
ON CEVA POINTS OF (ALMOST) EQUILATERAL TRIANGLES
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Abstract. A Ceva point of a rational-sided triangle is any internal or external point such that the lengths

of the three cevians through this point are rational. Buchholz [Buc89] studied Ceva points and showed a

method to construct new Ceva points from a known one. We prove that almost-equilateral and equilateral
rational triangles have infinitely many Ceva points by establishing a correspondence to points in certain

elliptic surfaces of positive rank.

1. Introduction

In 1801 Euler [Eul01] published an article presenting a parametrization of the triangles with the property
that the distance from a vertex to the center of gravity is rational. Because this distance is two-thirds
of the length of the median, this amounts to parametrizing the triangles whose medians have rational
length. A Heron triangle is a triangle with rational sides and rational area. In 1981 Guy ([Guy04], Problem
D21) posed the question of finding perfect triangles, namely, Heron triangles whose three medians are also
rational. This particular problem remains open, with the main contribution being the parametrization of
Heron triangles with two rational medians by Buchholz and Rathbun [BR97, BR98]. Further contributions
to parametrizations of triangles with rational medians were made by Buchholz and various collaborators
[Buc02, BBRS03, BS19], and by Ismail [Ism20]. Elliptic curves arising from such problems were studied by
Dujella and Peral [DP13, DP14]. Heron triangles have been extensively studied by various authors, see for
example [Sas99, KL00, GM06, Bre06, vL07, ILS07, SSSG+13, BS15, HH20].

In his PhD thesis [Buc89] Buchholz considered the more general situation of three cevians. He defined a
Ceva point of a rational-sided triangle to be any internal or external point such that the lengths of the three
cevians through this point are rational. Buchholz showed a method for constructing a new Ceva point from
a known one. As Buchholz remarked, the orthocenter of a Heron triangle is necessarily a Ceva point, since
the heights must be rational for the triangle to have a rational area. He used this to conclude that Heron
triangles have infinitely many Ceva points.

An integral-sided4ABC is said to be almost-equilateral if the three sides have lengths that are consecutive
integers. We may extend this notion by scaling. In that case, an almost-equilateral triangle has three rational
sides in arithmetic progression.

We prove the following result.

Theorem 1. Let 4ABC be an almost-equilateral rational triangle. For almost all rational cevians, there
are infinitely many Ceva points in that cevian. In particular, 4ABC has infinitely many Ceva points. The
same applies if 4ABC is an equilateral rational triangle.

We remark that the above result does not require that 4ABC be a Heron triangle. The result for the
equilateral triangle was also considered by Buchholz [Buc89].

This paper is organized as follows. In Section 2 we recall the results of Buchholz and describe how to
combine them for the general set-up of our problem. In Section 3 we consider the almost equilateral case.
The Ceva points under consideration are parametrized by an elliptic K3 surface. We study the arithmetic
of a rational elliptic surface in detail, showing that it has rank 2, and use this to prove that the elliptic K3
surface has positive rank. We further analyze the K3 surface in a particular example in Subsection 3.1. We
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ABC with three cevians.

consider the elliptic K3 surface of the equilateral triangle in Section 4 and we prove that in this case the
rank is exactly 2. We conclude the proof of Theorem 1 and add some further discussion in the last Section.

2. Set-up of the problem

Consider a triangle 4ABC with sides of lengths |BC| = a, |CA| = b, and |AC| = c, consider the cevians
AD, BE, and CF of lengths p, q, and r. The points D,E, F divide the sides of the triangle into two segments
each, of lengths a1, a2, b1, b2, c1, c2 (see Figure 1). Denote the area of 4ABC by A. The parameters p, q, r
are non negative, since they represent the lengths of cevians. Two of the ai, bi, ci may be negative when the
bases of two of the cevians lie outside the segment of the corresponding side.

Ceva’s theorem implies that AD, BE, and CF are concurrent if and only if

a1
a2
· b1
b2
· c1
c2

= 1.

Stewart’s theorem implies that

a(p2 + a1a2) = b2a1 + c2a2,

and analogously for the other cevians. From this, Buchholz proves the following result.

Theorem 2 (Theorem 18, [Buc89]). For any integer-sided triangle
4

ABC with the notation described above,
any rational cevian from the vertex A is given by

p =
αu2 + βv2

4auv
(1)

a1 =
αu2 − βv2 + 2uv(a2 − b2 + c2)

4auv
a2 =a− a1,

where α, β, u, v are all integers and αβ = 16A2.

Indeed, Heron’s formula for the area of the triangle gives

A2 = s(s− a)(s− b)(s− c), for s =
a+ b+ c

2
,

and therefore 16A2 is an integral number.
Now assume that both p and q are rational. Combining the theorem above with Ceva’s and Stewart’s

theorems, Buchholz arrives to the following equation (Eq. (5.2) [Buc89]):

(2) r2(a1b1 + a2b2)2 = a1b1a2b2(a2 + b2 − c2) + a2a22b
2
2 + b2a21b

2
1,

and we are interested in the case in which r is also rational.
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In Theorem 2, set U = u
v and α = 1, β = 16A2, and proceed similarly introducing a variable V for the

equations corresponding to the side b. Then

(3)


a1 =

1

4a

(
U − 16A2

U

)
+
a2 − b2 + c2

2a
, a2 = a− a1,

b1 =
1

4b

(
V − 16A2

V

)
+
a2 + b2 − c2

2b
, b2 = b− b1.

Replacing the formulas above in equation (2), and setting y = UV r(a1b1 + a2b2) yields an equation of
the form y2 = P (U, V ), where P is a polynomial of degree 4 in each of the variables U, V . If we think of
P as a polynomial of degree 4 in Q[V ][U ], the curve has a solution at U = b2 − (a − c)2. This corresponds
to a1 = 0 and we can take y = a2b2UV while V is a free parameter. Using this rational solution one can
turn the equation into a Weierstrass form. The coefficients are polynomials in V satisfying deg aj ≤ 2j, thus
giving an elliptic K3 surface as long as the resulting equation is not singular. We can then proceed to study
the arithmetic structure of the surface.

Keeping track of the geometric problem, we have the additional condition that

(4) U, V ≥ 0

so that p, given by equation (1) and representing the length of a cevian, is a non negative number (and
similarly for the cevian from the vertex B). The goal is to prove that there are infinitely many points in
the surface that satisfy condition (4). In some cases, it may be easier to first work with the rational elliptic

surface resulting from considering the variable v = V − 16A2

V instead.
Once we succeed in proving that the elliptic K3 surface has positive rank, Silverman’s Specialization

Theorem ([Sil94], Theorem 11.4) tells us that for all but finitely many values of V = V0 the rank of E(Q(V0))
is greater than or equal to the rank of E(Q(V )).

Finally we must ensure that there are infinitely many points that satisfy condition (4) in order to prove
Theorem 1. This can be deduced from the following result.

Theorem 3 (Poincaré and Hurwitz ([Sko50]p.78)). Let E be an elliptic curve over Q with positive rank. If
E(R) is connected, then E(Q) is dense in E(R). If E(R) has two connected components, then E(Q) is dense
in the connected components of E(R) containing points of E(Q) of infinite order.

