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Diophantine equations and zeta functions

2x2 − 1 = 0 x ∈ Z

No solutions!!!
(2x2 is always even and 1 is odd.)

We are looking at “odd” and “even” numbers instead of integers
(reduction modulo p = 2).
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Local solutions = solutions modulo p, and in R.

Global solutions = solutions in Z

global solutions ⇒ local solutions

local solutions 6⇒ global solutions
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Zeta functions

Local info  zeta functions

ζ(s) =
∞∑

n=1

1

ns
=

∏
p prime

(
1− 1

ps

)−1

Nice properties:

Euler product

Functional equation

Riemann Hypothesis

Special values

ζ(1) pole, ζ(2) =
π2

6

Matilde N. Laĺın (U of A) Mahler measure and special values of L-functions October 24, 2008 4 / 31



Periods

Definition

A complex number whose real and imaginary parts are values of absolutely
convergent integrals of rational functions with rational coefficients over
domains in Rn given by polynomial inequalities with rational coefficients.

Example:

π =

∫ ∫
x2+y2≤1

dx dy =

∫
R

dx

1 + x2

ζ(3) =

∫ ∫ ∫
0<x<y<z<1

dx dy dz

(1− x)yz
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algebraic numbers

log(2) =

∫ 2

1

dx

x

e = 2.718218 . . . does not seem to be a period

“Beilinson’s type” conjectures: Special values of zeta-functions may be
written in terms of certain periods called regulators.
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Mahler measure of multivariable polynomials

P ∈ C[x±1
1 , . . . , x±1

n ], the (logarithmic) Mahler measure is :

m(P) =

∫ 1

0
. . .

∫ 1

0
log |P(e2πiθ1 , . . . , e2πiθn)|dθ1 . . . dθn

=
1

(2πi)n

∫
Tn

log |P(x1, . . . , xn)|dx1

x1
. . .

dxn

xn

Jensen’s formula implies

m(P) = log |a|+
∑

i

log{max{1, |αi |}} for P(x) = a
∏
i

(x − αi )
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Mahler measure is ubiquitous!

Interesting questions about distribution of values

Heights

Volumes in hyperbolic space

Entropy of certain discrete dynamical systems
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Examples in several variables

Smyth (1981)

m(1 + x + y) =
3
√

3

4π
L(χ−3, 2) = L′(χ−3,−1)

L(χ−3, s) =
∞∑

n=1

χ−3(n)

ns
χ−3(n) =


1 n ≡ 1 mod 3
−1 n ≡ −1 mod 3
0 n ≡ 0 mod 3

m(1 + x + y + z) =
7

2π2
ζ(3)
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More examples in several variables

Boyd & L. (2005)

π2m(x2 + 1 + (x + 1)y + (x − 1)z) = πL(χ−4, 2) +
21

8
ζ(3)

L. (2003)

π4m

(
1 + x +

(
1− x1

1 + x1

)(
1− x2

1 + x2

)
(1 + y)z

)
=93ζ(5)

Known formulas for

πn+2m

(
1 + x +

(
1− x1

1 + x1

)
. . .

(
1− xn

1 + xn

)
(1 + y)z

)
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Why do we get nice numbers?

In many cases, the Mahler measure is the special period coming from
Beilinson’s conjectures!

Deninger (1997) General framework.

Rodriguez-Villegas (1997) 2-variable case.
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An algebraic integration for Mahler measure

P(x , y) = y + x − 1 X = {P(x , y) = 0}

m(P) =
1

(2πi)2

∫
T2

log |y + x − 1|dx

x

dy

y

By Jensen’s equality:

