Département de mathématiques et de statistique Université de Montréal Théorie de Galois. Mat 3661. Examen Intra Le 23 février 2011

Professeure: Matilde N. Lalín

NOM:

CPER:

- 1. Aucune documentation permise.
- 2. Les téléphones cellulaires doivent être éteints. Les portables ne sont pas permis.
- 3. Ne pas oublier d'écrire vos nom et CPER sur cette feuille.
- 4. Lire attentivement les questions avant de commencer à travailler.
- 5. Justifier tous vos raisonnements.
- 6. Continuer sur le verso de la feuille si vous avez besoin de plus d'espace.
- 7. Répondre à toutes les questions.
- 8. Le total des points de cet examen vaut 30 (il y a 3 points aditionels).

Question:	1	2	3	4	5	6	Total
Points:	5	6	5	5	5	7	33
Score:							

- 1. (5 points) (a) Faire une liste des polynômes irréductibles sur $\mathbb{F}_2[x]$ de degré ≤ 2 .
 - (b) Soit $p(x) = x^4 + 15x^3 + 7$. Est-ce que p(x) est irréductible
 - (1) sur \mathbb{F}_2 ? (2) sur \mathbb{Q} ?

Solution: (a) Les polynômes irréductibles sur $\mathbb{F}_2[x]$ de degré ≤ 2 sont ceux qui divisent $x^{2^2} - x$,

$$x^4 + x = x(x+1)(x^2 + x + 1)$$

(b) (1) p(x) n'a aucune racine sur \mathbb{F}_2 , alors, s'il est réductible, il doit être produit des polynômes irréductibles de degré 2. Alors, la seule possibilité est

$$(x^2 + x + 1)^2 = x^4 + x^2 + 1,$$

qui est different de $p(x) = x^4 + x^3 + 1 \in \mathbb{F}_2[x]$. Alors, $p(x) \in \mathbb{F}_2[x]$ irréductible.

(2) Comme p(x) est irréductible sur $\mathbb{F}_2[x]$, et que ses coefficients son entiers, on trouve qu'il est irréductible sur $\mathbb{Z}[x]$ et par consequent, sur $\mathbb{Q}[x]$

- 2. (6 points) Trouver les corps de décomposition K des polynômes suivants sur \mathbb{Q} et donner leurs degrés. Justifier vos réponses.
 - (a) $p(x) = x^6 8$.
 - (b) $p(x) = x^6 32$.

Solution: (a) Les racines de ce polynôme sont $\sqrt{2}\xi_6^k$ avec $k=0,1,\ldots,5$. Alors, $K=\mathbb{Q}(\sqrt{2},\xi_6)$. On écrit

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$$

On sait que $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$ (x^2-2) irréductible par Einsestein). Aussi, on sait que le polynôme minimal de ξ_6 sur \mathbb{Q} est $\Phi_6(x)=x^2-x+1$ (Preuve: on a vu que $\Phi_6(x)=\Phi_3(-x)$. Une autre forme: $x^6-1=(x-1)(x^2+x+1)(x+1)(x^2-x+1)$ et comme $\Phi_1(x)=x-1$, $\Phi_2(x)=x+1$, $\Phi_3(x)=x^2+x+1$, on a que $\Phi_6(x)=x^2-x+1$. De plus, $\xi_6 \notin \mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$. Alors, $[K:\mathbb{Q}(\sqrt{2})]=2$ et $[K:\mathbb{Q}]=4$.

Une autre faiçon de penser: on peut calculer que $\xi_6 = \frac{1 \pm \sqrt{3}i}{2}$. Alors, $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}i)$ et $[K : \mathbb{Q}(\sqrt{2}) = 2$ parce que $\sqrt{3}i$ est racine de $x^2 + 3$ (irréductible par Einsestein) et $\sqrt{3}i \notin \mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$.

(b) Dans ce cas-là, on trouve que les racines sont $\sqrt[6]{32}\xi_6^k$ avec $k=0,1,\ldots,5$. Alors, $K=\mathbb{Q}(\sqrt[6]{32},\xi_6)$. On note que $\sqrt[6]{2}=\frac{2}{\sqrt[6]{32}}$, alors, $K=\mathbb{Q}(\sqrt[6]{2},\xi_6)=\mathbb{Q}(\sqrt[6]{2},\sqrt{3}i)$. On continue comme dans le point (a). La seule difference est que $\sqrt[6]{2}$ est racine de x^6-2 (irréductible par Einsestein). Alors, $[K:\mathbb{Q}]=[K:\mathbb{Q}(\sqrt[6]{2})][\mathbb{Q}(\sqrt[6]{2}):\mathbb{Q}]=2\cdot 6=12$.

- 3. (5 points) Soit $p(x) = x^5 + x^4 + 1 \in \mathbb{F}_2[x]$.
 - (a) Trouver la factorisation de p(x) en facteurs premiers.
 - (b) Décrire le corps de décomposition de p(x) sur $\mathbb{F}_2[x]$ comme \mathbb{F}_{2^d} (trouver le d).

