
MATH 819 – HW5 (SEPARATED AND PROPER; LOCALLY FREE

SHEAVES)

Due date: In class Tuesday, April 4th

Reading: Vakil: Separated and proper (Chapter 11) – see also Hartshorne II.3. Vector
bundles and locally free sheaves: Chapter 14.1-14.3 and 15. Global Spec and Global Proj:
18.1-18.2

(1) (Separatedness)
(a) If π : X → S is separated, S = Spec(R) is affine, and U, V ∈ X are affine open

sets, then U ∩ V is affine. (Examine ∆−1(U ×S V ).)
Taking X = S and π = id, conclude: in an affine scheme, intersections of
arbitrary affine open subschemes are affine. Then show A2 with two origins
(over any base scheme) is not affine.

(b) Show that separatedness is preserved by pullback, and properness is preserved
by composition. (Use the definition, or assume X,S are locally noetherian
and π is finite type and then use the valuative criterion).

Solutions. (a) We have ∆−1(U ×S V ) = U ∩ V as a set. Since S is affine, so
is U ×S V . Since π is separated, ∆ is a closed embedding, in particular an affine
morphism, so ∆−1(U ×S V ) = U ∩ V is again affine.

In the indicated special case, this shows that intersections of affines of SpecR are
affine. (In fact, if U = SpecA and V = SpecB, then unwinding the formula, and
using that ∆ : S → S×S S is an now an isomorphism, gives U ∩V ∼= Spec(A⊗RB).
I don’t think it would have been obvious otherwise that this would represent an
open subscheme of SpecR.) Finally, if X is A2 with two origins, then X = U ∪ V
where U, V ∼= A2 are affine open sets, but U ∩V = A2 \{(0, 0)}, which is not affine.
Therefore X is not affine.

(b) Proof (sketch) via valuative criterion: For “separated is preserved by pull-
back”, suppose we’re given

U

��

//

��

S′ ×S X
α′
//

π′

��

X

π

��
C //

f
;;

g

;;

S′
α

// S

with π separated. Composing f and g with α′ gives two arrows C → X. Since π
is separated, α′ ◦ f = α′ ◦ g. But then by the universal property of fiber products,
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there is a unique map C → S′ ×S X making the diagram commute. Since both f
and g work there, f = g.

For “properness is preserved by composition”: first note that “finite type” is
preserved by composition because it is a local property on source and target, so
(reducing to the affine case) the point is that if A → B → C are rings, B is a
finitely-generated A-algebra, and C is a finitely-generated B-algebra, then C is a
finitely-generated A-algebra (by the elements bicj ranging over the generators of C
over B (including 1) and those of B over A (including 1)). Next, suppose we’re
given

U

��

// X

α
��
Y

β
��

C //

>>

GG

Z

with α, β proper. Since β is proper, there’s a unique map C → Y making the
diagram commute. Then since α is proper, there’s a unique map C → X making
the diagram commute.

For the proofs directly from the definition: for separatedness, suppose we’re given

S′ ×S X
α′
//

π′

��

X

π

��
S′

α
// S

with π separated, i.e. ∆X/S : X → X ×S X is a closed embedding. Let X ′ :=
S′ ×S X. Ravi suggests proving that

X ′

��

∆X′/S′
// X ′ ×S′ X ′

��
X

∆X/S // X ×S X

is Cartesian. Then ∆X′/S′ is the pullback of a closed embedding, hence again a
closed embedding. For “composition of universally closed is universally closed”,
the proof is that pullback commutes with composition.

(2) Let R be a noetherian ring and M a finitely-generated R-module.
(a) Let S be a multiplicative set and suppose S−1M = 0. Show that there exists

f ∈ S such that Mf = 0.
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(b) Let p ∈ Spec(R) and suppose Mp is a free Rp-module of rank n. Show that
there exists f ∈ R− p such that Mf is a free Rf -module of rank n.
(Hint: First find a map Rn → M such that Rn

p → Mp is an isomorphism.
Then use (a).)

(c) Let X be a noetherian scheme and F a coherent sheaf on X. Show: F is
locally free of rank n ⇔ for all p ∈ X, Fp is a free OX,p-module of rank n.

Solution. (a) Let M have generators m1, . . . ,mk. Since S
−1M = 0, there exist

f1, . . . , fk such that fimi = 0 for each i. Let f =
∏

i fi. Then fmi = 0 for all i, so
Mf = 0.

(b) Since Mp is free over Rp of rank n, Mp has a free basis
{
m1
s1
, . . . , mn

sn

}
for

some mi ∈M and si ∈ R \ P . Since the si are units in Rp,
{
m1
1 , . . . ,

mn
1

}
is again

a basis. Let ψ : Rn →M be defined by ψ(r1, . . . , rn) =
∑
rimi. We have an exact

sequence

0→ kerψ → Rn →M → cokerψ → 0.

Localizing to Rp, the middle map becomes an isomorphism. Since localization is
exact, this shows (kerψ)p = 0 = (cokerψ)p. By part (a), there exist f, g ∈ R \ p
such that (kerψ)f = 0 = (cokerψ)g. Then over Rfg, both the cokernel and kernel
vanish, so ψfg is an isomorphism.

