperbolic manifolds

Beilinson’s conjectures
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