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Abstract. We consider the family of multiplicative functions of Fq[T ] with the property
that the value at a power of an irreducible polynomial depends only on the exponent, but
does not depend on the polynomial or its degree. We study variances of such functions
in various regimes, relating them to variances of the divisor function dk(f). We examine
different settings that can be related to distributions over the ensembles of unitary matrices,
symplectic matrices, and orthogonal matrices as in the works of [KRRGR18, KL22a, KL22b].
While most questions give very similar answers as the distributions of the divisor function,
some of the symplectic problems, dealing with quadratic characters, are different and vary
according to the values of the function at the square of the primes.

1. Introduction

The goal of this work is to explore the connection between the distribution of certain
multiplicative functions and integrals over the ensembles of unitary, symplectic, and or-
thogonal matrices. Let Fq be the field of q elements, where q is an odd prime power with
q ≡ 1 (mod 4). Let g : Fq[T ] → R be a multiplicative function such that g(a) = 1 for any
a ∈ F×

q , and for P ∈ Fq[T ] irreducible, g(P
k) = dk, where {dk}∞k=1 is an arbitrary sequence

of reals. Yudelevich [Yud20] considers the problem of determining

Tg(N) :=
∑

f∈MN

g(f),

where we recall that M denotes the set of monic polynomials in Fq[T ] and MN denotes the
elements of M that have degree N . Similarly, P and PN and H and HN denote analogue
sets of monic irreducible polynomials and monic square-free polynomials respectively.

Let

(1) f(t) := 1 + d1t+ d2t
2 + · · ·

be the generating series for {dk}∞k=1 and define the sequence {hk}∞k=1 recursively by h1 = d1
and

(2) f(t)(1− t)h1(1− t2)h2 · · · (1− tn)hn = 1 + hn+1t
n+1 + · · · .
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In [Yud20, Theorem 1], Yudelevich proves that

Tg(N) =
N−1∑
ℓ=0

Aℓ(N)qN−ℓ,

where

Aℓ(N) =
∑

k1+2k2+···+(ℓ+1)kℓ+1=N
k2+2k3+···+ℓkℓ+1=ℓ

(
−h1

k1

)(
−h2

k2

)
· · ·
(
−hℓ+1

kℓ+1

)
(−1)k1+k2+···+kℓ+1 .

Yudelevich then uses this to derive several asymptotics in the cases q, q and N or qN

approach infinity. These results are applied to various functions g, including the reciprocal
of the divisor function.

In [KRRGR18], Keating, Rodgers, Roditty-Gershon, and Rudnick study variances of the
divisor function

dk(f) := #{(f1, . . . , fk) : f = f1 · · · fk, fj ∈ M}.
The function dk(f) appears naturally as the coefficient of kth power of the Riemann zeta
function ζq(s)

k (see (5) for the definition in the function field setting).
For Q ∈ H and N ≤ k(deg(Q) − 1), they prove in [KRRGR18, Theorem 3.1] that the

variance of

SU
dk;N ;Q(A) :=

∑
f∈MN

f≡A (modQ)

dk(f)

defined by

Var(SU
dk;N ;Q) :=

1

Φ(Q)

∑
A (modQ)
(A,Q)=1

∣∣SU
dk;N ;Q(A)−

〈
SU
dk;N ;Q

〉∣∣2 ,
is given, as q → ∞, by

(3) Var(SU
dk;N ;Q) ∼

qN

qdeg(Q)

∫
U(deg(Q)−1)

∣∣∣∣∣ ∑
j1+···+jk=N

0≤j1,...,jk≤deg(Q)−1

Scj1(U) · · · Scjk(U)

∣∣∣∣∣
2

dU,

where the integral ranges over complex unitary matrices of dimension deg(Q) − 1, and the
Scj(U) are the secular coefficients, defined for a ∆×∆ matrix U via

det(I + Ux) =
∆∑
j=0

Scj(U)xj.

This result relies on Katz’s equidistribution theorem [Kat13b] for primitive Dirichlet char-
acters with square-free conductors. It was later extended by Roditty-Gershon, Hall, and
Keating [HKRG20] to the coefficients of kth powers of more general L-functions, such as
those associated with elliptic curves.

Keating et al obtain a similar statement in [KRRGR18, Theorem 1.2] by considering the
variance of the divisor function over short intervals.

In [KL22a], Kuperberg and Laĺın consider the distribution of the divisor function dk(f)
when restricted to quadratic residues modulo an irreducible polynomial P of odd degree
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2g + 1. More precisely, they prove in [KL22a, Theorem 1.1] that for P ∈ P2g+1, N ≤ 2gk
and

SS
dk,N

(P ) :=
∑

f∈MN
f≡□ (modP )

P ∤f

dk(f),

as q → ∞,

SS
dk,N

(P ) ∼ 1

2

∑
f∈MN
P ∤f

dk(f) ∼
qN

2

(
k +N − 1

k − 1

)
,

and

Var(SS
dk,N

) :=
1

#P2g+1

∑
P∈P2g+1

(
SS
dk,N

(P )− 1

2

∑
f∈MN
P ∤f

dk(f)

)2

∼qN

4

∫
Sp(2g)

( ∑
j1+···+jk=N
0≤j1,...,jk≤2g

Scj1(U) · · · Scjk(U)

)2

dU.(4)

The integral is very similar to the one appearing in (3), but it ranges over the set of symplectic
unitary matrices of dimension 2g. The restriction to quadratic residues modulo an irreducible
polynomial P can be detected by twisting by a quadratic character, which ultimately yields
the connection to the symplectic matrix integral via some monodromy arguments due to
Katz (see [KL22a, Section 3]). A similar problem over integers, involving the sum of the
divisor function weighted by the quadratic character modulo d, is also considered in [KL22b,
Conjecture 1.10].

In addition, Kuperberg and Laĺın consider the distribution of the divisor function over
monic polynomials of fixed degree with a condition that can be interpreted as the function
field analogue of having the argument of a complex number lying in a specific sector of a
unit circle. This setting follows a model of Gaussian integers in the function fields that was
proposed by Bary-Soroker, Smilansky, and Wolf [BSSW16] and later developed by Rudnick
and Waxman [RW19]. In this context, the result on the variance proven in [KL22a] also
leads to an integral over the symplectic matrices similar to the one from (4). A variation
of this question leads to distributions over the ensemble of orthogonal questions in [KL22b,
Theorem 1.12].

In this note, we are concerned with generalizing these results for dk to the class of functions
g. We remark that the divisor function is a particular case of the class of functions g.
Moreover, since the generating function for the divisor function is the kth power of the zeta
function, which over Fq[T ] takes the shape (1− qu)−1, we can reinterpret equation (2) as a
sequence of approximations of g by divisor functions.

More precisely, we extend the results of [KRRGR18] by proving the following.

Theorem 1.1. Let g be defined as before. Let Q ∈ H, A ∈ Fq[T ] coprime to Q, and

SU
g;N,Q(A) :=

∑
f∈MN

f≡A (modQ)

g(f).
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Then, as q → ∞,

SU
g;N,Q(A) ∼

1

Φ(Q)

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

(f1f2···fN ,Q)=1

dh1(f1)dh2(f2) · · · dhN
(fN)

∼ qN

Φ(Q)

(
d1 +N − 1

N

)
.

If d1 is a positive integer, deg(Q) ≥ 2, and N ≤ d1(deg(Q)− 1) then, as q → ∞,

Var(SU
g;N,Q)

:=
1

Φ(Q)

∑
A (modQ)
(A,Q)=1

∣∣∣∣∣SU
g;N,Q(A)−

1

Φ(Q)

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

(f1f2···fN ,Q)=1

dh1(f1)dh2(f2) · · · dhN
(fN)

∣∣∣∣∣
2

∼ qN−deg(Q)

∫
U(deg(Q)−1)

∣∣∣∣∣ ∑
j1+···+jh1=N

0≤j1,...,jh1≤deg(Q)−1

Scj1(U) · · · Scjh1 (U)

∣∣∣∣∣
2

dU.

For any nonzero f ∈ Fq[T ], the norm is given by |f | = qdeg(f). For A ∈ Fq[T ], The set

Ih(A) := {f ∈ Fq[T ] : |f − A| ≤ qh}

is the interval of radius h centered in A.

Theorem 1.2. Let g be defined as before. Let A ∈ MN and 0 ≤ h ≤ N − 2, and consider

N U
g;h(A) :=

∑
f∈Ih(A)

g(f).

The mean value is given by

1

qN

∑
A∈MN

N U
g;h(A) =

qh+1

qN

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

dh1(f1)dh2(f2) · · · dhN
(fN)

∼qh+1

(
d1 +N − 1

N

)
.

Suppose that d1 is a positive integer and 0 ≤ h ≤ min{N − 5, (1− 1
d1
)N − 2}. Suppose also

that the dk are essentially uniformly bounded in the sense that dk = o(qε) for any ε > 0.
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Then, as q → ∞,

Var(N U
g;h)

:=
1

qN

∑
A∈MN

∣∣∣∣∣N U
g;h(A)−

qh+1

qN

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

dh1(f1)dh2(f2) · · · dhN
(fN)

∣∣∣∣∣
2

∼ qh+1

∫
U(N−h−2)

∣∣∣∣∣ ∑
j1+···+jh1=N

0≤j1,...,jh1≤N−h−2

Scj1(U) · · · Scjh1 (U)

∣∣∣∣∣
2

dU.

The short interval problem was vastly generalized by Rodgers [Rod18] to fixed factorization
functions, that is, functions that depend solely on the extended factorization type of the
element, which involves not only the exponents of the irreducible factors, but also their
degrees. The functions g that we consider are a particular case of this, since they have
the same value for powers of irreducible polynomials, independently of the degree of the
underlying polynomial. Gorodetsky and Rodgers [GR21] further extended the short interval
problem to the case of dz for z real.

We also extend the results of [KL22a, KL22b] as follows.

