Monodromy and K-theory of Schubert Curves

Jake Levinson (University of Michigan) joint with Maria Gillespie (UC-Davis)

UW Combinatorics Seminar January 25, 2017

Variation on a theme of Schubert

Construct a locus $\mathcal{S} \subseteq\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}=G(2,4)$:

Variation on a theme of Schubert

Construct a locus $\mathcal{S} \subseteq\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}=G(2,4)$:
Take the twisted cubic $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}, t \mapsto\left[1: t: t^{2}: t^{3}\right]$,

Variation on a theme of Schubert

Construct a locus $\mathcal{S} \subseteq\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}=G(2,4)$:
Take the twisted cubic $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}, t \mapsto\left[1: t: t^{2}: t^{3}\right]$, and tangent lines at $0,1, \infty$

Variation on a theme of Schubert

Construct a locus $\mathcal{S} \subseteq\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}=G(2,4)$:
Take the twisted cubic $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}, t \mapsto\left[1: t: t^{2}: t^{3}\right]$, and tangent lines at $0,1, \infty$

Define \mathcal{S} by:

Variation on a theme of Schubert

Construct a locus $\mathcal{S} \subseteq\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}=G(2,4)$:
Take the twisted cubic $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}, t \mapsto\left[1: t: t^{2}: t^{3}\right]$, and tangent lines at $0,1, \infty$

Define \mathcal{S} by:

$$
\mathcal{S}=\left\{\begin{aligned}
& L \cap L_{0} \neq \varnothing \\
& L \in \mathbb{P}^{3}: L \cap L_{1} \neq \varnothing \\
& L \cap L_{\infty} \neq \varnothing
\end{aligned}\right\} \subseteq G(2,4)
$$

- Classically: Specify 4 lines; get $\mathcal{S}=$ finite $=2$ points.

Variation on a theme of Schubert

Construct a locus $\mathcal{S} \subseteq\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}=G(2,4)$:
Take the twisted cubic $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}, t \mapsto\left[1: t: t^{2}: t^{3}\right]$, and tangent lines at $0,1, \infty$

Define \mathcal{S} by:

$$
\mathcal{S}=\left\{\begin{aligned}
& L \cap L_{0} \neq \varnothing \\
& L \in \mathbb{P}^{3}: L \cap L_{1} \neq \varnothing \\
& L \cap L_{\infty} \neq \varnothing
\end{aligned}\right\} \subseteq G(2,4)
$$

- Classically: Specify 4 lines; get $\mathcal{S}=$ finite $=2$ points.
- Instead: \mathcal{S} is a curve! $(\mathrm{deg}=2, \chi=1)$

Variation on a theme of Schubert

Construct a locus $\mathcal{S} \subseteq\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}=G(2,4)$:
Take the twisted cubic $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}, t \mapsto\left[1: t: t^{2}: t^{3}\right]$, and tangent lines at $0,1, \infty$

Define \mathcal{S} by:

- Classically: Specify 4 lines; get $\mathcal{S}=$ finite $=2$ points.
- Instead: \mathcal{S} is a curve! $(\mathrm{deg}=2, \chi=1)$
- "Reality": A fourth condition $L \cap L_{t}, t \in \mathbb{R} \mathbb{P}^{1}$, always gives two reduced, real points $\in \mathcal{S}(\mathbb{R})$.

Variation on a theme of Schubert

Construct a locus $\mathcal{S} \subseteq\left\{\right.$ lines in $\left.\mathbb{P}^{3}\right\}=G(2,4)$:
Take the twisted cubic $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{3}, t \mapsto\left[1: t: t^{2}: t^{3}\right]$, and tangent lines at $0,1, \infty$

Define \mathcal{S} by:

$$
\mathcal{S}=\left\{\begin{aligned}
& L \cap L_{0} \neq \varnothing \\
& L \in \mathbb{P}^{3}: L \cap L_{1} \neq \varnothing \\
& L \cap L_{\infty} \neq \varnothing
\end{aligned}\right\} \subseteq G(2,4)
$$

- Classically: Specify 4 lines; get $\mathcal{S}=$ finite $=2$ points.
- Instead: \mathcal{S} is a curve! ($\mathrm{deg}=2, \chi=1$)
- "Reality": A fourth condition $L \cap L_{t}, t \in \mathbb{R} \mathbb{P}^{1}$, always gives two reduced, real points $\in \mathcal{S}(\mathbb{R})$.
- Monodromy: Sweep t around $\mathbb{R P}^{1} \Rightarrow$ points switch places.

Tangent flags to the rational normal curve

Tangent flags to the rational normal curve

- The rational normal curve in \mathbb{P}^{n-1} :

$$
\begin{aligned}
\mathbb{P}^{1} & \hookrightarrow \mathbb{P}\left(\mathbb{C}^{n}\right)=\mathbb{P}^{n-1} \text { by } \\
t & \mapsto\left[1: t: t^{2}: \cdots: t^{n-1}\right]
\end{aligned}
$$

- (Maximally) tangent flag $\mathscr{F}_{t}, t \in \mathbb{P}^{1}$:

Tangent flags to the rational normal curve

- The rational normal curve in \mathbb{P}^{n-1} :

$$
\begin{aligned}
\mathbb{P}^{1} & \hookrightarrow \mathbb{P}\left(\mathbb{C}^{n}\right)=\mathbb{P}^{n-1} \text { by } \\
t & \mapsto\left[1: t: t^{2}: \cdots: t^{n-1}\right]
\end{aligned}
$$

- (Maximally) tangent flag $\mathscr{F}_{t}, t \in \mathbb{P}^{1}$:

- \mathcal{S} will be a locus in $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$, defined using $\mathscr{F}_{t=0,1, \infty}$.

