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The aim of this note is to prove the Mahler measure identity m(x+x−1 +y+y−1 +5) =
6m(x + x−1 + y + y−1 + 1) which was conjectured by Boyd. The proof is achieved by
proving relationships between regulators of both curves.
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1. Introduction

Boyd [3] studied the Mahler measure of families of polynomials. In particular, he
considered the two-variable family

Pk(x, y) = x +
1
x

+ y +
1
y

+ k.

The zeros of Pk(x, y) correspond, generically to a curve of genus 1. Let Ek denote
the elliptic curve corresponding to the algebraic closure of Pk(x, y) = 0.

Recall that the (logarithmic) Mahler measure of a non-zero Laurent polynomial,
P (x1, . . . , xn), with complex coefficients is defined as

m(P ) =
∫ 1

0

· · ·
∫ 1

0

log
∣∣P (e2πit1 , . . . , e2πitn

)∣∣dt1 · · · tn.

Let us denote m(k) := m(Pk). Boyd computed m(k) for k a positive integer less
than or equal to 100 (it is easy to see that the Mahler measure does not depend on
the sign of k for this family). He found that

m(k) ?= rkL′(Ek, 0), (1.1)

where rk is a rational number and the question mark stands for an equality that
has only been established numerically (typically to at least 50 decimal places).
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The case with k = 1 (resulting in rk = 1) was considered in detail by Deninger
[5], who found an explanation for such a formula by relating it to evaluations of
regulators in the context of the Bloch–Beilinson conjectures. Rodriguez-Villegas
[8] also considered this family in the context of the Bloch–Beilinson conjectures,
including more general cases where k2 ∈ Q. He was able to prove identities for the
cases where the Bloch–Beilinson conjectures are known to be true, such as when
Ek has complex multiplication.

When the curves Ek1 and Ek2 are isogenous, their L-functions coincide. One
can then compare the values in Eq. (1.1) and conjecture identities of the form
rk2m(k1) = rk1m(k2). For example,

Theorem 1.

m(8) = 4m(2), (1.2)

m(5) = 6m(1). (1.3)

The first identity was proved in [7]. In this note, we prove the second one.

2. Functional Identities

Functional identities for m(k) have been studied by Kurokawa and Ochiai in [6],
and by Rogers and the author in [7]. The simplest ones are given as follows:

Theorem 2. We have the following functional equations for m(k):

• [6]: For h ∈ R\{0}:

m(4h2) + m

(
4
h2

)
= 2m

(
2
(

h +
1
h

))
. (2.1)

• [7]: If h �= 0, and |h| < 1:

m

(
2
(

h +
1
h

))
+ m

(
2
(

ih +
1
ih

))
= m

(
4
h2

)
. (2.2)

If we set h = 1√
2

in both identities, we obtain

m(2) + m(8) = 2m(3
√

2),

m(3
√

2) + m(i
√

2) = m(8).

Similarly, if we set h = 1
2 , we obtain

m(1) + m(16) = 2m(5),

m(5) + m(−3i) = m(16).

Thus, in order to prove (1.2) and (1.3), we need to find one additional equation for
each of the above linear systems.
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3. The Relationship with the Regulator

In this section, we sometimes write xk and yk for x and y, so we can distinguish
them when we look at different curves.

After the works of Deninger [5] and Rodriguez-Villegas [8], we write

m(k) =
1
2π

rk({xk, yk}),

were rk is a period of the regulator in the symbol {xk, yk}∈K2(Ek). For our pur-
poses, we can reduce to K2(C(Ek)), so that xk, yk are elements of C(Ek). See [5, 8]
for general details, and [7] for the specific treatment of this particular example.

In our context, it is enough to take into account that

rk({xk, yk}) = αDk((xk) � (yk)),

where α is a constant independent of k and Dk is the elliptic dilogarithm in Ek

constructed by Bloch (see [2]).
We will briefly explain the meaning of (x) � (y). Let E be an elliptic curve with

x, y ∈ C(E). Consider the divisors

(x) =
∑

aS(S), (y) =
∑

bT (T ).

Now define

(x) � (y) =
∑

aSbT (S − T ).

This is an element in

Z[E(C)]− = Z[E(C)]/∼,

where the equivalence relation stands for (−T ) ∼ −(T ).
Thus, the Mahler measure depends just on Dk and (xk) � (yk). For example, if

the elliptic curves are isomorphic, Dk does not change and the Mahler measure only
depends on (xk)� (yk). This idea was discovered by Rodriguez-Villegas [9], and also
used by Bertin [1]. We applied this idea again in [7], to isogenous elliptic curves, in
order to prove identities like (2.2).

A Weierstrass model for Ek is given by

Y 2 = X

(
X2 +

(
k2

4
− 2
)

X + 1
)

,

where

x =
kX − 2Y

2X(X − 1)
, y =

kX + 2Y

2X(X − 1)
.

It is not hard to see that Ek(Q(k))tor ∼= Z

4Z
. To fix notation, we will denote a gene-

rator by

P =
(

1,
k

2

)
.
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Then we have 2P = (0, 0). Eventually, we will perform computations in the curve
with parameter k = h + 1

h . In this curve, we will denote

Q =
(
− 1

h2
, 0
)

,

which is a point of order 2. Notice that P +Q =
(−1, h− 1

h

)
and 2P +Q =

(−h2, 0
)
.

