Monodromy and K-theory of Schubert Curves

Jake Levinson (University of Michigan)

joint with Maria Gillespie (UC-Davis)

UW Combinatorics Seminar January 25, 2017

イロト イヨト イヨト

Construct a locus $S \subseteq \{ \text{lines in } \mathbb{P}^3 \} = G(2, 4)$:

Construct a locus $S \subseteq \{$ lines in $\mathbb{P}^3\} = G(2, 4)$: Take the **twisted cubic** $\mathbb{P}^1 \hookrightarrow \mathbb{P}^3$, $t \mapsto [1: t: t^2: t^3]$,

- 3

イロト イヨト イヨト イヨト

Construct a locus $S \subseteq \{$ lines in $\mathbb{P}^3\} = G(2, 4)$: Take the **twisted cubic** $\mathbb{P}^1 \hookrightarrow \mathbb{P}^3$, $t \mapsto [1:t:t^2:t^3]$, and **tangent lines** at $0, 1, \infty$

< 67 ▶

Construct a locus $S \subseteq \{\text{lines in } \mathbb{P}^3\} = G(2, 4)$: Take the **twisted cubic** $\mathbb{P}^1 \hookrightarrow \mathbb{P}^3$, $t \mapsto [1:t:t^2:t^3]$, and **tangent lines** at $0, 1, \infty$

D

efine
$$S$$
 by:

$$S = \left\{ \begin{array}{c} L \cap L_0 \neq \emptyset \\ L \in \mathbb{P}^3 : L \cap L_1 \neq \emptyset \\ L \cap L_\infty \neq \emptyset \end{array} \right\} \subseteq G(2,4)$$

< 67 ▶

Construct a locus $S \subseteq \{ \text{lines in } \mathbb{P}^3 \} = G(2, 4)$: Take the **twisted cubic** $\mathbb{P}^1 \hookrightarrow \mathbb{P}^3$, $t \mapsto [1 : t : t^2 : t^3]$, and **tangent lines** at $0, 1, \infty$

• **Classically**: Specify 4 lines; get S = finite = 2 points.

Construct a locus $S \subseteq \{\text{lines in } \mathbb{P}^3\} = G(2, 4)$: Take the **twisted cubic** $\mathbb{P}^1 \hookrightarrow \mathbb{P}^3$, $t \mapsto [1:t:t^2:t^3]$, and **tangent lines** at $0, 1, \infty$

• **Classically**: Specify 4 lines; get S = finite = 2 points.

• Instead: S is a curve! (deg = 2, $\chi = 1$)

Construct a locus $S \subseteq \{\text{lines in } \mathbb{P}^3\} = G(2, 4)$: Take the **twisted cubic** $\mathbb{P}^1 \hookrightarrow \mathbb{P}^3$, $t \mapsto [1:t:t^2:t^3]$, and **tangent lines** at $0, 1, \infty$

• **Classically**: Specify 4 lines; get S = finite = 2 points.

• Instead: S is a curve! (deg = 2, $\chi = 1$)

"Reality": A fourth condition L ∩ L_t, t ∈ ℝP¹, always gives two reduced, real points ∈ S(ℝ).

Construct a locus $S \subseteq \{\text{lines in } \mathbb{P}^3\} = G(2, 4)$: Take the **twisted cubic** $\mathbb{P}^1 \hookrightarrow \mathbb{P}^3$, $t \mapsto [1:t:t^2:t^3]$, and **tangent lines** at $0, 1, \infty$

- **Classically**: Specify 4 lines; get S = finite = 2 points.
- Instead: S is a curve! (deg = 2, $\chi = 1$)
 - "Reality": A fourth condition L ∩ L_t, t ∈ ℝP¹, always gives two reduced, real points ∈ S(ℝ).
 - **Monodromy**: Sweep t around $\mathbb{RP}^1 \Rightarrow$ points switch places.

イロト 不得下 イヨト イヨト 二日

Tangent flags to the rational normal curve

イロト イ団ト イヨト イヨト 二日

Tangent flags to the rational normal curve

• The rational normal curve in \mathbb{P}^{n-1} :

$$\mathbb{P}^{1} \hookrightarrow \mathbb{P}(\mathbb{C}^{n}) = \mathbb{P}^{n-1} \text{ by}$$
$$t \mapsto [1: t: t^{2}: \cdots: t^{n-1}]$$

• (Maximally) tangent flag \mathscr{F}_t , $t \in \mathbb{P}^1$:

Tangent flags to the rational normal curve

• The rational normal curve in \mathbb{P}^{n-1} :

$$\mathbb{P}^{1} \hookrightarrow \mathbb{P}(\mathbb{C}^{n}) = \mathbb{P}^{n-1} \text{ by}$$
$$t \mapsto [1:t:t^{2}:\cdots:t^{n-1}]$$

• (Maximally) tangent flag \mathscr{F}_t , $t \in \mathbb{P}^1$:

イロト 不得下 イヨト イヨト

• S will be a locus in $Gr(k, \mathbb{C}^n)$, defined using $\mathscr{F}_{t=0,1,\infty}$.

