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Abstract. We reduce the sum
∑∞

k=1

∑k−1
j=0

(−1)j+k+1

(2j+1)mk
in terms of special

values of the Dirichlet L-series in the character of conductor 4. This sum
is a combination of colored zeta values.

1. Introduction

The sums

Lin,m(1, 1) =
∑

0<j<k

1

jmkn

(where m, n are positive integers and n is greater than 1 for convergence) were
first studied by Euler [10], who found a closed formula by reducing them as
rational combinations of products of values of the Riemann zeta function for
the case when m + n is odd. The simplest example is the identity

ζ(3) =
∑

0<j<k

1

jk2

In general, multizeta values were studied in different contexts by several peo-
ple, including Hoffman [16], Zagier [23], Kontsevich [17], Broadhurst [6],
Goncharov [11,13,14], Drinfeld [9], and many others1.

∗This material is based upon work supported by the National Science Foundation
under agreement No. DMS- 0111298.

1The literature on the subject is very vast. We do not intend to do a survey. The
interested reader is advised to follow the references in the aforementioned articles
for more information.
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2 Matilde N. Lalı́n

A natural generalization is to consider sums of the form2

Lin,m(ζl, ζh) =
∑

0<j<k

ζ
j

h ζ k
l

jmkn
,

where ζh, ζl are lth- and hth-roots of unity. We have the same conditions as
before for m and n, but n is allowed to be equal to 1 if ζl �= 1, in which case the
series converges but not absolutely. In such a situation, the sum is performed
on the variable j first.

These sums were first studied by Deligne [7,8], Goncharov [12,13], Racinet
[21,22], Bigotte, Jacob, Oussous, and Petitot [2] among others. Once again the
reader is referred to the references in these works.

One of the main problems concerning multizeta values and their general-
izations is to understand and describe the relations among them. We will be
concerned with explicit relations.

For the cases when l = h = 2 and m + n is odd, a summary of the results
can be found in formula (75) of the work by Borwein, Bradley, and Broadhurst,
[3], more precisely,

Lin,m(ρ, σ ) = 1

2

(−Lim+n(ρσ) + (1 + (−1)n)Lin(ρ)Lim(σ)
)

+ (−1)n

2

((
m + n − 1

n − 1

)
Lim+n(ρ)+

(
m + n − 1

m − 1

)
Lim+n(σ )

)

−
∑

0<k< m+n
2

Li2k(ρσ )(−1)n
((

m + n − 2k − 1

n − 1

)
Lim+n−2k(ρ)

+
(

m + n − 2k − 1

m − 1

)
Lim+n−2k(σ )

)
, (1)

for m + n odd, ρ = ±1, and σ = ±1.
Now, if we consider twisting by fourth roots of the unity, we note that

Lin,m(i, i) − Lin,m(i, −i) + Lin,m(−i, i) − Lin,m(−i, −i)

= 22−ni
∑

0≤j<k

(−1)j+k

(2j + 1)mkn
.

When n = 1 the sum is performed first in the variable j .

2We use the notation from multiple polylogarithms, although we will not study
them in general.
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Here is our result:

Theorem 1. For m ∈ Z, and m odd, we have

∞∑
k=1

k−1∑
j=0

(−1)j+k+1

(2j + 1)mk
= mL(χ−4, m + 1)

+
m−1

2∑
h=1

(−1)hπ2h(22h − 1)

(2h)!
B2hL(χ−4, m − 2h + 1).

(2)

where L(χ−4, n) is the Dirichlet L-series in the odd character of conductor 4.

Observe that it is possible to express L(χ−4, n) in terms of special values
of the polylogarithm Lin, namely, L(χ−4, n) = Lin(i)−Lin(−i)

2i . Hence Theorem
1 becomes a result about reducing a particular combination of polylogarithms
of depth 2 into a combination of polylogarithms of depth 1.

It should be also possible to reduce the more general sum
∑

0≤j<k
(−1)j+k

(2j+1)mkn

for m+n even and n > 1 by using the same ideas that we are about to describe.
However the computation becomes too complicated.