In [7], we prove

(x) � (y) = 8(P ).

Consider the isomorphism

φ : E2(h+ 1
h) → E2(ih+ 1

ih), (X, Y ) → (−X, iY ),

which relates two of the curves in Eq. (2.2). We use this isomorphism to pull the
rational functions x, y ∈ C(E2(ih+ 1

ih )) back to C(E2(h+ 1
h )):

r2(ih+ 1
ih)({x, y}) = r2(h+ 1

h)({x ◦ φ, y ◦ φ}).
On the other hand, it is easy to see that

(x ◦ φ) � (y ◦ φ) = 8(P + Q).

4. Relationships between Divisors

From the previous section, the problem reduces to finding relations between (P ) and
(P + Q) in Z[E2(h+ 1

h )(C)]−. In order to do that, we will look for elements that are
trivial in K2(C(E2(h+ 1

h ))). In other words, we will find combinations of Steinberg
symbols {g, 1 − g} with g ∈ C(E2(h+ 1

h )), such that the corresponding combination
(g) � (1 − g) yields a linear combination of (P ) and (P + Q). Since {g, 1 − g} is
trivial in K-theory, we conclude that (g)� (1−g) ∼ 0, yielding a linear combination
involving (P ) and (P + Q).

Consider the function

f =
Y

2h
+
(

1
2
− 1

2h2

)
X.

We have

1 − f = 1 − Y

2h
−
(

1
2
− 1

2h2

)
X.

Then

(f) = (2P ) + 2(P + Q) − 3O, (1 − f) = (P ) + (A) + (B) − 3O,

where

A =

(
−3 +

√
9 − 16h2

2
,
7h

2
− 3

2h
−
(

h − 1
h

) √
9 − 16h2

2

)
,

B =

(
−3 −√

9 − 16h2

2
,
7h

2
− 3

2h
+
(

h − 1
h

) √
9 − 16h2

2

)
.
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In particular, for h = 1√
2
, we get

A = 3P + Q, B = Q,

implying

(f) � (1 − f) = 6(P ) − 10(P + Q) ∼ 0

yielding the expected relation.
On the other hand, for h = 1

2 , our function f becomes

f = Y − 3
2
X.

In this case, A and B are given by:

A =

(
−3 −√

5
2

,−5 − 3
√

5
4

)
, B =

(
−3 +

√
5

2
,−5 + 3

√
5

4

)
.

In particular, we have the relations

2A = 2B = P, B − A = 2P, A + B = −P.

We obtain

(f) � (1 − f) = (P ) + (2P − A) + (2P − B) − 3(2P ) + 2(Q) + 2(P + Q − A)

+ 2(P + Q − B) − 6(P + Q) − 3(−P ) − 3(−A) − 3(−B) + 9O

= 2(Q + A) + 2(Q + B) − 6(P + Q) + 4(P ) + 2(A) + 2(B).

We need further relations among the divisors (A), (B). Thus we consider the
following function

g =
√

5 − 1
10

Y +
3 +

√
5

20
(X + 4),

1 − g = 1 −
√

5 − 1
10

Y − 3 +
√

5
20

(X + 4).

We have

(g) = (Q) + (A) + (−Q − A) − 3O, (1 − g) = (−P ) + 2(B) − 3O.

The diamond operation yields a new relation:

(g) � (1 − g) = (Q + P ) + 2(Q − B) − 3(Q) + (A + P ) + 2(A − B) − 3(A)

+ (−Q − A + P ) + 2(−Q − A − B)

− 3(−Q − A) − 3(P ) − 6(−B) + 9O

= 3(Q + P ) − 2(Q + B) − 3(A) + 4(Q + A) − 3(P ) + 5(B).

In order to get more relations, we apply the Galois conjugate,

(gσ) � (1 − gσ) = 3(Q + P ) − 2(Q + A) − 3(B) + 4(Q + B) − 3(P ) + 5(A).

The last two equations yield

(g) � (1 − g) + (gσ) � (1 − gσ) = 6(Q + P ) + 2(Q + A) + 2(Q + B)

+ 2(A) + 2(B) − 6(P ).
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Finally, we obtain

(f) � (1 − f) − (g) � (1 − g) − (gσ) � (1 − gσ) = −12(Q + P ) + 10(P ) ∼ 0.

5. Conclusion of the Proof

Given a relationship of the form

a(P ) ∼ b(P + Q),

we get

ar2(h+ 1
h )({x2(h+ 1

h ), y2(h+ 1
h )}) = br2(ih+ 1

ih )({x2(ih+ 1
ih ), y2(ih+ 1

ih )}),
and

am

(
2
(

h +
1
h

))
= bm

(
2
(

ih +
1
ih

))
.

Thus, for h = 1√
2
, we recover

m(8) =
8
5
m(3

√
2) =

8
3
m(i

√
2) = 4m(2).

For h = 1
2 , we conclude

m(16) =
11
6

m(5) =
11
5

m(−3i) = 11m(1).

m(5) = 6m(1). �

Questions that remain open are how to predict identities such as (1.2) and (1.3)
and, more precisely, to list all such identities.
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