MATH 819 – HW5 (SEPARATED AND PROPER; LOCALLY FREE SHEAVES)

Due date: In class Tuesday, April 4th

Reading: Vakil: Separated and proper (Chapter 11) – see also Hartshorne II.3. Vector bundles and locally free sheaves: Chapter 14.1-14.3 and 15. Global Spec and Global Proj: 18.1-18.2

(1) (Separatedness)

- (a) If $\pi: X \to S$ is separated, $S = \operatorname{Spec}(R)$ is affine, and $U, V \in X$ are affine open sets, then $U \cap V$ is affine. (Examine $\Delta^{-1}(U \times_S V)$.)

 Taking X = S and $\pi = \operatorname{id}$, conclude: in an affine scheme, intersections of arbitrary affine open subschemes are affine. Then show \mathbb{A}^2 with two origins (over any base scheme) is not affine.
- (b) Show that separatedness is preserved by pullback, and properness is preserved by composition. (Use the definition, or assume X, S are locally noetherian and π is finite type and then use the valuative criterion).

Solutions. (a) We have $\Delta^{-1}(U \times_S V) = U \cap V$ as a set. Since S is affine, so is $U \times_S V$. Since π is separated, Δ is a closed embedding, in particular an affine morphism, so $\Delta^{-1}(U \times_S V) = U \cap V$ is again affine.

In the indicated special case, this shows that intersections of affines of Spec R are affine. (In fact, if $U = \operatorname{Spec} A$ and $V = \operatorname{Spec} B$, then unwinding the formula, and using that $\Delta: S \to S \times_S S$ is an now an isomorphism, gives $U \cap V \cong \operatorname{Spec}(A \otimes_R B)$. I don't think it would have been obvious otherwise that this would represent an open subscheme of $\operatorname{Spec} R$.) Finally, if X is \mathbb{A}^2 with two origins, then $X = U \cup V$ where $U, V \cong \mathbb{A}^2$ are affine open sets, but $U \cap V = \mathbb{A}^2 \setminus \{(0,0)\}$, which is not affine. Therefore X is not affine.

(b) Proof (sketch) via valuative criterion: For "separated is preserved by pull-back", suppose we're given

$$U \longrightarrow S' \times_S X \xrightarrow{\alpha'} X$$

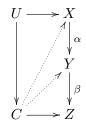
$$\downarrow f \qquad \qquad \downarrow \pi' \qquad \qquad \downarrow \pi$$

$$C \longrightarrow S' \xrightarrow{\alpha} S$$

with π separated. Composing f and g with α' gives two arrows $C \to X$. Since π is separated, $\alpha' \circ f = \alpha' \circ g$. But then by the universal property of fiber products,

there is a unique map $C \to S' \times_S X$ making the diagram commute. Since both f and g work there, f = g.

For "properness is preserved by composition": first note that "finite type" is preserved by composition because it is a local property on source and target, so (reducing to the affine case) the point is that if $A \to B \to C$ are rings, B is a finitely-generated A-algebra, and C is a finitely-generated B-algebra, then C is a finitely-generated A-algebra (by the elements $b_i c_j$ ranging over the generators of C over B (including 1) and those of B over A (including 1)). Next, suppose we're given



with α, β proper. Since β is proper, there's a unique map $C \to Y$ making the diagram commute. Then since α is proper, there's a unique map $C \to X$ making the diagram commute.

For the proofs directly from the definition: for separatedness, suppose we're given

$$S' \times_S X \xrightarrow{\alpha'} X$$

$$\downarrow^{\pi'} \qquad \downarrow^{\pi}$$

$$S' \xrightarrow{\alpha} S$$

with π separated, i.e. $\Delta_{X/S}: X \to X \times_S X$ is a closed embedding. Let $X':= S' \times_S X$. Ravi suggests proving that

$$X' \xrightarrow{\Delta_{X'/S'}} X' \times_{S'} X'$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{\Delta_{X/S}} X \times_S X$$

is Cartesian. Then $\Delta_{X'/S'}$ is the pullback of a closed embedding, hence again a closed embedding. For "composition of universally closed is universally closed", the proof is that pullback commutes with composition.

- (2) Let R be a noetherian ring and M a finitely-generated R-module.
 - (a) Let S be a multiplicative set and suppose $S^{-1}M = 0$. Show that there exists $f \in S$ such that $M_f = 0$.

- (b) Let $p \in \operatorname{Spec}(R)$ and suppose M_p is a free R_p -module of rank n. Show that there exists $f \in R p$ such that M_f is a free R_f -module of rank n. (Hint: First find a map $R^n \to M$ such that $R_p^n \to M_p$ is an isomorphism. Then use (a).)
- (c) Let X be a noetherian scheme and \mathscr{F} a coherent sheaf on X. Show: \mathscr{F} is locally free of rank $n \Leftrightarrow$ for all $p \in X$, \mathscr{F}_p is a free $\mathcal{O}_{X,p}$ -module of rank n.