Schubert varieties in Grassmannians

- Grassmannian: $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)=\left\{k\right.$-planes $\left.V \subset \mathbb{C}^{n}\right\}$

Schubert varieties in Grassmannians

- Grassmannian: $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)=\left\{k\right.$-planes $\left.V \subset \mathbb{C}^{n}\right\}$
- Schubert variety $\Omega_{\lambda}(\mathscr{F}):($ codimension $=|\lambda|)$
- Complete flag $\mathscr{F} \subseteq \mathbb{C}^{n}$,

Partition $\quad \lambda \subseteq k \times(n-k)$ rectangle:

$$
\lambda=(3,1) \Longleftrightarrow \square \square
$$

- $\Omega_{\lambda}(\mathscr{F})=\left\{V: \operatorname{dim}\left(V \cap \mathscr{F}^{k+\lambda_{i}-i}\right) \geqslant i\right.$ for all $\left.i\right\}$.

Schubert varieties in Grassmannians

- Grassmannian: $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)=\left\{k\right.$-planes $\left.V \subset \mathbb{C}^{n}\right\}$
- Schubert variety $\Omega_{\lambda}(\mathscr{F}):($ codimension $=|\lambda|)$
- Complete flag $\mathscr{F} \subseteq \mathbb{C}^{n}$,

Partition $\quad \lambda \subseteq k \times(n-k)$ rectangle:

$$
\lambda=(3,1) \Longleftrightarrow \square \square
$$

- $\Omega_{\lambda}(\mathscr{F})=\left\{V: \operatorname{dim}\left(V \cap \mathscr{F}^{k+\lambda_{i}-i}\right) \geqslant i\right.$ for all $\left.i\right\}$.
- Unique codimension-1 Schubert variety $\Omega_{\square}(\mathscr{F})$

Schubert varieties in Grassmannians

- Grassmannian: $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)=\left\{k\right.$-planes $\left.V \subset \mathbb{C}^{n}\right\}$
- Schubert variety $\Omega_{\lambda}(\mathscr{F}):($ codimension $=|\lambda|)$
- Complete flag $\mathscr{F} \subseteq \mathbb{C}^{n}$,

Partition $\quad \lambda \subseteq k \times(n-k)$ rectangle:

$$
\lambda=(3,1) \Longleftrightarrow \square \square
$$

- $\Omega_{\lambda}(\mathscr{F})=\left\{V: \operatorname{dim}\left(V \cap \mathscr{F}^{k+\lambda_{i}-i}\right) \geqslant i\right.$ for all $\left.i\right\}$.
- Unique codimension-1 Schubert variety $\Omega_{\square}(\mathscr{F})$
- For tangent flags $\mathscr{F}=\mathscr{F}_{t}, \Omega_{\lambda}\left(\mathscr{F}_{t}\right)$ used to study degenerations of curves [Eisenbud-Harris '80s]

The general construction: a Schubert curve $\mathcal{S} \subseteq G(k, n)$

- Rational normal curve $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{n-1}$, tangent flags $\mathscr{F}_{t=0,1, \infty}$

The general construction: a Schubert curve $\mathcal{S} \subseteq G(k, n)$

- Rational normal curve $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{n-1}$, tangent flags $\mathscr{F}_{t=0,1, \infty}$
- Select three partitions, α, β, γ with $|\alpha|+|\beta|+|\gamma|=k(n-k)-1$.

The general construction: a Schubert curve $\mathcal{S} \subseteq G(k, n)$

- Rational normal curve $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{n-1}$, tangent flags $\mathscr{F}_{t=0,1, \infty}$
- Select three partitions, α, β, γ with $|\alpha|+|\beta|+|\gamma|=k(n-k)-1$.

Definition

The Schubert curve $\mathcal{S} \subseteq G(k, n)$ is

$$
\mathcal{S}=\mathcal{S}(\alpha, \beta, \gamma)=\Omega_{\alpha}\left(\mathscr{F}_{t=0}\right) \cap \Omega_{\beta}\left(\mathscr{F}_{t=1}\right) \cap \Omega \gamma\left(\mathscr{F}_{t=\infty}\right) .
$$

- $\operatorname{deg}(\mathcal{S}), \chi\left(\mathcal{O}_{\mathcal{S}}\right)$: from combinatorial data: Young tableaux.

The general construction: a Schubert curve $\mathcal{S} \subseteq G(k, n)$

- Rational normal curve $\mathbb{P}^{1} \hookrightarrow \mathbb{P}^{n-1}$, tangent flags $\mathscr{F}_{t=0,1, \infty}$
- Select three partitions, α, β, γ with $|\alpha|+|\beta|+|\gamma|=k(n-k)-1$.

Definition

The Schubert curve $\mathcal{S} \subseteq G(k, n)$ is

$$
\mathcal{S}=\mathcal{S}(\alpha, \beta, \gamma)=\Omega_{\alpha}\left(\mathscr{F}_{t=0}\right) \cap \Omega_{\beta}\left(\mathscr{F}_{t=1}\right) \cap \Omega \gamma\left(\mathscr{F}_{t=\infty}\right) .
$$

- $\operatorname{deg}(\mathcal{S}), \chi\left(\mathcal{O}_{\mathcal{S}}\right)$: from combinatorial data: Young tableaux.
- "Reality" and Monodromy:

Fourth Schubert condition $\lambda=\square$ at $t \in \mathbb{R P}^{1}$ vary $t \rightsquigarrow$ sweep out $\mathcal{S}(\mathbb{R})(!!)$

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))
$\mathcal{S}=\mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

- There is a map $f: \mathcal{S} \rightarrow \mathbb{P}^{1}$, inducing a smooth covering of real points, $\mathcal{S}(\mathbb{R}) \rightarrow \mathbb{R} \mathbb{P}^{1}$. (Note: $f^{-1}(t)=\mathcal{S} \cap \Omega_{\square}\left(\mathscr{F}_{t}\right)$.)