2. Idea of the proof

The main idea of the proof was inspired by the following result by Murty and
Sinha [20].

Theorem 2. (4.1 in [20]) For 0 < x < 1,

− 1

xs
+ ζ(s; x) =

∞∑
r=0

(−s

r

)
ζ(s + r)xr , (3)

where ζ(s; x) = ∑∞
n=0

1
(n+x)s

is the Hurwitz zeta function.

This equality is proved by noting that

1

(n + x)s
= 1

ns

∞∑
r=0

(−s

r

)(x

n

)r

,

then summing over n, and interchanging the order of the sums. Observe that
this argument also works when s is integral for −1 < x < 0.

For our proof, we first start by performing the change j → j − 1, and we
obtain the following identity

S :=
∞∑

k=1

k−1∑
j=0

(−1)j+k+1

(2j + 1)mk
=

∞∑
k=1

k∑
j=1

(−1)j+k

(2j − 1)mk
.
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Now we may combine both sums in order to obtain

2S =
∞∑

k=1

k−1∑
j=0

(−1)j+k+1

(2j + 1)mk
−

∞∑
k=1

k∑
j=1

(−1)j+k+1

(2j − 1)mk

=
∞∑

k=1

(−1)k+1

k
+

∞∑
k=1

1

(2k − 1)mk

+
∞∑

k=1

k−1∑
j=1

(−1)j+k+1

k

(
1

(2j + 1)m
− 1

(2j − 1)m

)
. (4)

The second term may be easily expressed as a combination of values of the
Riemann zeta function and the alternating harmonic series:

∞∑
k=1

1

(2k − 1)mk
= 2

m−2∑
j=0

(−1)j
(

1 − 1

2m−j

)

× ζ(m − j) + (−1)m−1
∞∑

k=1

(
2

2k − 1
− 1

k

)
.

Thus we obtain

∞∑
k=1

(−1)k+1

k
+

∞∑
k=1

1

(2k − 1)mk

= 3 log 2 + 2
m−2∑
j=0

(−1)j
(

1 − 1

2m−j

)
ζ(m − j).

The third term in equation (4) is

∞∑
k=1

k−1∑
j=1

(−1)j+k+1

k

(
1

(2j + 1)m
− 1

(2j − 1)m

)

=
∞∑

k=1

k−1∑
j=1

(−1)j+k+1

k(2j)m

∞∑
r=0

(−m

r

)
1 − (−1)r

(2j)r

= −
∞∑

r=1, r odd

(−m

r

)
1

2r+m−1

∞∑
k=1

k−1∑
j=1

(−1)j+k

kj r+m

= −
∞∑

r=1, r odd

(−m

r

)
1

2r+m−1
Li1,r+m(−1, −1)
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We will use formula (1), which in this particular case implies

Li1,r+m(−1, −1) =
(

r + m

2
− r + m + 1

2r+m+1

)
ζ(r + m + 1) − ζ(r + m) log 2

−
r+m−2

2∑
k=1

ζ(2k)

(
1 − 1

2r+m−2k

)
ζ(r + m + 1 − 2k).

At this point it is very clear that we will have to work with equations that are
similar to (3), but not exactly the same.

3. Some helpful results

We have the following extension of Theorem 2.

Proposition 3. For −1 < x < 1 but x �= 0 and s, t positive integers,

∞∑
r=0

(−s

r

)
ζ(r + s + t)xr =

t∑
h=2

(−1)t−h

xs+t−h

(
s + t − h − 1

t − h

)
ζ(h)

+ (−1)t−1

xs+t−1

(
s + t − 2

t − 1

) ∞∑
n=1

(
1

n
− 1

n + x

)

+ (−1)t
s∑

h=2

1

xs+t−h

(
s + t − h − 1

t − 1

)

×
∞∑

n=1

1

(n + x)h
. (5)

Proof. The key observation is the same as in Theorem 2.

∞∑
n=1

1

nt(n + x)s
=

∞∑
n=1

1

nt+s

∞∑
r=0

(−s

r

)(x

n

)r

=
∞∑

r=0

(−s

r

)
ζ(s + t + r)xr .