Theorem 1.3. Let g be defined as before and let P ∈ P2g+1. Consider

SS
g,N(P ) :=

∑
f monic,deg(f)=N

f≡□ (modP )
P ∤f

g(f).

Then, as q → ∞,

SS
g,N(P ) ∼ 1

2

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN
P ∤f1f2···fN

dh1(f1)dh2(f2) · · · dhN
(fN) ∼

qN

2

(
d1 +N − 1

N

)
.

Assume that d1 is positive integer and N ≤ 2gd1. As q → ∞,

Var(SS
g,N) :=

1

#P2g+1

∑
P∈P2g+1

(
SS
g;N(P )− 1

2

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN
P ∤f1f2···fN

dh1(f1)dh2(f2) · · · dhN
(fN)

)2

∼ qN

4

∫
Sp(2g)

( ⌊N
2 ⌋∑

ℓ=0

(
−h2

ℓ

)
(−1)ℓ

∑
j1+···+jh1=N−2ℓ
0≤j1,...,jh1≤2g

Scj1(U) · · · Scjh1 (U)

)2

dU.

Theorem 1.4. Let g be defined as before and let R ∈ H2g+1. Consider

T S
g;N(R) :=

∑
f∈MN
(f,R)=1

g(f)χR(f).
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Then, as q → ∞, T S
g;N(R) = O

(
q

N
2

)
. Suppose that d1 is positive integer and N ≤ 2gd1. As

q → ∞,

Var(T S
g;N) :=

1

#H2g+1

∑
R∈H2g+1

(
T S
g;N(R)

)2

∼qN
∫
Sp(2g)

( ⌊N
2 ⌋∑

ℓ=0

(
−h2

ℓ

)
(−1)ℓ

∑
j1+···+jh1=N−2ℓ
0≤j1,...,jh1≤2g

Scj1(U) · · · Scjh1 (U)

)2

dU.

In [KL22a, KL22b], the authors worked with a model of the Gaussian integers in the
function field setting which was initially developed by Bary-Soroker, Smilansky, and Wolf
in [BSSW16] and considered by Rudnick and Waxman in [RW19]. The authors of [KL22a,
KL22b] studied the variances of

N S
dℓ,k,n

(v) =
∑

f∈Mn

f(0)̸=0
U(f)∈Sect(v,k)

dℓ(f) and NO
dℓ,k,n

(v) =
∑

f∈Mn

f(0)̸=0
U(f)∈Sect(v,k)

dℓ(f)

(
1 + χ2(f)

2

)
,

where the sums are taken over monic polynomials of fixed degree under a condition (see (18))
corresponding to the function field analogue of having the argument of a complex number
lying in certain specific sector of the unit circle, and where χ2 is the quadratic character over
Fq[T ] defined by χ2(f) := χ2(f(0)), where for x ∈ Fq, χ2(x) := 1 if x is a non-zero square,
−1 if x is a non square, and 0 if x = 0.

We obtain the following generalizations.

Theorem 1.5. Let g be defined as before and consider

N S
g,k,N(v) =

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

g(f) and NO
g,k,N(v) =

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

g(f)

(
1 + χ2(f)

2

)
.

Let κ =
⌊
k
2

⌋
. As q → ∞, the mean values are given by

1

qκ

∑
v∈S1k

N S
g,k,N(v) =

1

qκ

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

f1f2···fN (0)̸=0

dh1(f1)dh2(f2) · · · dhN
(fN)

∼qN−κ

(
d1 +N − 1

N

)
,
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and

1

qκ

∑
v∈S1k

NO
g,k,N(v) ∼

1

2qκ

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

f1f2···fN (0)̸=0

dh1(f1)dh2(f2) · · · dhN
(fN)

∼qN−κ

2

(
d1 +N − 1

N

)
.

Assume that d1 is a positive integer and N ≤ d1(2κ− 2). As q → ∞,

Var(N S
g,k,N) :=

1

qκ

∑
v∈S1k

∣∣∣∣∣N S
g,k,N(v)−

1

2qκ

∑
f∈MN
f(0)̸=0

g(f)

∣∣∣∣∣
2

∼qN

qκ

∫
Sp(2κ−2)

( ∑
j1+···+jℓ=N

0≤j1,...,jℓ≤2κ−2

Scj1(U) · · · Scjℓ(U)

)2

dU.

Assume that d1 is a positive integers and N ≤ d1(2κ− 1) with κ =
⌊
k
2

⌋
≥ 3. As q → ∞,

VarS(NO
g,k,N) :=

1

qκ

∑
v∈S1k

∣∣∣∣∣NO
g,k,N(v)−

1

2qκ

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

g(f)

∣∣∣∣∣
2

∼ qN

4qκ

∫
O(2κ−1)

( ∑
j1+···+jℓ=N

0≤j1,...,jℓ≤2κ−1

Scj1(U) · · · Scjℓ(U)

)2

dU.

The integrals appearing as expressions for the variances in all the above results have been
studied in [KRRGR18, KL22a, KL22b]. For example, Keating et al prove that∫

U(M)

∣∣∣ ∑
j1+···+jk=m
0≤j1,...,jk≤M

Scj1(U) · · · Scjk(U)
∣∣∣2dU = γk(m/M)Mk2−1 +Ok(M

k2−2),

where γk(c) is seen to be a piecewise polynomial function of degree k2−1. Similar results are
proven by Kuperberg and Laĺın for the symplectic and orthogonal cases (with the degrees
changing in these cases). Basor, Ge, and Rubinstein [BGR18] further analyze γk(c) in the
unitary case. See also Medjedovic’s MSc thesis [Med21] for more on the properties of γk(c)
in the symplectic and orthogonal cases.

We see that, while Theorems 1.1, 1.2, and 1.5 give similar results to (3) and (4) in the
sense that the variance is entirely determined by d1, Theorems 1.3 and 1.4 give a different

result from those, as the variance depends not only on d1, but also on h2 = d2 − d1(d1+1)
2

.
This article is organized as follows. Section 2 exposes some general background on the

arithmetics of function fields, while Section 3 treats some auxiliary results on evaluations of
sums of g twisted by characters that are needed for the results. Sections 4, 5, 6, and 7 contain
the proofs of Theorems 1.1, 1.2, 1.3, and 1.4 respectively. A discussion on the evaluation of
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the integrals appearing in Theorems 1.3 and 1.4 is included in Section 8. Finally, Section 9
contains the proof of Theorem 1.5 together with some necessary background.

2. Some general background

In this section we give some general background about the arithmetics of Fq[T ]. For
f ∈ M, let dk(f) denote the kth divisor function given by

dk(f) := #{(f1, . . . , fk) : f = f1 · · · fk, fj ∈ M, }.
The divisor function can be extended to non-zero elements of Fq[T ] by setting dk(cf) := dk(f)
for c ∈ F×

q . Notice that dk is a multiplicative function, defined on powers of P ∈ P by

dk(P
j) =

(
j+k−1

j

)
.

The zeta function of Fq[T ] is defined for Re(s) > 1 by

(5) ζq(s) =
∑
f∈M

1

|f |s
,

where for any non-zero f , the norm is given by |f | = qdeg(f). By counting monic polynomials
of a fixed degree, one obtains that

ζq(s) =
1

1− q1−s
,

which provides a meromorphic continuation of ζq(s), with simple poles when qs = q. Making
the change of variables u = q−s, the zeta function becomes

Zq(u) =
∑
f∈M

udeg(f) =
∏
P∈P

(
1− udeg(P )

)−1

,

for |u| < 1/q. As before, we have the expression

Zq(u) =
1

1− qu
.

We remark that the kth power of the zeta function is the generating function of dk, namely,

Zq(u)
k =

∑
f∈M

dk(f)u
deg(f).

For κ ∈ R and |u| < 1/q, we can define (1 − qu)−κ by taking the principal branch of the
logarithm. Writing the generating function gives

Zq(u)
κ =

∑
f∈M

dκ(f)u
deg(f),

which leads to an extension of dκ(f) to the case where κ is a real parameter.
For a general arithmetic function g : Fq[T ] → C, we define

M(N ; g) :=
∑

f∈MN

g(f).

In particular, we have that

Zq(u)
κ =

∞∑
N=0

M(N ; dκ)u
N .
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For a polynomial Q(T ) ∈ Fq[T ] of positive degree, the order of (Fq[T ]/(Q))× is given by
the Euler function Φ(Q). A Dirichlet character modulo Q is a homomorphism

χ : (Fq[T ]/(Q))× → C×,

which is extended to χ(R) = 0 for R ∈ Fq[T ] such that (R,Q) ̸= 1. The orthogonality
relations give, for A(T ) ∈ Fq[T ],

(6)
1

Φ(Q)

∑
χ (modQ)

χ(A)χ(R) =

{
1 R ≡ A (modQ),

0 otherwise.

Given a Dirichlet character χ, the corresponding Dirichlet L-series is given by

Lq(s, χ) =
∑
f∈M

χ(f)

|f |s

for Re(s) > 1. As in the zeta function case, we can make the change of variables u = q−s

and write

Lq(u, χ) =
∑
f∈M

χ(f)udeg(f) =
∏
P∈P

(
1− χ(P )udeg(P )

)−1
.

Notice that

Lq(u, χ)
k =

∑
f∈M

χ(f)dk(f)u
deg(f) =

∞∑
N=0

M(N ;χdk)u
N .

A Dirichlet character χ is called even if χ(c) = 1 for any c ∈ F× and is called odd otherwise.
By orthogonality, when χ is a nontrivial character, Lq(u, χ) is a polynomial of degree

∆ ≤ deg(Q)− 1 ([Ros02, Proposition 4.3]). If we consider the reciprocals of the roots, i.e.,

Lq(u, χ) =
∆∏
j=1

(1− αju).

