MATH 819 - HW4 (FIBER PRODUCTS, PROJ)

Due date: In class Thursday, March 16th

Reading: Vakil: We previously covered 8.3 and 9.1. Fiber products: 10.1-10.5. Proj:
4.5, 7.4, 16.1. (Please note that I am following the December 2022 version)

(1) Let P be a property of morphisms. We say P is preserved by pullback if the
following is true: let w : X — S be a morphism with P and let o : S’ — S be any
morphism. Then 7’ : 8’ xg X — S’ has P.

Show:

(a) “Locally of finite type” is preserved by pullback. (Hint: this is a local property
on both S” and S’ xg X, so reduce to S’, S, X and therefore S’ x g X all affine.)
(b) “Quasicompact morphism” is preserved by pullback. (Hint: this is a local
property on S’, so reduce to S’,S affine. Then show S’ xg X is covered by
finitely-many affines.)
(c) “Affine morphism” is preserved by pullback. (Hint: this is local on S...)
See Vakil 10.4.D for a longer list.

Solutions. (a) This is local on both the domain and codomain of 7' : §'xg X —
S, So, let pf € S xg X', let & = «'(p/) € S’. It suffices to give an affine
neighborhood U C S’ of &', and an affine neighborhood V' C 7/~1(U) of p/, where
the map is given by a finitely-generated algebra map.

Let x be the image of p’ in X and let s = a(s’) = 7(x). First, replace S by any
affine neighborhood of s, shrinking X (around z) and S’ (around s’) accordingly.
Then replace X by an affine neighborhood of x and S’ by an affine neighborhood
of ¢’ (this new S’ is our “U”). This is what we’ve done:

S xg X —=X pr——s Vi=Uxy W —W'(C 7 (W)

R |

S'———=>85 U(C oY (W) ——= W(cC S)
We proved in class that this new S’ x g X is an open subset of the old S’ x ¢ X, and
it contains p’. Also, now S’, S, X are all affine, so S’ xg X is affine as well.
We claim that this is our desired neighborhood “V”. On the ring map side, the
claim is that if R — A is a finitely-generated R algebra and R — R’ is arbitrary,
then R — R’ ®g A is finitely-generated as an R’-algebra. This is true because

/
A =~ Rlz1,...,xn] A =~ R [11,[...,90”]

for some n and I, and then R’ ®p , with the same
(finite) generators and relations.
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(b) Similar. After reducing we may assume S, S affine (the details are slightly
simpler than in (a) since it doesn’t involve X). It’s enough to show S’ xg X is
quasicompact, since “quasicompact morphism” is an affine-local property. Since
7w is quasicompact and S is now affine, X is quasicompact. Then X is covered
by finitely-many affines, so S’ xg X is covered by finitely-many affines, hence is
quasicompact.

(c) Even simpler. After reducing we may assume S, .S are affine (again X is not
involved). Again it’s enough to show S’ xg X is affine (since “affine morphism”
is an affine-local property). Since 7 is affine, we get X is affine, and then clearly
S" x g X is affine. d

A morphism 7 : X — S is finite if it is affine and, for each affine open U =
SpecR C S, Ox(n~1(U)) is a finitely-generated R-module. This is an affine-local
condition on S (same argument as HW3#7) and is preserved by pullback (in the
sense of Problem 2).

(a) Show that the open embedding Speck[t,t~!] < Speckl[t] is not finite. This
shows finiteness is not affine-local on the source (since the identity map Spec k[t]
Spec k[t] is obviously finite.) Show that the map of problem 1(b) is finite.

(b) Let m: X — S be a finite morphism. Show that the fibers of 7 are finite sets.
(Pull back to a fiber S” = Spec k(p). Then look up and apply this theorem of
commutative algebra: an artinian ring has finitely-many prime ideals.)

Solutions. (a) The ring map is k[t] — k[t,#+~!]. This isn’t finitely generated as
a k[t]-module because it includes t~* for arbitrarily large k. The map in problem
1(b) was k[t?] — k[t]. This is finite because, as a k[t?]-module, k[t] is generated by
1 and ¢.