Solution: (a) Comme p(x) n'a pas de racines sur \mathbb{F}_2 , le seule possibilité, s'il n'est pas irréductible, est qu'il soit produit d'un polynôme irréductible de degré 2 et un polynôme irréductible de degré 3. On a vu dans le problème 1, qu'il n'y a qu'un polynôme irréductible de degré 2. De plus, les coefficients independants des facteurs doivent être 1. Alors,

$$x^{5} + x^{4} + 1 = (x^{3} + ax^{2} + bx + 1)(x^{2} + x + 1) = x^{5} + (a + 1)x^{4} + (b + a + 1)x^{3} + (1 + b + a)x^{2} + (1 + b)x + 1.$$

On trouve a = 0 et b = 1. Alors,

$$x^5 + x^4 + 1 = (x^3 + x + 1)(x^2 + x + 1)$$

(b) Le corps de décomposition de x^3+x+1 est \mathbb{F}_{2^3} (parce qu'il y a une seule extension de degré 3 et chaque racine d'un polynôme irréductible de degré 3 doit se trouver sur une extension de degré 3, alors, toutes les racines se trouvent sur la même extension). Le corps de décomposition de x^2+x+1 est \mathbb{F}_{2^2} (Même idée). Alors, le corps de décomposition K de p(x) est le corps composé de \mathbb{F}_{2^3} et \mathbb{F}_{2^2} . On a, d'un coté,

$$[K: \mathbb{F}_2] < [F_{2^2}: \mathbb{F}_2][\mathbb{F}_{2^3}: \mathbb{F}_2] = 6$$

et dún autre coté,

$$[\mathbb{F}_{2^2} : \mathbb{F}_2], [\mathbb{F}_{2^3} : \mathbb{F}_2] | [K : \mathbb{F}_2] \Rightarrow 2, 3 | [K : \mathbb{F}_2]$$

alors, $[K:\mathbb{F}_2]=6$ et $K=\mathbb{F}_{2^6}$.

4. (5 points) Soit $K=F(\alpha)$ pour α algébrique sur F, de degré impair. Montrer que $K=F(\alpha^2)$.

Solution: On a toujours que $F(\alpha^2) \subset F(\alpha)$, et α racine de $x^2 - \alpha^2 \in \mathbb{F}(\alpha^2)[x]$. Alors, $[F(\alpha):F(\alpha^2)] \leq 2$. Noter aussi que $[F(\alpha^2):F]|[F(\alpha):F]$ qui est impair, alors, $[F(\alpha^2):F]$ doit être impair. Par conséquent, $[F(\alpha):F(\alpha^2)] = 1$ et $F(\alpha) = F(\alpha^2)$.

5. (5 points) Soient F, K, L des corps de caractéristique p avec $F \subset K \subset L$. Soit $\alpha \in L$ algébrique sur F. Montrer que si α est inséparable sur K, alors, α est inséparable sur F.

Solution: Soit $f(x) = m_{K,\alpha}(x)$ est $g(x) = m_{F,\alpha}(x)$ les polynômes minimals de α sur K et F. Alors, $g(x) \in \mathbb{F}[x] \subset K[x]$, et f(x)|g(x) en K[x]. Alors, si f(x) n'est pas séparable, il a des racines multiples, alors g(x) a des racines multiples et il n'est pas séparable.

- 6. (7 points) (a) Soit $K \subset L$ une extension algébrique de corps de caractéristique p. Soit $p(x) = x^p a \in K[x]$. Montrer que si p(x) n'est pas irréductible sur L[x], il se factorise comme $(x \beta)^p$ sur L[x] pour β tel que $\beta^p = a$. Piste: le polynôme $(x \beta)^k$ est-il séparable? est-il irréductible?
 - (b) Soient F un corps de caractéristique p et β algébrique sur F. Montrer que β est séparable sur F si et seulement si $F(\beta) = F(\beta^p)$.

Solution: (a) On a que $p(x) = (x - \beta)^p$ sur une clôture algébrique de K. Si p(x) n'est pas irréductible sur L[x], p(x) se factorise sur L[x]. Les facteurs irréductibles sont de la forme $(x - \beta)^k$ avec k < p. Noter que le polynôme $(x - \beta)^k$ n'est pas séparable si k > 1 mais $D_x((x - \beta)^k) = k(x - \beta)^{k-1} \neq 0$, alors, il ne peut pas être irréductible (parce que tous les irréductibles inséparables ont dérivée egale à zero). Seulement $x - \beta$ est irréductible et $p(x) = (x - \beta)^p$ sur L[x].

(b) Si β est séparable sur F, $x^p - \beta^p$ n'est pas irréductible sur $F(\beta^p)$ (parce que sinon β serait inséparable par question 5). Ça veut dire que il se factorise lineairement, et que $\beta \in F(\beta^p)$, alors $F(\beta) = F(\beta^p)$. Si β est inséparable, soit $f(x) = m_{F,\beta}(x) = g(x^p)$. Alors, β^p est racine de g(x), et deg $g(x) = \frac{\deg f(x)}{p} < \deg f(x)$. Alors $[F(\beta^p) : F] \leq \deg g(x) < \deg f(x) = [F(\beta) : F]$ et $F(\beta^p) \neq F(\beta)$.