
MATH 819 – HW4 (FIBER PRODUCTS, PROJ)

Due date: In class Thursday, March 16th

Reading: Vakil: We previously covered 8.3 and 9.1. Fiber products: 10.1-10.5. Proj:
4.5, 7.4, 16.1. (Please note that I am following the December 2022 version)

(1) Let P be a property of morphisms. We say P is preserved by pullback if the
following is true: let π : X → S be a morphism with P and let α : S′ → S be any
morphism. Then π′ : S′ ×S X → S′ has P.

Show:
(a) “Locally of finite type” is preserved by pullback. (Hint: this is a local property

on both S′ and S′×SX, so reduce to S′, S,X and therefore S′×SX all affine.)
(b) “Quasicompact morphism” is preserved by pullback. (Hint: this is a local

property on S′, so reduce to S′, S affine. Then show S′ ×S X is covered by
finitely-many affines.)

(c) “Affine morphism” is preserved by pullback. (Hint: this is local on S′...)
See Vakil 10.4.D for a longer list.

Solutions. (a) This is local on both the domain and codomain of π′ : S′×SX →
S′. So, let p′ ∈ S′ ×S X ′, let s′ = π′(p′) ∈ S′. It suffices to give an affine
neighborhood U ⊂ S′ of s′, and an affine neighborhood V ⊂ π′−1(U) of p′, where
the map is given by a finitely-generated algebra map.

Let x be the image of p′ in X and let s = α(s′) = π(x). First, replace S by any
affine neighborhood of s, shrinking X (around x) and S′ (around s′) accordingly.
Then replace X by an affine neighborhood of x and S′ by an affine neighborhood
of s′ (this new S′ is our “U”). This is what we’ve done:

S′ ×S X

��

// X

��
S′ // S

p′
_

��

� // x_

��
s′ � // s

V := U ×W W ′

��

// W ′(⊂ π−1(W ))

��
U(⊂ α−1(W )) // W (⊂ S)

We proved in class that this new S′×S X is an open subset of the old S′×S X, and
it contains p′. Also, now S′, S,X are all affine, so S′ ×S X is affine as well.

We claim that this is our desired neighborhood “V ”. On the ring map side, the
claim is that if R → A is a finitely-generated R algebra and R → R′ is arbitrary,
then R′ → R′ ⊗R A is finitely-generated as an R′-algebra. This is true because

A ∼= R[x1,...,xn]
I for some n and I, and then R′ ⊗R A ∼= R′[x1,...,xn]

I , with the same
(finite) generators and relations.
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(b) Similar. After reducing we may assume S, S′ affine (the details are slightly
simpler than in (a) since it doesn’t involve X). It’s enough to show S′ ×S X is
quasicompact, since “quasicompact morphism” is an affine-local property. Since
π is quasicompact and S is now affine, X is quasicompact. Then X is covered
by finitely-many affines, so S′ ×S X is covered by finitely-many affines, hence is
quasicompact.

(c) Even simpler. After reducing we may assume S, S′ are affine (again X is not
involved). Again it’s enough to show S′ ×S X is affine (since “affine morphism”
is an affine-local property). Since π is affine, we get X is affine, and then clearly
S′ ×S X is affine. □

(2) A morphism π : X → S is finite if it is affine and, for each affine open U =
SpecR ⊂ S, OX(π−1(U)) is a finitely-generated R-module. This is an affine-local
condition on S (same argument as HW3#7) and is preserved by pullback (in the
sense of Problem 2).
(a) Show that the open embedding Spec k[t, t−1] ↪→ Spec k[t] is not finite. This

shows finiteness is not affine-local on the source (since the identity map Spec k[t] →
Spec k[t] is obviously finite.) Show that the map of problem 1(b) is finite.

(b) Let π : X → S be a finite morphism. Show that the fibers of π are finite sets.
(Pull back to a fiber S′ = Spec k(p). Then look up and apply this theorem of
commutative algebra: an artinian ring has finitely-many prime ideals.)

Solutions. (a) The ring map is k[t] → k[t, t−1]. This isn’t finitely generated as
a k[t]-module because it includes t−k for arbitrarily large k. The map in problem
1(b) was k[t2] → k[t]. This is finite because, as a k[t2]-module, k[t] is generated by
1 and t.