• **Grassmannian**: $Gr(k, \mathbb{C}^n) = \{k \text{-planes } V \subset \mathbb{C}^n\}$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

- Grassmannian: $Gr(k, \mathbb{C}^n) = \{k \text{-planes } V \subset \mathbb{C}^n\}$
- Schubert variety $\Omega_{\lambda}(\mathscr{F})$: (codimension = $|\lambda|$)
 - Complete flag $\mathscr{F} \subseteq \mathbb{C}^n$, Partition $\lambda \subseteq k \times (n-k)$ rectangle:

$$\lambda = (\mathbf{3}, \mathbf{1}) \Longleftrightarrow \blacksquare \blacksquare$$

•
$$\Omega_{\lambda}(\mathscr{F}) = \{V : \dim(V \cap \mathscr{F}^{k+\lambda_i-i}) \ge i \text{ for all } i\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Grassmannian: $Gr(k, \mathbb{C}^n) = \{k \text{-planes } V \subset \mathbb{C}^n\}$
- Schubert variety $\Omega_{\lambda}(\mathscr{F})$: (codimension = $|\lambda|$)
 - $\begin{array}{ll} \bullet \mbox{ Complete flag } & \mathscr{F} \subseteq \mathbb{C}^n, \\ & \mbox{ Partition } & \lambda \subseteq k \times (n-k) \mbox{ rectangle: } \end{array}$

$$\lambda = (3, 1) \iff \square$$

•
$$\Omega_{\lambda}(\mathscr{F}) = \{V : \dim(V \cap \mathscr{F}^{k+\lambda_i-i}) \ge i \text{ for all } i\}.$$

• Unique codimension-1 Schubert variety $\Omega_{\Box}(\mathscr{F})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Grassmannian: $Gr(k, \mathbb{C}^n) = \{k \text{-planes } V \subset \mathbb{C}^n\}$
- Schubert variety $\Omega_{\lambda}(\mathscr{F})$: (codimension = $|\lambda|$)
 - Complete flag $\mathscr{F} \subseteq \mathbb{C}^n$, Partition $\lambda \subseteq k \times (n-k)$ rectangle:

$$\lambda = (3,1) \Longleftrightarrow \square$$

•
$$\Omega_{\lambda}(\mathscr{F}) = \{V : \dim(V \cap \mathscr{F}^{k+\lambda_i-i}) \ge i \text{ for all } i\}.$$

- Unique codimension-1 Schubert variety $\Omega_{\Box}(\mathscr{F})$
- For tangent flags 𝒴 = 𝒴_t, Ω_λ(𝒴_t) used to study degenerations of curves [Eisenbud-Harris '80s]

• Rational normal curve $\mathbb{P}^1 \hookrightarrow \mathbb{P}^{n-1}$, tangent flags $\mathscr{F}_{t=0,1,\infty}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Rational normal curve $\mathbb{P}^1 \hookrightarrow \mathbb{P}^{n-1}$, tangent flags $\mathscr{F}_{t=0,1,\infty}$
- Select three partitions, α, β, γ with $|\alpha| + |\beta| + |\gamma| = k(n-k) 1$.

イロト イポト イヨト イヨト 二日

- Rational normal curve $\mathbb{P}^1 \hookrightarrow \mathbb{P}^{n-1}$, tangent flags $\mathscr{F}_{t=0,1,\infty}$
- Select three partitions, α, β, γ with $|\alpha| + |\beta| + |\gamma| = k(n-k) 1$.

Definition

The **Schubert curve** $S \subseteq G(k, n)$ is

$$\mathcal{S} = \mathcal{S}(\alpha, \beta, \gamma) = \Omega_{\alpha}(\mathscr{F}_{t=0}) \cap \Omega_{\beta}(\mathscr{F}_{t=1}) \cap \Omega\gamma(\mathscr{F}_{t=\infty}).$$

• $\deg(\mathcal{S})$, $\chi(\mathcal{O}_{\mathcal{S}})$: from combinatorial data: Young tableaux.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Rational normal curve $\mathbb{P}^1 \hookrightarrow \mathbb{P}^{n-1}$, tangent flags $\mathscr{F}_{t=0,1,\infty}$
- Select three partitions, α, β, γ with $|\alpha| + |\beta| + |\gamma| = k(n-k) 1$.

Definition

The **Schubert curve** $S \subseteq G(k, n)$ is

$$\mathcal{S} = \mathcal{S}(\alpha, \beta, \gamma) = \Omega_{\alpha}(\mathscr{F}_{t=0}) \cap \Omega_{\beta}(\mathscr{F}_{t=1}) \cap \Omega\gamma(\mathscr{F}_{t=\infty}).$$

- $\deg(\mathcal{S})$, $\chi(\mathcal{O}_{\mathcal{S}})$: from combinatorial data: Young tableaux.
- "Reality" and Monodromy: Fourth Schubert condition λ = □ at t ∈ ℝP¹ vary t → sweep out S(ℝ) (!!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))

 $\mathcal{S} = \mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

There is a map f : S → P¹, inducing a smooth covering of real points, S(ℝ) → ℝP¹. (Note: f⁻¹(t) = S ∩ Ω_□(ℱ_t).)