(c) (⇒): Let p ∈ X. Since Fp is locally free of rank n, there is some affine
neighborhood U of p such that F |U ∼= O⊕n

U . Then Fp
∼= O⊕n

X,p by localizing.

(⇐): By part (b), for each p we can find Up an open neighborhood of p on which
F |Up is free of rank n. Therefore F is locally free of rank n.

(3) Let E ,F be locally free sheaves of ranks e and f on a noetherian scheme X.
(a) Show that E ⊗F , E ⊕F and H om(E ,F ) are all locally free, of ranks ef , e+f

and ef again. (Take for granted that H om(E ,F ) is quasicoherent and given
by HomR(E,F ) on affine charts, when F is quasicoherent and E is coherent;
see Vakil 1.6.G and 14.3.A.)

(b) Show that Symd(E ) is locally free of rank
(
e+d−1

d

)
. (If m1, . . . ,me is a basis

for E locally, the monomials in m1, . . . ,me give a basis for Symd(E ).)
(c) Show that there is a surjective map of sheaves E ⊗H om(E ,F ) → F given

by “evaluation” v ⊗ φ 7→ φ(v). (Show it exists via universal properties of ⊗
and gluing, then check it is surjective on sufficiently small affine charts.)

(d) Specialize part (b) to F = OX ; the sheaf H om(E ,OX) is called the dual of
E and denoted E ∗ or E ∨.
Show: If E has rank 1, the map E ⊗ E ∗ → OX is actually an isomorphism.

Solutions. For (a)(b)(d) and the surjectivity in (c), the thing we’re asked to
prove is a local property, so it suffices to check it on sufficiently small affine open
sets. That is, you can immediately (if you wish) reduce to X = SpecR affine and
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E ,F free (rather than just locally free), that is, E = Ẽ where E = Re and F = F̃
where F = Rf .

For (b), the proof is called “stars and bars”.
For (c), Note that the given formula makes sense on every affine open set. More-

over, for a distinguished inclusion, SpecRf ↪→ SpecR, the diagram

E ⊗HomR(E,F )

��

// F

��
Ef ⊗HomRf

(Ef , Ff ) // Ff

commutes. This means the formula defines a map of sheaves on the base, which
therefore extends to a map of sheaves. We can check surjectivity locally: on a
trivializing open set U as above, let y ∈ F . Then let ϕ : E → F be defined by
sending some basis element x ∈ E to y. Then ψ(y ⊗ ϕ) = x, so ψ is surjective.

For (d), once we know the map exists, we can check it’s an isomorphism locally.
So locally E ∼= R and E ∗ ∼= R, generated by the identity function id : R → R.
(For any other ϕ ∈ Hom(R,R), if ϕ(1) = s then ϕ is just multiplication by s,
and so ϕ = s · id.) Every element r ⊗ ϕ is then just a multiple of 1 ⊗ id, namely
r ⊗ ϕ = r ⊗ (s · id) = rs(1⊗ id).

The map is now R ⊗ Hom(R,R) → R given by r ⊗ ϕ 7→ ϕ(r). This sends
1⊗ id 7→ 1 and r(1⊗ id) 7→ r, so it is an isomorphism. (For an explicit inverse map,
send r 7→ r(1⊗ id).) □

(4) Let R = k[S4, S3T, ST 3, T 4] ⊂ k[S, T ] (i.e. the 4-th Veronese subring omitting
S2T 2). We reset the grading on S and count its four generators now as degree 1.

You may take for granted that S ∼= k[X,Y,Z,W ]
(XW−Y Z,Y 3−ZX2,Z3−YW 2)

.

(a) Verify that
√

(X,W ) = R+, so D+(X) ∪D+(W ) = ProjR.
(b) Show that D+(X) and D+(W ) are each isomorphic to A1 and that the gluing

map simplifies to the usual P1 gluing map, so ProjR ∼= P1.

(c) Examine R̃(1) on each of the charts D+(X) and D+(W ): write down the

generator and transition map. Recognize R̃(1) as what we would have called
O(4) on Proj k[S, T ]. In particular, its global sections are

Γ(ProjR, R̃(1)) = k · {S4, S3T, S2T 2, ST 3, T 4},

even though S2T 2 /∈ R. This gives another example where the map M0 →
Γ(M̃,ProjR) isn’t surjective. (It may be helpful to write S2T 2 in terms of
X,Y, Z,W on each chart.)

Solutions. (a) We have Y 3 = ZX2 and Z3 = W 2Y ∈ (X,W ), so Y,Z ∈√
(X,W ). Therefore R+ ⊆

√
(X,W ), which implies D+(X) ∪D+(W ) = ProjR.
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(b) For D+(S
4), the ring is

(RS4)0 = k[S4, S3T, ST 3, T 4, 1
S4 ]0

= k[S
4

S4 ,
S3T
S4 ,

ST 3

S4 ,
T 4

S4 ]

= k[1, TS ,
(
T
S

)3
,
(
T
S

)4
] = k[TS ].