3. Almost-equilateral triangles

We consider in this section the case of an almost-equilateral triangle. More specifically, we construct an
elliptic surface associated to the Ceva points of a rational cevian in an almost-equilateral triangle and study
its arithmetic. Our main reference for studying the arithmetic of elliptic surface is the book of Schütt and
Shioda [SS19].

We start by setting a = b − 1 and c = b + 1. Technically, we will fix the cevian coming from the side of
length b. The reasoning for the other three cevians is similar.

By applying Heron’s formula for the area of the triangle, we obtain

A =
b
√

3(b2 − 4)

4
.

Thus, (3) becomes

(5)


a1 =

1

4(b− 1)

(
U − 3b2(b2 − 4)

U

)
+

b2 + 2

2(b− 1)
, a2 = − 1

4(b− 1)

(
U − 3b2(b2 − 4)

U

)
− b(b− 4)

2(b− 1)
,

b1 =
1

4b

(
V − 3b2(b2 − 4)

V

)
+
b− 4

2
, b2 = − 1

4b

(
V − 3b2(b2 − 4)

V

)
+
b+ 4

2
.

We consider the change of variables

v = V − 3b2(b2 − 4)

V
,

3



and let y = 16U(b− 1)br(a1b1 + a2b2). Replacing in (2) we obtain

y2 =
(

(3b2 − 6b+ 1)v2 + 4b(−10b2 + 23b− 4)v + 4b2(b4 + 2b3 + 33b2 − 88b+ 16)
)
U4

+ 8b2
(

(4b− 7)v2 + 2(b− 4)b(2b2 + 2b− 13)v − 24(b− 4)(b− 2)b2(b+ 2)
)
U3

− 2b2
(

(7b4 − 14b3 − 71b2 + 120b+ 12)v2 − 12(b− 2)b(b+ 2)(14b2 − 37b− 4)v

− 12(b− 2)b2(b+ 2)(b4 − 14b3 − 31b2 + 136b+ 16)
)
U2

− 24(b− 2)b4(b+ 2)
(

(4b− 7)v2 + 2(b− 4)b(2b2 + 2b− 13)v − 24(b− 4)(b− 2)b2(b+ 2)
)
U

+ 9(b− 2)2b4(b+ 2)2
(

(3b2 − 6b+ 1)v2 + 4b(−10b2 + 23b− 4)v + 4b2(b4 + 2b3 + 33b2 − 88b+ 16)
)
.

As noted earlier, a rational point is given by U = b2 − 4, y = 4(b − 1)3(b2 − 4)(v − 2b2 − 8b). Following
a standard algorithm (see for example, Cassels [Cas91], chapter 8) the quartic above is birational to the
Weierstrass form

Eb : Y 2 =X3 + 4
[
(b4 − 38b3 + 13b2 + 120b+ 12)v2 − 12(b− 2)b(b+ 2)(3b3 + 2b2 − 37b− 4)v

− 12(b− 2)b2(b+ 2)(b4 − 14b3 − 31b2 + 136b+ 16)
]
X2

− 384(b− 2)b(b+ 2)(v + 2b2 − 8b)2
[
(b5 − 3b4 − 14b3 + 9b2 + 49b+ 12)v2

− 3(b− 2)b(b+ 2)(b4 + 8b3 − 10b2 − 56b− 15)v

+ 12(b− 2)b2(b+ 2)(b4 + 12b3 − 5b2 − 48b− 14)
]
X

+ 2304(b− 2)2b2(b+ 1)2(b+ 2)2(v + 2b(b− 4))4
(

(b2 − 7)v − 12b(b2 − 4)
)2
.(6)

By examining the degrees on v of the coefficients, we conclude that Eb is a rational elliptic surface. Indeed,
following the standard notation for the Weierstrass form, the coefficients satisfy degv aj ≤ j.

We will now study the arithmetic of Eb.

Proposition 4. Let Eb be the rational elliptic surface given by equation (6) and let

Pb(v) =
[
0, 48(b− 2)b(b+ 1)(b+ 2)

(
v + 2b(b− 4)

)2(
(b2 − 7)v − 12b(b2 − 4)

)]
,

Rb(v) =
[
8(b− 2)(b+ 2)

(
v + 2b(b− 4)

)(
(b2 + 4b+ 1)v + 4b(b+ 2)(b2 − 3b− 1)

)
,

32(b− 2)(b− 1)3(b+ 2)
(
v − 2b(b+ 4)

)(
v + 2b(b− 4)

)(
v + 2b(b2 − 4)

)]
,

Qb(v) =
[
12(b− 2)(b+ 1)2(b+ 2)

(
v + 2b(b− 4)

)2
, 0
]
.

Then

Eb(C(v)) ∼= Z2 × Z/2Z,

Pb and Rb generate the free part, while Qb generates the torsion part.

Proof. The discriminant of the Weierstrass form (6) is given by

∆b =339738624(b− 2)4(b− 1)12b2(b+ 2)4
(
v − 2b(b+ 4)

)4(
v + 2b(b− 4)

)4(
v2 + 12b2(b2 − 4)

)
×
(

(b2 − 3)v2 − 12b(b2 − 4)v + 48b2(b2 − 4)
)
.

Observe that the singularities at v = 2b(b+4) and v = −2b(b−4) correspond to b2 = 0 and b1 = 0 respectively
in (5). We remark that the values b = 0, 1,±2 lead to singular surfaces, but these cases are already excluded
from the geometric problem, since they do not yield triangles.
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By applying Tate’s algorithm ([Sil94], IV.9) the singularities at v = 2b(b + 4) and v = −2b(b − 4) are of
type I4 in the Kodaira classification. By Proposition 5.16 in [CD89] (Theorem 5.47 in [SS19]), we have

e(Eb) = 12 =
∑
ν

e(Fν),

where ν goes over the singularities and e(Fν) = mν , the number of components of the singular fiber Fν , if it
is multiplicative and mν + 1 if Fν is additive. We have mν = n if ν if of type is In. Thus, we have

4 =
∑

ν root of
(v2+12b2(b2−4))((b2−3)v2−12b(b2−4)v+48b2(b2−4))

e(Fν)

Thus, if the roots are all different, then the four singularities have mν = 1 and are of type I1. By checking the

discriminant of
(
v−2b(b+4)

)(
v+2b(b−4)

)(
v2 +12b2(b2−4)

)(
(b2−3)v2−12b(b2−4)v+48b2(b2−4)

)
one

can see that there are extra multiplicities for the roots only if b = 0,±1,±2, and those values are excluded
from the geometric problem.

By the Shioda–Tate formula ([Shi72], Corollary 1.5 or [SS19], Corollary 6.7), we have

(7) ρ(Eb) = rkEb(C(v)) + 2 +
∑
ν

(mν − 1).