Then, for χ odd, the Riemann hypothesis implies that |αj| =
√
q. If χ is even, one root

equals 1 and the others satisfy the Riemann hypothesis. This implies that

Lq(u, χ) = (1− u)λ det(1− uq1/2Θχ),

where λ = 0 if χ is odd and 1 if χ is even, and Θχ is a conjugacy class in the unitary matrix
ensemble of dimension N = ∆− λ.
For an N ×N matrix U , the secular coefficients Scj(U) are defined by

det(I + xU) =
N∑
j=0

Scj(U)xj.

Thus, the coefficients of Lq(u, χ) can be expressed in terms of the secular coefficients of Θχ.
For χ0 the trivial character modulo Q, we have Lq(u, χ0) = Zq(u)

∏
P |Q(1− udeg(P )).

Let P (T ) ∈ P and f ∈ Fq[T ]. The quadratic residue symbol is defined by(
f

P

)
≡ f

|P |−1
2 (modP )
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if P ∤ f , and
(
f
P

)
= 0 otherwise. If Q = P e1

1 · · ·P er
r with each Pj irreducible, then the Jacobi

symbol is given by (
f

Q

)
=

r∏
j=1

(
f

Pj

)ej

.

From now on we will assume that q ≡ 1 (mod 4); in this case, quadratic reciprocity implies(
A
B

)
=
(
B
A

)
for any A,B ∈ M non-zero such that (A,B) = 1.

For D ∈ H, we consider the quadratic character

χD(f) =

(
D

f

)
.

We have that χD is an odd character if deg(D) is odd and even otherwise. In both cases
Lq(u, χD) is a polynomial of degree deg(D)− 1.

3. Evaluation of twisted averages of g

In this section we will establish a general setting for evaluating M(N ;χg), where χ is a
Dirichlet character, and g : Fq[T ] → R is multiplicative function such that g(a) = 1 for any
a ∈ F×

q , and for P ∈ Fq[T ] irreducible, g(P
k) = dk, where {dk}∞k=1 is an arbitrary sequence

of reals. Many of the arguments of this section follow ideas in the proof of [Yud20, Theorem
1].

We start by considering the generating series

G(u;χg) :=
∑
f∈M

χ(f)g(f)udeg(f) =
∞∑

N=0

M(N ;χg)uN .

Since g is multiplicative, we have

G(u;χg) =
∏
π∈P

(
1 + χ(π)g(π)udeg(π) + χ(π2)g(π2)u2 deg(π) + · · ·

)
=

∞∏
ℓ=1

∏
π∈Pℓ

(
1 + χ(π)d1u

ℓ + χ(π)2d2u
2ℓ + · · ·

)
=

∞∏
ℓ=1

∏
π∈Pℓ

f(χ(π)uℓ)

=
∞∏
ℓ=1

∏
π∈Pℓ

(1− χ(π)uℓ)−h1(1− χ(π)2u2ℓ)−h2 · · · (1− χ(π)nunℓ)−hnfn+1(χ(π)u
ℓ),

where we have applied (1) and (2) and we have set

fn+1(t) := f(t)(1− t)h1(1− t2)h2 · · · (1− tn)hn .

Gathering the first n factors gives

G(u;χg) =Lq(u, χ)
h1Lq(u

2, χ2)h2 · · · Lq(u
n, χn)hn

∞∏
ℓ=1

∏
π∈Pℓ

fn+1(χ(π)u
ℓ).(7)

10



Taking n = N and comparing coefficients in (7), we get

M(N ;χg) =
∑

m1+2m2+···+NmN=N

M(m1;χdh1)M(m2;χ
2dh2) · · ·M(mN ;χ

NdhN
).(8)

The above expression allows us to relate M(N ;χg) to a product of M(m;χdh). The ad-
vantage of this process is that several tools are available to us regarding how to evaluate or
estimate these sums.

We recall the following results.

Lemma 3.1. [KL22a, Lemma 2.1] Let χ be odd and k be a positive integer. For N ≤ k∆
we have

M(N ;χdk) = (−1)Nq
N
2

∑
j1+···+jk=N
0≤j1,...jk≤∆

Scj1(Θχ) · · · Scjk(Θχ)

and M(N ; dkχ) = 0 otherwise.
Let χ be even. For N ≤ k∆, as q → ∞ we have

M(N ;χdk) = (−1)Nq
N
2

∑
j1+···+jk=N
0≤j1,...jk≤∆

Scj1(Θχ) · · · Scjk(Θχ) +Ok,∆,N

(
q

N−1
2

)
.

For k∆ < N ≤ k(∆ + 1), as q → ∞,

|M(N ;χdk)| ≪k,∆ q
N−1

2 .

Finally, M(N ;χdk) = 0 for N > k(∆ + 1).

Lemma 3.2. Let κ be real and let χ0 be the trivial character modulo Q ∈ Fq[T ]. As q → ∞,
we have that

M(N ;χ0dκ) =
∑

f∈MN
(f,Q)=1

dκ(f) = qN
(
κ+N − 1

N

)
+Odeg(Pj),κ,N(q

N−1),

where the implied constant depends on the degrees of the prime factors Pj of Q, but not on
Q itself.

Proof. This is essentially [KL22a, Lemma 5.2]. Without loss of generality we can assume
that Q is monic. Let Q = P e1

1 · · ·P er
r be the prime decomposition of Q. We can estimate

the sum by considering its generating function.

∑
f∈M

(f,Q)=1

dκ(f)u
deg(f) =

(
Zq(u)

r∏
j=1

(1− udeg(Pj))

)κ

=

(∏r
j=1(1− udeg(Pj))

1− qu

)κ

=
∞∑

N=0

∞∑
m1=0

· · ·
∞∑

mr=0

(
r∏

j=1

(
κ

mj

))(
−κ

N −
∑r

j=1 mj deg(Pj)

)
qN−

∑r
j=1 mj deg(Pj)(−1)NuN .

11



By focusing on the coefficient of uN , we obtain∑
f∈MN
(f,Q)=1

dκ(f) =(−1)N
∞∑

m1=0

· · ·
∞∑

mr=0

(
r∏

j=1

(
κ

mj

))(
−κ

N −
∑r

j=1mj deg(Pj)

)
qN−

∑r
j=1 mj deg(Pj)

=qN
(
κ+N − 1

N

)
+Odeg(Pj),κ,N(q

N−1).

□

Proposition 3.3. Let χ be a nontrivial Dirichlet character of conductor Q. Then we have

|M(N ;χg)|2 =
∑

m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

N∏
j=1

M(mj;χ
jdhj

)M(nj;χjdhj
)

=
∑

m1+2m2=N
n1+2n2=N

M(m1;χdh1)M(n1;χdh1)M(m2;χ
2dh2)M(n2;χ2dh2) +Ohj ,N,deg(Q)

(
qN− 1

6

)
.

Proof. By equation (8) and Lemmas 3.1 and 3.2, we have that

|M(N ;χg)|2 =
∑

m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

N∏
j=1

M(mj;χ
jdhj

)M(nj;χjdhj
)

≪hj ,N,deg(Q)

∑
m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

q
m1
2

+m2+···+mN+
n1
2
+n2+···+nN .

Using that M(0;χdh) = 1, we have, as q → ∞,

∑
m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

N∏
j=1

M(mj;χ
jdhj

)M(nj;χjdhj
)

=
∑

m1+2m2=N
n1+2n2=N

M(m1;χdh1)M(n1;χdh1)M(m2;χ
2dh2)M(n2;χ2dh2)

+
∑

m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

m1+2m2<N or n1+2n2<N

N∏
j=1

M(mj;χ
jdhj

)M(nj;χjdhj
)

=
∑

m1+2m2=N
n1+2n2=N

M(m1;χdh1)M(n1;χdh1)M(m2;χ
2dh2)M(n2;χ2dh2)

+O

( ∑
m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

m1+2m2<N or n1+2n2<N

q
m1
2

+m2+···+mN+
n1
2
+n2+···+nN

)
.(9)

12



Note that, for m1 + 2m2 + · · ·+NmN = N , we have

m1

2
+m2 + · · ·+mN =

m1 + 2m2

2
+

1

3
(3m3 + 3m4 + · · ·+ 3mN)

≤m1 + 2m2

2
+

1

3
(3m3 + 4m4 + · · ·+NmN)

=
m1 + 2m2

2
+

1

3
(N − (m1 + 2m2))

=
N

3
+

m1 + 2m2

6
.

Thus, when m1 + 2m2 < N , the above is at most N
2
− 1

6
. Incorporating this in (9),∑

m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

N∏
j=1

M(mj;χ
jdhj

)M(nj;χjdhj
)

=
∑

m1+2m2=N
n1+2n2=N

M(m1;χdh1)M(n1;χdh1)M(m2;χ
2dh2)M(n2;χ2dh2) +O

(
qN− 1

6

)
.

□

4. Sums over arithmetic progressions

In this section we prove Theorem 1.1. Let Q ∈ H and let A ∈ Fq[T ] be coprime to Q. We
consider the following sum

SU
g;N,Q(A) :=

∑
f∈MN

f≡A (modQ)

g(f).

4.1. The average. We use the orthogonality relation of Dirichlet characters (6) to isolate
the arithmetic progression as in Section 4.1 of [KR16]. This gives

SU
g;N,Q(A) =

∑
f∈MN

g(f)

 1

Φ(Q)

∑
χ (modQ)

χ(A)χ(f)


=

1

Φ(Q)

∑
χ (modQ)

χ(A)M(N ;χg)

=
1

Φ(Q)

∑
f∈MN
(f,Q)=1

g(f) +
1

Φ(Q)

∑
χ (modQ)

χ ̸=χ0

χ(A)M(N ;χg),

where χ0 denotes the trivial character modulo Q.
We have the following result.

Lemma 4.1.

SU
g;N,Q(A) =

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

f1f2
2 ···fN

N ≡A (modQ)

dh1(f1)dh2(f2) · · · dhN
(fN).