Conventions on Young tableaux

Conventions on Young tableaux

- Yamanouchi tableau of shape ν / μ :

Semistandard, whose reverse row word is ballot.

$$
\begin{aligned}
\mu & =(3,3,1) \\
\nu & =(6,5,5,4,1)
\end{aligned}
$$

- Content $=(\# 1$'s, \#2's, $\cdots)$
- Word $=111223321443253$

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))
$\mathcal{S}=\mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

- There is a map $f: \mathcal{S} \rightarrow \mathbb{P}^{1}$, inducing a smooth covering of real points, $\mathcal{S}(\mathbb{R}) \rightarrow \mathbb{R} \mathbb{P}^{1}$. (Note: $f^{-1}(t)=\mathcal{S} \cap \Omega_{\square}\left(\mathscr{F}_{t}\right)$.)

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))
$\mathcal{S}=\mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

- $f^{-1}(0) \leftrightarrow \operatorname{LR}(\alpha, \square, \beta, \gamma)=$ tableaux of shape γ^{c} / α, with one inner corner marked \boxtimes, the rest Yamanouchi of content β.

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))
$\mathcal{S}=\mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

- $f^{-1}(\infty) \leftrightarrow \operatorname{LR}(\alpha, \beta, \square, \gamma)=$ tableaux of shape γ^{c} / α, with one outer corner marked \boxtimes, the rest Yamanouchi of content β.

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))
$\mathcal{S}=\mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

- The arcs of $\mathcal{S}(\mathbb{R})$ lying over \mathbb{R}_{-}and \mathbb{R}_{+}induce shuffling (JDT) and evacuation-shuffling on tableaux (sh, esh).

Real geometry of Schubert curves

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))
$\mathcal{S}=\mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

- Monodromy operator: $\omega=$ sh \circ esh.
- Orbit structure of ω fully characterizes $\mathcal{S}(\mathbb{R})$!

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Shuffling, or JDT: Slide \boxtimes through the tableau using jeu de taquin.

α		1		1	1
α	1	2	2	2	
	2	3	3		
1	3	4	4	γ	
3	4	5	\times		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Shuffling, or JDT: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	2	3	3		
1	3	4	4		
3	4	5	\times		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Shuffling, or JDT: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	2	3	3		
1	3	4	4		
3	4	\times	5		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Shuffling, or JDT: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	2	3	3		
1	3	\times	4		
3	4	4	5		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Shuffling, or JDT: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	2	\times	3		
1	3	3	4		
3	4	4	5		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Shuffling, or JDT: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	\times	2	3		
1	3	3	4		
3	4	4	5		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.

		1	1	1
	\times	2	2	
1	2	3		

		1	1	1
	\times	2	2	
1	2	3		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

		1	1	1
	\times	2	2	
1	2	3		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

	\times	1	1	1
		2	2	
1	2	3		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

	\times	1	1	1
	2	2	2	
1		3		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

	\times	1	1	1
	2	2	2	
1	3			

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

	\times	1	1	1
	2	2	2	
1	3	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

	\times	1	1	1
1	2	2	2	
	3	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

	\times	1	1	1
1	2	2	2	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

\times		1	1	1
1	2	2	2	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

\times	1		1	1
1	2	2	2	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

\times	1	1		1
1	2	2	2	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .

		1	1	1
	\times	2	2	
1	2	3		

\times	1	1	1	
1	2	2	2	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)

		1	1	1
	\times	2	2	
1	2	3		

\times	1	1	1	
1	2	2	2	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)

		1	1	1
	\times	2	2	
1	2	3		

1	1	1	1	
\times	2	2	2	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)

		1	1	1
	\times	2	2	
1	2	3		

1	1	1	1	
2	\times	2	2	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)

		1	1	1
	\times	2	2	
1	2	3		

1	1	1	1	
2	2	\times	2	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)

		1	1	1
	\times	2	2	
1	2	3		

1	1	1	1	3
2	2	2	\times	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

1	1	1	1	3
2	2	2	\times	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

1	1	1		1
2	2	2	\times	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

1	1		1	1
2	2	2	\times	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

1		1	1	1
2	2	2	\times	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

	1	1	1	1
2	2	2	\times	
3	2	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

	1	1	1	1
2	2	2	\times	
	3	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

	1	1	1	1
	2	2	\times	
2	3	1		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

	1	1	1	1
	2	2	\times	
2		3		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

	1	1	1	1
		2	\times	
2	2	3		

Shuffling and Evacuation-Shuffling

Two bijections:

$$
\operatorname{LR}(\alpha, \square, \beta, \gamma) \underset{\text { sh }}{\stackrel{\text { esh }}{\rightleftarrows}} \operatorname{LR}(\alpha, \beta, \square, \gamma)
$$

- Evacuation-shuffling:

Conjugation $\left(r s r^{-1}\right)$ of shuffling by rectification.
(1) Rectify: Treat \times as 0 .
(2) Shuffle (JDT)
(3) Un-rectify: Treat \times as ∞.

