MATH 819 – HW3 (MODULES, FINITENESS CONDITIONS, LOCAL CONDITIONS)

Due date: In class Thursday, March 2nd

Reading: Vakil Sections 5.3, 6.1-6.4, 7.1-7.3 (Please note that I am following the December 2022 version)

Background on modules. Hand in **one** problem below:

- (1) Let R be a ring and $0 \to M' \to M \to M'' \to 0$ a short exact sequence of R-modules. Let N be any R-module. Show that $M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$ is exact. (We say that $-\otimes N$ is a right-exact functor.)
- (2) Give isomorphisms

$$R/I \otimes M \cong M/IM$$
, $S^{-1}R \otimes M \cong S^{-1}M$ and $R/I \otimes R/J \cong R/(I+J)$ and, for an R -algebra $A, A \otimes R[x] \cong A[x]$.

Combine the first two to obtain $k(p) \otimes M \cong M(p)$ for any $p \in \operatorname{Spec} R$.

If
$$S = \frac{R[x_1,\dots,x_n]}{I}$$
 and $S' = \frac{R[y_1,\dots,y_m]}{J}$ are finitely-generated R -algebras, show that $S \otimes_R S' = \frac{R[x_1,\dots,x_n,y_1,\dots,y_m]}{I+J}$ (think carefully about what " $I+J$ " actually means.)

(3) Let R be a ring and let $\phi: M \to N$ be a map of R-modules. Let $S \subseteq R$ be a multiplicative set. Show that $S^{-1}(\ker \phi) \cong \ker(S^{-1}\phi)$ and $S^{-1}(\operatorname{coker}\phi) \cong \operatorname{coker}(S^{-1}\phi)$. (Suggestion: Show that one satisfies the universal property of the other.)

Note: This is equivalent to showing: if $0 \to M' \to M \to M'' \to 0$ is a short exact sequence, then $0 \to S^{-1}M' \to S^{-1}M \to S^{-1}M'' \to 0$ is exact. That is, $S^{-1}(-)$ is an *exact functor*. If you prefer, you can show that instead.

Do **both** problems below:

- (4) Let X be a scheme and let $f \in \Gamma(X, \mathcal{O}_X)$. Let $X_f = \{p \in X : f(p) \neq 0\}$.
 - (a) Show: for any affine open subset $U = \operatorname{Spec} R$, $X_f \cap U = D(f|_U)$. Conclude that X_f is open.
 - (b) If X is quasicompact, show that X_f is quasicompact. (Hint: Intersect X_f with an affine cover of X and use 3.6.H(a).)

(5) (Fitting ideals) Let R be a ring and M an R-module. A free presentation is an exact sequence

$$G \xrightarrow{\phi} F \to M \to 0.$$

where G and F are free R-modules. That is, M is generated by (the images of) the generators of F, subject to the relations $\phi(g) = 0$ for each generator $g \in G$. We say M is finitely-presented it has a presentation with $G \cong R^n$ and $F \cong R^m$ for some $n, m \in \mathbb{N}$. In this case ϕ is given by an $m \times n$ matrix of ring elements (r_{ij}) , and $\phi(g_1, \ldots, g_n) = (r_{ij}) \cdot (g_j)$ (matrix-vector multiplication).

(a) Assume M is finitely-presented as above. Let $p \in \operatorname{Spec}(R)$. Tensor with k(p) to get the right exact sequence

$$G(p) \xrightarrow{\phi(p)} F(p) \to M(p) \to 0.$$

Suppose that the matrix $\phi(p)$, of elements of k(p), has rank r as a matrix. What is the dimension of M(p) as a k(p)-vector space?

- (b) Prove that the set $\operatorname{Fitt}_{\geq r}(M) := \{ p \in \operatorname{Spec} R : \dim_{k(p)} M(p) \geq r \}$ is closed in the Zariski topology. (Hint: consider the ideal of R generated by determinants of minors of ϕ .) Conclude there exists a nonempty open set $U \subseteq \operatorname{Spec} R$ such that $\tilde{M}|_U$ has constant rank (i.e. $\dim_{k(p)} M(p)$ is the same for all $p \in U$).
- (c) Let R = k[x, y, z] and let M be the cokernel of the map $\phi : R^3 \to R^2$ given by the matrix $\begin{bmatrix} x & y & z \\ z & x & y \end{bmatrix}$. Describe the subsets of \mathbb{A}^3 on which M has each possible rank.

In (b), in fact more is true: the ideal of minors from part (c), the Fitting ideal, does not depend on the choice of presentation. Therefore, it gives not just a closed subset but a natural scheme structure on it. See e.g. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Corollary-Definition 20.4.

"Affine-local property" problems: hand in **three** of these. Each one mirrors a proof we did in class. Make sure to read the statements of all four.

- (6) Let R be a ring and M an R-module. Verify the claim from class, that $\widetilde{M}(D(f)) := M_f$ defines a sheaf on the distinguished base, hence produces a sheaf of modules. (Adapt the proof that the structure sheaf on Spec R is a sheaf on the base.)
- (7) Let \mathscr{F} be a quasicoherent sheaf. Show that the condition " $\mathscr{F}(U)$ is a finitely-generated $\mathcal{O}_X(U)$ -module" satisfies the requirements of the Affine Communication Lemma. If \mathscr{F} has this property and X is noetherian, \mathscr{F} is called a **coherent sheaf**. (Adapt the proof for "locally noetherian".)
- (8) Let $\pi: X \to Y$ be a morphism of schemes. Show that the condition " $\pi^{-1}(U)$ is quasicompact" of open subsets $U \subseteq Y$ satisfies the hypotheses of the Affine Communication Lemma. We then call π a **quasicompact morphism**. Proceed as follows. Assume $Y = \operatorname{Spec} A$ is affine and $(f_1, \ldots, f_n) = (1)$ in A.

- (i) If $\pi^{-1}(Y) = X$ is quasicompact, show that $\pi^{-1}(D(f_i))$ is quasicompact. (Pull f_i to a global section on X and use Problem 4.)
- (ii) If $\pi^{-1}(D(f_i))$ is quasicompact for all i, show that X is quasicompact.
- (9) Let $\pi: X \to Y$ be a morphism of schemes. Show that the condition " $\pi^{-1}(U)$ is affine" satisfies the conditions of the Affine Communication Lemma. We the call π an **affine morphism**, a.k.a. a family of affine varieties.

(Adapt the proof that quasicoherence is a local property. For the second condition, you should be showing the following: let $Y = \operatorname{Spec} R$ and let $(f_1, \ldots, f_n) = (1) \in R$. Let $g_i = \pi^{\#}(f_i) \in \Gamma(X, \mathcal{O}_X)$. By assumption, each open subscheme $X_{g_i} = \{x \in X : g_i(x) \neq 0\}$ is affine. Show that for each $f \in R$, letting $g = \pi^{\#}(f)$, the natural map $\Gamma(X, \mathcal{O}_X)_g \to \Gamma(X_g, \mathcal{O}_X)$ is an isomorphism.)

Vakil problems (optional):

• 3.6.VWXY (Noetherian modules – pure algebra)