13



Proof. By equation (8) and the previous expression, we have

SU
g;N,Q(A) =

1

Φ(Q)

∑
χ (modQ)

χ(A)M(N ;χg)

=
1

Φ(Q)

∑
χ (modQ)

χ(A)
∑

m1+2m2+···+NmN=N

N∏
j=1

M(mj;χ
jdhj

)

=
1

Φ(Q)

∑
χ (modQ)

χ(A)
∑

m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

N∏
j=1

χj(fj)dhj
(fj)

=
∑

m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

N∏
j=1

dhj
(fj)

1

Φ(Q)

∑
χ (modQ)

χ(A)χ(f1f
2
2 · · · fN

N )

=
∑

m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

f1f2
2 ···fN

N ≡A (modQ)

dh1(f1)dh2(f2) · · · dhN
(fN),

where the last identity follows from orthogonality of Dirichlet characters (6). □

We also have the following average result.

Lemma 4.2. As q → ∞,

SU
g;N,Q(A) =

1

Φ(Q)

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

(f1f2···fN ,Q)=1

dh1(f1)dh2(f2) · · · dhN
(fN) +O

(
q

N
2

)

=
qN

Φ(Q)

(
d1 +N − 1

N

)(
1 +O

(
q−1
))

.
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Proof. By equation (8) and Lemma 3.2, we have that, as q → ∞,∑
f∈MN
(f,Q)=1

g(f) =M(N ;χ0g)

=
∑

m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

(f1f2···fN ,Q)=1

dh1(f1)dh2(f2) · · · dhN
(fN)

=
∑

m1+2m2+···+NmN=N

N∏
j=1

M(mj;χ0dhj
)

=
∑

m1+2m2+···+NmN=N

qm1+···+mN

N∏
j=1

(
hj +mj − 1

mj

)(
1 +O

(
q−1
))

=qN
(
h1 +m1 − 1

m1

)(
1 +O

(
q−1
))

,(10)

since the only way to maximize the contributions of the powers of q is to take m1 = N and
m2 = · · · = mN = 0.

Now equation (8) and Lemmas 3.1 and 3.2 imply that, for χ non-trivial,

M(N ;χg) =
∑

m1+2m2+···+NmN=N

N∏
j=1

M(mj;χ
jdhj

)

=O

( ∑
m1+2m2+···+NmN=N

q
m1
2

+m2+···+mN

)
.

As in the proof of Proposition 3.3, we have that

m1

2
+m2 + · · ·+mN ≤N

3
+

m1 + 2m2

6
≤ N

2
.

Thus, we obtain

SU
g;N,Q(A) =

1

Φ(Q)

∑
f∈MN
(f,Q)=1

g(f)+
1

Φ(Q)

∑
χ (modQ)

χ ̸=χ0

χ(A)M(N ;χg) =
1

Φ(Q)

∑
f∈MN
(f,Q)=1

g(f)+O
(
q

N
2

)
.

Combining the above with (10) and noticing that h1 = d1, we conclude.
□

4.2. The variance. We now consider the variance, which is defined by

Var(SU
g;N,Q)

:=
1

Φ(Q)

∑
A (modQ)
(A,Q)=1

∣∣∣∣∣SU
g;N,Q(A)−

1

Φ(Q)

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

(f1f2···fN ,Q)=1

dh1(f1)dh2(f2) · · · dhN
(fN)

∣∣∣∣∣
2

.

We prove the following result.
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Theorem 4.3. Let Q ∈ H≥2. Assume that d1 is a positive integer and N ≤ d1(deg(Q)− 1).
As q → ∞,

Var(SU
g;N,Q) ∼ qN−deg(Q)

∫
U(deg(Q)−1)

∣∣∣∣∣ ∑
j1+···+jh1=N

0≤j1,...,jh1≤deg(Q)−1

Scj1(U) · · · Scjh1 (U)

∣∣∣∣∣
2

dU.

Proof. By the discussion in the proof of Lemma 4.2 and (8), we have that

Var(SU
g;N,Q) :=

1

Φ(Q)

∑
A (modQ)
(A,Q)=1

∣∣∣∣∣ 1

Φ(Q)

∑
m1+2m2+···+NmN=N

∑
χ (modQ)

χ ̸=χ0

χ(A)
N∏
j=1

M(mj;χ
jdhj

)

∣∣∣∣∣
2

=
1

Φ(Q)

∑
A (modQ)
(A,Q)=1

1

Φ(Q)2

×
∑

m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

∑
χ1,χ2 (modQ)

χ1,χ2 ̸=χ0

χ1(A)χ2(A)
N∏
j=1

M(mj;χ
j
1dhj

)M(nj;χ
j
2dhj

).

Applying orthogonality, we obtain

1

Φ(Q)

∑
A (modQ)
(A,Q)=1

χ1(A)χ2(A) =

{
1 χ1 = χ2,

0 otherwise.

Thus, this gives

Var(SU
g;N,Q) =

1

Φ(Q)2

∑
m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

∑
χ (modQ)

χ ̸=χ0

N∏
j=1

M(mj;χ
jdhj

)M(nj;χjdhj
).

Now we apply Proposition 3.3 to get

Var(SU
g;N,Q) =

1

Φ(Q)2

∑
m1+2m2=N
n1+2n2=N

∑
χ (modQ)

χ ̸=χ0

M(m1;χdh1)M(n1;χdh1)M(m2;χ
2dh2)M(n2;χ2dh2)

+O
(
qN− 1

6
−deg(Q)

)
,

where we have used that Φ(Q) ∼ |Q| = qdeg(Q) as q → ∞.
There are two cases in which the terms in the main term of the above sum are maximal

with respect to powers of q (and lead to a final size of qN−deg(Q)). The first case is when
m1 = n1 = N and χ is arbitrary. The second case is when χ is a quadratic character, so that

16



χ2 = χ0. All the other terms will have size at most O
(
qN− 1

2
−deg(Q)

)
. Therefore, we have

Var(SU
g;N,Q) =

1

Φ(Q)2

∑
χ (modQ)

χ ̸=χ0

|M(N ;χdh1)|2
(11)

+
1

Φ(Q)2

∑
m1+2m2=N
n1+2n2=N

m1<N or n1<N

∑
χ (modQ)
χ2=χ0
χ ̸=χ0

M(m1;χdh1)M(n1;χdh1)M(m2;χ0dh2)M(n2;χ0dh2)

+O
(
qN− 1

6
−deg(Q)

)
.

We proceed to bound the second sum above. To do this, we estimate the number of quadratic
residues modulo Q, for Q square-free. This is equivalent to the number of conductors, which
is d2(Q) = 2ω(Q). The expected size is then

2ω(Q)

Φ(Q)2
qN ≪ qN+(ε−2) deg(Q).

The first sum in (11) was estimated by Keating et al (sum (3.12) in [KRRGR18]). First
one discards the contribution of even and non-primitive characters, then one applies Lemma
3.1, where the nontrivial condition is N ≤ h1(deg(Q)− 1). This gives

Var(SU
g;N,Q) =

1

Φ(Q)2

∑
χ (modQ)

χ ̸=χ0 odd primitive

|M(N ;χdh1)|2 +O
(
qN− 1

6
−deg(Q)

)

∼qN−deg(Q)

∫
U(deg(Q)−1)

∣∣∣∣∣ ∑
j1+···+jh1=N

0≤j1,...,jh1≤deg(Q)−1

Scj1(U) · · · Scjh1 (U)

∣∣∣∣∣
2

dU,

where the last identity follows from applying Katz’s equidistribution theorem [Kat13b], which
requires Q to be square-free and 2 ≤ deg(Q).

□

5. Sums over short intervals

In this section we prove Theorem 1.2. Given A ∈ MN and 0 ≤ h ≤ N − 2, we recall that

Ih(A) := {f ∈ Fq[T ] : |f − A| ≤ qh}

is the interval of radius h centered in A. Consider

N U
g;h(A) :=

∑
f∈Ih(A)

g(f).

17



5.1. The average. We have the following result.

Lemma 5.1. As q → ∞,

1

qN

∑
A∈MN

N U
g;h(A) =

qh+1

qN

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

dh1(f1)dh2(f2) · · · dhN
(fN)

=qh+1

(
d1 +N − 1

N

)(
1 +O

(
q−1
))

.

Proof. Adding over all the possible A’s means that we are adding over all the f ∈ MN , and
that each f is counted qh+1 times, since there are qh+1 possible A’s to which f is close, as
the lowest h + 1 coefficients are completely free. Applying (8) in the trivial case, together
with Lemma 3.2, the mean value is given by

1

qN

∑
A∈MN

N U
g;h(A) =

qh+1

qN

∑
f∈MN

g(f)

=
qh+1

qN

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

dh1(f1)dh2(f2) · · · dhN
(fN)

=qh+1−N
∑

m1+2m2+···+NmN=N

qm1+···+mN

N∏
j=1

(
hj +mj − 1

mj

)
=qh+1

(
h1 +N − 1

N

)(
1 +O

(
q−1
))

,

since the only way to maximize the contributions of the powers of q is to take m1 = N and
m2 = · · · = mN = 0. □

5.2. The variance. Our goal here is to compute the variance

Var(N U
g;h)

:=
1

qN

∑
A∈MN

∣∣∣∣∣N U
g;h(A)−

qh+1

qN

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

dh1(f1)dh2(f2) · · · dhN
(fN)

∣∣∣∣∣
2

.

In order to compute the variance we need some preliminary results. A function α :
Fq[T ] → C is called even if α(cf) = α(f) for any nonzero c ∈ Fq, and symmetric if α(f) =
α(tdeg(f)f(1/t)). Notice that the functions g under our consideration satisfy both properties.

We need the following result of Keating and Rudnick.

Lemma 5.2. [KR16, Lemma 5.3] If α : Fq[T ] → C is even, symmetric, and multiplicative,
and 0 ≤ h ≤ n− 2, then for all B ∈ Mn−h−1,

N U
α;h(T

h+1B) =⟨N U
α;h⟩+

1

Φeven(T n−h)

n∑
m=0

α(T n−m)
∑

χ (modTn−h)
χ ̸=χ0 even

χ(θn−h−1(B))M(m;χα),
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where

⟨N U
α;h⟩ =

qh+1

qn

∑
f∈Mn

α(f)

denotes the average, and θn : Fq[T ]≤n → Fq[T ]≤n, is given by

θn(f)(T ) = T nf

(
1

T

)
.