		1	1	1
	\times	2	2	
1	2	3		

T

Questions about $\omega=$ sh \circ esh

Three motivating problems:
(1) Find an easier algorithm.

Questions about $\omega=\operatorname{sh} \circ$ esh

Three motivating problems:
(1) Find an easier algorithm.
(2) Describe orbits of $\omega \rightsquigarrow$ geometry of \mathcal{S}

Questions about $\omega=\operatorname{sh} \circ$ esh

Three motivating problems:
(1) Find an easier algorithm.
(2) Describe orbits of $\omega \rightsquigarrow$ geometry of \mathcal{S}

- In general: likely hard!
- Related: promotion on standard tableaux

Questions about $\omega=$ sh \circ esh

Three motivating problems:
(1) Find an easier algorithm.
(2) Describe orbits of $\omega \rightsquigarrow$ geometry of \mathcal{S}

- In general: likely hard!
- Related: promotion on standard tableaux

(3) Connection to K-theoretic Schubert calculus
- Combinatorial identities involving $\chi\left(\mathcal{O}_{S}\right)$ and ω
- $\chi\left(\mathcal{O}_{S}\right)$ computed by genomic tableaux [Pechenik-Yong '14]

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

					1	1	1	1	1
					2	2	2	2	
		\times	1	2	3	3			
	1	1	2	3	4	4			
2	3	3	3	4	\checkmark	5			
3	4	4							

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)
Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

Phase 1

$$
(i=1)
$$

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

Phase 1

$$
(i=2)
$$

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

Phase 1

$$
(i=3)
$$

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

Phase 1

$$
(i=4)
$$

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

- Phase 2 (move $\begin{aligned} \text { right-and-up): }\end{aligned}$
 reading order. Repeat until tied. Increment i, repeat.

Phase 2
($i=4$)

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

- Phase 2 (move $\begin{aligned} \text { right-and-up): }\end{aligned}$
 reading order. Repeat until tied. Increment i, repeat.

Phase 2
($i=4$)

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

- Phase 2 (move $\begin{aligned} \text { right-and-up): }\end{aligned}$
 reading order. Repeat until tied. Increment i, repeat.

Phase 2
($i=4$)

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

- Phase 2 (move $\begin{aligned} \text { right-and-up): }\end{aligned}$
 reading order. Repeat until tied. Increment i, repeat.

Phase 2
($i=4$)

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

- Phase 2 (move $\begin{aligned} \text { right-and-up): }\end{aligned}$
 reading order. Repeat until tied. Increment i, repeat.

Phase 2

$$
(i=5)
$$

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

- Phase 2 (move $\begin{aligned} \text { right-and-up): }\end{aligned}$
 reading order. Repeat until tied. Increment i, repeat.

Phase 2

$$
(i=5)
$$

Local, linear-time algorithm for evacuation-shuffling

Theorem (Gillespie,L.)

Start at $i=1$.

- Phase 1 (move \boxtimes down-and-left):
- Switch $\begin{aligned} & \text { with nearest } i \text { in reading order. }\end{aligned}$

If no i available, go to Phase 2.

- Phase 2 (move $\begin{aligned} \text { right-and-up): }\end{aligned}$
 reading order. Repeat until tied. Increment i, repeat.

Phase 2

$$
(i=5)
$$

Proof of local rule

- First: "Pieri case", $\beta=$ horizontal strip $=\square \| \square \square$.
- Claim:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- Proof of Pieri Case:

Proof of local rule

- General case: "Factor" T into strips, move $\mathbb{\text { incrementally. Refer to }}$ Pieri case.

\times	1	1	1		1
1	2	2	2		
2	3	3	3		
4	4	4			
5					

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

\times	1	1		1	1
1	2	2	2	2	
2	3	3	3	3	
4	4	4			
5					

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1		1	1	1
\times	2			2	2	
2	3	3		3	3	
4	4	4				
5						

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1		1	1	1
\times	2	2		2	2	
2	3	3		3	3	
4	4	4				
5						

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1		1	1	1
2	2	2		2	2	
\times	3	3		3	3	
4	4	4				
5						

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1	1	1	1
2	2	2	2	2	
\times	3	3	3	3	
4	4	4			
5					

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1	1	1	1
2	2	2	2	2	
\times	3	3	3	3	
4	4	4			
5					

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1	1	1	1
2	2	2	2	2	
\times	3	3	3	,	
4	4	4			
5					

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1		1	1	1
2	2	2		2	2	
\times	3	3		3	3	
4	4	4				
5						

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1	1	1	1
2	2	2	2	2	
3	\times	3	3	,	
4	4	4			
5					

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1	1		1
2	2	2	2		
3	3	\times	3		
4	4	4			
5					

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1	1	1	1
2	2	2	2	2	
3	3	3	\times	3	
4	4	4			
5					

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Proof of local rule

- General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

1	1	1	1			1
2	2	2	2			
3	3	3	3			
4	4	4				
5						

- Switch $\begin{aligned} & \text { with nearest square... }\end{aligned}$
- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Application: K-theory and $\chi\left(\mathcal{O}_{\mathcal{S}}\right)$

Application: K-theory and $\chi\left(\mathcal{O}_{\mathcal{S}}\right)$

K-theoretic Schubert calculus:

$$
\chi\left(\mathcal{O}_{\mathcal{S}}\right)=c_{\alpha, \beta, \gamma, \boxtimes}^{W}-k_{\alpha, \beta, \gamma}^{\square},
$$

