Mahler measure and special values of *L*-functions

Matilde N. Lalín

University of Alberta
mlalin@math.ualberta.ca
http://www.math.ualberta.ca/~mlalin

October 24, 2008

Diophantine equations and zeta functions

$$2x^2 - 1 = 0 \qquad x \in \mathbb{Z}$$

No solutions!!! $(2x^2 \text{ is always even and } 1 \text{ is odd.})$

We are looking at "odd" and "even" numbers instead of integers (reduction modulo p=2).

Diophantine equations and zeta functions

$$2x^2 - 1 = 0 \qquad x \in \mathbb{Z}$$

No solutions!!! $(2x^2 \text{ is always even and 1 is odd.})$

We are looking at "odd" and "even" numbers instead of integers (reduction modulo p=2).

Diophantine equations and zeta functions

$$2x^2 - 1 = 0 \qquad x \in \mathbb{Z}$$

No solutions!!! $(2x^2 \text{ is always even and } 1 \text{ is odd.})$

We are looking at "odd" and "even" numbers instead of integers (reduction modulo p=2).

Local solutions = solutions modulo p, and in \mathbb{R} .

Global solutions = solutions in $\mathbb Z$

global solutions \Rightarrow local solutions

local solutions \Rightarrow global solutions

Local solutions = solutions modulo p, and in \mathbb{R} .

Global solutions = solutions in $\ensuremath{\mathbb{Z}}$

 $\mathsf{global}\ \mathsf{solutions} \Rightarrow \mathsf{local}\ \mathsf{solutions}$

Zeta functions

Local info → zeta functions

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}$$

Nice properties:

- Euler product
 - Functional equation
 - Riemann Hypothesis
 - Special values

$$\zeta(1)$$
 pole, $\zeta(2) = \frac{\pi^2}{6}$

Periods

Definition

A complex number whose real and imaginary parts are values of absolutely convergent integrals of rational functions with rational coefficients over domains in \mathbb{R}^n given by polynomial inequalities with rational coefficients.

Example:

$$\pi = \int \int_{x^2 + y^2 \le 1} dx \, dy = \int_{\mathbb{R}} \frac{dx}{1 + x^2}$$

$$\zeta(3) = \int \int \int_{0 < x < y < z < 1} \frac{dx \, dy \, dz}{(1 - x)yz}$$

algebraic numbers

$$\log(2) = \int_1^2 \frac{dx}{x}$$

e = 2.718218... does not seem to be a period

"Beilinson's type" conjectures: Special values of *zeta*-functions may be written in terms of certain periods called *regulators*.

algebraic numbers

$$\log(2) = \int_1^2 \frac{dx}{x}$$

e = 2.718218... does not seem to be a period

"Beilinson's type" conjectures: Special values of *zeta*-functions may be written in terms of certain periods called *regulators*.

Mahler measure of multivariable polynomials

 $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, the (logarithmic) Mahler measure is :

$$m(P) = \int_0^1 \dots \int_0^1 \log |P(e^{2\pi i\theta_1}, \dots, e^{2\pi i\theta_n})| d\theta_1 \dots d\theta_n$$
$$= \frac{1}{(2\pi i)^n} \int_{\mathbb{T}^n} \log |P(x_1, \dots, x_n)| \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n}$$

Jensen's formula implies

$$m(P) = \log |a| + \sum_{i} \log \{\max\{1, |\alpha_i|\}\}$$
 for $P(x) = a \prod_{i} (x - \alpha_i)$

Mahler measure of multivariable polynomials

 $P \in \mathbb{C}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$, the (logarithmic) Mahler measure is :

$$m(P) = \int_0^1 \dots \int_0^1 \log |P(e^{2\pi i\theta_1}, \dots, e^{2\pi i\theta_n})| d\theta_1 \dots d\theta_n$$
$$= \frac{1}{(2\pi i)^n} \int_{\mathbb{T}^n} \log |P(x_1, \dots, x_n)| \frac{dx_1}{x_1} \dots \frac{dx_n}{x_n}$$

Jensen's formula implies

$$m(P) = \log|a| + \sum_{i} \log\{\max\{1, |\alpha_i|\}\}$$
 for $P(x) = a \prod_{i} (x - \alpha_i)$

Mahler measure is ubiquitous!