=
1

2πi

∫
T1

log+ |1− x |dx

x
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=
1

2πi

∫
T1

log+ |1− x |dx

x

=
1

2πi

∫
γ

log |y |dx

x
= − 1

2πi

∫
γ
η(x , y)

where
γ = X ∩ {|x | = 1, |y | ≥ 1}

η(x , y) = log |x |di arg y − log |y |di arg x

d arg x = Im
(

dx

x

)
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Theorem

η(x , 1− x) = diD(x)

dilogarithm

Li2(x) :=
∞∑

n=1

xn

n2
|x | < 1

m(y + x − 1) = − 1

2πi

∫
γ
η(x , y)

= − 1

2π
D(∂γ) =

1

2π
(D(ξ6)− D(ξ̄6)) =

3
√

3

4π
L(χ−3, 2)

γy (  )

y = 1 − x| x | = 1

ξ6
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The three-variable case

Theorem

L. (2005)
P(x , y , z) ∈ Q[x , y , z ] irreducible, nonreciprocal,

X = {P(x , y , z) = 0}, C = {Resz(P(x , y , z),P(x−1, y−1, z−1)) = 0}

x ∧ y ∧ z =
∑

i

rixi ∧ (1− xi ) ∧ yi in
3∧

(C(X )∗)⊗Q,

{xi}2 ⊗ yi =
∑

j

ri ,j{xi ,j}2 ⊗ xi ,j in (B2(C(C ))⊗ C(C )∗)Q

Then
4π2(m(P∗)−m(P)) = L3(ξ) ξ ∈ B3(Q̄)Q
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P(x , y , z) ∈ Q[x , y , z ] irreducible, nonreciprocal,

X = {P(x , y , z) = 0}, C = {Resz(P(x , y , z),P(x−1, y−1, z−1)) = 0}

{x , y , z} = 0 in KM
3 (C(X ))⊗Q

{xi}2 ⊗ yi trivial in grγ3 K4(C(C ))⊗Q (?)

Then
4π2(m(P∗)−m(P)) = L3(ξ) ξ ∈ B3(Q̄)Q
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Explains all the known cases involving ζ(3) (by Borel’s Theorem).

It is constructive (no need of “happy idea” integrals).

Integration sets hard to describe.

Conjecture for n-variables using Goncharov’s regulator currents.
Provides motivation for Goncharov’s construction.
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Elliptic curves

E : Y 2 = X 3 + aX + b

Group structure!

Example:

x +
1

x
+ y +

1

y
+ k = 0

x =
kX − 2Y

2X (X − 1)
y =

kX + 2Y

2X (X − 1)
.

Y 2 = X

(
X 2 +

(
k2

4
− 2

)
X + 1

)
.
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L-function

L(E , s) =
∏

good p

(1− app−s + p1−2s)−1
∏

bad p

(1− app−s)−1

ap = 1 + p −#E (Fp)
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Back to Mahler measure in two variables

m(k) := m

(
x +

1

x
+ y +

1

y
+ k

)
Boyd (1998)

m (k)
?
=

L′(Ek , 0)

sk
k ∈ N 6= 0, 4

m
(

4
√

2
)

= L′(E4
√

2, 0)
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Rogers & L. (2006)
For |h| < 1, h 6= 0,

m

(
2

(
h +

1

h

))
+ m

(
2

(
ih +

1

ih

))
= m

(
4

h2

)
.

Kurokawa & Ochiai (2005)
For h ∈ R∗,

m(4h2) + m

(
4

h2

)
= 2m

(
2

(
h +

1

h

))
.

Matilde N. Laĺın (U of A) Mahler measure and special values of L-functions October 24, 2008 21 / 31



Corollary

Rogers & L. (2006)
m(8) = 4m(2)

L. (2008)
m(5) = 6m(1)
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Combining results of Bloch, Beilinson:

E/Q
Regulator is given by a Kronecker–Eisenstein series that depends on the
divisors of x , y . ∫

γ
η(x , y) = covol(Λ)Ω

′∑
λ∈Λ

(x − y , λ)λ̄

|λ|4

E/C = C/Λ Λ = Zω1 + Zω2

(·, ·) : C/Λ× Λ→ S1

If x =
∑
αi (Pi ), then

(x , λ) :=
∑

αi (Pi , λ).