Application: K-theory and $\chi\left(\mathcal{O}_{\mathcal{S}}\right)$

K-theoretic Schubert calculus:

$$
\chi\left(\mathcal{O}_{\mathcal{S}}\right)=c_{\alpha, \beta, \gamma, \boxtimes}^{\square}-k_{\alpha, \beta, \gamma}^{\square},
$$

- $c_{\alpha, \beta, \gamma, \boxtimes}^{\square}=|\operatorname{LR}(\alpha, \square, \beta, \gamma)|=$ Young tableaux with \boxtimes

Application: K-theory and $\chi\left(\mathcal{O}_{\mathcal{S}}\right)$

K-theoretic Schubert calculus:

$$
\chi\left(\mathcal{O}_{\mathcal{S}}\right)=c_{\alpha, \beta, \gamma, \boxtimes}^{\square}-k_{\alpha, \beta, \gamma}^{\square},
$$

- $c_{\alpha, \beta, \gamma, \boxtimes}^{\square \square}=|\operatorname{LR}(\alpha, \square, \beta, \gamma)|=$ Young tableaux with \boxtimes
- $k_{\alpha, \beta, \gamma}^{\square}=\left|K\left(\gamma^{c} / \alpha ; \beta\right)\right|=$ genomic tableaux [Pechenik-Yong '15]

Genomic tableaux

- Genomic tableau: T with shaded entries $\left\{\mathbb{Q}^{\prime}, \boxtimes^{\prime}\right\}$, where:
(i) $\boxtimes, \boxtimes^{\prime}$ non-adjacent, contain same entry i,
(ii) No i's between them in the reading word,
(iii) Delete either \boxtimes or $\boxtimes^{\prime} \Rightarrow$ leftover reading word is ballot.

Genomic tableaux

- Genomic tableau: T with shaded entries $\left\{\mathbb{Q}^{\prime}, \boxtimes^{\prime}\right\}$, where:
(i) $\boxtimes, \boxtimes^{\prime}$ non-adjacent, contain same entry i,
(ii) No i's between them in the reading word,
(iii) Delete either \boxtimes or $\boxtimes^{\prime} \Rightarrow$ leftover reading word is ballot.
- Which of the following are genomic tableaux?

Genomic tableaux

- Genomic tableau: T with shaded entries $\left\{\boxtimes, \boxtimes^{\prime}\right\}$, where:
(i) $\boxtimes, \boxtimes^{\prime}$ non-adjacent, contain same entry i,
(ii) No i's between them in the reading word,
(iii) Delete either \boxtimes or $\boxtimes^{\prime} \Rightarrow$ leftover reading word is ballot.
- Which of the following are genomic tableaux?

Genomic tableaux

- Genomic tableau: T with shaded entries $\left\{\boxtimes, \boxtimes^{\prime}\right\}$, where:
(i) $\boxtimes, \boxtimes^{\prime}$ non-adjacent, contain same entry i,
(ii) No i's between them in the reading word,
(iii) Delete either \boxtimes or $\boxtimes^{\prime} \Rightarrow$ leftover reading word is ballot.
- Which of the following are genomic tableaux?

- K-theoretic content: $\beta=(4,2,1)$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Generating genomic tableaux

Theorem (Gillespie, L.)

Two bijections

$$
\begin{aligned}
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 1)\right\} \\
& \left.K\left(\gamma^{c} / \alpha ; \beta\right) \leftrightarrow\{\text { non-adjacent moves in esh (Phase } 2)\right\}
\end{aligned}
$$

Application: geometry!

Application: geometry!

Corollary [Gillespie,L.]

- Suppose ω acts trivially, i.e. $\mathcal{S}(\mathbb{R}) \rightarrow \mathbb{R P}^{1}$ is a disjoint union of degree-1 circles.

Then $\mathcal{S} \rightarrow \mathbb{P}^{1}$ is algebraically trivial, $\mathcal{S} \cong \bigsqcup_{\operatorname{deg} f} \mathbb{P}^{1}$.
(Not true of general maps of real algebraic curves!)

Application: geometry!

Corollary [Gillespie,L.]

- Suppose ω acts trivially, i.e. $\mathcal{S}(\mathbb{R}) \rightarrow \mathbb{R} \mathbb{P}^{1}$ is a disjoint union of degree-1 circles.

Then $\mathcal{S} \rightarrow \mathbb{P}^{1}$ is algebraically trivial, $\mathcal{S} \cong \bigsqcup_{\operatorname{deg} f} \mathbb{P}^{1}$.
(Not true of general maps of real algebraic curves!)
Schubert curves over \mathbb{C} [Gillespie, L.]:

- \mathcal{S} with arbitrarily many \mathbb{C}-connected components
- \mathcal{S} integral, with arbitrarily high genus $g_{a}(\mathcal{S})$

Application: sign, rlength of ω

- Reflection length of $\sigma \in S_{N}$
$=\min \left\{r: \sigma=\tau_{1} \cdots \tau_{r}\right\}$ with τ_{i} arbitrary transpositions $=N-\# \operatorname{orbits}(\sigma)$
- Sign $\operatorname{sign}(\sigma)=$ rlength $(\sigma)(\bmod 2)$.