Conventions on Young tableaux

Conventions on Young tableaux

• Yamanouchi tableau of shape ν/μ :

Semistandard, whose reverse row word is **ballot**.

$$T = \begin{array}{c|cccc} \mu & 1 & 1 & 1 \\ \hline \mu & 2 & 2 \\ \hline 1 & 2 & 3 & 3 \\ \hline 2 & 3 & 4 & 4 \\ \hline 3 & 5 \\ \hline \end{array}$$

$$\begin{aligned} \mu &= (3,3,1) \\ \nu &= (6,5,5,4,1) \end{aligned}$$

Content = (#1's, #2's, ···)
Word = 111223321443253

イロト イポト イヨト イヨト 二日

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))

 $\mathcal{S} = \mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

There is a map f : S → P¹, inducing a smooth covering of real points, S(ℝ) → ℝP¹. (Note: f⁻¹(t) = S ∩ Ω_□(ℱ_t).)

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))

 $\mathcal{S} = \mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

f⁻¹(0) ↔ LR(α, □, β, γ) = tableaux of shape γ^c/α, with one inner corner marked ⋈, the rest Yamanouchi of content β.

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))

 $\mathcal{S} = \mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

f⁻¹(∞) ↔ LR(α, β, □, γ) = tableaux of shape γ^c/α, with one outer corner marked ⊠, the rest Yamanouchi of content β.

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))

 $\mathcal{S} = \mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

• The arcs of $S(\mathbb{R})$ lying over \mathbb{R}_- and \mathbb{R}_+ induce shuffling (JDT) and evacuation-shuffling on tableaux (sh, esh).

Theorem (L., extending Speyer, Mukhin-Tarasov-Varchenko; see also Purbhoo (and Eisenbud-Harris ...))

 $\mathcal{S} = \mathcal{S}(\alpha, \beta, \gamma)$ a Schubert curve, $\mathcal{S}(\mathbb{R})$ its real points.

- Monodromy operator: $\omega = \operatorname{sh} \circ \operatorname{esh}$.
- Orbit structure of ω fully characterizes $\mathcal{S}(\mathbb{R})$!

Two bijections:

$$LR(\alpha,\Box,\beta,\gamma) \xrightarrow{esh} LR(\alpha,\beta,\Box,\gamma)$$

• **Shuffling**, or **JDT**: Slide \boxtimes through the tableau using jeu de taquin.

Q			1	1	1
		1	2	2	2
	2	3	3		
1	3	4	4	γ	
3	4	5	×		

イロト 不得下 イヨト イヨト 二日

Two bijections:

$$LR(\alpha,\Box,\beta,\gamma) \xrightarrow{esh} LR(\alpha,\beta,\Box,\gamma)$$

• **Shuffling**, or **JDT**: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	2	3	3		
1	3	4	4		
3	4	5	×		

Two bijections:

$$LR(\alpha,\Box,\beta,\gamma) \xrightarrow{esh} LR(\alpha,\beta,\Box,\gamma)$$

• **Shuffling**, or **JDT**: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	2	3	3		
1	3	4	4		
3	4	×	5		

Two bijections:

$$LR(\alpha,\Box,\beta,\gamma) \xrightarrow{esh} LR(\alpha,\beta,\Box,\gamma)$$

• **Shuffling**, or **JDT**: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	2	3	3		
1	3	×	4		
3	4	4	5		

Two bijections:

$$LR(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} LR(\alpha,\beta,\Box,\gamma)$$

• **Shuffling**, or **JDT**: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	2	\times	3		
1	3	3	4		
3	4	4	5		

Two bijections:

$$LR(\alpha,\Box,\beta,\gamma) \xrightarrow{esh} LR(\alpha,\beta,\Box,\gamma)$$

• **Shuffling**, or **JDT**: Slide \boxtimes through the tableau using jeu de taquin.

			1	1	1
		1	2	2	2
	\times	2	3		
1	3	3	4		
3	4	4	5		

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (*rsr*⁻¹) of **shuffling** by **rectification**. **Rectify:** Treat × as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**. **1 Rectify:** Treat \times as 0.

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)
- **Output** Un-rectify: Treat \times as ∞ .

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)
- **Output** Un-rectify: Treat \times as ∞ .

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)
- **O In-rectify:** Treat \times as ∞ .

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)
- **O In-rectify:** Treat \times as ∞ .

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)
- **O In-rectify:** Treat \times as ∞ .

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)
- **O In-rectify:** Treat \times as ∞ .

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- **1** Rectify: Treat × as 0.
- Shuffle (JDT)
- **O In-rectify:** Treat \times as ∞ .

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- Rectify: Treat × as 0.
- Shuffle (JDT)
- **3** Un-rectify: Treat \times as ∞ .

	1	1	1	1
	2	2	\times	
2		3		

< 4 ► >

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow[]{\text{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

• Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- Rectify: Treat × as 0.
- Shuffle (JDT)
- **3** Un-rectify: Treat \times as ∞ .