Similarly, for D+(T
4), the ring is k[TS ]. The transition maps are

k[TS ] ↪→ k[TS ,
S
T ]←↩ k[

S
T ],

which we recognize as those of P1.
(c) On D+(S

4), (R(1)f )0 is S4k[TS ], generated by S4. On D+(T4), the module is

T 4k[ST ]. We have

S4 = T 4 ·
(
S
T

)4
,

which is the transition function for OP1(4). We therefore get 5 linearly independent
global sections, including

S4 ·
(
T
S

)2
= S2T 2 = T 2

(
S
T

)2
.

(5) (A valuative criterion) For any ring R and for d ≤ n, let:
• Matd×n(R) be the set of d× n matrices M with entries in R,
• Ud×n(R) ⊂ Matd×n(R) be the set of M such that the d × d minors of M
generate the unit ideal in R, called full rank matrices.
• GLd(R) := Ud,d(R), the square matrices M such that det(M) is a unit.

One indirect “definition” of the Grassmannian Gr(d, n) is to define, for all affine
schemes X = Spec(R),

(∗) Hom(SpecR,Gr(d, n)) := Ud×n(R)/ ∼,
where M ∼ AM for all A ∈ GLd(R). That is, by definition, a map SpecR →
Gr(d, n) “is” a full-rank d×n matrix over R, up to the equivalence relation of row
operations.

For this problem, ignore the question of how Gr(d, n) is a scheme and just work
directly with the definition (∗) above. (This is essentially a definition via universal
property of Gr(d, n) as a quotient space.)
(a) Let k be a field. Show that Hom(Spec k,Gr(d, n)) — the k-points of Gr(d, n)

— is in bijection with the set of all d-dimensional subspaces V ⊂ kn.
(b) Let K = k(t), the field of rational functions, with valuation val(f) given by

the order of vanishing of f at t = 0. Consider the matrix:

M =

[
1− t 1− t2 t t2

1
t2

1+t
t2

1 t

]
∈ Mat2×4(k(t))

Check:
– Some minor of M is nonzero, so M represents a “morphism Spec k(t)→
Gr(2, 4)”. For generic t, we have a 2-dimensional subspace of k4.
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– If we set t = 0, the matrix is undefined. If we try rescaling the second
row by t2 and then set t = 0, the resulting matrix not full-rank over k.
So it may seem that we can’t “take the limit as t→ 0”.

(c) Calculate the valuation of each minor of M . You should find two minors are
identically zero (order +∞), two are order −1 and two are order 0.

(d) Calculate A−1M , where A is columns 1 and 3 of M . You should find that all
nonzero entries now have nonnegative valuation, i.e., A−1M ∈ Mat2×4(k[t](t)).

Now set t = 0 and describe the resulting two-dimensional subspace of k4.
(Really what has happened is all minors now have nonnegative valuation.
Since A−1M contains an identity matrix, this includes all individual entries.)

(e) Explain why every morphism Spec k(t) → Gr(2, 4) extends to a morphism
Spec k[t](t) → Gr(2, 4). This is the “existence” part of the valuative criterion
and is one way to prove that Gr(2, 4) is proper.

Solutions.
(a) By definition, a map Spec k → Gr(d, n) is a row-equivalence class of d × n

matrices. From linear algebra, two matrices over k have the same row-span if and
only if they are row equivalent.

(b) The 13-minor is ∆13 = 1 − t − 1
t , so we see that for t ̸= 0, this is nonzero.

Thus for most t, the matrix has rank 2.

Rescaling the second row by t2 and setting t = 0 gives

[
1 1 0 0
1 1 0 0

]
. This is

rank 1, so it does not represent a map Spec k → Gr(d, n).

(c) They are:

∆ij valt(∆ij)
∆12 0 ∞
∆13 −1/t+ 1− t −1
∆14 −1 + t− t2 0
∆23 −1/t− t2 −1
∆24 −1− t3 0
∆34 0 ∞

(d) We have A−1M =

[
1 1 + t 0 0
0 0 1 t

]
. Now this represents a map Spec k[t]→

Gr(d, n) and the fiber at t = 0 is

[
1 1 0 0
0 0 1 0

]
.

(e) Here’s what we did:
• We have a map Spec k(t) → Gr(d, n), represented by a matrix M . Since M
has full rank over the field k(t), some minor is nonzero (as an element of k(t)).
• Let A be the submatrix whose minor has the lowest valuation. This valuation
is not +∞ (since some minor is nonzero).
• Then A−1M has all minors with nonnegative valuations, and an identity ma-
trix in the columns coming from A. For any entry mij of A−1M , if we swap
out the i-th column of the identity submatrix for column j (containing mij),
the resulting minor is exactly ±mij . Therefore mij has valuation ≥ 0.
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• ThereforeA−1M has all entries in k[t](t), hence represents a morphism Spec k[t](t) →
Gr(d, n). And of course we haven’t changed the original morphism Spec k(t)→
Gr(d, n), since A−1M is row equivalent (over k(t)) to M .