Now we will need to use

1

nt(n + x)s
=

t∑
h=1

(−1)t−h

nhxs+t−h

(
s + t − h − 1

t − h

)

+ (−1)t
s∑

h=1

xh−s−t

(n + x)h

(
s + t − h − 1

t − 1

)
, (6)
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which may be proved by induction on t . It is true for t = 1 because

1

n(n + x)s
= 1

nxs
−

s∑
h=1

xh−s−1

(n + x)h

Assume we know it for t , then

1

nt+1(n + x)s
=

t∑
h=1

(−1)t−h

nh+1xs+t−h

(
s + t − h − 1

t − h

)

+ (−1)t
s∑

h=1

xh−s−t

n(n + x)h

(
s + t − h − 1

t − 1

)

=
t+1∑
h=2

(−1)t+1−h

nhxs+t+1−h

(
s + t − h

t + 1 − h

)

+ (−1)t
s∑

h=1

xh−s−t

(
1

nxh
−

h∑
l=1

xl−h−1

(n + x)l

)(
s + t − h − 1

t − 1

)

=
t+1∑
h=1

(−1)t+1−h

nhxs+t+1−h

(
s + t − h

t + 1 − h

)

+ (−1)t+1
s∑

l=1

xl−s−t−1

(n + x)l

s∑
h=l

(
s + t − h − 1

t − 1

)

This proves equation (6) and from there is very easy to establish the Proposition.
�

Proposition 4. For 2k + 1 ≥ s,

∞∑
r=0

( −s

r + 2k + 1 − s

)
ζ(r + 2)xr

=
s−2∑
h=0

(−1)s−h

(
2k − 1

h

)
(ζ(s − h; x)xs−h−2 − x−2)

+
(

2k − 1

s − 1

)
1

x

∞∑
n=1

(
1

n
− 1

n + x

)
. (7)

Proof. We start by integrating identity (3) with s = 2 between 0 and x. Then
we multiply by x2k−1:

x2k−1
∞∑

n=1

(
1

n
− 1

n + x

)
=

∞∑
r=0

(−2

r

)
ζ(r + 2)

xr+2k

r + 1
.
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Now we differentiate s − 1 times,

(s − 1)!
s−2∑
h=0

(−1)s−h

(
2k − 1

h

)
(ζ(s − h; x)x2k−h−1 − x2k−1−s)

+ (s − 1)!

(
2k − 1

s − 1

)
x2k−s

∞∑
n=1

(
1

n
− 1

n + x

)

= (s − 1)!
∞∑

r=0

( −s

r + 2k + 1 − s

)
ζ(r + 2)xr+2k+1−s,

we obtain the result by dividing by x2k−s+1 and (s − 1)!. �

In the proof of Theorem 1 we are going to need to simplify certain series
involving even values of the Riemann zeta function. The following Lemma
will be specially useful.

Lemma 5. If h > 0,

∞∑
k=1

ζ(2k)

22k−1

(
2k − 1

h

)
= − (iπ)h+1(2h+1 − 1)

(h + 1)!
Bh+1 + (−1)h (8)

where the Bn are the Bernoulli numbers given by t
et−1 = ∑∞

n=0
Bnt

n

n! .
If h = 0,

∞∑
k=1

ζ(2k)

22k−1
= 1. (9)

Proof. First recall that

ζ(2k) = (−1)k−1B2k(2π)2k

2(2k)!
.

We need to compute

∞∑
k=1

ζ(2k)

22k−1

(
2k − 1

h

)
= −

∞∑
k=1

B2k(iπ)2k

(2k)!

(
2k − 1

h

)
. (10)

If h > 0 we may write,

= −
∞∑

n=h+1

Bn(iπ)n

n!

(
n − 1

h

)

= − (iπ)h+1

h!

∞∑
n=h+1

Bn(iπ)n−h−1

n!
(n − 1) . . . (n − h)
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= − (iπ)h+1

h!

∂h

∂th

(
1

et − 1
− 1

t

)∣∣∣∣
t=iπ

= − (iπ)h+1

h!