	1	1	1	1
		2	×	
2	2	3		

< 4 ₽ > <

Two bijections:

$$\operatorname{LR}(\alpha,\Box,\beta,\gamma) \xrightarrow{\operatorname{esh}} \operatorname{LR}(\alpha,\beta,\Box,\gamma)$$

Evacuation-shuffling:

Conjugation (rsr^{-1}) of **shuffling** by **rectification**.

- Rectify: Treat × as 0.
- Shuffle (JDT)
- **Output** Un-rectify: Treat \times as ∞ .

		1	1	1
	1	2	×	
2	2	3		

Image: A matrix

esh(T)

M. Gillespie and J. Levinson

Three motivating problems:

Find an easier algorithm.

イロト イポト イヨト イヨト 二日

Three motivating problems:

- Find an easier algorithm.
- 2 Describe orbits of $\omega \rightsquigarrow$ geometry of S

イロト 不得 トイヨト イヨト 二日

Three motivating problems:

- Find an easier algorithm.
- 2 Describe orbits of $\omega \rightsquigarrow$ geometry of S
 - In general: likely hard!
 - Related: promotion on standard tableaux
 - orbits \longleftrightarrow components of $S(\alpha, \Box, \dots, \Box, \gamma)(\mathbb{R})$.

 $|\gamma/\alpha| - 1$

▲口▶ ▲掃▶ ▲臣▶ ▲臣▶ ― 臣 ― のへで

Three motivating problems:

- Find an easier algorithm.
- 2 Describe orbits of $\omega \rightsquigarrow$ geometry of S
 - In general: likely hard!
 - Related: promotion on standard tableaux

• orbits
$$\longleftrightarrow$$
 components of $S(\alpha, \underline{\Box}, \ldots, \underline{\Box}, \gamma)(\mathbb{R})$.

 $|\gamma/lpha| - 1$

- Sonnection to K-theoretic Schubert calculus
 - Combinatorial identities involving $\chi(\mathcal{O}_{\mathcal{S}})$ and ω
 - $\chi(\mathcal{O}_S)$ computed by genomic tableaux [Pechenik-Yong '14]

Theorem (Gillespie,L.)

Start at i = 1.

					1	1	1	1	1				
					2	2	2	2		_			
		X	1	2	3	3							
	1	1	2	3	4	4							
2	3	3	3	4	5	5							
3	4	4											

3

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

If no i available, go to Phase 2.

Phase 1

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

- **Phase 2** (move \boxtimes right-and-up):
 - If suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with nearest *i* in reading order. Repeat until tied. Increment *i*, repeat.

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

- **Phase 2** (move \boxtimes right-and-up):
 - If suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with nearest *i* in reading order. Repeat until tied. Increment *i*, repeat.

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

- **Phase 2** (move \boxtimes right-and-up):
 - If suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with nearest *i* in reading order. Repeat until tied. Increment *i*, repeat.

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

- **Phase 2** (move \boxtimes right-and-up):
 - If suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with nearest *i* in reading order. Repeat until tied. Increment *i*, repeat.

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

- **Phase 2** (move \boxtimes right-and-up):
 - If suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with nearest *i* in reading order. Repeat until tied. Increment *i*, repeat.

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

- **Phase 2** (move \boxtimes right-and-up):
 - If suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with nearest *i* in reading order. Repeat until tied. Increment *i*, repeat.

Theorem (Gillespie,L.)

Start at i = 1.

- Phase 1 (move \boxtimes down-and-left):
 - Switch \boxtimes with **nearest** *i* in reading order.

- **Phase 2** (move \boxtimes right-and-up):
 - If suffix from \boxtimes is not tied for (i, i + 1), switch \boxtimes with nearest *i* in reading order. Repeat until tied. Increment *i*, repeat.

- First: "Pieri case", β = horizontal strip = _____
- Claim:

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

• Proof of Pieri Case:

э

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Proof of Pieri Case:

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Proof of Pieri Case:

メロト メポト メヨト メヨト

э

• Proof of Pieri Case:

メロト メポト メヨト メヨト

э

• Proof of Pieri Case:

3

イロト イヨト イヨト イヨト

• Proof of Pieri Case:

3

イロト イヨト イヨト イヨト

• Proof of Pieri Case:

メロト メポト メヨト メヨト

э

• Proof of Pieri Case:

メロト メポト メヨト メヨト

э

• Proof of Pieri Case:

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Proof of Pieri Case:

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Proof of Pieri Case:

3

• Proof of Pieri Case:

M. Gillespie and J. Levinson

Monodromy of Schubert Curves

UW Combinatorics 14 / 26

3

• Proof of Pieri Case:

イロト イヨト イヨト イヨト

3

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

• General case: "Factor" *T* into strips, move ⊠ incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

• General case: "Factor" *T* into strips, move ⊠ incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

• General case: "Factor" *T* into strips, move ⊠ incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Image: A matrix and a matrix

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

- Switch 🖂 with **nearest** square...
 - ... prior to it in horizontal strip (Pieri case)
 - ... after it in vertical strip (transpose of Pieri case).