In our case, the Picard number of a rational elliptic surface is 10, and therefore,

10 = ρ(Eb) = rkEb(C(v)) + 2 + 2 · (4− 1) + 4(1− 1),

and we conclude that rkEb(C(v)) = 2.
By inspection we find the points Pb, Rb, Qb. We see that Qb is a point of order 2. It is also possible to see

(by inspecting equation (6)) that there are no other points of order 2 over C(v). By Table (4.5) in [MP89]
we conclude that Eb(C(v))tor is isomorphic to Z/2Z (because in our case the rank of the Mordell–Weil group
is R = 2 and the Euler characteristic for a rational elliptic surface is χ = 1).

By the Determinant formula (Corollary 6.39 in [SS19]), we have

(8) |disc NS(Eb)| =
|disc Triv(Eb) · disc MWL(Eb)|

|Eb(C(v))tor|2
,

where MWL(Eb) is the Mordell–Weil lattice and Triv(Eb) is the trivial lattice.
By Definition 7.3 in [Shi90],

(9) disc Triv(Eb) =
∏
ν

m(1)
ν ,

where m
(1)
ν is the number of simple components of the corresponding singular fiber. We have m

(1)
ν = n if ν

is of type In. We thus get

disc Triv(Eb) = 16.

Since disc NS(Eb) = −1 (as the Néron–Severi lattice of a rational elliptic surface is unimodular) and
|E(C(v))tor| = 2, equation (8) becomes

(10) |disc MWL(Eb)| =
1

4
.

Now we proceed to compute the determinant of the Gram matrix of Pb and Rb. In order to do this we
need to find the height pairing of both points. By formulas (6.14) and (6.15) in [SS19],

〈P,R〉 =χ+ (P.O) + (R.O)− (P.R)−
∑
ν

contrν(P,R),(11)

h(P ) := 〈P, P 〉 =2χ+ 2(P.O)−
∑
ν

contrν(P ),(12)

and similarly for R. In the above formulas, (P.R) represents the intersection multiplicity of P and R and
contrν(P,R) represent certain correction terms given by the local contribution from the fiber at ν (see [SS19],
Definition 6.23).
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Notice that Pb and Rb do not intersect O since the formulas for their coordinates involve polynomials (the
denominators are trivial), and therefore (Pb.O) = (Rb.O) = 0. Also notice that Pb and Rb intersect at [0, 0]
when v = −2b(b− 4). We will see later that upon desingularization, Pb and Rb intersect different fibers and
therefore (Pb ·Rb) = 0.

We need the following result in order to compute the correction terms.

Theorem 5 (Néron [Nér64]). Let Es be an elliptic curve defined over C[s] given by a Weierstrass model,
and denote by vs the s-adic valuation. Suppose that E0 has a double point with distinct tangents and
vs(j(Es)) = −m < 0 (this happens if and only if E0 is singular of type Im). Then, for every integer
l > m/2, there exists a Weierstrass model Es deduced from Es by a transformation of the form

X = x+ qz,

Y = y + ux+ rz,

Z = z,

with q, r, u ∈ C[s]. The Weierstrass model Es is given by

(13) Y 2Z + λXY Z + µY Z2 = X3 + αX2Z + βXZ2 + γZ3,

with coefficients satisfying

(14) vs(λ
2 + 4α) = 0, vs(µ) ≥ l, vs(β) ≥ l, vs(γ) = m, and vs(j(Es)) = −m.

We follow the exposition of [Ber10, LM19]. A singular fiber of type Im over s = 0 is composed by
nonsingular rational curves Θ0,0,Θ0,1, . . . ,Θ0,m−1. When m = 2h, the configuration of these curves can be
found in (P2)h with a point [X : Y : Z] ∈ E0 over s = 0 corresponding to the point

[X : Y : Z(1)]× [X : Y : Z(2)]× · · · × [X : Y : Z(h)] ∈ (P2)h,

where [X : Y : Z(i+1)] = [X : Y : sZ(i)].
If [X : Y : Z] is singular over s, it satisfies equation (13), then [X : Y : Z(1)] satisfies equation

Y 2Z(1) + λXY Z(1) + (µ/s)Y (Z(1))2 = sX3 + αX2Z(1) + (β/s)X(Z(1))2 + (γ/s2)(Z(1))3.

Under conditions (14) together with m = 2h ≥ 4, the equation above simplifies upon evaluation at s = 0 to

Z(1)(Y 2 + λ0XY − α0X
2) = 0,

where the subscript 0 indicates evaluation at s = 0.
We remark that in our case λ = 0 and therefore the equation above becomes

Z(1)(Y − µX)(Y + µX) = 0,

where α0 = µ2.
When s = 0 the point [X : Y : Z(1)] becomes either [0 : 0 : 1], [x1 : µx1 : 1], or [x1 : −µx1 : 1]. In the last

two cases, it has been desingularized either on Θ0,1 or Θ0,m−1. We tend to think that µ > 0 corresponds
to Θ0,1 and −µ < 0 corresponds to Θ0,m−1, but this is just a convention, and it does not make a difference
which component is identified with µ and which component is identified with −µ.

The components that will be relevant to us are given by

Θ0,0 =[X : Y : 0]× · · · × [X : Y : 0],

Θ0,1 =[X : µX : Z]× [1 : µ : 0]× · · · × [1 : µ : 0],

Θ0,h =[0 : 0 : 1]× · · · × [0 : 0 : 1]× [X0 : Y0 : Z0],

Θ0,m−1 =[X : −µX : Z]× [1 : −µ : 0]× · · · × [1 : −µ : 0].

Once we have identified the image of [X : Y : Z] in (P2)h, the correction terms can be computed following
table 6.1 in [SS19]. In this work we only consider singularities of type In. In this case, if P intersects Θν,i,

we have contrν(P ) = i(n−i)
n . If, in addition, R intersects Θν,j , and i < j, we have 〈P,R〉 = i(n−j)

n . If j < i,
we simply reverse the formula.
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Notice that for I1, all the correction terms are necessarily 0. Therefore, we only need to compute the
correction terms for the two singularities of type I4.

First consider the singularity at v = −2b(b− 4). By writing v = w − 2b(b− 4) we shift the singularity at

w = 0. Then we perform the change of variables X = X1 + 3(b−2)(b+2)(5b2+16b+20)
2 w2. The Weierstrass form

(6) becomes (in homogenized form)

Y 2Z =X3
1 +

1

2

[
(53b4 − 160b3 + 104b2 + 384b− 624)w2 − 64(b− 1)2b2(5b2 − 8b− 12)w + 512(b− 1)4b4

]
X2

1Z

− 9

4
(b− 2)2(b+ 2)2

[
(69b4 − 64b3 − 392b2 + 1024b− 880)w − 128(b− 4)(b− 1)2b2(b+ 4)

]
w3X1Z

2

+
81

8
(b− 2)4(b+ 2)4

[
(7b4 + 96b3 − 424b2 + 640b− 400)w2 + 64(b− 1)2b2(3b2 − 8b+ 20)w − 512(b− 1)4b4

]
w4Z3,

and the points become

Pb(w) =
[
− 3(b− 2)(b+ 2)(5b2 + 16b+ 20)

2
w2, 48(b− 2)b(b+ 1)(b+ 2)

(
(b2 − 7)w − 2(b− 1)2b(b+ 4)

)
w2
]

Rb(w) =
[ (b− 2)(b+ 2)

(
(b2 + 16b− 44)w + 32(b− 1)2b2

)
w

2
, 32(b− 2)(b− 1)3(b+ 2)(w − 4b2)

(
w + 2b2(b− 1)

)
w
]
.