One can apply the above Lemma by observing that if A(T ) ∈ MN , then

(12) N U
α;h(A) = N U

α;h(T
h+1B),

where B is the polynomial of degree n−h−1 that is made of the highest n−h−1 coefficients
of A. Notice that there are qh+1 polynomials A corresponding to each B.
We are now ready to prove the following result.

Theorem 5.3. Suppose that d1 is a positive integer and 0 ≤ h ≤ min{N −5, (1− 1
d1
)N −2}.

Suppose also that dk = o(qε) for any ε > 0. Then, as q → ∞,

Var(N U
g;h) ∼qh+1

∫
U(N−h−2)

∣∣∣∣∣ ∑
j1+···+jh1=N

0≤j1,...,jh1≤N−h−2

Scj1(U) · · · Scjh1 (U)

∣∣∣∣∣
2

dU.

Proof. We apply Lemma 5.2 with B as in equation (12). This gives

Var(N U
g;h)

=
qh+1

qN

∑
B∈MN−h−1

1

Φeven(TN−h)2

∣∣∣∣∣
N∑

m=0

dN−m

∑
χ (modTN−h)
χ ̸=χ0 even

χ(θN−h−1(B))M(m;χg)

∣∣∣∣∣
2

=
qh+1

qN
1

Φeven(TN−h)2

N∑
m,n=0

dN−mdN−n

∑
χ1,χ2 (modTN−h)
χ1,χ2 ̸=χ0 even

M(m;χ1g)M(n;χ2g)

×
∑

B∈MN−h−1

χ1(θN−h−1(B))χ2(θN−h−1(B)).

As in [KR16] (equations (5.34) and (5.35)), one can see that

qh+1

qN

∑
B∈MN−h−1

χ1(θN−h−1(B))χ2(θN−h−1(B)) =

{
1 χ1 = χ2,

0 otherwise.
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Thus we have

Var(N U
g;h) =

1

Φeven(TN−h)2

N∑
m,n=0

dN−mdN−n

∑
χ (modTN−h)
χ ̸=χ0 even

M(m;χg)M(n;χg)

=
1

Φeven(TN−h)2

∑
m1+2m2+···+NmN≤N
n1+2n2+···+NnN≤N

dN−
∑

jmj
dN−

∑
jnj

×
∑

χ (modTN−h)
χ ̸=χ0 even

N∏
j=1

M(mj;χ
jdhj

)M(nj;χjdhj
),

where we have applied equation (8).
Now we apply Proposition 3.3 and make use of the fact that d = o(qε). This leads to

Var(N U
g;h) =

1

Φeven(TN−h)2

∑
m1+2m2=N
n1+2n2=N

∑
χ (modTN−h)
χ ̸=χ0 even

M(m1;χdh1)M(n1;χdh1)M(m2;χ
2dh2)M(n2;χ2dh2)

+O
(
qh+

5
6

)
,

where we have applied the fact that that Φeven(T
N−h) = 1

q−1
Φ(TN−h) ∼ qN−h−1 as q → ∞.

As in the proof of Theorem 4.3, we can consider the case of m1 = n1 = N separately from
the rest. For the non-quadratic characters, the cases m1 < N or n1 < N contribute at most

O
(
qh+

1
2

)
. For the quadratic characters, the contribution is bounded by O

(
q2h+2+(ε−1)N

)
.

Following [KRRGR18], one can discard the non-primitive characters, then apply Lemma 3.1,
where the nontrivial condition is N ≤ h1(N − h − 2) (since for primitive even characters
modulo T n, the degree of the L-function is n− 2). This leads to

Var(N U
g;h) =

qh+1−N

Φeven primitive(TN−h)

∑
χ (modTN−h)

χ ̸=χ0 even primitive

|M(N ;χdh1)|2 +O
(
qh+

5
6

)

∼qh+1

∫
U(N−h−2)

∣∣∣∣∣ ∑
j1+···+jh1=N

0≤j1,...,jh1≤N−h−2

Scj1(U) · · · Scjh1 (U)

∣∣∣∣∣
2

dU,

where the last identity follows from an equidistribution result of Katz [Kat13a], which applies
to 5 ≤ N − h. □

6. Sums over squares modulo P

In this section we prove Theorem 1.3. For simplicity, we fix P ∈ P2g+1 of odd degree.
Thus, the corresponding character χP will be odd. Our aim is to study the following sum.

SS
g;N(P ) :=

∑
f∈MN

f≡□ (modP )
P ∤f

g(f).
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6.1. The average. Recalling that if P ∤ f , then f is a square modulo P if and only if
1 + χP (f) = 2, we obtain

SS
g;N(P ) :=

1

2

∑
f∈MN
P ∤f

g(f) +
1

2
M(N ;χPg).

Denoting by χ0 the trivial character modulo P , we have, by (8),

1

2

∑
f∈MN
P ∤f

g(f) +
1

2
M(N ;χPg) =

1

2
M(N ;χ0g) +

1

2
M(N ;χPg)

=
∑

m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

dh1(f1)dh2(f2) · · · dhN
(fN)

1

2

(
χ0(f1f

2
2 · · · fN

N ) + χP (f1f
2
2 · · · fN

N )
)
.

Thus, we immediately conclude the following result.

Lemma 6.1.

SS
g;N(P ) =

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

f1f2
2 ···fN

N ≡□ (modP )
P ∤f1f2···fN

dh1(f1)dh2(f2) · · · dhN
(fN).

We can also obtain the following average result.

Lemma 6.2. As q → ∞,

SS
g,N(P ) =

1

2

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN
P ∤f1f2···fN

dh1(f1)dh2(f2) · · · dhN
(fN) +O

(
q

N
2

)

=
qN

2

(
d1 +N − 1

N

)(
1 +O

(
q−1
))

.

Proof. By equation (8) and Lemma 3.2, we have that, as q → ∞

M(N ;χ0g) =
∑

m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN
P ∤f1···fN

dh1(f1)dh2(f2) · · · dhN
(fN)

=
∑

m1+2m2+···+NmN=N

N∏
j=1

M(mj;χ0dhj
)

=
∑

m1+2m2+···+NmN=N

qm1+···+mN

N∏
j=1

(
hj +mj − 1

mj

)(
1 +O

(
q−1
))

=qN
(
h1 +m1 − 1

m1

)(
1 +O

(
q−1
))

,(13)

21



since the only way to obtain a maximal contribution for powers of q is to take m1 = N and
m2 = · · · = mN = 0.

Notice that equation (8) together with Lemmas 3.1 and 3.2 imply that, since χP is non-
trivial,

M(N ;χPg) =
∑

m1+2m2+···+NmN=N

N∏
j=1

M(mj;χ
j
Pdhj

)

=O

( ∑
m1+2m2+···+NmN=N

q
m1
2

+m2+···+mN

)
.

As in the proof of Proposition 3.3, we have that

m1

2
+m2 + · · ·+mN ≤N

3
+

m1 + 2m2

6
≤ N

2
.

Thus, we obtain that

SS
g,N(P ) =

1

2
M(N ;χ0g) +

1

2
M(N ;χPg) =

1

2
M(N ;χ0g) +O

(
q

N
2

)
.

We conclude by combining the above with (13) and by noticing that h1 = d1.
□

6.2. The variance. We now consider the variance, which is defined by

Var(SS
g;N) :=

1

#P2g+1

∑
P∈P2g+1

(
SS
g;N(P )−1

2

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN
P ∤f1f2···fN

dh1(f1)dh2(f2) · · · dhN
(fN)

)2

.

We prove the following result.

Theorem 6.3. Assume that d1 is a positive integer and that N ≤ 2gd1. As q → ∞,

Var(SS
g;N) ∼

qN

4

∫
Sp(2g)

( ⌊N
2 ⌋∑

ℓ=0

(
−h2

ℓ

)
(−1)ℓ

∑
j1+···+jh1=N−2ℓ
0≤j1,...,jh1≤2g

Scj1(U) · · · Scjh1 (U)

)2

dU.

Proof. By the discussion from the proof of Lemma 6.2, we have that

Var(SS
g;N) =

1

4#P2g+1

M(N ;χPg)
2

=
1

4#P2g+1

∑
P∈P2g+1

( ∑
m1+2m2+···+NmN=N

N∏
j=1

M(mj;χ
j
Pdhj

)

)2

.

We apply Proposition 3.3 to obtain

Var(SS
g;N) =

1

4#P2g+1

∑
P∈P2g+1

∑
m1+2m2=N
n1+2n2=N

M(m1;χPdh1)M(n1;χPdh1)M(m2;χ
2
Pdh2)M(n2;χ

2
Pdh2)

+O
(
qN− 1

6

)
.
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By Lemmas 3.1 and 3.2, the inner sum above becomes( ∑
m1+2m2=N

(−1)m1q
m1
2

∑
j1+···+jh1=m1

0≤j1,...,jh1≤2g

Scj1(ΘχP
) · · · Scjh1 (ΘχP

)

(
qm2

(
h2 +m2 − 1

m2

)
+O(qm2−1)

))2

+O
(
qN− 1

6

)
= qN

( ∑
m1+2m2=N

(−1)m1

∑
j1+···+jh1=m1

0≤j1,...,jh1≤2g

Scj1(ΘχP
) · · · Scjh1 (ΘχP

)

(
h2 +m2 − 1

m2

))2 (
1 +O

(
q−

1
6

))
.