Image: A matrix and a matrix
Proof of local rule

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

- Switch 🖂 with **nearest** square...
 - ... prior to it in horizontal strip (Pieri case)
 - ... after it in vertical strip (transpose of Pieri case).

Image: A matrix of the second seco

Proof of local rule

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Image: A matrix of the second seco

Proof of local rule

• General case: "Factor" T into strips, move \boxtimes incrementally. Refer to Pieri case.

• Switch 🖂 with **nearest** square...

- ... prior to it in horizontal strip (Pieri case)
- ... after it in vertical strip (transpose of Pieri case).

Image: A matrix of the second seco

Application: K-theory and $\chi(\mathcal{O}_S)$

Application: K-theory and $\chi(\mathcal{O}_S)$

K-theoretic Schubert calculus:

$$\chi(\mathcal{O}_{\mathcal{S}}) = c_{\alpha,\beta,\gamma,\boxtimes} - k_{\alpha,\beta,\gamma},$$

Application: K-theory and $\chi(\mathcal{O}_{\mathcal{S}})$

K-theoretic Schubert calculus:

$$\chi(\mathcal{O}_{\mathcal{S}}) = c_{\alpha,\beta,\gamma,\boxtimes} - k_{\alpha,\beta,\gamma},$$

•
$$c_{\alpha,\beta,\gamma,\boxtimes}^{\amalg} = |\mathrm{LR}(\alpha,\Box,\beta,\gamma)| = \mathsf{Young tableaux with }\boxtimes$$

イロト イポト イヨト イヨト 二日

Application: K-theory and $\chi(\mathcal{O}_{\mathcal{S}})$

K-theoretic Schubert calculus:

$$\chi(\mathcal{O}_{\mathcal{S}}) = c_{\alpha,\beta,\gamma,\boxtimes} - k_{\alpha,\beta,\gamma},$$

•
$$c_{\alpha,\beta,\gamma,\boxtimes}^{\ddagger} = |LR(\alpha,\Box,\beta,\gamma)| =$$
Young tableaux with \boxtimes

•
$$k_{\alpha,\beta,\gamma}^{\ddagger} = |K(\gamma^c/\alpha;\beta)| = \text{genomic tableaux [Pechenik-Yong '15]}$$

• Genomic tableau: T with shaded entries $\{\boxtimes,\boxtimes'\}$, where:

- (i) \boxtimes, \boxtimes' non-adjacent, contain same entry *i*,
- (ii) No i's between them in the reading word,
- (iii) Delete either \boxtimes or $\boxtimes' \Rightarrow$ leftover reading word is ballot.

• Genomic tableau: T with shaded entries $\{\boxtimes,\boxtimes'\}$, where:

(i) \boxtimes, \boxtimes' non-adjacent, contain same entry *i*,

(ii) No *i*'s between them in the reading word,

(iii) Delete either \boxtimes or $\boxtimes' \Rightarrow$ leftover reading word is ballot.

• Which of the following are genomic tableaux?

• Genomic tableau: T with shaded entries $\{\boxtimes,\boxtimes'\}$, where:

(i) \boxtimes, \boxtimes' non-adjacent, contain same entry *i*,

(ii) No *i*'s between them in the reading word,

(iii) Delete either \boxtimes or $\boxtimes' \Rightarrow$ leftover reading word is ballot.

• Which of the following are genomic tableaux?

• Genomic tableau: T with shaded entries $\{\boxtimes,\boxtimes'\}$, where:

(i) \boxtimes, \boxtimes' non-adjacent, contain same entry *i*,

(ii) No *i*'s between them in the reading word,

(iii) Delete either \boxtimes or $\boxtimes' \Rightarrow$ leftover reading word is ballot.

• Which of the following are genomic tableaux?

• *K*-theoretic content: $\beta = (4, 2, 1)$

Theorem (Gillespie, L.)

Two bijections

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$ $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

M. Gillespie and J. Levinson

UW Combinatorics 18 / 26

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

M. Gillespie and J. Levinson

UW Combinatorics 18 / 26

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

M. Gillespie and J. Levinson

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

M. Gillespie and J. Levinson

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

Theorem (Gillespie, L.)

Two bijections

$$K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 1)}\}$$

 $K(\gamma^{c}/\alpha; \beta) \leftrightarrow \{\text{non-adjacent moves in esh (Phase 2)}\}$

Application: geometry!

Application: geometry!

Corollary [Gillespie,L.]

• Suppose ω acts trivially, i.e. $S(\mathbb{R}) \to \mathbb{RP}^1$ is a disjoint union of degree-1 circles.

Then $\mathcal{S} \to \mathbb{P}^1$ is algebraically trivial, $\mathcal{S} \cong \bigsqcup_{\deg f} \mathbb{P}^1$.

(Not true of general maps of real algebraic curves!)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Application: geometry!

Corollary [Gillespie,L.]

• Suppose ω acts trivially, i.e. $S(\mathbb{R}) \to \mathbb{RP}^1$ is a disjoint union of degree-1 circles.