(b) Assume π : X → S is finite. Let s ∈ S and by abuse of notation, let s also
denote the one-point scheme Spec k(s), which has an inclusion morphism s → S.
Since finiteness is preserved by base change, s ×S X → s is finite. Since finite
morphisms are affine, s×S X is affine. That is, the fiber of our morphism is affine
and given by a k(s)-algebra A that is finite-dimensional as a k(s)-vector space. In
particular, it’s obvious that A satisfies the descending chain condition on ideals,
hence is an artinian ring. Hence it has only finitely-many prime ideals. □

(3) (Based on NTAG Mar 2) Let Mn = An2
be the affine space of n×n matrices and let

Cn = {(A,B) : AB = BA} ⊆ Mn ×Mn be the subscheme of commuting matrices.
Note that the equations AB = BA define Cn as a scheme, and as of 2023 it is not
known whether this gives a radical ideal.

Let X be any scheme. Explain why a map X → Cn (an X-valued point of Cn) is
the same as a pair of commuting matrices with entries in Γ(X,OX). (For example,
if X = SpecR, this means a pair of commuting matrices with entries in R.)
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Solutions. Since Cn is affine, a map X → Cn is the same as a ring map of
global sections R → Γ(X,OX), where R is the ring of global sections of Cn. This
is

R =
k[aij , bij : 1 ≤ i, j ≤ n]

(AB = BA)
.

Here the equation AB = BA means “the ideal generated by

(∗)
∑
k

aikbkj −
∑
k

bikakj

for all i, j.” A ring map R → Γ(X,OX) is given by a choice of where to send the
generators,

aij 7→ fij , bij 7→ gij , for some fij , gij ∈ Γ(X,OX),

such that the equations (∗) are satisfied. These equations precisely mean that the
matrices F = (fij) and G = (gij) commute. □

(4) (Proj) Let S be an N-graded noetherian ring. Let M be a finitely-generated graded
S-module.
(a) Let f ∈ S be homogeneous of positive degree.

Show: Mf = 0 if and only if fdM = 0 for d ≫ 0.

(b) TFAE: (i) Mf = 0 for all homogeneous f ∈ S of positive degree, (ii) (S+)
dM =

0 for all natural numbers d ≫ 0, (iii) Md = 0 for d ≫ 0.
(c) Let I, J ⊆ S be homogeneous ideals and let U ⊂ SpecS be the complement of

the irrelevant locus. TFAE:
(i) ProjS/I = ProjS/J , (ii) (SpecS/I)∩U = (SpecS/J)∩U , (iii) Id = Jd for
d ≫ 0.
(Hint: Compare I to I ∩ J and use (b). Show (i) ⇔ (ii) directly by examining
distinguished open sets.)
This shows: two homogeneous ideals I, J define the same projective scheme if
and only if their affine schemes agree away from the irrelevant locus.

(d) Give a map M0 → Γ(M̃,ProjS). Show that this map need not be injective
nor surjective.

Solutions.
(a) (⇒) Let M be generated by m1, . . . ,mn. Since Mf = 0, for each i there

exists di such that fdimi = 0. Let d be the max of the di. Then fdmi = 0 for all
i, so fdM = 0.

(⇐) Since fdM = 0, fdm = 0 for all m ∈ M . Therefore m/1 = 0 for all m ∈ M ,
so Mf = 0.

(b) (i) ⇒ (ii): Let S+ be generated by f1, . . . , fk. By part (a) and finiteness,
we can choose N large enough that fN

i M = 0 for all i. Then (S+)
kN is generated

by all products involving kN of the fi’s. By the pigeonhole principle, any such
product has a factor fN

i . Therefore (S+)
kNM = 0.
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(ii) ⇒ (iii) : Suppose (S+)
NM = 0. Let M be generated by m1, . . . ,mn. Let S+

be generated by f1, . . . , fk. Let D = maxdeg(mj) and let E = maxdeg(fi).
Since M is generated by elements of degree ≤ D and S+ is generated by elements

of degree ≤ E, every element of M of degree ≥ D+NE can be expressed as a sum
of elements of the form f ·mj , where f is a product of at least N of the fi’s. Since
(S+)

NM = 0, it follows f ·mj = 0. Thus Md = 0 for all d ≥ D +NE.
(iii) ⇒ (i) : Suppose Md = 0 for all d ≫ 0. Let f be homogeneous of positive

degree. Since M is finitely-generated, feM ⊆
⊕

d′≥dMd′ = 0 for e ≫ 0. Therefore,

by part (a), Mf = 0.
(c) We need to assume S is generated in degree 1. I don’t think the statement

is true otherwise. Sorry!
For (i) ⇔ (ii), the key fact is the following. Let S be a graded ring containing

a unit u that is homogeneous of degree 1. Let I, J be homogeneous ideals of S.
Then I = J if and only if I0 = J0. (A similar fact applies to modules.) Proof: if
I = J , clearly I0 = J0. Conversely, suppose I0 = J0. It suffices to show that I and
J contain the same homogeneous elements, so let f be homogeneous. Then since
u is a unit,

f ∈ I ⇔ fu− deg(f) ∈ I0 ⇔ fu− deg(f) ∈ J0 ⇔ f ∈ J.

