€ AL ES VANDBR ©viden - gleh eNTAZY  Ach B

186 CHAPTER 5. CONGRUENCES OF HIGHER DEGREE

5.5 Flipping a Coin over the Telephone
The Proof of Lemma 5.11

Our first order of business is to prove the lemma of the last section from which
we derived the law of quadratic reciprocity.

Lemma 5.11. Let a > 0, and let p and g be odd primes not dividing a. Then
{a/p) = (a/q) if p= g (mod 4a) or if p= —¢ (mod 4a).

Proof. As with our evaluations of {2/p) and (3/p), we will employ Gauss’s
lemma. Let h = (p — 1)/2, and consider the integers

a,2a,3a,...,ha.

These fall into the open intervals

(0.2).(2.2). (2.2, (2%
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where, as is customary, we are denoting the set of real numbers X such that
A < X < B by (4, B). Since

(p-Da pa _(p+1la
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(5.12)

ha = ={(h+1)a
the last interval we need consider is ({a — 1)p/2,ap/2). A total of a intervals
are involved, so that the number of intervals does not depend on p.

Notice that the endpoints of the intervals listed in (5.12) are either noninte-
gers or else multiples of p. Thus none of the integers a, 2a,. .., ha falls on one
of these endpoints, since pfa and h < p.

As in Section 5.4, we definc z* by x* = ez (mod p), —h < < h. By
Gauss’s lemma the value of (a/p) Qm@mzam on whether the E::wma of 1 negative
z* is even or odd. The integer z* will be negative when az falls in half the
intervals listed in (5.12), namely, the intervals

p 2\ (3 4p) (5P bp
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Thus in a typical interval we want to count the number of integers z such that

(2k = )p 2%kp
4]‘ < ar < |M
or
@k-1p . 2kp (5.13)
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Now asswmne g is an odd prime such that ¢ = p (mod 4a). Then q = p + 4at
for some integer t. If we try to evaluate {¢/q) by Gauss’s lemma in the same
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way, a typical interval in which we would be counting integers would be define
by the inequalities

(2k — Cm 2kq

50 V<% 5.1
Plugging ¢ = p + 4at into this leads to
(2k - )p 2kp
Ao 4 (2k — . B H
¥, +2k-D2 <y < —= oy + 4kt (51

(We leave it to the reader to check the algebra.)

If we compare the endpoints of the intervals defined by the inequalities (5.1:
and (5.15) we see that the left endpoints differ by even integers, as do the rigl
endpoints. Thus the number of integers in the corresponding intervals diffe:
by a multiple of 2; it is even in both cases or odd in both cases. By using the
same argument for each value of k and applying Gauss’s lemma we conclude
that (a/p) = (a/g).

Now we consider the case when ¢ = —p (mod 4a). Then ¢ = —p + 4at f
some integer t. Plugging this into (5.14) produces
~(2k ~ 1)p ~2kp

+{(2k-1)2t <y < + 4kt.

2a 2a
Multiplying through by —1 produces a symmetric Enmws& on the other side -
0 that contains the same number of integers:
(2k — L)p 2kp
2a 2a

In fact, the same number of integers are in the interval shifted 4kt units to tl
right:

~ (2k —1)2t > ¢ > == — 4kt.

’
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which can be written
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We would like to show that the number of integers y” satisfying these i
equalities is even or odd the same as the number of z satisfying (5.13). B
(5.16) and (5.13) define adjacent intervals, and the number of integers in the
union is the number of z satisfying

(2k ~ V)p <2< (2k - U)p

2a 2a
(Recall that the endpoints of our interval are never hit so we need not wor
about z equaling the comimon endpoint of the two intervals.)

The last inequalities define an interval of length 2¢ with nonintegral en
points. It must contain an even number of integers. Thus the number of intege
satisfying (5.13) and (5.16) must be even in both cases or odd in both case
Again, using this argument for all values of k and applying Gauss’s lemma, 1
see that (a/q) = (a/p).

+ 2t.