- Interesting questions about distribution of values
- Heights
- Volumes in hyperbolic space
- Entropy of certain discrete dynamical systems

Examples in several variables

Smyth (1981)

•

$$m(1+x+y) = \frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2) = L'(\chi_{-3},-1)$$

$$L(\chi_{-3}, s) = \sum_{n=1}^{\infty} \frac{\chi_{-3}(n)}{n^{s}} \qquad \chi_{-3}(n) = \begin{cases} 1 & n \equiv 1 \mod 3 \\ -1 & n \equiv -1 \mod 3 \\ 0 & n \equiv 0 \mod 3 \end{cases}$$

$$m(1+x+y+z) = \frac{7}{2\pi^2}\zeta(3)$$

More examples in several variables

• Boyd & L. (2005)

$$\pi^2 m(x^2 + 1 + (x+1)y + (x-1)z) = \pi L(\chi_{-4}, 2) + \frac{21}{8}\zeta(3)$$

• L. (2003)

$$\pi^4 m \left(1 + x + \left(\frac{1 - x_1}{1 + x_1} \right) \left(\frac{1 - x_2}{1 + x_2} \right) (1 + y) z \right) = 93 \zeta(5)$$

Known formulas for

$$\pi^{n+2}m\left(1+x+\left(\frac{1-x_1}{1+x_1}\right)\ldots\left(\frac{1-x_n}{1+x_n}\right)(1+y)z\right)$$

Why do we get nice numbers?

In many cases, the Mahler measure is the special period coming from Beilinson's conjectures!

Deninger (1997) General framework.

Rodriguez-Villegas (1997) 2-variable case.

An algebraic integration for Mahler measure

$$P(x,y) = y + x - 1 X = \{P(x,y) = 0\}$$

$$m(P) = \frac{1}{(2\pi i)^2} \int_{\mathbb{T}^2} \log|y + x - 1| \frac{dx}{x} \frac{dy}{y}$$

By Jensen's equality:

$$= \frac{1}{2\pi \mathrm{i}} \int_{\mathbb{T}^1} \log^+ |1 - x| \frac{\mathrm{d}x}{x}$$

An algebraic integration for Mahler measure

$$P(x,y) = y + x - 1 X = \{P(x,y) = 0\}$$

$$m(P) = \frac{1}{(2\pi i)^2} \int_{\mathbb{T}^2} \log|y + x - 1| \frac{dx}{x} \frac{dy}{y}$$

By Jensen's equality:

$$= \frac{1}{2\pi \mathrm{i}} \int_{\mathbb{T}^1} \log^+ |1 - x| \frac{\mathrm{d}x}{x}$$

$$= \frac{1}{2\pi i} \int_{\mathbb{T}^1} \log^+ |1 - x| \frac{\mathrm{d}x}{x}$$

$$= \frac{1}{2\pi i} \int_{\gamma} \log |y| \frac{\mathrm{d}x}{x} = -\frac{1}{2\pi i} \int_{\gamma} \eta(x, y)$$

$$\gamma = X \cap \{|x| = 1, |y| \ge 1\}$$

where

$$\eta(x, y) = \log |x| \operatorname{di} \arg y - \log |y| \operatorname{di} \arg x$$

$$\mathrm{d}\arg x = \mathrm{Im}\left(\frac{\mathrm{d}x}{x}\right)$$

Theorem

$$\eta(x,1-x)=\mathrm{di}D(x)$$

dilogarithm

$$\operatorname{Li}_{2}(x) := \sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \qquad |x| < 1$$

$$m(y + x - 1) = -\frac{1}{2\pi i} \int_{\gamma} \eta(x, y)$$

$$= -\frac{1}{2\pi} D(\partial \gamma) = \frac{1}{2\pi} (D(\xi_{6}) - D(\bar{\xi_{6}})) = \frac{3\sqrt{3}}{4\pi} L(\chi_{-3}, 2)$$

The three-variable case

Theorem

L. (2005)

 $P(x, y, z) \in \mathbb{Q}[x, y, z]$ irreducible, nonreciprocal,

$$X = \{P(x,y,z) = 0\}, \qquad C = \{\mathrm{Res}_z(P(x,y,z),P(x^{-1},y^{-1},z^{-1})) = 0\}$$

$$x \wedge y \wedge z = \sum_{i} r_{i} x_{i} \wedge (1 - x_{i}) \wedge y_{i}$$
 in $\bigwedge^{3} (\mathbb{C}(X)^{*}) \otimes \mathbb{Q}$,

$$\{x_i\}_2 \otimes y_i = \sum_i r_{i,j} \{x_{i,j}\}_2 \otimes x_{i,j}$$
 in $(\mathcal{B}_2(\mathbb{C}(C)) \otimes \mathbb{C}(C)^*)_{\mathbb{Q}}$