Thus, we obtain

Var(SS
g;N) :=

qN

4#P2g+1

×
∑

P∈P2g+1

(
(−1)N

∑
m1+2m2=N

∑
j1+···+jh1=m1

0≤j1,...,jh1≤2g

Scj1(ΘχP
) · · · Scjh1 (ΘχP

)

(
h2 +m2 − 1

m2

))2

×
(
1 +O

(
q−

1
6

))
=

qN

4#P2g+1

∑
P∈P2g+1

( ⌊N
2 ⌋∑

ℓ=0

(
h2 + ℓ− 1

ℓ

) ∑
j1+···+jh1=N−2ℓ
0≤j1,...,jh1≤2g

Scj1(ΘχP
) · · · Scjh1 (ΘχP

)

)2

×
(
1 +O

(
q−

1
6

))
.

We conclude by invoking the following equidistribution result of Katz. □

Theorem 6.4. [KL22a, Theorem 3.2]Let F be a continuous C-valued central function on
Sp(2g) and let σ be any fixed partition of 2g + 1. Then

lim
q→∞

1

#Pσ

∑
Q∈Pσ

F (Q) =

∫
Sp(2g)

F (U)dU.

7. Sums over fundamental discriminants

Here we prove Theorem 1.4 by considering, for R ∈ H2g+1,

T S
g;N(R) :=

∑
f∈MN
(f,R)=1

g(f)χR(f).

7.1. The average and the variance. Our first observation is that the average is very
small. By equation (8),

(14) T S
g;N(R) =

∑
m1+2m2+···+NmN=N

N∏
j=1

M(mj;χ
j
Rdhj

) = O
(
q

N
2

)
,
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as in the estimate for M(N,χPg) in Subsection 6.1.
Given the size of the average, we consider

Var(T S
g;N) :=

1

#H2g+1

∑
R∈H2g+1

(
T S
g;N(R)

)2

.

As in the case of Theorem 1.3, we obtain a contribution that depends on h2.

Theorem 7.1. Assume that d1 is a positive integer and that N ≤ 2gd1. As q → ∞,

Var(T S
g;N) ∼ qN

∫
Sp(2g)

( ⌊N
2 ⌋∑

ℓ=0

(
−h2

ℓ

)
(−1)ℓ

∑
j1+···+jh1=N−2ℓ
0≤j1,...,jh1≤2g

Scj1(U) · · · Scjh1 (U)

)2

dU.

Proof. By (14), we have that

Var(T S
g;N) =

1

#H2g+1

∑
R∈H2g+1

( ∑
m1+2m2+···+NmN=N

N∏
j=1

M(mj;χ
j
Rdhj

)

)2

.

By Proposition 3.3,

Var(T S
g;N) =

1

#H2g+1

∑
R∈H2g+1

∑
m1+2m2=N
n1+2n2=N

M(m1;χRdh1)M(n1;χRdh1)M(m2;χ
2
Rdh2)M(n2;χ

2
Rdh2)

+O
(
qN− 1

6

)
.

Applying Lemmas 3.1 and 3.2, the inner sum above becomes

( ∑
m1+2m2=N

(−1)m1q
m1
2

∑
j1+···+jh1=m1

0≤j1,...,jh1≤2g

Scj1(ΘχR
) · · · Scjh1 (ΘχR

)

(
qm2

(
h2 +m2 − 1

m2

)
+O(qm2−1)

))2

+O
(
qN− 1

6

)
= qN

( ∑
m1+2m2=N

(−1)m1

∑
j1+···+jh1=m1

0≤j1,...,jh1≤2g

Scj1(ΘχR
) · · · Scjh1 (ΘχR

)

(
h2 +m2 − 1

m2

))2 (
1 +O

(
q−

1
6

))
.
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Thus, we have

Var(T S
g;N) :=

qN

#H2g+1

×
∑

R∈H2g+1

(
(−1)N

∑
m1+2m2=N

∑
j1+···+jh1=m1

0≤j1,...,jh1≤2g

Scj1(ΘχR
) · · · Scjh1 (ΘχR

)

(
h2 +m2 − 1

m2

))2

×
(
1 +O

(
q−

1
6

))
=

qN

#H2g+1

∑
R∈H2g+1

( ⌊N
2 ⌋∑

ℓ=0

(
h2 + ℓ− 1

ℓ

) ∑
j1+···+jh1=N−2ℓ
0≤j1,...,jh1≤2g

Scj1(ΘχR
) · · · Scjh1 (ΘχR

)

)2

×
(
1 +O

(
q−

1
6

))
.

We conclude by standard equidistribution results for the hyperelliptic ensemble. □

8. Analyzing the integral

Consider the integral

(15)

∫
Sp(2g)

det(1 + Ux)h1

(1− x2)h2

det(1 + Uy)h1

(1− y2)h2
dU =

∞∑
m,n=0

xmynKS
dh1 ,2

(m,n; g).

The diagonal coefficients on the right hand side are then given by

KS
dh1 ,2

(N,N ; g) :=

∫
Sp(2g)

( ⌊N
2 ⌋∑

ℓ=0

(
−h2

ℓ

)
(−1)ℓ

∑
j1+···+jh1=N−2ℓ
0≤j1,...,jh1≤2g

Scj1(U) · · · Scjh1 (U)

)2

dU,

which is the integral appearing in Theorems 6.3 and 7.1.
Our goal is to find a formula for KS

dh1 ,2
(N,N ; g). We can give a partial result.

Proposition 8.1. Let N ≤ g + 1+h1

2
. We have

KS
dh1 ,2

(N,N ; g) =

⌊N
2
⌋∑

ℓ=0

(
ℓ+ h2 +

(
h1+1
2

)
− 1

ℓ

)2(
N − 2ℓ+ h2

1 − 1

N − 2ℓ

)
.(16)

We will need the following lemma, which is a particular case of the generalized Vander-
monde matrix in [Kal84] (see also [KL22b, Lemma 2.2]).

Lemma 8.2. For any positive integer k,

det
1≤i1,i2,≤k
1≤j≤2k


(j−1)!
(j−i1)!

xj−i1

(j−1)!
(j−i2)!

yj−i2

 = G(1 + k)2(y − x)k
2

,

where G(1 + k) = 0! · 1! · · · (k − 1)! is the Barnes G-function.
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Proof of Proposition 8.1. Using results of Medjedovic [Med21] and the Désarménien–Stembridge–
Proctor formula [BK72, BW16, Pro90, BG06], the authors of [KL22b] obtain that∫
Sp(2g)

det(1 + Ux)h det(1 + Uy)hdU =
1

(1− x2)(
h+1
2 )(1− y2)(

h+1
2 )(1− xy)h2(y − x)h2

× det
1≤i1,i2≤h
1≤j≤2h


(
2g+4h+1−j

i1−1

)
x2g+4h+2−j−i1 −

(
j−1
i1−1

)
xj−i1

(
2g+4h+1−j

i2−1

)
y2g+4h+2−j−i2 −

(
j−1
i2−1

)
yj−i2

 .

Combining the above with (15), we immediately see that

2gh1∑
m,n=0

xmynKS
dh1 ,2

(m,n; g) =
1

(1− x2)h2+(h1+1
2 )(1− y2)h2+(h1+1

2 )(1− xy)h
2
1(y − x)h

2
1

× det
1≤i1,i2≤h1
1≤j≤2h1


(
2g+4h1+1−j

i1−1

)
x2g+4h1+2−j−i1 −

(
j−1
i1−1

)
xj−i1

(
2g+4h1+1−j

i2−1

)
y2g+4h1+2−j−i2 −

(
j−1
i2−1

)
yj−i2

 .

From the right-hand side of the above equation, the contribution to KS
dh1 ,2

(N,N ; g), that is,

the coefficient of xNyN , for N ≤ g+ 1+h1

2
, comes from the determinant that takes exclusively

terms of the form
(
j−1
i−1

)
xj−i and similarly with y. In other words, KS

dh1 ,2
(N,N ; g) comes

exclusively from the diagonal terms of

1

(1− x2)h2+(h1+1
2 )(1− y2)h2+(h1+1

2 )(1− xy)h
2
1(y − x)h

2
1

det
1≤i1,i2≤h1
1≤j≤2h1


(
j−1
i1−1

)
xj−i1

(
j−1
i2−1

)
yj−i2

 .

Lemma 8.2 implies that we should consider the diagonal terms in

1

(1− x2)h2+(h1+1
2 )(1− y2)h2+(h1+1

2 )(1− xy)h
2
1

=
∞∑

ℓ1=0

(
ℓ1 + h2 +

(
h1+1
2

)
− 1

ℓ1

)
x2ℓ1

∞∑
ℓ2=0

(
ℓ2 + h2 +

(
h1+1
2

)
− 1

ℓ2

)
y2ℓ2

∞∑
m=0

(
m+ h2

1 − 1

h2
1 − 1

)
(xy)m.

The result follows by fixing the coefficient of (xy)N with N = m+ 2ℓ1 = m+ 2ℓ2. □

In the case where h2 is an integer satisfying h2 +
(
h1+1
2

)
− 1 ≥ 0, equation (16) gives a

quasi-polynomial in N , since the upper bound in the sum depends on the parity of N . Each
term in the sum has total degree 2

(
h2 +

(
h1+1
2

)
− 1
)
+ h2

1 − 1 = 2h2 + 2h2
1 + h1 − 3 in the

variable ℓ. By summing over ℓ, each term leads to a polynomial of degree 2h2 +2h2
1 +h1 − 2

on N , or more precisely,
⌊
N
2

⌋
. Moreover, the coefficients are all positive, which guarantees

that there is no cancellation that could lower the final degree.
Now we focus on the case h1 = 1. Equation (16) gives

KS
d1,2

(N,N ; g) =

⌊N
2
⌋∑

ℓ=0

(
ℓ+ h2

ℓ

)2

=

⌊N
2
⌋∑

ℓ=0

(
−1− h2

ℓ

)2

.

Thus, for h2 a nonnegative integer, we get a polynomial in
⌊
N
2

⌋
of degree 2h2 + 1.
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As an example, consider the multiplicative functions Dk : Fq[T ] → Z given by

Dk(F ) = dk

(
F∏
P |F P

)
.