(b) Assume 7 : X — S is finite. Let s € S and by abuse of notation, let s also
denote the one-point scheme Spec k(s), which has an inclusion morphism s — S.
Since finiteness is preserved by base change, s xg X — s is finite. Since finite
morphisms are affine, s xg X is affine. That is, the fiber of our morphism is affine
and given by a k(s)-algebra A that is finite-dimensional as a k(s)-vector space. In
particular, it’s obvious that A satisfies the descending chain condition on ideals,
hence is an artinian ring. Hence it has only finitely-many prime ideals. |

(Based on NTAG Mar 2) Let M,, = A™ De the affine space of nx n matrices and let
Cn={(A,B): AB = BA} C M,, x M, be the subscheme of commuting matrices.
Note that the equations AB = BA define C,, as a scheme, and as of 2023 it is not
known whether this gives a radical ideal.

Let X be any scheme. Explain why a map X — C,, (an X-valued point of C},) is
the same as a pair of commuting matrices with entries in I'(X, Ox). (For example,
if X = Spec R, this means a pair of commuting matrices with entries in R.)
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Solutions. Since C,, is affine, a map X — C), is the same as a ring map of
global sections R — I'(X, Ox), where R is the ring of global sections of C),. This
is
Klaij, bij : 1 <14,5 <n]

(AB = BA)
Here the equation AB = BA means “the ideal generated by

(*) Z kb — Z birag;
% %

for all 4,7.” A ring map R — I'(X, Ox) is given by a choice of where to send the
generators,

R:

aij — fij,  bij = gij, for some fij, g;; € I'(X, Ox),

such that the equations (k) are satisfied. These equations precisely mean that the
matrices F' = (f;;) and G = (g;;) commute. O

(4) (Proj) Let S be an N-graded noetherian ring. Let M be a finitely-generated graded
S-module.
(a) Let f € S be homogeneous of positive degree.
Show: My = 0 if and only if fAM =0 for d > 0.
(b) TFAE: (i) M = 0 for all homogeneous f € S of positive degree, (ii) (S1 )M =
0 for all natural numbers d > 0, (iii) My = 0 for d > 0.
(c) Let I,J C S be homogeneous ideals and let U C Spec S be the complement of
the irrelevant locus. TFAE:
(i) Proj S/I = ProjS/J, (ii) (Spec S/I)NU = (Spec S/J)NU, (iii) Iy = Jy for
d> 0.
(Hint: Compare I to INJ and use (b). Show (i) < (ii) directly by examining
distinguished open sets.)
This shows: two homogeneous ideals I, J define the same projective scheme if
and only if their aﬂinefichemes agree away from the irrelevant locus.
(d) Give a map My — I'(M,ProjS). Show that this map need not be injective
nor surjective.

Solutions.

(a) (=) Let M be generated by mi,...,my. Since My = 0, for each i there
exists d; such that f%m; = 0. Let d be the max of the d;. Then f%m; = 0 for all
i, s0 f4M = 0.

(<) Since fIM =0, f%m = 0 for all m € M. Therefore m/1 = 0 for all m € M,
so My =0.

(b) (i) = (ii): Let S; be generated by fi,..., fr. By part (a) and finiteness,
we can choose N large enough that fz-N M = 0 for all i. Then (S, )*V is generated
by all products involving kN of the f;’s. By the pigeonhole principle, any such
product has a factor fV. Therefore (S, )"V M = 0.
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(ii) = (iii) : Suppose (S;+)YM = 0. Let M be generated by my,...,m,. Let S
be generated by fi,..., fr. Let D = maxdeg(m;) and let E = maxdeg(f;).

Since M is generated by elements of degree < D and Sy is generated by elements
of degree < F, every element of M of degree > D + N E can be expressed as a sum
of elements of the form f-m;, where f is a product of at least N of the f;’s. Since
(S1)NM =0, it follows f-m;=0. Thus My =0 for all d > D + NE.

(iii) = (i) : Suppose My = 0 for all d > 0. Let f be homogeneous of positive
degree. Since M is finitely-generated, f*M C @~ Mg = 0 for e > 0. Therefore,
by part (a), My = 0. N

(c) We need to assume S is generated in degree 1. T don’t think the statement
is true otherwise. Sorry!