We see that Rb intersects Θ−2b(b−4),3. Since w2 divides both coordinates of Pb, we conclude that Pb intersects
Θ−2b(b−4),2.

Thus, we obtain that

contr−2b(b−4)(Pb) = 1, contr−2b(b−4)(Pb, Rb) =
1

2
, contr−2b(b−4)(Rb) =

3

4
.

Now consider the singularity at v = 2b(b + 4). By writing v = w + 2b(b + 4) we shift the singularity at
w = 0. Then we perform the change of variables

X = X1 +
3(b− 2)(b+ 2)

2(b+ 1)2

(
(5b4 + 38b3 + 57b2 + 8b+ 20)w2 + 64b2(b+ 1)4w + 128b4(b+ 1)4

)
.

The Weierstrass form (6) becomes (in homogenized form)

Y 2Z =X3
1 +

(b− 1)2

2(b+ 1)2

[
(53b4 + 160b3 + 104b2 − 384b− 624)w2 + 64b2(b+ 1)2(5b2 + 8b− 12)w + 512b4(b+ 1)4

]
X2

1Z

− 9(b− 2)2(b− 1)4(b+ 2)2

4(b+ 1)4

[
(69b4 + 64b3 − 392b2 − 1024b− 880)w + 128(b− 4)b2(b+ 1)2(b+ 4)

]
w3X1Z

2

+
81(b− 2)4(b− 1)6(b+ 2)4

8(b+ 1)6

[
(7b4 − 96b3 − 424b2 − 640b− 400)w2 − 64b2(b+ 1)2(3b2 + 8b+ 20)w

− 512b4(b+ 1)4
]
w4Z3,

and the points become

Pb(w) =

[
−3(b− 2)(b+ 2)

2(b+ 1)2

(
(5b4 + 38b3 + 57b2 + 8b+ 20)w2 + 64b2(b+ 1)4w + 128b4(b+ 1)4

)
,

48(b− 2)b(b+ 1)(b+ 2)(w + 4b2)2
(

(b2 − 7)w + 2(b− 4)b(b+ 1)2
)]

Rb(w) =

[
(b− 2)(b− 1)2(b+ 2)

2(b+ 1)2

(
(b2 − 16b− 44)w − 32b2(b+ 1)2

)
w, 32(b− 2)(b− 1)3(b+ 2)(w + 4b2)

(
w + 2b2(b+ 1)

)
w

]
.

We see that Pb intersects Θ2b(b+4),0 and that Rb intersects Θ2b(b+4),3.
Thus, we obtain that

contr2b(b+4)(Pb) = 0, contr2b(b+4)(Pb, Rb) = 0, contr2b(b+4)(Rb) =
3

4
.
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Finally, combining equations (11) and (12), we obtain

h(Pb) =2χ+ 2(Pb.O)−
∑
ν

contrν(Pb) = 2− (1 + 0) = 1,

〈Pb, Rb〉 =χ+ (Pb.O) + (Rb.O)− (Pb.Rb)−
∑
ν

contrν(Pb, Rb) = 1−
(

1

2
+ 0

)
=

1

2
,

h(Rb) =2χ+ 2(Rb.O)−
∑
ν

contrν(Pb) = 2−
(

3

4
+

3

4

)
=

1

2
.

Thus, the Gram determinant of Pb and Rb equals∣∣∣∣ h(Pb) 〈Pb, Rb〉
〈Rb, Pb〉 h(Rb)

∣∣∣∣ =
1

4
.

Comparing with equation (10), and using the fact that Pb and Rb are elements in the Mordell–Weil group,
we conclude that they are generators of Eb(C(v)).

This concludes the proof of Proposition 4. �

To make a full analysis of the original geometric problem we need to replace v by V − 3b2(b2−4)
V and

complete all the computations for the resulting K3 surface Fb. We will not write the formula for Fb here.
Notice that we have a morphism

ϕ : P1 → P1

[V : 1]→ [V 2 − 3b2(b2 − 4) : V ]

yielding a base change

Fb → Eb

[X : Y : Z]→
[
V X : Y : V 3Z

]
.

Let P ′b, R
′
b ∈ Fb(C(V )) be induced by Pb, Rb.

By Theorem 6.53 in [SS19], since degϕ = 2,

h(P ′b) = 2h(Pb) = 2 and h(R′b) = 2h(Rb) = 1.

In particular, since their heights are non-zero, we conclude that both P ′b and R′b are non-torsion elements in
Fb(C(V )).

It would be interesting to explore whether P ′b and R′b are generators of Fb(C(V )). We can prove that
they are generators if we assume that rkFb(C(V )) = 2. For the sake of simplicity we do this proof in the
particular case of the triangle (2, 3, 4) in the next subsection.

3.1. The (2,3,4) triangle. Here we consider the triangle (2, 3, 4), corresponding to the rational elliptic
surface E3 and the elliptic K3 surface F3 from the previous section. Equations (5) become

(15)


a1 =

1

8

(
U − 135

U

)
+

11

4
, a2 = −1

8

(
U − 135

U

)
− 3

4
,

b1 =
1

12

(
V − 135

V

)
− 1

2
, b2 = − 1

12

(
V − 135

V

)
+

7

2
.

As before, we take

v = V − 135

V

and y = 96Ur(a1b1 + a2b2) and replace in (2) in order to obtain

y2 =2(5v2 − 150v + 3312)U4 + 72(5v2 − 66v + 1080)U3 + 108(13v2 + 330v − 13680)U2

− 9720(5v2 − 66v + 1080)U + 36450(5v2 − 150v + 3312).
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A rational point is given by U = 5, y = 160(v − 42). By considering the change of variables

X =
5
[
4(v − 42)y + (103v2 − 768v − 9468)U2 − 18(59v2 − 768v + 5940)U + 135(25v2 − 768v + 14076)

]
9(U − 5)2

Y =
40(v − 42)

27(U − 5)3

[(
(v − 150)U − 45(v − 54)

)
y − (35v2 − 672v + 13140)U3

− 27(19v2 − 4140)U2 + 135(61v2 − 1056v + 21420)U − 6075(5v2 − 192v + 4428)
]

we obtain the Weierstrass form

(16) E3 : Y 2 = X3−6(19v2−120v−3420)X2 +135(23v2 +180v−18180)(v−6)2X+8100(v−6)4(v−90)2.

We remark that the above equation is slightly different than the one obtained by replacing b = 3 in equation
(6), as we have chosen the change of variables to absorb some extra powers of 2.

Proposition 6. Let E3 be the rational elliptic surface given by equation (16) and

P3(v) =
[
0, 90(v − 6)2(v − 90)

]
,

R3(v) =
[
5(v − 6)(11v − 30), 20(v − 42)(v − 6)(v + 30)

]
,

Q3(v) =
[
60(v − 6)2, 0

]
.