Then $\mathcal{S} \to \mathbb{P}^1$ is algebraically trivial, $\mathcal{S} \cong \bigsqcup_{\deg f} \mathbb{P}^1$.

(Not true of general maps of real algebraic curves!)

Schubert curves over \mathbb{C} [Gillespie, L.]:

- ${\mathcal S}$ with arbitrarily many ${\mathbb C}$ -connected components
- S integral, with arbitrarily high genus $g_a(S)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Reflection length of $\sigma \in S_N$
 - = min{ $r : \sigma = \tau_1 \cdots \tau_r$ } with τ_i arbitrary transpositions = $N - \# \text{orbits}(\sigma)$
- Sign $\operatorname{sign}(\sigma) = \operatorname{rlength}(\sigma) \pmod{2}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• Reflection length of $\sigma \in S_N$ = min{ $r : \sigma = \tau_1 \cdots \tau_r$ } with τ_i arbitrary transpositions = $N - \# \text{orbits}(\sigma)$

• Sign
$$\operatorname{sign}(\sigma) = \operatorname{rlength}(\sigma) \pmod{2}$$
.

(L.) From geometry (properties of map $\mathcal{S} \to \mathbb{P}^1$):

components of $S(\mathbb{R}) \equiv \chi(\mathcal{O}_S) \pmod{2}$ and # components of $S(\mathbb{R}) \ge \chi(\mathcal{O}_S)$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• Reflection length of $\sigma \in S_N$ = min{ $r : \sigma = \tau_1 \cdots \tau_r$ } with τ_i arbitrary transpositions = $N - \# \text{orbits}(\sigma)$

• Sign
$$\operatorname{sign}(\sigma) = \operatorname{rlength}(\sigma) \pmod{2}$$
.

(L.) From geometry (properties of map $\mathcal{S} \to \mathbb{P}^1$):

$$\begin{aligned} |\mathcal{K}(\gamma^{c}/\alpha;\beta)| &\equiv \operatorname{sign}(\omega) \pmod{2}, \\ |\mathcal{K}(\gamma^{c}/\alpha;\beta)| &\geq \operatorname{rlength}(\omega). \end{aligned}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• Reflection length of $\sigma \in S_N$ = min{ $r : \sigma = \tau_1 \cdots \tau_r$ } with τ_i arbitrary transpositions = $N - \# \text{orbits}(\sigma)$

• Sign
$$\operatorname{sign}(\sigma) = \operatorname{rlength}(\sigma) \pmod{2}$$
.

(L.) From geometry (properties of map $\mathcal{S} \to \mathbb{P}^1$):

$$\begin{aligned} |\mathcal{K}(\gamma^c/\alpha;\beta)| &\equiv \operatorname{sign}(\omega) \pmod{2}, \\ |\mathcal{K}(\gamma^c/\alpha;\beta)| &\geq \operatorname{rlength}(\omega). \end{aligned}$$

Is there a combinatorial explanation?

Corollary (Gillespie,L.)

Independent proofs of

$$\begin{split} |K(\gamma^{c}/\alpha;\beta)| &\equiv \operatorname{sign}(\omega) \pmod{2}, \\ |K(\gamma^{c}/\alpha;\beta)| &\geqslant \operatorname{rlength}(\omega). \end{split}$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Corollary (Gillespie,L.)

Independent proofs of

$$\begin{split} |K(\gamma^{c}/\alpha;\beta)| &\equiv \operatorname{sign}(\omega) \pmod{2}, \\ |K(\gamma^{c}/\alpha;\beta)| &\geqslant \operatorname{rlength}(\omega). \end{split}$$

Idea: factor esh and sh into steps:

Image: A matrix and a matrix

Corollary (Gillespie,L.)

Independent proofs of

$$\begin{split} |K(\gamma^{c}/\alpha;\beta)| &\equiv \operatorname{sign}(\omega) \pmod{2}, \\ |K(\gamma^{c}/\alpha;\beta)| &\geqslant \operatorname{rlength}(\omega). \end{split}$$

Idea: factor esh and sh into steps:

Each $s_i \circ e_i$ has very simple orbit structure and

$$\operatorname{sign}(\omega) \equiv \sum \operatorname{sign}(s_i \circ e_i) \pmod{2},$$

rlength(\omega) \le \sum rlength(\omega_i \circ e_i)

Corollary (Gillespie,L.)

Independent proofs of

$$\begin{split} |K(\gamma^{c}/\alpha;\beta)| &\equiv \operatorname{sign}(\omega) \pmod{2}, \\ |K(\gamma^{c}/\alpha;\beta)| &\geqslant \operatorname{rlength}(\omega). \end{split}$$

Idea: factor esh and sh into steps:

Each $s_i \circ e_i$ has very simple orbit structure and

$$\operatorname{sign}(\omega) \equiv \sum \operatorname{sign}(\boldsymbol{s}_i \circ \boldsymbol{e}_i) \pmod{2},$$

rlength(\omega) \le \sum rlength(\omega_i \circ \boldsymbol{e}_i) = \sum |\mathcal{K}(\gamma^{\mathcal{c}}/\omega; \beta)(i)|.

Combinatorics:

What's next?