Matilde N. Laĺın (U of A) Mahler measure and special values of L-functions October 24, 2008 23 / 31



Combining results of Bloch, Beilinson:

E/Q
Regulator is given by a Kronecker–Eisenstein series that depends on the
divisors of x , y . ∫

γ
η(x , y) = covol(Λ)Ω

′∑
λ∈Λ

(x − y , λ)λ̄

|λ|4

E/C = C/Λ Λ = Zω1 + Zω2

(·, ·) : C/Λ× Λ→ S1

If x =
∑
αi (Pi ), then

(x , λ) :=
∑

αi (Pi , λ).
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A three-variable example

Boyd (2005)

m(z + (x + 1)(y + 1))
?
= 2L′(E15,−1).

E15 : Y 2 = X 3 − 7X 2 + 16X .
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m(z − (x + 1)(y + 1)) = − 1

(2π)2

∫
Γ
η(x , y , z)

x ∧ y ∧ z = x ∧ y ∧ (1 + x)(1 + y) = −x ∧ (1 + x) ∧ y + y ∧ (1 + y) ∧ x

η(x , 1− x , y) = dω(x , y)

= − 1

4π2

∫
γ
−ω(−x , y) + ω(−y , x).

under the condition
z = (x + 1)(y + 1)

z−1 = (x−1 + 1)(y−1 + 1)

(x + 1)2y 2 + (2(x + 1)2 − x)y + (x + 1)2 = 0.
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L (2008)

By a result of Goncharov, ∫
γ
ω(x , y) =

= (covol(Λ))2Ω
′∑

λ1+λ2+λ3=0

(y , λ1)(x , λ2)(1− x , λ3)(λ3 − λ2)

|λ1|2|λ2|2|λ3|2

the L-function can be related to the Kronecker–Eisenstein series.
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Working with the divisors

Let (x) =
∑
αj(Pj), (1− x) =

∑
βk(Qk), and (y) =

∑
γl(Rl) divisors in

E .
Then

� : (Div(E ) ∧ Div(E ))⊗ Div(E )→ Div(E ) ∧ Div(E )/ ∼

((x) ∧ (1− x)) � (y) =
∑

αjβkγl(Pj − Rl ,Qk − Rl)

Here
(P,Q) ∼ −(−P,−Q).

Note that
(P,Q) = −(Q,P).
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m(z − (x + 1)(y + 1)) = − 1

4π2

∫
γ
−ω(−x , y) + ω(−y , x).

Y 2 = X 3 − 7X 2 + 16X .

Let P = (4, 4) (point of order 4).

(x) = 2(2P)− 2O

(1 + x) = (P) + (3P)− 2O

(y) = 2(P)− 2(3P)

(1 + y) = (2P) + O − 2(3P)

−((x)∧(1+x))�(y)+((y)∧(1+y))�(x) = −32((P,O)+(P, 2P)−(P,−P))
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Boyd & L. (in progress)
This relationship may be used to compare with other Mahler measure
formulas.

m(x +1+(x2 +x +1)y +(x +1)2z)
?
=

1

3
L′(χ−3,−1)+

13

3π2
ζ(3) = m1 +m2

with the exotic relation

m1 −m2
?
= 3L′(χ−3,−1)− L′(E15,−1) (1)

m(z + (x + 1)(y + 1))
?
= 2L′(E15,−1) (2)

We can prove that the coefficient of L′(E15,−1) in (1) is −1
2 of the

coefficient in (2)
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In conclusion...

Natural examples of Beilinson conjectures in action

Examples of nontrivial identities between periods

Hope of better understanding of special values of L-functions

Regulator

Heights

L−functions

Mahler measure

Beilinson’s conjectures

Hyperbolic manifolds

Random walks
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Merci de votre attention!
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