Then

E3(C(v)) ∼= Z2 × Z/2Z,
P3 and R3 generate the free part, while Q3 generates the torsion part.

Proof. The proof of this statement follows the same lines as the proof of Proposition 4. The discriminant of
(16) is given by

∆3 = 2799360000(v − 42)4(v − 6)4(v2 − 30v + 360)(v2 + 540).

As before, we conclude that v = 42 and v = 6 correspond to singularities of type I4, while the roots
of (v2 − 30v + 360)(v2 + 540) yield singularities of type I1. By the Shioda–Tate formula (7) we have
rkE3(C(v)) = 2.

Following the same reasoning as in the previous section, P3 and R3 generate the free part of E3(C(v)),
while Q3 is a point of order 2 that generates the torsion. �

Now we proceed to replace v by V − 135
V and replace X by X

V 2 and Y by Y
V 3 . This gives the Weierstrass

form

F3 : Y 2 =X3 − 6(19V 4 − 120V 3 − 8550V 2 + 16200V + 346275)X2

+ 135(23V 4 + 180V 3 − 24390V 2 − 24300V + 419175)(V + 9)2(V − 15)2X

+ 8100(V 2 − 90V − 135)2(V + 9)4(V − 15)4.(17)

Since degV aj ≤ 2j (with at least one equal) we have an elliptic K3 surface.

Proposition 7. Let F3 be the elliptic K3 surface given by equation (17) and

P ′3(V ) =
[
0, 90(V 2 − 90V − 135)(V + 9)2(V − 15)2

]
R′3(V ) =

[
5(V − 15)(V + 9)(11V 2 − 30V − 1485), 20(V − 45)(V − 15)(V + 3)(V + 9)(V 2 + 30V − 135)

]
Q′3(V ) =

[
45(V − 15)(V − 9)(V + 9)(V + 15), 90(V − 45)(V − 15)(V + 3)(V + 9)(V 2 + 135)

]
.

Then

rkF3(C(V )) ≥ 2, F3(C(V ))tor ∼= Z/4Z.
Moreover, if rkF3(C(V )) = 2, then P ′3 and R′3 generate the free part. In addition, Q′3 generates the torsion
part.
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Proof. The discriminant of the Weierstrass form (17) is given by

∆ = 2799360000(V − 45)4(V − 15)4(V + 3)4(V + 9)4(V 2 + 135)2(V 4 − 30V 3 + 90V 2 + 4050V + 18225).

Observe that the singularities at V = 15,−9 and at V = 45,−3 correspond to the cases b1 = 0 and b2 = 0
in (15). By applying Tate’s algorithm, the singularities at V = 45, 15,−3,−9 are of type I4, those at

V = ±3
√

15i are of type I2, and the roots of (V 4 − 30V 3 + 90V 2 + 4050V + 18225) are of type I1.
By the Shioda–Tate formula (7),

ρ(F3) = rkF3(C(V )) + 2 + 4 · (4− 1) + 2 · (2− 1),

and since F3 is a K3 surface, the Picard number satisfies ρ(F3) ≤ 20. From this we conclude that

rkF3(C(V )) ≤ 4.

By inspection we find the points in the statement. We see that Q′3 is a point of order 4 and that the only
point of order 2 is 2Q′3, and we will later see that P ′3 and R′3 are independent non-torsion points. By Table
(4.5) in [MP89] we conclude that F3(C(V ))tor is isomorphic to Z/4Z (because in our case the rank R of the
Mordell–Weil group is at least 2 and the Euler characteristic is χ = 2).

Applying the Determinant formula (8), we obtain

|disc NS(F3)| = 26|disc MWL(F3)|.
By the discussion before this section, we have that h(P ′3) = 2, 〈P ′3, R′3〉 = h(R′3) = 1. Therefore, the Gram

matrix of P ′3 and R′3 has determinant 1. From this we confirm that P ′3, R
′
3 are independent non-torsion

points. In addition, we obtain

|disc NS(F3)| divides 26.

Now assume that rkF3(C(V )) = 2.
In that case, the lattice generated by P ′3 and R′3 has index a power of 2 in MWL(F3). If this index

is greater than 1, then MWL(F3) must contain a point S such that 2S is one of the following points:
P ′3, R

′
3, P

′
3 +R′3, P

′
3 +Q′3, R

′
3 +Q′3, or P ′3 +R′3 +Q′3.

We will prove that this is not possible. To do this, we proceed to study the intersection of P ′3, R
′
3, Q

′
3 with

the singular fibers, by applying Theorem 5 in each singularity.
First consider V = 45. By making V = 45 +w, and X = X1 + 270(2273w2 + 60480w+ 583200), we obtain

a Weierstrass form that can be written as

Y 2Z = X3
1 + (α1w + 167961600)X2

1Z + β1w
3X1Z

2 + γ1w
4Z3.

We have omitted most coefficients for the sake of simplicity. The points become

P ′3(w) =
[
− 270(2273w2 − 60480w − 583200), 90(w + 30)2(w + 54)2(w2 − 2160)

]
,

R′3(w) =
[
5(11w3 + 1884w2 − 4842w − 77760)w, 20(w + 30)(w + 48)(w + 54)(w2 + 120w + 3240)w

]
,

Q′3(w) =
[
45(w3 + 180w2 − 1794w − 25920)w, 90(w + 30)(w + 48)(w + 54)(w2 + 90w + 2160)w

]
.

By inspecting the above formulas, we conclude that P ′3 intersects Θ45,0, while R′3 and Q′3 intersect Θ45,3.
Therefore, we obtain,

contr45(P ′3) = 0, contr45(P ′3, R
′
3) = 0, contr45(R′3) =

3

4
.

For V = 15, we write V = 15 + w and X = X1 + 30510w2. This leads to the Weierstrass equation

Y 2Z = X3
1 + (α1w + 4665600)X2

1Z + β1w
3X1Z

2 + γ1w
4Z3.

The points become

P ′3(w) =
[
− 30510w2, 90(w + 24)2(w2 − 60w − 1260)w2

]
,

R′3(w) =
[
5(11w3 + 564w2 + 1638w + 12960)w, 20(w − 30)(w + 18)(w + 24)(w2 + 60w + 540)w

]
,

Q′3(w) =
[
45(w3 + 60w2 + 366w + 4320)w, 90(w − 30)(w + 18)(w + 24)(w2 + 30w + 360)w

]
.
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By inspecting the above formulas, we conclude that P ′3 intersects Θ15,2, while R′3 and Q′3 intersect Θ15,3.
Therefore, we obtain,

contr15(P ′3) = 1, contr15(P ′3, R
′
3) =

1

2
, contr15(R′3) =

3

4
.

For V = −3, we write V = −3 +w and X = X1−270(31w2−576w−2592). This leads to the Weierstrass
equation

Y 2Z = X3
1 + (α1w + 746496)X2

1Z + β1w
3X1Z

2 + γ1w
4Z3.