Combinatorics:

• **Conjecture**. In every orbit \mathcal{O} of ω , at least $|\mathcal{O}| - 1$ genomic tableaux are generated (in each Phase).

Holds for $\ell(\beta) \leq 2$; holds for $k, n \leq 10$ (all α, β, γ).

イロト イポト イヨト イヨト 二日

What's next?

Combinatorics:

• **Conjecture**. In every orbit \mathcal{O} of ω , at least $|\mathcal{O}| - 1$ genomic tableaux are generated (in each Phase).

Holds for $\ell(\beta) \leq 2$; holds for $k, n \leq 10$ (all α, β, γ).

- Local rules for esh, ω in general:
 - Shifted tableaux for OG(n, 2n + 1) [with Kevin Purbhoo]
 → crystal-like structure on shifted SSYTs? (Coming soon...!)
 - Tableau switching: esh(S, T), where $S \neq \boxtimes$.

What's next?

Combinatorics:

• **Conjecture**. In every orbit \mathcal{O} of ω , at least $|\mathcal{O}| - 1$ genomic tableaux are generated (in each Phase).

Holds for $\ell(\beta) \leq 2$; holds for $k, n \leq 10$ (all α, β, γ).

- Local rules for esh, ω in general:
 - Shifted tableaux for OG(n, 2n + 1) [with Kevin Purbhoo]

 \rightsquigarrow crystal-like structure on shifted SSYTs? (Coming soon...!)

• Tableau switching: esh(S, T), where $S \neq \boxtimes$.

Geometry:

- Schubert curves in OG(n, 2n + 1), LG(2n) [Purbhoo]
- Higher dimensions: "Schubert surfaces", 3-folds, ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

PREVIEW: Schubert curves in OG(n,2n+1)

(with Maria Gillespie and Kevin Purbhoo)

- Odd orthogonal Grassmannian (type C):
 - Symmetric form $\langle -,-\rangle$ on \mathbb{C}^{2n+1}
 - $V \subseteq \mathbb{C}^{2n+1}$ is isotropic if $\langle v_1, v_2 \rangle = 0$ for all $v_1, v_2 \in V$.
 - $OG(n, 2n + 1) = \{ V \in Gr(n, 2n + 1) \text{ isotropic} \}.$

PREVIEW: Schubert curves in OG(n,2n+1)

(with Maria Gillespie and Kevin Purbhoo)

- Odd orthogonal Grassmannian (type C):
 - Symmetric form $\langle -,-\rangle$ on \mathbb{C}^{2n+1}
 - $V \subseteq \mathbb{C}^{2n+1}$ is isotropic if $\langle v_1, v_2 \rangle = 0$ for all $v_1, v_2 \in V$.
 - $OG(n, 2n + 1) = \{ V \in Gr(n, 2n + 1) \text{ isotropic} \}.$
- 'Halved' combinatorial picture:

• Similar story, giving $\mathcal{S}(\alpha,\beta,\gamma) \subset \mathcal{OG}(\textit{n},2\textit{n}+1)$

PREVIEW: Schubert curves in OG(n,2n+1)

(with Maria Gillespie and Kevin Purbhoo)

- Odd orthogonal Grassmannian (type C):
 - Symmetric form $\langle -,-\rangle$ on \mathbb{C}^{2n+1}
 - $V \subseteq \mathbb{C}^{2n+1}$ is isotropic if $\langle v_1, v_2 \rangle = 0$ for all $v_1, v_2 \in V$.
 - $OG(n, 2n + 1) = \{ V \in Gr(n, 2n + 1) \text{ isotropic} \}.$
- 'Halved' combinatorial picture:

- Similar story, giving $\mathcal{S}(\alpha,\beta,\gamma) \subset \mathcal{OG}(\textit{n},\textit{2n}+1)$
- Thm (G-L-P). Topology of $\mathcal S$ determined by shifted JDT, esh.
 - Local esh: Phase 1 resembles Type A, Phase 2 does not!
 - Instead, Phase 2 uses crystal-like (coplactic) operators on words.

イロト 不得 トイヨト イヨト 二日

- Strict partitions α, β, γ , shifted (ballot) SSYTs T
- Alphabet $1' < 1 < 2' < 2 < \cdots$, allowed to have $\frac{1'}{1'}$ and 11.
 - Convention: first $\{i, i'\}$ in reading order is an *i*.
- Shifted esh:
 - Phase 1: Switch past alphabet, alternating directions.
 - Phase 2: Apply coplactic operators to reading word.

- Strict partitions α, β, γ , shifted (ballot) SSYTs T
- Alphabet $1' < 1 < 2' < 2 < \cdots$, allowed to have $\frac{1'}{1'}$ and 11.
 - Convention: first $\{i, i'\}$ in reading order is an *i*.
- Shifted esh:
 - Phase 1: Switch past alphabet, alternating directions.
 - Phase 2: Apply coplactic operators to reading word.