Solution. (a) Let M have generators m_1, \ldots, m_k . Since $S^{-1}M = 0$, there exist f_1, \ldots, f_k such that $f_i m_i = 0$ for each i. Let $f = \prod_i f_i$. Then $f m_i = 0$ for all i, so $M_f = 0$.

(b) Since M_p is free over R_p of rank n, M_p has a free basis $\left\{\frac{m_1}{s_1}, \ldots, \frac{m_n}{s_n}\right\}$ for some $m_i \in M$ and $s_i \in R \setminus P$. Since the s_i are units in R_p , $\left\{\frac{m_1}{1}, \ldots, \frac{m_n}{1}\right\}$ is again a basis. Let $\psi: R^n \to M$ be defined by $\psi(r_1, \ldots, r_n) = \sum r_i m_i$. We have an exact sequence

$$0 \to \ker \psi \to \mathbb{R}^n \to M \to \operatorname{coker} \psi \to 0.$$

Localizing to R_p , the middle map becomes an isomorphism. Since localization is exact, this shows $(\ker \psi)_p = 0 = (\operatorname{coker} \psi)_p$. By part (a), there exist $f, g \in R \setminus p$ such that $(\ker \psi)_f = 0 = (\operatorname{coker} \psi)_g$. Then over R_{fg} , both the cokernel and kernel vanish, so ψ_{fg} is an isomorphism.

- (c) (\Rightarrow): Let $p \in X$. Since \mathscr{F}_p is locally free of rank n, there is some affine neighborhood U of p such that $\mathscr{F}|_U \cong \mathcal{O}_U^{\oplus n}$. Then $\mathscr{F}_p \cong \mathcal{O}_{X,p}^{\oplus n}$ by localizing.
- (\Leftarrow) : By part (b), for each p we can find U_p an open neighborhood of p on which $\mathscr{F}|_{U_p}$ is free of rank n. Therefore \mathscr{F} is locally free of rank n.
- (3) Let \mathscr{E}, \mathscr{F} be locally free sheaves of ranks e and f on a noetherian scheme X.
 - (a) Show that $\mathscr{E} \otimes \mathscr{F}$, $\mathscr{E} \oplus \mathscr{F}$ and $\mathscr{H}om(\mathscr{E},\mathscr{F})$ are all locally free, of ranks ef, e+f and ef again. (Take for granted that $\mathscr{H}om(\mathscr{E},\mathscr{F})$ is quasicoherent and given by $\operatorname{Hom}_R(E,F)$ on affine charts, when \mathscr{F} is quasicoherent and \mathscr{E} is coherent; see Vakil 1.6.G and 14.3.A.)
 - (b) Show that $\operatorname{Sym}^d(\mathscr{E})$ is locally free of rank $\binom{e+d-1}{d}$. (If m_1, \ldots, m_e is a basis for \mathscr{E} locally, the monomials in m_1, \ldots, m_e give a basis for $\operatorname{Sym}^d(\mathscr{E})$.)
 - (c) Show that there is a surjective map of sheaves $\mathscr{E} \otimes \mathscr{H}om(\mathscr{E},\mathscr{F}) \to \mathscr{F}$ given by "evaluation" $v \otimes \varphi \mapsto \varphi(v)$. (Show it exists via universal properties of \otimes and gluing, then check it is surjective on sufficiently small affine charts.)
 - (d) Specialize part (b) to $\mathscr{F} = \mathcal{O}_X$; the sheaf $\mathscr{H}om(\mathscr{E}, \mathcal{O}_X)$ is called the *dual* of \mathscr{E} and denoted \mathscr{E}^* or \mathscr{E}^{\vee} .

Show: If \mathscr{E} has rank 1, the map $\mathscr{E} \otimes \mathscr{E}^* \to \mathcal{O}_X$ is actually an isomorphism.

Solutions. For (a)(b)(d) and the surjectivity in (c), the thing we're asked to prove is a local property, so it suffices to check it on sufficiently small affine open sets. That is, you can immediately (if you wish) reduce to $X = \operatorname{Spec} R$ affine and

 \mathscr{E},\mathscr{F} free (rather than just locally free), that is, $\mathscr{E}=\widetilde{E}$ where $E=R^e$ and $\mathscr{F}=\widetilde{F}$ where $F=R^f$.

For (b), the proof is called "stars and bars".