The points become

P ′3(w) =
[
270(31w2 − 576w − 2592), 90(w − 18)2(w + 6)2(w2 − 96w + 144)

]
,

R′3(w) =
[
5(11w3 − 228w2 + 342w − 5184)w, 20(w − 48)(w − 18)(w + 6)(w2 + 24w − 216)w

]
,

Q′3(w) =
[
45(w3 − 12w2 − 66w − 1728)w, 90(w − 48)(w − 18)(w + 6)(w2 − 6w + 144)w

]
.

Thus P ′3 intersects Θ−3,0, R′3 intersects Θ−3,1, and Q′3 intersects Θ−3,3, and we obtain

contr−3(P ′3) = 0, contr−3(P ′3, R
′
3) = 0, contr−3(R′3) =

3

4
.

For V = −9, we write V = −9 + w and X = X1 + 30510w2. This leads to the Weierstrass equation

Y 2Z = X3
1 + (α1w + 1679616)X2

1Z + β1w
3X1Z

2 + γ1w
4Z3.

The points become

P ′3(w) =
[
− 30510w2, 90(w − 24)2(w2 − 108w + 756)w2

]
,

R′3(w) =
[
5(11w3 − 492w2 − 954w + 7776)w, 20(w − 54)(w − 24)(w − 6)(w2 + 12w − 324)w

]
,

Q′3(w) =
[
45(w3 − 36w2 − 498w + 2592)w, 90(w − 54)(w − 24)(w − 6)(w2 − 18w + 216)w

]
.

Thus P ′3 intersects Θ−9,2, R′3 intersects Θ−9,1, and Q′3 intersects Θ−9,3, and we obtain

contr−9(P ′3) = 1, contr−9(P ′3, R
′
3) =

1

2
, contr−9(R′3) =

3

4
.

For V = 3
√

15i, we write V = 3
√

15i + w and X = X1 + 77760(−2
√

15iw + 45). This leads to the
Weierstrass equation

Y 2Z = X3
1 + (α1w − 583200(1 +

√
15i))X2

1Z + β1w
2X1Z

2 + γ1w
2Z3.

The points become

P ′3(w) =
[
p1w − 3499200, p2w + 1889568000(1−

√
15i)

]
,

R′3(w) =
[
r1w + 388800(1 +

√
15i), r2w − 139968000(9 +

√
15i)

]
,

Q′3(w) =
[
q1w

2, q2w
]
.

We see that P ′3 and R′3 intersect Θ3
√
15i,0, while Q′3 intersects Θ3

√
15i,1. Thus,

contr3
√
15i,0(P ′3) = 0, contr3

√
15i,0(P ′3, R

′
3) = 0, contr3

√
15i,0(R′3) = 0.

The case of V = −3
√

15i is similar, as it is just the conjugate of the previous case.
From the above computation we recover the result that h(P ′3) = 2, h(R′3) = 〈P ′3, R′3〉 = 1.
As we remarked before, if P ′3, R

′
3 are not generators, then MWL(F3) must contain a point S such that 2S

is one of the following points: P ′3, R
′
3, P

′
3+R′3, P

′
3+Q′3, R

′
3+Q′3, P

′
3+R′3+Q′3. By looking at the intersections

with the components of V = 3
√

15i, we see that P ′3 + Q′3, R
′
3 + Q′3, and P ′3 + R′3 + Q′3 intersect Θ3

√
15i,1.

However, if S exists, 2S must intersect Θ3
√
15i,0. Therefore those points can not be 2S. Similarly, V = 45

allows us to eliminate the possibility that R′3 and P ′3 + R′3 be 2S. Unfortunately the intersections with the
11



fibers do not allow us to eliminate the possibility of P ′3 = 2S. In order to eliminate this last possibility, we
can find directly with a computer a general formula for the X coordinate of 2S if S = [x, y], and verify that
the resulting rational function has no roots in C(V ) and therefore it can never equal 0 (the X coordinate of
P ′3).

Therefore, if the rank is 2, we conclude that P ′3 and R′3 are generators.
This concludes the proof of Proposition 4. �

4. Equilateral triangle

Here we consider the equilateral triangle of sides (1, 1, 1). We consider directly the elliptic K3 surface, as
we are able to describe its Mordell–Weil group completely.

In this case we have A =
√
3
4 . As in the almost equilateral case, we take α = 1, β = 16A2 = 3 in Theorem

2 and equation (3) becomes 
a1 =

1

4

(
U − 3

U

)
+

1

2
, a2 = 1− a1,

b1 =
1

4

(
V − 3

V

)
+

1

2
, b2 = 1− b1.

Replacing in (2), we obtain

y2 = (3V 4−14V 2 + 27)U4 + 32(V 2−3)V U3−2(7V 4−54V 2 + 63)U2−96(V 2−3)V U + 9(3V 4−14V 2 + 27),

where we have taken y = 16UV r(a1b1 + a2b2). A rational solution is given by U = 1, y = 4(V − 3)(V + 1).
The change of variables

X =
2

(U − 1)2

[
(V − 3)(V + 1)y + 2(5V 2 + 2V − 15)V U2 − 2(V 2 − 3)(V 2 + 10V − 3)U

+ 6(V 4 − V 3 − 4V 2 + 3V + 9)
]

Y =
2(V − 3)(V + 1)

(U − 1)3

[(
(V − 1)(V + 3)U − (5V 2 − 6V − 15)

)
y − (V − 1)(V + 3)(3V 2 + 2V − 9)U3

+ (7V 4 − 24V 3 − 54V 2 + 72V + 63)U2 + (7V 4 + 72V 3 − 54V 2 − 216V + 63)U

− 3(9V 4 − 8V 3 − 42V 2 + 24V + 81)
]

leads to the Weierstrass form
(18)
E : Y 2 = X3+(V 4−36V 3−18V 2+108V+9)X2−24(V 2−3V−3)(V 2−3)(V+3)2(V−1)2X+36(V 2−3)2(V+3)4(V−1)4.

This is an elliptic K3 surface.

Proposition 8. Let E be the rational elliptic surface given by equation (18) and

P (V ) =
[
0, 6(V − 1)2(V + 3)2(V 2 − 3)

]
,

R(V ) =
[
2(V 2 − 3)(V 2 + 6V − 3), 8

√
3V (V 2 − 3)(V 2 + 3)

]
,

Q(V ) =[6(V − 1)(V + 3)(V 2 − 3), 12(V − 3)(V − 1)(V + 1)(V + 3)(V 2 − 3)
]
,

S(V ) =
[
2(V + 3)2(V 2 − 3), 0

]
.

Then

E(C(V )) ∼= Z2 × Z/4Z× Z/2Z,
P and R generate the free part, while Q and S generate the torsion part (Q has order 4 and S has order 2).