Application: sign, rlength of ω

- Reflection length of $\sigma \in S_{N}$

$$
\begin{aligned}
& =\min \left\{r: \sigma=\tau_{1} \cdots \tau_{r}\right\} \text { with } \tau_{i} \text { arbitrary transpositions } \\
& =N-\# \operatorname{orbits}(\sigma)
\end{aligned}
$$

- Sign $\operatorname{sign}(\sigma)=$ rlength $(\sigma)(\bmod 2)$.
(L.) From geometry (properties of map $\mathcal{S} \rightarrow \mathbb{P}^{1}$):

$$
\begin{aligned}
& \text { \# components of } \mathcal{S}(\mathbb{R}) \equiv \chi\left(\mathcal{O}_{\mathcal{S}}\right)(\bmod 2) \text { and } \\
& \# \text { components of } \mathcal{S}(\mathbb{R}) \geqslant \chi\left(\mathcal{O}_{\mathcal{S}}\right)
\end{aligned}
$$

Application: sign, rlength of ω

- Reflection length of $\sigma \in S_{N}$

$$
\begin{aligned}
& =\min \left\{r: \sigma=\tau_{1} \cdots \tau_{r}\right\} \text { with } \tau_{i} \text { arbitrary transpositions } \\
& =N-\# \operatorname{orbits}(\sigma)
\end{aligned}
$$

- Sign $\operatorname{sign}(\sigma)=$ rlength $(\sigma)(\bmod 2)$.
(L.) From geometry (properties of map $\mathcal{S} \rightarrow \mathbb{P}^{1}$):

$$
\begin{aligned}
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \equiv \operatorname{sign}(\omega)(\bmod 2), \\
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \geqslant \operatorname{rlength}(\omega)
\end{aligned}
$$

Application: sign, rlength of ω

- Reflection length of $\sigma \in S_{N}$

$$
\begin{aligned}
& =\min \left\{r: \sigma=\tau_{1} \cdots \tau_{r}\right\} \text { with } \tau_{i} \text { arbitrary transpositions } \\
& =N-\# \operatorname{orbits}(\sigma)
\end{aligned}
$$

- Sign $\operatorname{sign}(\sigma)=$ rlength $(\sigma)(\bmod 2)$.
(L.) From geometry (properties of map $\mathcal{S} \rightarrow \mathbb{P}^{1}$):

$$
\begin{aligned}
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \equiv \operatorname{sign}(\omega)(\bmod 2), \\
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \geqslant \operatorname{rlength}(\omega)
\end{aligned}
$$

Is there a combinatorial explanation?

The sign and reflection length of ω

Corollary (Gillespie,L.)

Independent proofs of

$$
\begin{aligned}
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \equiv \operatorname{sign}(\omega)(\bmod 2), \\
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \geqslant \operatorname{rlength}(\omega) .
\end{aligned}
$$

The sign and reflection length of ω

Corollary (Gillespie,L.)

Independent proofs of

$$
\begin{aligned}
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \equiv \operatorname{sign}(\omega)(\bmod 2) \\
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \geqslant \operatorname{rlength}(\omega)
\end{aligned}
$$

Idea: factor esh and sh into steps:

The sign and reflection length of ω

Corollary (Gillespie,L.)

Independent proofs of

$$
\begin{aligned}
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \equiv \operatorname{sign}(\omega)(\bmod 2) \\
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \geqslant \operatorname{rlength}(\omega)
\end{aligned}
$$

Idea: factor esh and sh into steps:

Each $s_{i} \circ e_{i}$ has very simple orbit structure and

$$
\begin{aligned}
\operatorname{sign}(\omega) & \equiv \sum \operatorname{sign}\left(s_{i} \circ e_{i}\right)(\bmod 2), \\
\operatorname{rlength}(\omega) & \leqslant \sum \operatorname{rlength}\left(s_{i} \circ e_{i}\right)
\end{aligned}
$$

The sign and reflection length of ω

Corollary (Gillespie,L.)

Independent proofs of

$$
\begin{aligned}
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \equiv \operatorname{sign}(\omega)(\bmod 2) \\
& \left|K\left(\gamma^{c} / \alpha ; \beta\right)\right| \geqslant \operatorname{rlength}(\omega)
\end{aligned}
$$

Idea: factor esh and sh into steps:

Each $s_{i} \circ e_{i}$ has very simple orbit structure and

$$
\begin{aligned}
\operatorname{sign}(\omega) & \equiv \sum \operatorname{sign}\left(s_{i} \circ e_{i}\right)(\bmod 2) \\
\operatorname{rlength}(\omega) & \leqslant \sum \operatorname{rlength}\left(s_{i} \circ e_{i}\right)=\sum\left|K\left(\gamma^{c} / \alpha ; \beta\right)(i)\right| .
\end{aligned}
$$

What's next?

Combinatorics:

What's next?

Combinatorics:

- Conjecture. In every orbit \mathcal{O} of ω, at least $|\mathcal{O}|-1$ genomic tableaux are generated (in each Phase).
Holds for $\ell(\beta) \leqslant 2$; holds for $k, n \leqslant 10$ (all α, β, γ).

What's next?

Combinatorics:

- Conjecture. In every orbit \mathcal{O} of ω, at least $|\mathcal{O}|-1$ genomic tableaux are generated (in each Phase).

Holds for $\ell(\beta) \leqslant 2$; holds for $k, n \leqslant 10$ (all α, β, γ).

- Local rules for esh, ω in general:
- Shifted tableaux for $O G(n, 2 n+1)$ [with Kevin Purbhoo]
\rightsquigarrow crystal-like structure on shifted SSYTs? (Coming soon...!)
- Tableau switching: $\operatorname{esh}(S, T)$, where $S \neq \boxtimes$.

What's next?

Combinatorics:

- Conjecture. In every orbit \mathcal{O} of ω, at least $|\mathcal{O}|-1$ genomic tableaux are generated (in each Phase).