For (i) < (ii), the key fact is the following. Let S be a graded ring containing
a unit u that is homogeneous of degree 1. Let I,.J be homogeneous ideals of S.
Then I = J if and only if Iy = Jy. (A similar fact applies to modules.) Proof: if
I =J, clearly Iy = Jy. Conversely, suppose Iy = Jy. It suffices to show that I and
J contain the same homogeneous elements, so let f be homogeneous. Then since
u is a unit,

fele fudeld cpe fudeld e jye fed

Likewise, S/I = S/J if and only if (S/I)o = (S/J)o.

In particular, comparing Proj R/I and Proj R/J are covered by the sets D (f)
where f is homogeneous of degree 1. These are Spec of the rings ((R/I)y)o and
((R/J)¢)o- Similarly, Spec R/INU and Spec R/JNU are covered by the sets D(f),
via the rings R/I and R/J. Applying the fact above, we see that the charts of Proj
agree if and only if the charts of Spec agree.

For (iii), we apply part (b), equivalence (iii) <= (ii), to the modules I/(INJ)
and J/(INJ).

(d) Given m € My, we get a global section of M from e (My)o over all
homogeneous f’s. This clearly glues on overlaps. .

Not injective: Let M = S/S; = Sp. Then My = 0 for all d > 0, so M = 0 by
part (b). But My =Sy # 0.

Not surjective: Also by part (b), suppose M C N and My = Ny for all d > 0.
Then M = N. So, for example let M = S;. Then M=S = Oprojs because

My = Sy for all d > 1. So I'(M, Proj S) # 0, but of course My = (S5 )o = 0.

Consider the graded ring map ¢# : k[X,Y, Z] — k[S, T] defined by X + S3 — ST?,
Y — ST, Z — T3,
a) Check \/¢#((X,Y,Z)) . Deduce ¢# induces a morphism ¢ : P! — P?
sending [S : T to [53 ST2 5’2T T3].
(b) As subsets of P!, what are ¢~ '({X = 0}), o~ '({Y = 0}), o~ ({Z = 0})?
What about as subschemes?
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(c) By examining ¢ on the standard affine charts of P2, show that ¢ is not a
closed embedding. (It is enough to check one chart if you think about part (a)
carefully.)

Solutions. (a) Since Z + T3, the radical contains T'. Since X +— S® — ST? and
the radical contains T, the radical then contains S72, hence S3, hence S.

(b) The equation X = 0 corresponds to S% — ST? = 0, or S(S -~ T)(S+T) =
0. This is three reduced points on P!'. Indeed, on the chart T = 1, it’s just

k[s
Spec s=iitsT:

The equation Y = 0 corresponds to S?T = 0. This is one reduced point ([1 : 0])

and one double point ([0 : 1]) on P!. On the two standard charts it’s % and @
The equation Z = 0 corresponds to 7 = 0. This is one nonreduced point ([1 : 0])

of multiplicity 3 on P'. On the S = 1 chart it’s %

(c) The simplest way to show this is that the morphism isn’t one-to-one. On
the chart Z = 1, the morphism is A' — A? via s — (s — 5,5%), which sends
+1 (0,1).

On the ring map side, this chart is k[z,y] — k[s] by z +— s3> — s and y — s2.
This isn’t a surjective ring map because if we mod out by (z,y — 1) (corresponding

f};f’}l) — (53—12[,212—1) = (S’;[ﬂl), which simplifies to

k — k2, which is no longer surjective. (If R — S is surjective, so is R/I — S/IS.)

Zhe’s proof (thanks Zhe!): Under the ring map k[z,y] — k[s], 22 maps to
the same thing as y(y — 1), namely s2(s> — 1)2. Therefore, given any f(z,y), we
can replace powers z* with k& > 2 by expressions in y without changing its image,
and so reduce f to the form

f=291(y) + 92(y).
Now when we apply the ring map, the first term gives only odd powers of s and
the second term gives only even powers of s. In particular, if g;(y) = ap + a1y +
<o 4 anpy”™, then

H(zg1(y)) = (82 — s)(ag + a15° + - - - + a,s*")

= —aps+ (ag — a1)s> + - + (an_1 — an)

to the point (0, 1) above), we get 0

82n+1 + an82n+3.

If this equals s, then solving the equations gives ag = —1, but also ag = a1 = as =
-+ =a, = 0, a contradiction.