We have that dℓ = Dk(P
ℓ) = dk(P

ℓ−1) =
(
k+ℓ−2
k−1

)
. In particular, d1 = 1 and d2 = k.

Therefore, h1 = d1 = 1 and h2 = d2 − d1(d1+1)
2

= k − 1. Thus, this leads to a polynomial of
degree 2k − 1. For example, if we take k = 2, then

KS
d1,2

(N,N ;D2) =

⌊N
2
⌋∑

ℓ=0

(ℓ+ 1)2 =
1

6

(⌊
N

2

⌋
+ 1

)(⌊
N

2

⌋
+ 2

)(
2

⌊
N

2

⌋
+ 3

)
.

9. Sums over short arcs of the unit circle

We consider here a couple of problems involving the divisor function in function fields that
can be described by integrals over the unitary symplectic matrices and over the orthogonal
matrices. We follow part of the exposition by Rudnick and Waxman [RW19].

Let a P (T ) ∈ P . Then, there exist A(T ), B(T ) ∈ Fq[T ] such that

(17) P (T ) = A(T )2 + TB(T )2

if and only if P (0) is a square in Fq. Accordingly, let χ2 be the character on Fq defined by

χ2(a) =


0 a = 0,

1 a is a nonzero square in Fq,

−1 otherwise.

We can extend χ2 to M by defining χ2(f) := χ2(f(0)). Thus, (17) is solvable if and only if
χ2(P ) ̸= −1.

Set S :=
√
−T and we think of Fq[T ] ⊆ Fq[S]. The goal here is for S to play the role of a

square-root of −1 in the function field setting. Equation (17) then becomes

P (T ) = (A+BS)(A−BS) = pp

in Fq[S]. One can define the analogue of complex conjugation by considering the automor-
phism over the ring of formal power series

σ : Fq[[S]] → Fq[[S]], σ(S) = −S.

Complex conjugation can be used to construct the norm map as

Norm : Fq[[S]]
× → Fq[[T ]]

×, Norm(f) = fσ(f) = f(S)f(−S).

We define
S1 := {g ∈ Fq[[S]]

× : g(0) = 1,Norm(g) = 1},
a group that can be seen as an analogue of the unit circle in this setting. For f ∈ Fq[[S]] let
ord(f) = max{j : Sj | f} and |f | := q−ord(f), the absolute value associated with the place
at infinity.

A sector on the unit circle is given by

(18) Sect(v; k) := {w ∈ S1 : |w − v| ≤ q−k}.
Thus, we have that w ∈ Sect(v; k) if and only if w ≡ v (modSk).
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The following modular group then parametrizes the sectors of the unit circle:

S1
k := {f ∈ Fq[S]/(S

k) : f(0) = 1, Norm(f) ≡ 1 (modSk)}.

Lemma 9.1. [Kat17, Lemma 2.1], [RW19, Lemma 6.1],

(1) The cardinality of S1
k is given by

#S1
k = qκ, with κ :=

⌊
k

2

⌋
.

(2) There is a direct product decomposition(
Fq[S]/(S

k)
)×

= Hk × S1
k,

where
Hk := {f ∈

(
Fq[S]/(S

k)
)×

: f(−S) ≡ f(S) (modSk)},
and

#Hk = (q − 1)q⌊
k−1
2 ⌋.

For f ∈ Fq[S] coprime to S, the square-root of f
σ(f)

∈ S1 is well-defined, since v 7→ v2 is

an automorphism of S1 by Hensel’s Lemma. Thus, we can consider

U(f) :=

√
f

σ(f)
.

Thus, U(f) defines an analogue for the complex argument of f . Note that U(cf) = U(f) for
scalars c ∈ F×

q .
The modular analogue of U is given by

Uk :
(
Fq[S]/(S

k)
)× → S1

k, f 7→

√
f

σ(f)
(modSk)

and is a surjective homomorphism whose kernel is Hk ([RW19, Lemma 6.2]).
A super-even character modulo Sk is a Dirichlet character

Ξ :
(
Fq[S]/(S

k)
)× → C×

which is trivial on Hk (see [RW19] and [Kat17]). Super-even characters modulo Sk can be

seen as the characters of
(
Fq[S]/(S

k)
)×

/Hk
∼= S1

k. They are the analogues of the Hecke
characters in this setting.

The super-even characters modulo S satisfy the orthogonality relations,

(19)
∑
v∈S1k

Ξ1(v)Ξ2(v) =

{
qκ Ξ1 = Ξ2,

0 otherwise.

(See the proof of Lemma 6.8 in [RW19, page 192].)

Proposition 9.2. [RW19, Proposition 6.3] For f ∈
(
Fq[S]/(S

k)
)×

and v ∈ S1
k, the following

are equivalent:

(1) Uk(f) ∈ Sect(v; k),
(2) Uk(f) = Uk(v),
(3) fHk = vHk,
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(4) Ξ(f) = Ξ(v) for all super-even characters (modSk).

The Swan conductor of Ξ is the maximal integer d = d(Ξ) < k for which Ξ is nontrivial
on the subgroup

Γd :=
(
1 + (Sd)

)
/(Sk) ⊂

(
Fq[S]/(S

k)
)×

.

In other words, Ξ is a primitive character modulo Sd(Ξ)+1. The Swan conductor of a super-
even character is always odd, since these characters are trivial on Γd for d even.
The L-function associated to a non-trivial Ξ is given by

L(u,Ξ) =
∑
f∈M
f(0)̸=0

Ξ(f)udeg(f) =
∏
P∈P

P (0)̸=0

(
1− Ξ(P )udeg(P )

)−1
, |u| < 1/q,

which is a polynomial of degree d(Ξ). We have

L(u,Ξ) = (1− u) det
(
I − uq1/2ΘΞ

)
with ΘΞ ∈ U(d(Ξ)− 1).
In [Kat17, Theorem 5.1], Katz proved that for q → ∞ the set of Frobenius classes

{ΘΞ : Ξ primitive super-even (modSk)}
becomes uniformly distributed in Sp(2κ− 2) provided that 2κ ≥ 8, and that the same holds
for 2κ = 6 in odd characteristic and for 2κ = 4 provided that the characteristic is coprime
to 10.

We can also consider the twists Ξχ2, where Ξ is a non-trivial super-even character. The
associated L-function is

L(u,Ξχ2) =
∑
f∈M
f(0)̸=0

Ξ(f)χ2(f)u
deg(f) =

∏
P∈P

P (0)̸=0

(
1− Ξ(P )χ2(P )udeg(P )

)−1
, |u| < 1/q.

Again, this is a polynomial of degree d(Ξ). We have

L(u,Ξχ2) = det
(
I − uq1/2ΘΞχ2

)
,

with ΘΞχ2 ∈ U(d(Ξ)).
Katz [Kat17, Theorem 7.1] showed that in odd characteristic, for q → ∞ the set of

Frobenius classes

{ΘΞχ2 : Ξ primitive super-even (modSk)}
becomes uniformly distributed in O(2κ− 1) if 2κ ≥ 6, and that the same holds for 2κ = 4 if
the characteristic is coprime to 5.

9.1. The averages. We proceed to study the following sums

N S
g,k,N(v) =

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

g(f) and NO
g,k,N(v) =

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

g(f)

(
1 + χ2(f)

2

)
.

Remark that N S
g,k,N(v) represents the average over the polynomials whose argument is re-

stricted to certain sector on the unit circle. Meanwhile, NO
dℓ,k,N

(v) represents an analogue
average with the extra condition that the constant coefficient is a nonzero square in Fq.

29



We set

M0(N ; Ξg) =
∑

f∈MN
f(0)̸=0

Ξ(f)g(f), and M0(N ; Ξχ2g) =
∑

f∈MN
f(0)̸=0

Ξ(f)χ2(f)g(f),

where the subindex 0 indicates that we perform the sum over f(0) ̸= 0.
Lemma 3.1 becomes the following statement in this setting.

Lemma 9.3. We have for N ≤ ℓd(Ξ),

M0(N ; Ξχ2dℓ) = (−1)Nq
N
2

∑
j1+···+jℓ=N

0≤j1,...jℓ≤d(Ξ)

Scj1(ΘΞχ2) · · · Scjℓ(ΘΞχ2)

and M0(N ; Ξχ2dℓ) = 0 otherwise.
We have for N ≤ ℓ(d(Ξ)− 1),

M0(N ; Ξdℓ) = (−1)Nq
N
2

∑
j1+···+jℓ=N

0≤j1,...,jℓ≤d(Ξ)−1

Scj1(ΘΞ) · · · Scjℓ(ΘΞ) +Oℓ,k

(
q

N−1
2

)
.

If ℓ(d(Ξ)− 1) < N ≤ ℓd(Ξ),

|M0(N ; Ξdℓ)| ≪ℓ,k q
N−1

2 .

Finally, if ℓd(Ξ) < N , M0(N ; Ξdℓ) = 0.

Lemma 9.4. Let λ be real. As q → ∞, we have that

M0(N ;χ2
2dλ) =

∑
f∈MN
f(0)̸=0

dλ(f) = qN
(
λ+N − 1

N

)
+Oλ,N(q

N−1)(20)

M0(N ;χ2dλ) =

{
0 N > 0,

1 N = 0.
(21)

Proof. Equation (20) follows from a particular case of Lemma 3.2, while Equation (21) follows
from Equation (37) in [KL22b]. □

We start our analysis by looking at the mean value ofN S
g,k,N averaged over all the directions

of v ∈ S1
k.

Lemma 9.5. As q → ∞,

1

qκ

∑
v∈S1k

N S
g,k,N(v) =

1

qκ

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

f1f2···fN (0)̸=0

dh1(f1)dh2(f2) · · · dhN
(fN)

=qN−κ

(
d1 +N − 1

N

)(
1 +O

(
q−1
))

.
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Proof. As before, we apply (8) and obtain∑
v∈S1k

N S
g,k,N(v) =

∑
f∈MN
f(0)̸=0

g(f) =
∑

m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

f1f2···fN (0)̸=0

dh1(f1)dh2(f2) · · · dhN
(fN).