Then

$$4\pi^2(m(P^*)-m(P))=\mathcal{L}_3(\xi)\qquad \xi\in\mathcal{B}_3(\bar{\mathbb{Q}})_{\mathbb{Q}}$$

4 D > 4 A > 4 E > 4 E > E > 9 Q (^

The three-variable case

Theorem

L. (2005)

 $P(x, y, z) \in \mathbb{Q}[x, y, z]$ irreducible, nonreciprocal,

$$X = \{P(x,y,z) = 0\}, \qquad C = \{\mathrm{Res}_z(P(x,y,z),P(x^{-1},y^{-1},z^{-1})) = 0\}$$

$$\{x,y,z\}=0$$
 in $K_3^M(\mathbb{C}(X))\otimes\mathbb{Q}$

$$\{x_i\}_2\otimes y_i$$
 trivial in $gr_3^\gamma K_4(\mathbb{C}(C))\otimes \mathbb{Q}(?)$

Then

$$4\pi^2(m(P^*)-m(P))=\mathcal{L}_3(\xi)\qquad \xi\in\mathcal{B}_3(\bar{\mathbb{Q}})_{\mathbb{Q}}$$

1 D > 1 D > 1 E > 1 E > 2 Y) 4 (

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for *n*-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for *n*-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for *n*-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

- Explains all the known cases involving $\zeta(3)$ (by Borel's Theorem).
- It is constructive (no need of "happy idea" integrals).
- Integration sets hard to describe.
- Conjecture for *n*-variables using Goncharov's regulator currents. Provides motivation for Goncharov's construction.

Elliptic curves

$$E: Y^2 = X^3 + aX + b$$

Group structure!

Example:

$$x + \frac{1}{x} + y + \frac{1}{y} + k = 0$$

$$x = \frac{kX - 2Y}{2X(X - 1)} \qquad y = \frac{kX + 2Y}{2X(X - 1)}.$$

$$Y^{2} = X\left(X^{2} + \left(\frac{k^{2}}{4} - 2\right)X + 1\right).$$

L-function

$$L(E,s) = \prod_{\text{good } p} (1 - a_p p^{-s} + p^{1-2s})^{-1} \prod_{\text{bad } p} (1 - a_p p^{-s})^{-1}$$
$$a_p = 1 + p - \#E(\mathbb{F}_p)$$

Back to Mahler measure in two variables

$$m(k) := m\left(x + \frac{1}{x} + y + \frac{1}{y} + k\right)$$
 Boyd (1998)
$$m(k) \stackrel{?}{=} \frac{L'(E_k, 0)}{s_k} \quad k \in \mathbb{N} \neq 0, 4$$

$$m\left(4\sqrt{2}\right) = L'(E_{4\sqrt{2}}, 0)$$

• Rogers & L. (2006) For |h| < 1, $h \neq 0$,

$$m\left(2\left(h+\frac{1}{h}\right)\right)+m\left(2\left(\mathrm{i}h+\frac{1}{\mathrm{i}h}\right)\right)=m\left(\frac{4}{h^2}\right).$$

• Kurokawa & Ochiai (2005) For $h \in \mathbb{R}^*$,

$$m(4h^2) + m\left(\frac{4}{h^2}\right) = 2m\left(2\left(h + \frac{1}{h}\right)\right).$$

Corollary

Rogers & L. (2006)

$$m(8)=4m(2)$$

• L. (2008)

$$m(5)=6m(1)$$

Combining results of Bloch, Beilinson:

E/\mathbb{Q}

Regulator is given by a Kronecker–Eisenstein series that depends on the divisors of x, y.

$$\int_{\gamma} \eta(x,y) = \operatorname{covol}(\Lambda) \Omega \sum_{\lambda \in \Lambda}' \frac{(x-y,\lambda) \bar{\lambda}}{|\lambda|^4}$$

$$E/\mathbb{C} = \mathbb{C}/\Lambda$$
 $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$
 $(\cdot, \cdot) : \mathbb{C}/\Lambda \times \Lambda \to \mathbb{S}^1$

If $x = \sum \alpha_i(P_i)$, then

$$(x,\lambda) := \sum \alpha_i(P_i,\lambda).$$

Combining results of Bloch, Beilinson:

E/\mathbb{Q}

Regulator is given by a Kronecker–Eisenstein series that depends on the divisors of x, y.