- Strict partitions α, β, γ , shifted (ballot) SSYTs T
- Alphabet $1' < 1 < 2' < 2 < \cdots$, allowed to have $\frac{1'}{1'}$ and 11.
 - Convention: first $\{i, i'\}$ in reading order is an *i*.
- Shifted esh:
 - Phase 1: Switch past alphabet, alternating directions.
 - Phase 2: Apply coplactic operators to reading word.

- Strict partitions α, β, γ , shifted (ballot) SSYTs T
- Alphabet $1' < 1 < 2' < 2 < \cdots$, allowed to have $\frac{1'}{1'}$ and 11.
 - Convention: first $\{i, i'\}$ in reading order is an *i*.
- Shifted esh:
 - Phase 1: Switch past alphabet, alternating directions.
 - Phase 2: Apply coplactic operators to reading word.

- Strict partitions α, β, γ , shifted (ballot) SSYTs T
- Alphabet $1' < 1 < 2' < 2 < \cdots$, allowed to have $\frac{1'}{1'}$ and 11.
 - Convention: first $\{i, i'\}$ in reading order is an *i*.
- Shifted esh:
 - Phase 1: Switch past alphabet, alternating directions.
 - Phase 2: Apply coplactic operators to reading word.

- Strict partitions α, β, γ , shifted (ballot) SSYTs T
- Alphabet $1' < 1 < 2' < 2 < \cdots$, allowed to have $\frac{1'}{1'}$ and 11.
 - Convention: first $\{i, i'\}$ in reading order is an *i*.
- Shifted esh:
 - Phase 1: Switch past alphabet, alternating directions.
 - Phase 2: Apply coplactic operators to reading word.

- Strict partitions α, β, γ , shifted (ballot) SSYTs T
- Alphabet $1' < 1 < 2' < 2 < \cdots$, allowed to have $\frac{1'}{1'}$ and 11.
 - Convention: first $\{i, i'\}$ in reading order is an *i*.
- Shifted esh:
 - Phase 1: Switch past alphabet, alternating directions.
 - Phase 2: Apply coplactic operators to reading word.

• Operators E_i, F_i, E'_i, F'_i for raising and lowering weights

- F: converts an $i \rightarrow i + 1$, possibly also moves a prime
- F': converts an $i \rightarrow (i+1)'$ (can omit in computation)
- Apply F_1, F_2, F_3, \ldots (essentially " $\lim_{x\to\infty} F_x$ ")

• Operators E_i, F_i, E'_i, F'_i for raising and lowering weights

- F: converts an $i \rightarrow i + 1$, possibly also moves a prime
- F': converts an $i \rightarrow (i+1)'$ (can omit in computation)
- Apply F_1, F_2, F_3, \ldots (essentially " $\lim_{x\to\infty} F_x$ ")

• Operators E_i, F_i, E'_i, F'_i for raising and lowering weights

- F: converts an $i \rightarrow i + 1$, possibly also moves a prime
- F': converts an $i \rightarrow (i+1)'$ (can omit in computation)
- Apply F_1, F_2, F_3, \ldots (essentially " $\lim_{x\to\infty} F_x$ ")

• Operators E_i, F_i, E'_i, F'_i for raising and lowering weights

- F: converts an $i \rightarrow i + 1$, possibly also moves a prime
- F': converts an $i \rightarrow (i+1)'$ (can omit in computation)
- Apply F_1, F_2, F_3, \ldots (essentially " $\lim_{x\to\infty} F_x$ ")

• Operators E_i, F_i, E'_i, F'_i for raising and lowering weights

- F: converts an $i \rightarrow i + 1$, possibly also moves a prime
- F': converts an $i \rightarrow (i+1)'$ (can omit in computation)
- Apply F_1, F_2, F_3, \ldots (essentially " $\lim_{x\to\infty} F_x$ ")

• Operators E_i, F_i, E'_i, F'_i for raising and lowering weights

- F: converts an $i \rightarrow i + 1$, possibly also moves a prime
- F': converts an $i \rightarrow (i+1)'$ (can omit in computation)
- Apply F_1, F_2, F_3, \ldots (essentially " $\lim_{x\to\infty} F_x$ ")

• Operators E_i, F_i, E'_i, F'_i for raising and lowering weights

- F: converts an $i \rightarrow i + 1$, possibly also moves a prime
- F': converts an $i \rightarrow (i+1)'$ (can omit in computation)
- Apply F_1, F_2, F_3, \ldots (essentially " $\lim_{x\to\infty} F_x$ ")

• Operators E_i, F_i, E'_i, F'_i for raising and lowering weights

- F: converts an $i \rightarrow i + 1$, possibly also moves a prime
- F': converts an $i \rightarrow (i+1)'$ (can omit in computation)
- Apply F_1, F_2, F_3, \ldots (essentially " $\lim_{x\to\infty} F_x$ ")

• Operators E_i, F_i, E'_i, F'_i for raising and lowering weights

- F: converts an $i \rightarrow i + 1$, possibly also moves a prime
- F': converts an $i \rightarrow (i+1)'$ (can omit in computation)
- Apply F_1, F_2, F_3, \ldots (essentially " $\lim_{x\to\infty} F_x$ ")

Thank you!

3

▲口> ▲圖> ▲国> ▲国>