Holds for $\ell(\beta) \leqslant 2$; holds for $k, n \leqslant 10$ (all α, β, γ).

- Local rules for esh, ω in general:
- Shifted tableaux for $O G(n, 2 n+1)$ [with Kevin Purbhoo]
\rightsquigarrow crystal-like structure on shifted SSYTs? (Coming soon...!)
- Tableau switching: $\operatorname{esh}(S, T)$, where $S \neq \boxtimes$.

Geometry:

- Schubert curves in $O G(n, 2 n+1), L G(2 n)$ [Purbhoo]
- Higher dimensions: "Schubert surfaces", 3-folds, ...

PREVIEW: Schubert curves in OG(n,2n+1)

(with Maria Gillespie and Kevin Purbhoo)

- Odd orthogonal Grassmannian (type C):
- Symmetric form $\langle-,-\rangle$ on $\mathbb{C}^{2 n+1}$
- $V \subseteq \mathbb{C}^{2 n+1}$ is isotropic if $\left\langle v_{1}, v_{2}\right\rangle=0$ for all $v_{1}, v_{2} \in V$.
- $O G(n, 2 n+1)=\{V \in G r(n, 2 n+1)$ isotropic $\}$.

PREVIEW: Schubert curves in OG($\mathrm{n}, 2 \mathrm{n}+1$)

(with Maria Gillespie and Kevin Purbhoo)

- Odd orthogonal Grassmannian (type C):
- Symmetric form $\langle-,-\rangle$ on $\mathbb{C}^{2 n+1}$
- $V \subseteq \mathbb{C}^{2 n+1}$ is isotropic if $\left\langle v_{1}, v_{2}\right\rangle=0$ for all $v_{1}, v_{2} \in V$.
- $O G(n, 2 n+1)=\{V \in G r(n, 2 n+1)$ isotropic $\}$.
- 'Halved' combinatorial picture:

- Similar story, giving $\mathcal{S}(\alpha, \beta, \gamma) \subset O G(n, 2 n+1)$

PREVIEW: Schubert curves in OG(n,2n+1)

(with Maria Gillespie and Kevin Purbhoo)

- Odd orthogonal Grassmannian (type C):
- Symmetric form $\langle-,-\rangle$ on $\mathbb{C}^{2 n+1}$
- $V \subseteq \mathbb{C}^{2 n+1}$ is isotropic if $\left\langle v_{1}, v_{2}\right\rangle=0$ for all $v_{1}, v_{2} \in V$.
- $O G(n, 2 n+1)=\{V \in \operatorname{Gr}(n, 2 n+1)$ isotropic $\}$.
- 'Halved' combinatorial picture:

- Similar story, giving $\mathcal{S}(\alpha, \beta, \gamma) \subset O G(n, 2 n+1)$
- Thm (G-L-P). Topology of \mathcal{S} determined by shifted JDT, esh.
- Local esh: Phase 1 resembles Type A, Phase 2 does not!
- Instead, Phase 2 uses crystal-like (coplactic) operators on words.

Schubert curves in OG(n,2n+1)

- Strict partitions α, β, γ, shifted (ballot) SSYTs T
- Alphabet $1^{\prime}<1<2^{\prime}<2<\cdots$, allowed to have $\frac{1}{1_{1}^{\prime}}$ and 111 .
- Convention: first $\left\{i, i^{\prime}\right\}$ in reading order is an i.
- Shifted esh:
- Phase 1: Switch past alphabet, alternating directions.
- Phase 2: Apply coplactic operators to reading word.

Schubert curves in OG(n,2n+1)

- Strict partitions α, β, γ, shifted (ballot) SSYTs T
- Alphabet $1^{\prime}<1<2^{\prime}<2<\cdots$, allowed to have $\frac{1}{1_{1}^{\prime}}$ and 111 .
- Convention: first $\left\{i, i^{\prime}\right\}$ in reading order is an i.
- Shifted esh:
- Phase 1: Switch past alphabet, alternating directions.
- Phase 2: Apply coplactic operators to reading word.

Schubert curves in OG(n,2n+1)

- Strict partitions α, β, γ, shifted (ballot) SSYTs T
- Alphabet $1^{\prime}<1<2^{\prime}<2<\cdots$, allowed to have $\frac{1}{1_{1}^{\prime}}$ and 111 .
- Convention: first $\left\{i, i^{\prime}\right\}$ in reading order is an i.
- Shifted esh:
- Phase 1: Switch past alphabet, alternating directions.
- Phase 2: Apply coplactic operators to reading word.

Schubert curves in OG(n,2n+1)

- Strict partitions α, β, γ, shifted (ballot) SSYTs T
- Alphabet $1^{\prime}<1<2^{\prime}<2<\cdots$, allowed to have $\frac{1}{1_{1}^{\prime}}$ and 111 .
- Convention: first $\left\{i, i^{\prime}\right\}$ in reading order is an i.
- Shifted esh:
- Phase 1: Switch past alphabet, alternating directions.
- Phase 2: Apply coplactic operators to reading word.

Schubert curves in OG(n,2n+1)

- Strict partitions α, β, γ, shifted (ballot) SSYTs T
- Alphabet $1^{\prime}<1<2^{\prime}<2<\cdots$, allowed to have $\frac{1}{1_{1}^{\prime}}$ and 111 .
- Convention: first $\left\{i, i^{\prime}\right\}$ in reading order is an i.
- Shifted esh:
- Phase 1: Switch past alphabet, alternating directions.
- Phase 2: Apply coplactic operators to reading word.