Proof. The discriminant of E is given by

∆ = 82944(V − 3)4(V − 1)4(V + 1)4(V + 3)4(V 2 − 3)2(V 2 + 3)2.
12



Notice that the singularities at V = 1,−3 and V = −1, 3 correspond to b1 = 0 and b2 = 0 respec-
tively. The singularities at V = ±

√
3 correspond to b1 = b2 = 1

2 , and the corresponding cevian is the
median/altitude/bisector. By Tate’s algorithm, the singularities at V = ±1,±3 are of type I4 and those at

V = ±
√

3,±
√

3i are of type I2.
The Shioda–Tate formula (7) then implies

ρ(E) = rkE(C(v)) + 2 + 4 · (4− 1) + 4 · (2− 1)

and, since we are working with an elliptic K3 surface, ρ(E) ≤ 20 and therefore rkE(C(v)) ≤ 2.
By inspection we find the points P,Q, S. Since the rank is likely 2, we search for another point of infinite

order supported over Q(
√

3) (since
√

3 is associated to A). To do this, we consider the quadratic twist

3Y 2 = X3+(V 4−36V 3−18V 2+108V+9)X2−24(V 2−3V−3)(V 2−3)(V+3)2(V−1)2X+36(V 2−3)2(V+3)4(V−1)4,

and, upon setting Y1 = 9Y , X1 = 3X, search among the integral points of

Y 2
1 = X3

1+3(V 4−36V 3−18V 2+108V+9)X2
1−216(V 2−3V−3)(V 2−3)(V+3)2(V−1)2X1+972(V 2−3)2(V+3)4(V−1)4

in order to find R.
We will later see that P and R are non-torsion, and therefore the rank is at least 1. We also see that Q

is a point of order 4 and S is of order 2 and independent of Q. By Table (4.5) in [MP89] we conclude that
E(C(V ))tor is isomorphic to Z/4Z×Z/2Z (because in our case the rank of the Mordell–Weil group is R ≥ 1
and the Euler characteristic is χ = 2).

Applying the Determinant formula (8), we obtain

(19) |det NS(E)| = 26|det MWL(E)|.

We proceed to compute the intersections of the points with the singular fibers by applying Theorem 5.
First consider the case of V = 3. After setting V = 3 + w and X = X1 + 6(41w2 + 96w + 72), we obtain

Y 2Z =X3
1 + (w4 − 24w3 + 450w2 + 864w + 576)X2

1Z − 12(2w5 + 50w4 + 465w3 + 3528w2 + 6315w + 4032)w3X1Z
2

+ 36(w2 + 16w + 6)(w2 + 18w − 9)(w4 + 10w3 + 75w2 + 144w + 96)w4Z3

and the points become

P (w) =
[
− 6(41w2 + 96w + 72), 6(w + 2)2(w + 6)2(w2 + 6w + 6)

]
,

R(w) =
[
2(w4 + 18w3 − 21w2 − 72w − 72), 8

√
3(w + 3)(w2 + 6w + 6)(w2 + 6w + 12)

]
,

Q(w) =
[
6(w3 + 14w2 + 25w + 24)w, 12(w + 2)(w + 4)(w + 6)(w2 + 6w + 6)w

]
,

S(w) =
[
2(w2 + 18w − 9)w2, 0

]
.

We conclude from the above that P and R intersect Θ3,0, Q intersects Θ3,1, while S intersects Θ3,2. This
implies that

contr3(P ) = 0, contr3(P,R) = 0, contr3(R) = 0.

Now consider V = 1. After making the change V = 1 + w, and X = X1 + 30w2, we obtain

Y 2Z =X3
1 + (w4 − 32w3 − 30w2 − 32w + 64)X2

1Z − 12(2w5 + 18w4 + 25w3 + 32w2 − 21w + 64)w3X1Z
2

+ 36(w2 + 2w + 3)(w2 + 8w + 6)(w4 + 10w3 + 15w2 + 16w − 32)w4Z3

and the points become

P (w) =
[
− 30w2, 6(w + 4)2(w2 + 2w − 2)w2

]
,

R(w) =
[
2(w4 + 10w3 + 3w2 − 8w − 8),

√
3(w + 1)(w2 + 2w − 2)(w2 + 2w + 4)

]
,

Q(w) =
[
6(w − 1)(w2 + 7w + 8)w, 12(w − 2)(w + 2)(w + 4)(w2 + 2w − 2)w

]
,

S(w) =
[
2(w4 + 10w3 + 15w2 + 16w − 32), 0

]
.
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We have that P intersects Θ1,2, R and S intersect Θ1,0, and Q intersects Θ1,3. Therefore,

contr1(P ) = 1, contr1(P,R) = 0, contr1(R) = 0.

For V = −1, we consider the change V = −1 + w, and X = X1 + 6(8− 7w2). We obtain

Y 2Z =X3
1 + (w4 − 40w3 + 30w2 + 32w + 64)X2

1Z − 12(2w5 − 14w4 + 9w3 − 152w2 + 107w + 192)w3X1Z
2

+ 36(w2 + 6)(w2 − 6w + 3)(w4 + 2w3 + 15w2 − 16w − 32)w4Z3

and the points become

P (w) =
[
6(7w2 − 8), 6(w − 2)2(w + 2)2(w2 − 2w − 2)

]
,

R(w) =
[
2(w4 + 2w3 + 3w2 + 8w − 8), 8

√
3(w − 1)(w2 − 2w − 2)(w2 − 2w + 4)

]
,

Q(w) =
[
6(w3 − 2w2 + w + 8)w, 12(w − 4)(w − 2)(w + 2)(w2 − 2w − 2)w

]
,

S(w) =
[
2(w4 + 2w3 + 15w2 − 16w − 32), 0

]
.

We conclude that P , R, and S intersect Θ−1,0, Q intersects Θ1,3, and

contr−1(P ) = 0, contr−1(P,R) = 0, contr−1(R) = 0.

For V = −3, we consider V = −3 + w and X = X1 + 30w2. This leads to

Y 2Z =X3
1 + (w4 − 48w3 + 450w2 − 864w + 576)X2

1Z − 12(2w5 − 46w4 + 417w3 − 1728w2 + 2859w − 1728)w3X1Z
2

+ 36(w2 − 8w + 6)(w2 − 6w − 9)(w4 − 14w3 + 75w2 − 144w + 96)w4Z3

and the points become

P (w) =
[
− 30w2, 6(w − 4)2(w2 − 6w + 6)w2

]
,

R(w) =
[
2(w4 − 6w3 − 21w2 + 72w − 72), 8

√
3(w − 3)(w2 − 6w + 6)(w2 − 6w + 12)

]
,

Q(w) =
[
6(w3 − 10w2 + 25w − 24)w, 12(w − 6)(w − 4)(w − 2)(w2 − 6w + 6)w

]
,

S(w) =
[
2(w2 − 6w − 9)w2, 0

]
.

Thus, P and S intersect Θ−3,2, R intersects Θ−3,0, and Q intersects Θ−3,1. Finally,

contr−3(P ) = 1, contr−3(P,R) = 0, contr−3(R) = 0.

For V =
√

3, set V =
√

3 + w and X = X1 + 72w. Then we obtain

Y 2Z = X3
1 + (α1w − 36)X2

1Z + β1w
2X1Z

2 + γ1w
2Z3

and the points become

P (w) =
[
− 72w, p2w

]
,

R(w) =
[
r1w

2, r2w
]
,

Q(w) =
[
q1w

2, q2w
]
,

S(w) =
[
s1w, 0

]
.