∂h

∂th

(
1

et+iπ − 1

)∣∣∣∣
t=0

+ (−1)h

= (iπ)h+1

h!

∂h

∂th

(
1

et + 1

)∣∣∣∣
t=0

+ (−1)h

= (iπ)h+1

h!2
Eh(0) + (−1)h

where the En(x) are the Euler polynomials given by 2ext

et+1 = ∑∞
n=0

En(x)tn

n! . Now
we use that

En(0) = −2(2n+1 − 1)Bn+1

n + 1
,

(see page 805 of [1]). Then equation (10) becomes

= − (iπ)h+1(2h+1 − 1)

(h + 1)!
Bh+1 + (−1)h.

For the case when h = 0, equation (10) becomes
∞∑

k=1

ζ(2k)

22k−1
= −

∞∑
n=0

Bn(iπ)n

n!
+ B0 + B1iπ

= − iπ

eiπ − 1
+ 1 − iπ

2
= 1. (11)

�

4. The conclusion of the proof

We will now proceed to finish the proof of Theorem 1. Recall that from sec-
tion 2. we know that

2S = 3 log 2 + 2
m−2∑
j=0

(−1)j
(

1 − 1

2m−j

)
ζ(m − j)

−
∞∑

r=1, r odd

(−m

r

)
1

2r+m−1


(r + m

2
− r + m + 1

2r+m+1

)

× ζ(r + m + 1) − ζ(r + m) log 2

−
r+m−2

2∑
k=1

ζ(2k)

(
1 − 1

2r+m−2k

)
ζ(r + m + 1 − 2k)


 . (12)
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We proceed to evaluate the terms in the second and third lines of equation (12).
First,

−
∞∑

r=1, r odd

(−m

r

)
r + m

2r+m
ζ(r + m + 1)

= − m

2m+1

∞∑
r=0

(−(m + 1)

r

)
ζ(r + m + 1)

1 − (−1)r

2r
= m,

by Theorem 2.
The next term is

∞∑
r=1, r odd

(−m

r

)
r + m + 1

22r+2m
ζ(r + m + 1)

=
∞∑

r=1, r odd

(−m

r

)
r + m

22r+2m
ζ(r + m + 1)

+
∞∑

r=1, r odd

(−m

r

)
1

22r+2m
ζ(r + m + 1)

= m

22m+1

∞∑
r=0

(−(m + 1)

r

)
ζ(r + m + 1)

1 − (−1)r

22r

+ 1

22m+1

∞∑
r=0

(−m

r

)
ζ(r + m + 1)

1 − (−1)r

22r

by Theorem 2 and Proposition 3:

= 2mL(χ−4, m + 1) − 2m + 2 − 3 log 2 + 2m − 2

− 2

m−1
2∑

j=1

(
L(χ−4, 2j) +

(
1 − 1

22j+1

)
ζ(2j + 1)

)

= 2mL(χ−4, m + 1) − 3 log 2

− 2

m−1
2∑

j=1

(
L(χ−4, 2j) +

(
1 − 1

22j+1

)
ζ(2j + 1)

)
.

The third term in the second line of equation (12) corresponds to

log 2
∞∑

r=1, r odd

(−m

r

)
ζ(r + m)

1

2r+m−1

= log 2

2m

∞∑
r=0

(−m

r

)
ζ(r + m)

1 − (−1)r

2r
= − log 2.
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Finally, each of the terms in the last line of equation (12) equals

ζ(2k)

∞∑
r=2k+2−m, r odd

(−m

r

)(
1

2r+m−1
− 1

22r+2m−2k−1

)
ζ(r + m + 1 − 2k)

set t = r − 2k + m − 1,

= ζ(2k)

∞∑
t=1, t odd

( −m

t + 2k − m + 1

)(
1

2t+2k
− 1

22t+2k+1

)
ζ(t + 2)

= ζ(2k)

22k+1

∞∑
t=0

( −m

t + 2k − m + 1

)
ζ(t + 2)

1 − (−1)t

2t

− ζ(2k)

22k+2

∞∑
t=0

( −m

t + 2k − m + 1

)
ζ(t + 2)

1 − (−1)t

22t
.