Schubert curves in OG(n,2n+1)

- Strict partitions α, β, γ, shifted (ballot) SSYTs T
- Alphabet $1^{\prime}<1<2^{\prime}<2<\cdots$, allowed to have $\frac{1}{1_{1}^{\prime}}$ and 111 .
- Convention: first $\left\{i, i^{\prime}\right\}$ in reading order is an i.
- Shifted esh:
- Phase 1: Switch past alphabet, alternating directions.
- Phase 2: Apply coplactic operators to reading word.

Schubert curves in OG(n,2n+1)

- Strict partitions α, β, γ, shifted (ballot) SSYTs T
- Alphabet $1^{\prime}<1<2^{\prime}<2<\cdots$, allowed to have $\frac{1}{1_{1}^{\prime}}$ and 111 .
- Convention: first $\left\{i, i^{\prime}\right\}$ in reading order is an i.
- Shifted esh:
- Phase 1: Switch past alphabet, alternating directions.
- Phase 2: Apply coplactic operators to reading word.

Example of Phase 2 (coplactic operators)

- Operators $E_{i}, F_{i}, E_{i}^{\prime}, F_{i}^{\prime}$ for raising and lowering weights
- F : converts an $i \rightarrow i+1$, possibly also moves a prime
- F^{\prime} : converts an $i \rightarrow(i+1)^{\prime}$ (can omit in computation)
- Apply $F_{1}, F_{2}, F_{3}, \ldots$ (essentially " $\lim _{x \rightarrow \infty} F_{x}$ ")

Example of Phase 2 (coplactic operators)

- Operators $E_{i}, F_{i}, E_{i}^{\prime}, F_{i}^{\prime}$ for raising and lowering weights
- F : converts an $i \rightarrow i+1$, possibly also moves a prime
- F^{\prime} : converts an $i \rightarrow(i+1)^{\prime}$ (can omit in computation)
- Apply $F_{1}, F_{2}, F_{3}, \ldots$ (essentially " $\lim _{x \rightarrow \infty} F_{x}$ ")

Example of Phase 2 (coplactic operators)

- Operators $E_{i}, F_{i}, E_{i}^{\prime}, F_{i}^{\prime}$ for raising and lowering weights
- F : converts an $i \rightarrow i+1$, possibly also moves a prime
- F^{\prime} : converts an $i \rightarrow(i+1)^{\prime}$ (can omit in computation)
- Apply $F_{1}, F_{2}, F_{3}, \ldots$ (essentially " $\lim _{x \rightarrow \infty} F_{x}$ ")

Example of Phase 2 (coplactic operators)

- Operators $E_{i}, F_{i}, E_{i}^{\prime}, F_{i}^{\prime}$ for raising and lowering weights
- F : converts an $i \rightarrow i+1$, possibly also moves a prime
- F^{\prime} : converts an $i \rightarrow(i+1)^{\prime}$ (can omit in computation)
- Apply $F_{1}, F_{2}, F_{3}, \ldots$ (essentially " $\lim _{x \rightarrow \infty} F_{x}$ ")

Example of Phase 2 (coplactic operators)

- Operators $E_{i}, F_{i}, E_{i}^{\prime}, F_{i}^{\prime}$ for raising and lowering weights
- F : converts an $i \rightarrow i+1$, possibly also moves a prime
- F^{\prime} : converts an $i \rightarrow(i+1)^{\prime}$ (can omit in computation)
- Apply $F_{1}, F_{2}, F_{3}, \ldots$ (essentially " $\lim _{x \rightarrow \infty} F_{x}$ ")

Example of Phase 2 (coplactic operators)

- Operators $E_{i}, F_{i}, E_{i}^{\prime}, F_{i}^{\prime}$ for raising and lowering weights
- F : converts an $i \rightarrow i+1$, possibly also moves a prime
- F^{\prime} : converts an $i \rightarrow(i+1)^{\prime}$ (can omit in computation)
- Apply $F_{1}, F_{2}, F_{3}, \ldots$ (essentially " $\lim _{x \rightarrow \infty} F_{x}$ ")

Example of Phase 2 (coplactic operators)

- Operators $E_{i}, F_{i}, E_{i}^{\prime}, F_{i}^{\prime}$ for raising and lowering weights
- F : converts an $i \rightarrow i+1$, possibly also moves a prime
- F^{\prime} : converts an $i \rightarrow(i+1)^{\prime}$ (can omit in computation)
- Apply $F_{1}, F_{2}, F_{3}, \ldots$ (essentially " $\lim _{x \rightarrow \infty} F_{x}$ ")

Example of Phase 2 (coplactic operators)

- Operators $E_{i}, F_{i}, E_{i}^{\prime}, F_{i}^{\prime}$ for raising and lowering weights
- F : converts an $i \rightarrow i+1$, possibly also moves a prime
- F^{\prime} : converts an $i \rightarrow(i+1)^{\prime}$ (can omit in computation)
- Apply $F_{1}, F_{2}, F_{3}, \ldots$ (essentially " $\lim _{x \rightarrow \infty} F_{x}$ ")

Example of Phase 2 (coplactic operators)

- Operators $E_{i}, F_{i}, E_{i}^{\prime}, F_{i}^{\prime}$ for raising and lowering weights
- F : converts an $i \rightarrow i+1$, possibly also moves a prime
- F^{\prime} : converts an $i \rightarrow(i+1)^{\prime}$ (can omit in computation)
- Apply $F_{1}, F_{2}, F_{3}, \ldots$ (essentially " $\lim _{x \rightarrow \infty} F_{x}$ ")

Thank you!