Likewise, S/I = S/J if and only if (S/I)0 = (S/J)0.
In particular, comparing ProjR/I and ProjR/J are covered by the sets D+(f)

where f is homogeneous of degree 1. These are Spec of the rings ((R/I)f )0 and
((R/J)f )0. Similarly, SpecR/I∩U and SpecR/J ∩U are covered by the sets D(f),
via the rings R/I and R/J . Applying the fact above, we see that the charts of Proj
agree if and only if the charts of Spec agree.

For (iii), we apply part (b), equivalence (iii) ⇐⇒ (ii), to the modules I/(I ∩J)
and J/(I ∩ J).

(d) Given m ∈ M0, we get a global section of M̃ from m
1 ∈ (Mf )0 over all

homogeneous f ’s. This clearly glues on overlaps.

Not injective: Let M = S/S+ = S0. Then Md = 0 for all d > 0, so M̃ = 0 by
part (b). But M0 = S0 ̸= 0.

Not surjective: Also by part (b), suppose M ⊂ N and Md = Nd for all d ≫ 0.

Then M̃ = Ñ . So, for example, let M = S+. Then M̃ = S̃ = OProjS because

Md = Sd for all d ≥ 1. So Γ(M̃,ProjS) ̸= 0, but of course M0 = (S+)0 = 0.

(5) Consider the graded ring map ϕ# : k[X,Y, Z] → k[S, T ] defined by X 7→ S3−ST 2,
Y 7→ S2T , Z 7→ T 3.
(a) Check

√
ϕ#((X,Y, Z)) = (S, T ). Deduce ϕ# induces a morphism ϕ : P1 → P2

sending [S : T ] to [S3 − ST 2 : S2T : T 3].
(b) As subsets of P1, what are ϕ−1({X = 0}), ϕ−1({Y = 0}), ϕ−1({Z = 0})?

What about as subschemes?
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(c) By examining ϕ on the standard affine charts of P2, show that ϕ is not a
closed embedding. (It is enough to check one chart if you think about part (a)
carefully.)

Solutions. (a) Since Z 7→ T 3, the radical contains T . Since X 7→ S3−ST 2 and
the radical contains T , the radical then contains ST 2, hence S3, hence S.

(b) The equation X = 0 corresponds to S3 − ST 2 = 0, or S(S − T )(S + T ) =
0. This is three reduced points on P1. Indeed, on the chart T = 1, it’s just

Spec k[s]
s(s−1)(s+1) .

The equation Y = 0 corresponds to S2T = 0. This is one reduced point ([1 : 0])

and one double point ([0 : 1]) on P1. On the two standard charts it’s k[s]
s2

and k[t]
t .

The equation Z = 0 corresponds to T 3 = 0. This is one nonreduced point ([1 : 0])

of multiplicity 3 on P1. On the S = 1 chart it’s k[t]
t3

.
(c) The simplest way to show this is that the morphism isn’t one-to-one. On

the chart Z = 1, the morphism is A1 → A2 via s 7→ (s3 − s, s2), which sends
±1 7→ (0, 1).

On the ring map side, this chart is k[x, y] → k[s] by x 7→ s3 − s and y 7→ s2.
This isn’t a surjective ring map because if we mod out by (x, y− 1) (corresponding

to the point (0, 1) above), we get k[x,y]
(x,y−1) →

k[s]
(s3−s,s2−1)

= k[s]
(s2−1)

, which simplifies to

k → k2, which is no longer surjective. (If R → S is surjective, so is R/I → S/IS.)
Zhe’s proof (thanks Zhe!): Under the ring map k[x, y] → k[s], x2 maps to

the same thing as y(y − 1)2, namely s2(s2 − 1)2. Therefore, given any f(x, y), we
can replace powers xk with k ≥ 2 by expressions in y without changing its image,
and so reduce f to the form

f = xg1(y) + g2(y).

Now when we apply the ring map, the first term gives only odd powers of s and
the second term gives only even powers of s. In particular, if g1(y) = a0 + a1y +
· · ·+ any

n, then

ϕ(xg1(y)) = (s3 − s)(a0 + a1s
2 + · · ·+ ans

2n)

= −a0s+ (a0 − a1)s
3 + · · ·+ (an−1 − an)s

2n+1 + ans
2n+3.

If this equals s, then solving the equations gives a0 = −1, but also a0 = a1 = a2 =
· · · = an = 0, a contradiction.