For (c), Note that the given formula makes sense on every affine open set. Moreover, for a distinguished inclusion, Spec $R_f \hookrightarrow \operatorname{Spec} R$, the diagram

$$E \otimes \operatorname{Hom}_{R}(E, F) \longrightarrow F$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_{f} \otimes \operatorname{Hom}_{R_{f}}(E_{f}, F_{f}) \longrightarrow F_{f}$$

commutes. This means the formula defines a map of sheaves on the base, which therefore extends to a map of sheaves. We can check surjectivity locally: on a trivializing open set U as above, let $y \in F$. Then let $\phi : E \to F$ be defined by sending some basis element $x \in E$ to y. Then $\psi(y \otimes \phi) = x$, so ψ is surjective.

For (d), once we know the map exists, we can check it's an isomorphism locally. So locally $\mathscr{E} \cong R$ and $\mathscr{E}^* \cong R$, generated by the identity function id : $R \to R$. (For any other $\phi \in \operatorname{Hom}(R,R)$, if $\phi(1) = s$ then ϕ is just multiplication by s, and so $\phi = s \cdot \operatorname{id}$.) Every element $r \otimes \phi$ is then just a multiple of $1 \otimes \operatorname{id}$, namely $r \otimes \phi = r \otimes (s \cdot \operatorname{id}) = rs(1 \otimes \operatorname{id})$.

The map is now $R \otimes \operatorname{Hom}(R,R) \to R$ given by $r \otimes \phi \mapsto \phi(r)$. This sends $1 \otimes \operatorname{id} \mapsto 1$ and $r(1 \otimes \operatorname{id}) \mapsto r$, so it is an isomorphism. (For an explicit inverse map, send $r \mapsto r(1 \otimes \operatorname{id})$.)

- (4) Let $R=k[S^4,S^3T,ST^3,T^4]\subset k[S,T]$ (i.e. the 4-th Veronese subring omitting S^2T^2). We reset the grading on S and count its four generators now as degree 1. You may take for granted that $S\cong \frac{k[X,Y,Z,W]}{(XW-YZ,Y^3-ZX^2,Z^3-YW^2)}$.
 - (a) Verify that $\sqrt{(X,W)} = R_+$, so $D_+(X) \cup D_+(W) = \operatorname{Proj} R$.
 - (b) Show that $D_+(X)$ and $D_+(W)$ are each isomorphic to \mathbb{A}^1 and that the gluing map simplifies to the usual \mathbb{P}^1 gluing map, so $\operatorname{Proj} R \cong \mathbb{P}^1$.
 - (c) Examine $\widetilde{R(1)}$ on each of the charts $D_+(X)$ and $D_+(W)$: write down the generator and transition map. Recognize $\widetilde{R(1)}$ as what we would have called $\mathcal{O}(4)$ on Proj k[S,T]. In particular, its global sections are

$$\Gamma(\operatorname{Proj} R, \widetilde{R(1)}) = k \cdot \{S^4, S^3T, S^2T^2, ST^3, T^4\},$$

even though $S^2T^2 \notin R$. This gives another example where the map $M_0 \to \Gamma(\widetilde{M}, \operatorname{Proj} R)$ isn't surjective. (It may be helpful to write S^2T^2 in terms of X, Y, Z, W on each chart.)

Solutions. (a) We have $Y^3 = ZX^2$ and $Z^3 = W^2Y \in (X, W)$, so $Y, Z \in \sqrt{(X, W)}$. Therefore $R_+ \subseteq \sqrt{(X, W)}$, which implies $D_+(X) \cup D_+(W) = \operatorname{Proj} R$.

(b) For $D_+(S^4)$, the ring is

$$(R_{S^4})_0 = k[S^4, S^3T, ST^3, T^4, \frac{1}{S^4}]_0$$

$$= k[\frac{S^4}{S^4}, \frac{S^3T}{S^4}, \frac{ST^3}{S^4}, \frac{T^4}{S^4}]$$

$$= k[1, \frac{T}{S}, (\frac{T}{S})^3, (\frac{T}{S})^4] = k[\frac{T}{S}].$$

Similarly, for $D_{+}(T^{4})$, the ring is $k[\frac{T}{S}]$. The transition maps are

$$k\left[\frac{T}{S}\right] \hookrightarrow k\left[\frac{T}{S}, \frac{S}{T}\right] \longleftrightarrow k\left[\frac{S}{T}\right],$$

which we recognize as those of \mathbb{P}^1 .