The rest of the argument proceeds as in the proof of Lemma 6.2. □

Lemma 9.6. As q → ∞,

1

qκ

∑
v∈S1k

NO
g,k,N(v) =

1

2qκ

∑
m1+2m2+···+NmN=N

∑
f1∈Mm1···
fN∈MmN

f1f2···fN (0)̸=0

dh1(f1)dh2(f2) · · · dhN
(fN) +O

(
q

N
2
−κ
)

=
qN−κ

2

(
d1 +N − 1

N

)(
1 +O

(
q−1
))

.

Proof. As before, we have

1

qκ

∑
f∈MN
f(0)̸=0

g(f)

(
1 + χ2(f)

2

)
=

1

2qκ

∑
f∈MN
f(0)̸=0

g(f) +
1

2qκ
M0(N ;χ2g).

By equation (8) and Lemma 9.4, we have that, as q → ∞,

M0(N ;χ2g) =
∑

m1+2m2+···+NmN=N

N∏
j=1

M0(mj;χ
j
2dhj

) =O
(
q

N
2

)
,(22)

since the only way to obtain a maximal contribution for powers of q is to take m2 =
N
2
and

m1 = m3 = · · · = mN = 0. We conclude by combining with the result of Lemma 9.5.
□

9.2. The variances. Our first step to understand the variance is to obtain formulas for
N S

g,k,N(v) and NO
g,k,N(v) in terms of the super-even characters Ξ. By Proposition 9.2 and the

orthogonality relations, we find, for f ∈ MN ,

1

qκ

∑
Ξ super-even (modSk)

Ξ(v)Ξ(f) =

{
1 U(f) ∈ Sect(v; k),

0 otherwise.

Hence

N S
g,k,N(v) =

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

g(f) =
1

qκ

∑
Ξ super-even (modSk)

Ξ(v)
∑

f∈MN
f(0)̸=0

Ξ(f)g(f).

The contribution from the trivial character Ξ0 is precisely

1

qκ

∑
f∈MN
f(0)̸=0

g(f) = ⟨N S
g,k,N⟩.
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Thus

N S
g,k,N(v)− ⟨N S

g,k,N⟩ =
1

qκ

∑
Ξ super-even (modSk)

Ξ ̸=Ξ0

Ξ(v)
∑

f∈MN
f(0)̸=0

Ξ(f)g(f)

=
1

qκ

∑
Ξ super-even (modSk)

Ξ ̸=Ξ0

Ξ(v)M0(N ; Ξg).(23)

We define the variance as

Var(N S
g,k,N) :=

1

qκ

∑
v∈S1k

∣∣N S
g,k,N(v)− ⟨N S

g,k,N⟩
∣∣2 .(24)

Theorem 9.7. Assume that d1 is a positive integer and that N ≤ d1(2κ− 2) with κ =
⌊
k
2

⌋
.

As q → ∞,

Var(N S
g,k,N) ∼

qN

qκ

∫
Sp(2κ−2)

( ∑
j1+···+jℓ=N

0≤j1,...,jℓ≤2κ−2

Scj1(U) · · · Scjℓ(U)

)2

dU.

Proof. By applying the orthogonality relations (19) to equations (23) and (24), we obtain

Var(N S
g,k,N) =

1

qκ

∑
v∈S1k

1

q2κ

∑
Ξ1,Ξ2 super-even (modSk)

Ξ1,Ξ2 ̸=Ξ0

Ξ1(v)M0(N ; Ξ1g)Ξ2(v)M0(N ; Ξ2g)

=
1

q2κ

∑
Ξ1,Ξ2 super-even (modSk)

Ξ1,Ξ2 ̸=Ξ0

M0(N ; Ξ1g)M0(N ; Ξ2g)
1

qκ

∑
v∈S1k

Ξ1(v)Ξ2(v)

=
1

q2κ

∑
Ξ super-even (modSk)

Ξ ̸=Ξ0

|M0(N ; Ξg)|2

=
1

q2κ

∑
m1+2m2+···+NmN=N
n1+2n2+···+NnN=N

∑
Ξ super-even (modSk)

Ξ ̸=Ξ0

N∏
j=1

M0(mj; Ξ
jdhj

)M0(nj; Ξjdhj
),

where we have applied (8). Now Proposition 3.3 implies

Var(N S
g,k,N) =

1

q2κ

∑
m1+2m2=N
n1+2n2=N

∑
Ξ super-even (modSk)

Ξ ̸=Ξ0

M0(m1; Ξdh1)M0(n1; Ξdh1)M0(m2; Ξ
2dh2)M0(n2; Ξ2dh2)

+O
(
qN− 1

6
−κ
)
.

As in Subsection 4.2, we can consider the case of m1 = n1 = N separately from the rest, and

show that the rest contributes to an error term O
(
qN− 1

2
−κ
)
. Following [KL22a, Theorem
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5.6], this leads to

Var(N S
g,k,N) =

1

q2κ

∑
Ξ super-even

primitive (modSk)
Ξ ̸=Ξ0

|M0(N ; Ξdh1)|2 +O
(
qN− 1

6
−κ
)

∼qN

qκ

∫
Sp(2κ−2)

( ∑
j1+···+jℓ=N

0≤j1,...,jℓ≤2κ−2

Scj1(U) · · · Scjℓ(U)

)2

dU,

by the equidistribution theorem due to Katz [Kat17, Theorem 5.1]. □

We now turn our attention to NO
g,k,N(v). This sum has two kinds of fluctuations away

from its average: one is the fluctuations of the function g itself in sectors, and the other is
the fluctuations coming from the twist by the character χ2. We are interested in isolating
the latter fluctuations, which are more subtle, so we will consider the following “average” of
NO

g,k,N , defined as:

⟨NO
g,k,N(v)⟩S :=

1

2qκ

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

g(f),

and we will compute the variance

VarS(NO
g,k,N) :=

1

qκ

∑
v∈S1k

∣∣NO
g,k,N(v)− ⟨NO

g,k,N(v)⟩S
∣∣2 .(25)

We start by splitting the sum in terms of the character χ2:

NO
g,k,N(v) =

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

g(f)

(
1 + χ2(f)

2

)
=

1

2

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

g(f) +
1

2

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

χ2(f)g(f).

Using the super-even characters to impose the circle sector condition, we get

NO
g,k,N(v)− ⟨NO

g,k,N(v)⟩S =
1

2

∑
f∈MN
f(0)̸=0

U(f)∈Sect(v,k)

χ2(f)g(f)

=
1

2qκ

∑
Ξ super-even (modSk)

Ξ(v)
∑

f∈MN
f(0)̸=0

Ξ(f)χ2(f)g(f)

=
1

2qκ

∑
Ξ super-even (modSk)

Ξ(v)M0(N ; Ξχ2g).(26)

We are now ready to compute the variance.
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Theorem 9.8. Assume that d1 is a positive integer and that N ≤ d1(2κ−1) with κ =
⌊
k
2

⌋
≥

3. As q → ∞,

VarS(NO
g,k,N) ∼

qN

4qκ

∫
O(2κ−1)

( ∑
j1+···+jℓ=N

0≤j1,...,jℓ≤2κ−1

Scj1(U) · · · Scjℓ(U)

)2

dU.

Proof. By combining equations (26) and (25), we obtain

VarS(NO
g,k,N) =

1

qκ

∑
v∈S1k

1

4q2κ

∑
Ξ1,Ξ2 super-even (modSk)

Ξ1(v)M0(N ; Ξ1χ2g)Ξ2(v)M0(N ; Ξ2χ2g)

=
1

4q2κ

∑
Ξ1,Ξ2 super-even (modSk)

M0(N ; Ξ1χ2g)M0(N ; Ξ2χ2g)
1

qκ

∑
v∈S1k

Ξ1(v)Ξ2(v)

=
1

4q2κ
|M0(N ; Ξ0χ2g)|2 +

1

4q2κ

∑
Ξ super-even (modSk)

Ξ̸=Ξ0

|M0(N ; Ξχ2g)|2,

where we have applied the orthogonal relations (19).
As in equation (22), we have that

∑
f∈MN
f(0)̸=0

χ2(f)g(f) =
∑

m1+2m2+···+NmN=N

N∏
j=1

M0(mj;χ
j
2dhj

)

=


q

N
2

(
h2+N/2−1

N/2

)
(1 +O (q−1)) 2 | N,

0 2 ∤ N,

by Lemma 9.4, since the only way to obtain a maximal contribution for powers of q is for
m2 = N

2
and m1 = m3 = · · · = mN = 0. Moreover, as soon as one mj ̸= 0 with j odd, we

obtain 0.
On the other hand,

1

4q2κ

∑
Ξ super-even (modSk)

Ξ ̸=Ξ0

|M0(N ; Ξχ2g)|2 =
1

4q2κ

∑
Ξ super-even (modSk)

Ξ̸=Ξ0

|M0(N ; Ξχ2dh1)|2 +O
(
qN− 1

6
−κ
)
,

which follows exactly as in the proof of Theorem 9.7.
Putting all of this together,

VarS(NO
g,k,N) =δ2|N

qN

4q2κ

(
h2 +N/2− 1

N/2

)2

+
1

4q2κ

∑
Ξ super-even (modSk)

Ξ̸=Ξ0

|M0(N ; Ξχ2dh1)|2 +O
(
qN− 1

6
−κ
)
.

We remark that the first term above is of size O
(
qN−2κ

)
, while Lemma 9.3 implies the second

term is of size O
(
qN−κ

)
. Therefore, the first term is part of the error term. Following [KL22b,
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Theorem 6.5], this leads to

VarS(NO
g,k,N) ∼

qN

4qκ

∫
O(2κ−1)

( ∑
j1+···+jℓ=N

0≤j1,...,jℓ≤2κ−1

Scj1(U) · · · Scjℓ(U)

)2

dU,

which follows from applying [Kat17, Theorem 7.1].
□
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