We conclude that P , R, Q, and S intersect Θ√3,1 and that

contr√3(R) =
1

2
, contr√3(P,R) =

1

2
, contr√3(R) =

1

2
.

The case V = −
√

3 is analogous to the previous one by Galois conjugation.
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If V =
√

3i, we make the change of variables V =
√

3i+w, X = X1 − 72(1 +
√

3i) + 48(−3 +
√

3i)w. We
obtain

Y 2Z = X3
1 + (α1w − 144)X2

1Z + β1w
2X1Z

2 + γ1w
2Z3

and the points become

P (w) =
[
p1w + 72(1 +

√
3i), p2w + 864(−1 +

√
3i)
]
,

R(w) =
[
r1w + 144, r2w

]
,

Q(w) =
[
q1w + 288, q2w − 3456

]
,

S(w) =
[
s1w, 0

]
.

Thus, we conclude that P,R,Q intersect Θ√3i,0, while S intersects Θ√3i,1 and

contr√3i(P ) = 0, contr√3i(P,R) = 0, contr√3i(R) = 0.

The case V = −
√

3i is analogous by Galois conjugation.
Before proceeding to the computation of the heights, we remark that P (V ) and R(V ) intersect the same

component at [0, 0] and they also intersect transversally at [0, 1728(45−26
√

3)] and therefore (P ·R) = 2. Since
the coordinates of P and R are polynomials, they do not intersect O. Consequently, (P ·O) = (R ·O) = 0.

By applying formulas (11) and (12), we obtain

h(P ) =2χ+ 2(P ·O)−
∑
ν

contrν(P ) = 2 · 2−
(

1 + 1 +
1

2
+

1

2

)
= 1,

〈P,R〉 =χ+ (P ·O) + (R ·O)− (P ·R)−
∑
ν

contrν(P,R) = 2− 2−
(

1

2
+

1

2

)
= −1,

h(R) =2χ+ 2(R ·O)−
∑
ν

contrν(R) = 2 · 2−
(

1

2
+

1

2

)
= 3.

Thus, the Gram determinant of P and R equals∣∣∣∣ h(P ) 〈P,R〉
〈R,P 〉 h(R)

∣∣∣∣ = 2.

In particular, P and R are independent non-torsion elements. From equation (19), we deduce that

|det NS(E)| divides 27.

Therefore, the lattice generated by P and R has index a power of 2 in MWL(E). If this index is greater
than 1, then MWL(E) must contain a point T such that 2T is one of the following points: P,R, P +R,P +
Q,R + Q,P + R + Q,P + S,R + S, P + R + S, P + Q + S,R + Q + S, or P + R + Q + S. Now consider
the intersections with V =

√
3. The following sections intersect Θ√3,1 and therefore can not be equal to 2T :

P,R, P +Q+S,R+Q+S, P +R+Q, and P +R+S. By taking V =
√

3i we further eliminate P +S, R+S,
and P + R + Q + S. By considering V = 3 we eliminate P + Q and R + Q. We can not eliminate P + R
with this method. It can be verified with a computer that there is no T such that P +R = 2T . Indeed, the
X coordinate of P +R is given by

6(V + 3)2(V − 1)2(V 2 + (3 + 2
√

3)2)

(V + 3 + 2
√

3)2
.

We can find directly with a computer a general formula for the X coordinate of 2T when T = [x, y] and
verify that the resulting rational function can not equal the X coordinate of P +R for any value of x.

We conclude that P and R are generators in this case.
�
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5. Proof of Theorem 1 and further discussion

Proof of Theorem 1. Propositions 4 and 7 can be combined with Silverman’s Specialization Theorem and
Theorem 3 to conclude that for all but finitely many rational values of V ≥ 0 there are infinitely many values
of U ≥ 0 leading to Ceva points in the cevian determined by V .

The application of Theorem 3 in the case of Proposition 8 is less straightforward. In previous cases where
the torsion was cyclic, this was immediate, but in this case, the torsion is non-cyclic. This means that E(R)
can be written as the union of two components, one that is infinite, in the sense that it contains O, and the
other finite, not containing O (here we write E in place of E(V ) for simplicity of notation). In principle we
could have a component of E(R) that does not contain a point of E(Q) of infinite order. We notice that the
points of order two are

2Q(V ) =
[
3(V − 1)2(V + 3)2, 0

]
,

S(V ) =
[
2(V 2 − 3)(V + 3)2, 0

]
,

2Q(V ) + S(V ) =
[
− 6(V − 1)2(V 2 − 3), 0

]
.

We recall that condition (4) implies that we must choose V ≥ 0. Assume that V 6= 1, 3 (the statement allows
us to exclude a finite number of cases).

We have that 3(V − 1)2(V + 3)2 > 2(V 2 − 3)(V + 3)2 and 3(V − 1)2(V + 3)2 > −6(V − 1)2(V 2 − 3).
Therefore, the finite component of E(R) passes through 2Q+ S and S, while the infinite component passes
through 2Q. Now,

2P (V ) =
[
3(V 4 + 4V 3 + 10V 2 − 12V + 9),−18V (V 2 + 1)(V 2 + 9)

]
and since 3(V 4 +4V 3 +10V 2−12V +9) > 3(V 4 +4V 3−2V 2−12V +9) = 3(V −1)2(V +3)2, we immediately
conclude that 2P belongs to the infinite component of E(R). Thus we can apply Theorem 3 in order to
conclude the validity of Theorem 1 for the equilateral triangle. �

As a final note, we remark that this method opens the door to study other families of triangles. For
example, one could consider close-to-equilateral triangles, namely, those whose sides do not differ by more
than one unit. If the lengths of the sides are integral, then the triangle is necessarily isosceles. We have
studied the case of the (5, 5, 6) triangle, and it is very similar to the almost equilateral cases.
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[Nér64] André Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci.
Publ.Math. No. 21 (1964), 128. MR 0179172

[Sas99] K. R. S. Sastry, Heron triangles: a new perspective, Austral. Math. Soc. Gaz. 26 (1999), no. 4, 160–168. MR 1712100

[Shi72] Tetsuji Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20–59. MR 0429918
[Shi90] , On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990), no. 2, 211–240. MR 1081832

[Sil94] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol.
151, Springer-Verlag, New York, 1994. MR 1312368

[Sko50] T. Skolem, Diophantische gleichungen, Ergebnisse der Mathematik und ihrer Grenzgebiete, New Chelsea Publishing

Company, 1950.
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[SSSG+13] Pantelimon Stănică, Santanu Sarkar, Sourav Sen Gupta, Subhamoy Maitra, and Nirupam Kar, Counting Heron

triangles with constraints, Integers 13 (2013), Paper No. A3, 17. MR 3083465

[vL07] Ronald van Luijk, An elliptic K3 surface associated to Heron triangles, J. Number Theory 123 (2007), no. 1,
92–119. MR 2295433
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