$$\int_{\gamma} \eta(x,y) = \operatorname{covol}(\Lambda) \Omega \sum_{\lambda \in \Lambda}' \frac{(x-y,\lambda) \bar{\lambda}}{|\lambda|^4}$$

$$E/\mathbb{C} = \mathbb{C}/\Lambda$$
 $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$
 $(\cdot, \cdot) : \mathbb{C}/\Lambda \times \Lambda \to \mathbb{S}^1$

If $x = \sum \alpha_i(P_i)$, then

$$(x,\lambda) := \sum \alpha_i(P_i,\lambda).$$

A three-variable example

Boyd (2005)

$$m(z + (x + 1)(y + 1)) \stackrel{?}{=} 2L'(E_{15}, -1).$$

$$E_{15}: Y^2 = X^3 - 7X^2 + 16X.$$

$$m(z-(x+1)(y+1)) = -\frac{1}{(2\pi)^2} \int_{\Gamma} \eta(x,y,z)$$

$$x \wedge y \wedge z = x \wedge y \wedge (1+x)(1+y) = -x \wedge (1+x) \wedge y + y \wedge (1+y) \wedge x$$

$$\eta(x,1-x,y)=\mathrm{d}\omega(x,y)$$

$$=-\frac{1}{4\pi^2}\int_{\mathcal{X}}-\omega(-x,y)+\omega(-y,x).$$

under the condition

$$z = (x+1)(y+1)$$
$$z^{-1} = (x^{-1}+1)(y^{-1}+1)$$

$$(x+1)^2y^2 + (2(x+1)^2 - x)y + (x+1)^2 = 0.$$

L (2008)

By a result of Goncharov,

$$\begin{split} &\int_{\gamma} \omega(x,y) = \\ &= (\operatorname{covol}(\Lambda))^2 \Omega \sum_{\lambda_1 + \lambda_2 + \lambda_3 = 0}^{\prime} \frac{(y,\lambda_1)(x,\lambda_2)(1-x,\lambda_3)(\overline{\lambda_3} - \overline{\lambda_2})}{|\lambda_1|^2 |\lambda_2|^2 |\lambda_3|^2} \end{split}$$

the L-function can be related to the Kronecker–Eisenstein series.

Working with the divisors

Let
$$(x) = \sum \alpha_j(P_j)$$
, $(1-x) = \sum \beta_k(Q_k)$, and $(y) = \sum \gamma_l(R_l)$ divisors in E .
Then

 $\diamond: (\mathit{Div}(E) \land \mathit{Div}(E)) \otimes \mathit{Div}(E) \rightarrow \mathit{Div}(E) \land \mathit{Div}(E) / \sim$

$$((x) \wedge (1-x)) \diamond (y) = \sum \alpha_j \beta_k \gamma_l (P_j - R_l, Q_k - R_l)$$

Here

$$(P, Q) \sim -(-P, -Q).$$

Note that

$$(P, Q) = -(Q, P).$$

$$m(z - (x+1)(y+1)) = -\frac{1}{4\pi^2} \int_{\gamma} -\omega(-x,y) + \omega(-y,x).$$
$$Y^2 = X^3 - 7X^2 + 16X.$$

Let P = (4,4) (point of order 4).

$$(x) = 2(2P) - 2O$$
$$(1+x) = (P) + (3P) - 2O$$
$$(y) = 2(P) - 2(3P)$$
$$(1+y) = (2P) + O - 2(3P)$$

$$-((x)\wedge(1+x))\diamond(y)+((y)\wedge(1+y))\diamond(x) = -32((P,O)+(P,2P)-(P,-P))$$

Boyd & L. (in progress)

This relationship may be used to compare with other Mahler measure formulas.

$$m(x+1+(x^2+x+1)y+(x+1)^2z) \stackrel{?}{=} \frac{1}{3}L'(\chi_{-3},-1)+\frac{13}{3\pi^2}\zeta(3) = m_1+m_2$$

with the exotic relation

$$m_1 - m_2 \stackrel{?}{=} 3L'(\chi_{-3}, -1) - L'(E_{15}, -1)$$
 (1)

$$m(z + (x+1)(y+1)) \stackrel{?}{=} 2L'(E_{15}, -1)$$
 (2)

We can prove that the coefficient of $L'(E_{15},-1)$ in (1) is $-\frac{1}{2}$ of the coefficient in (2)

In conclusion...

- Natural examples of Beilinson conjectures in action
- Examples of nontrivial identities between periods
- Hope of better understanding of special values of L-functions

Merci de votre attention!