By Proposition 4,

= −ζ(2k)

22k−1

(
2k − 1

m − 1

)
(2 log 2 − 1) − ζ(2k)

22k−1

m−3
2∑

j=0

(
2k − 1

2j + 1

)

− ζ(2k)

22k−1

m−3
2∑

j=0

(
2k − 1

2j

)(
2

(
1 − 1

2m−2j

)
ζ(m − 2j) − 1

)

+ ζ(2k)

22k−1

(
2k − 1

m − 1

)
(3 log 2 − 2)

+ ζ(2k)

22k−2

m−3
2∑

j=0

(
2k − 1

2j

)((
1 − 1

2m−2j

)
ζ(m − 2j) − 1

)

− ζ(2k)

22k−2

m−3
2∑

j=0

(
2k − 1

2j + 1

)
(L(χ−4, m − 2j − 1) − 1)

= ζ(2k)

22k−1

(
2k − 1

m − 1

)
log 2 − ζ(2k)

22k−1

m−1∑
j=0

(−1)j
(

2k − 1

j

)

− ζ(2k)

22k−2

m−3
2∑

j=0

(
2k − 1

2j + 1

)
L(χ−4, m − 2j − 1).
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At this point it will be necessary to use Lemma 5. The last line in equation
(12) is

∞∑
k=1


ζ(2k)

22k−1

(
2k − 1

m − 1

)
log 2 − ζ(2k)

22k−1

m−1∑
j=0

(−1)j
(

2k − 1

j

)

−ζ(2k)

22k−2

m−3
2∑

j=0

(
2k − 1

2j + 1

)
L(χ−4, m − 2j − 1)




= log 2 − 1 −
m−1∑
j=1

(
(−iπ)j+1(2j+1 − 1)

(j + 1)!
Bj+1 + 1

)

+ 2

m−3
2∑

j=0

(
(iπ)2j+2(22j+2 − 1)

(2j + 2)!
B2j+2 + 1

)
L(χ−4, m − 2j − 1).

Observe that the above equation is still true for m = 1.
Setting together all the terms for equation 12, we obtain,

2S = m + 2mL(χ−4, m + 1)

− 2

m−1
2∑

j=1

(
L(χ−4, 2j) +

(
1 − 1

22j

)
ζ(2j)

)
− log 2

+ log 2 − 1 −
m−1∑
j=1

(
(−iπ)j+1(2j+1 − 1)

(j + 1)!
Bj+1 + 1

)

+ 2

m−3
2∑

j=0

(
(−1)j+1π2j+2(22j+2 − 1)

(2j + 2)!
B2j+2 + 1

)
L(χ−4, m − 2j − 1).

Finally,

2S = 2mL(χ−4, m + 1)

+ 2

m−1
2∑

h=1

(−1)hπ2h(22h − 1)

(2h)!
B2hL(χ−4, m − 2h + 1).

5. An application to Mahler measure

A motivation for studying this particular sum comes from the world of Mahler
measure (see for instance, [5]). Some formulas for Mahler measure of mul-
tivariate polynomials are computed in [18,19]. These formulas express the
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Mahler measure of certain families of polynomials in terms of special values
of Dirichlet L-functions, the Riemann zeta function, and sometimes sums of
the kind

∑
0≤j<k

(−1)j+k+1

(2j+1)3k2l+1 . However, one would expect to obtain formulas
which would only depend on polylogarithms of depth one. Theorem 1 allows
us to simplify one of these Mahler measure formulas.

Theorem 6.

π3m

(
1 + x +

(
1 − x1

1 + x1

)
(1 + y)z

)
= 24L(χ−4, 4). (13)

Proof. From [18] we know that

π3m

(
1 + x +

(
1 − x1

1 + x1

)
(1 + y)z

)

= 2π2L(χ−4, 2) + 8
∞∑

k=1

k−1∑
j=0

(−1)j+k+1

(2j + 1)3k
.

Applying Theorem 1 we obtain the statement. �

Results for the general case of
∑

0≤j<k
(−1)j+k

(2j+1)mkn would lead to the simplifi-
cation of all the formulas in [19].
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