(c) On $D_+(S^4)$, $(R(1)_f)_0$ is $S^4k[\frac{T}{S}]$, generated by S^4 . On $D_+(T_4)$, the module is $T^4k[\frac{S}{T}]$. We have

$$S^4 = T^4 \cdot \left(\frac{S}{T}\right)^4,$$

which is the transition function for $\mathcal{O}_{\mathbb{P}^1}(4)$. We therefore get 5 linearly independent global sections, including

$$S^4 \cdot \left(\frac{T}{S}\right)^2 = S^2 T^2 = T^2 \left(\frac{S}{T}\right)^2.$$

- (5) (A valuative criterion) For any ring R and for $d \leq n$, let:
 - $\operatorname{Mat}_{d\times n}(R)$ be the set of $d\times n$ matrices M with entries in R,
 - $U_{d\times n}(R) \subset \operatorname{Mat}_{d\times n}(R)$ be the set of M such that the $d\times d$ minors of M generate the unit ideal in R, called full rank matrices.
 - $GL_d(R) := U_{d,d}(R)$, the square matrices M such that det(M) is a unit. One indirect "definition" of the *Grassmannian* Gr(d,n) is to define, for all affine schemes $X = \operatorname{Spec}(R)$,

(*)
$$\operatorname{Hom}(\operatorname{Spec} R, \operatorname{Gr}(d, n)) := U_{d \times n}(R) / \sim,$$

where $M \sim AM$ for all $A \in GL_d(R)$. That is, by definition, a map Spec $R \to Gr(d,n)$ "is" a full-rank $d \times n$ matrix over R, up to the equivalence relation of row operations.

For this problem, ignore the question of how Gr(d, n) is a scheme and just work directly with the definition (*) above. (This is essentially a definition via universal property of Gr(d, n) as a quotient space.)

- (a) Let k be a field. Show that $\operatorname{Hom}(\operatorname{Spec} k, Gr(d, n))$ the k-points of Gr(d, n) is in bijection with the set of all d-dimensional subspaces $V \subset k^n$.
- (b) Let K = k(t), the field of rational functions, with valuation val(f) given by the order of vanishing of f at t = 0. Consider the matrix:

$$M = \begin{bmatrix} 1 - t & 1 - t^2 & t & t^2 \\ \frac{1}{t^2} & \frac{1+t}{t^2} & 1 & t \end{bmatrix} \in \text{Mat}_{2 \times 4}(k(t))$$

Check:

– Some minor of M is nonzero, so M represents a "morphism Spec $k(t) \rightarrow Gr(2,4)$ ". For generic t, we have a 2-dimensional subspace of k^4 .

- If we set t=0, the matrix is undefined. If we try rescaling the second row by t^2 and then set t=0, the resulting matrix not full-rank over k. So it may seem that we can't "take the limit as $t \to 0$ ".
- (c) Calculate the valuation of each minor of M. You should find two minors are identically zero (order $+\infty$), two are order -1 and two are order 0.
- (d) Calculate $A^{-1}M$, where A is columns 1 and 3 of M. You should find that all nonzero entries now have nonnegative valuation, i.e., $A^{-1}M \in \operatorname{Mat}_{2\times 4}(k[t]_{(t)})$. Now set t=0 and describe the resulting two-dimensional subspace of k^4 . (Really what has happened is all minors now have nonnegative valuation. Since $A^{-1}M$ contains an identity matrix, this includes all individual entries.)
- (e) Explain why every morphism Spec $k(t) \to Gr(2,4)$ extends to a morphism Spec $k[t]_{(t)} \to Gr(2,4)$. This is the "existence" part of the valuative criterion and is one way to prove that Gr(2,4) is proper.

Solutions.

- (a) By definition, a map Spec $k \to Gr(d,n)$ is a row-equivalence class of $d \times n$ matrices. From linear algebra, two matrices over k have the same row-span if and only if they are row equivalent.
- (b) The 13-minor is $\Delta_{13} = 1 t \frac{1}{t}$, so we see that for $t \neq 0$, this is nonzero. Thus for most t, the matrix has rank 2.

Rescaling the second row by t^2 and setting t = 0 gives $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$. This is rank 1, so it does not represent a map $\operatorname{Spec} k \to Gr(d, n)$.

Gr(d,n) and the fiber at t=0 is $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$.

(e) Here's what we did:

- We have a map $\operatorname{Spec} k(t) \to \operatorname{Gr}(d,n)$, represented by a matrix M. Since M has full rank over the field k(t), some minor is nonzero (as an element of k(t)).
- Let A be the submatrix whose minor has the lowest valuation. This valuation is not $+\infty$ (since some minor is nonzero).
- Then $A^{-1}M$ has all minors with nonnegative valuations, and an identity matrix in the columns coming from A. For any entry m_{ij} of $A^{-1}M$, if we swap out the *i*-th column of the identity submatrix for column j (containing m_{ij}), the resulting minor is exactly $\pm m_{ij}$. Therefore m_{ij} has valuation ≥ 0 .

• Therefore $A^{-1}M$ has all entries in $k[t]_{(t)}$, hence represents a morphism Spec $k[t]_{(t)} \to Gr(d,n)$. And of course we haven't changed the original morphism Spec $k(t) \to Gr(d,n)$, since $A^{-1}M$ is row equivalent (over k(t)) to M.