Syzygies, Hilbert polynomials and matrix varieties

Jake Levinson (University of Michigan)
joint with Nic Ford (UC-Berkeley),
Steven Sam (UW-Madison)

Haverford Colloquium
November 15, 2016

Equations and geometry

I am an algebraic geometer (and combinatorialist).
My way to understand interesting spaces X :
equations defining $X \quad \leftrightarrow \quad$ geometry of X

Equations and geometry

I am an algebraic geometer (and combinatorialist).
My way to understand interesting spaces X :

$$
\begin{array}{ccc}
\text { equations defining } X & \leftrightarrow & \text { geometry of } X \\
\text { derivatives } & \text { tangent spaces }
\end{array}
$$

Equations and geometry

I am an algebraic geometer (and combinatorialist).
My way to understand interesting spaces X :

$$
\text { equations defining } X \quad \leftrightarrow \quad \text { geometry of } X
$$

derivatives
homogeneous polynomials

$$
x^{2} y^{3}+2 y^{5}-x^{4} y=0
$$

tangent spaces
X is scale-invariant: $x \in X \Longrightarrow t \cdot x \in X$

Equations and geometry

I am an algebraic geometer (and combinatorialist).
My way to understand interesting spaces X :
equations defining $X \quad \leftrightarrow \quad$ geometry of X
N variables, M equations $\operatorname{dim}(X) \approx N-M$

Equations and geometry

I am an algebraic geometer (and combinatorialist).
My way to understand interesting spaces X :

$$
\begin{array}{ccc}
\text { equations defining } X & \leftrightarrow & \text { geometry of } X \\
N \text { variables, } M \text { equations } & & \operatorname{dim}(X) \approx N-M
\end{array}
$$

This is not always true.

Motivating example (from linear algebra)

Rank-deficient matrices:

$$
\begin{array}{cc}
\mathbb{C}^{6} & =\{2 \times 3 \text { matrices } M\} \\
U I & \cup I \\
Z & =\{\operatorname{rank}(M)<2\}
\end{array}
$$

Motivating example (from linear algebra)

Rank-deficient matrices:

$$
\begin{array}{cc}
\mathbb{C}^{6} & =\{2 \times 3 \text { matrices } M\} \\
\cup I & \cup I \\
Z & =\{\operatorname{rank}(M)<2\}
\end{array}
$$

Relevant to matrix factorization, e.g. Netflix preference model:

$$
\underbrace{(\text { users } \times \text { movies })}_{\text {HUGE }(!), \text { sparse }}=\underbrace{(\text { users } \times \text { features }) \cdot(\text { features } \times \text { movies })}_{\text {rank } \leq \mid \text { features } \mid}
$$

Motivating example (from linear algebra)

Rank-deficient matrices:

$$
\begin{array}{cc}
\mathbb{C}^{6} & =\{2 \times 3 \text { matrices } M\} \\
\cup I & \cup I \\
Z & =\{\operatorname{rank}(M)<2\}
\end{array}
$$

Relevant to matrix factorization, e.g. Netflix preference model:

$$
\underbrace{(\text { users } \times \text { movies })}_{\text {HUGE }(!), \text { sparse }}=\underbrace{(\text { users } \times \text { features }) \cdot(\text { features } \times \text { movies })}_{\text {rank } \leq \mid \text { features } \mid}
$$

Goal: understand Z.

- equations, topology, dimension...

Rank-deficient 2×3 matrices

$$
\begin{aligned}
& \mathbb{C}^{6}=\left\{M=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\right\} \\
& \cup I \\
& U=\{\operatorname{rank}(M)<2\}
\end{aligned}
$$

Rank-deficient 2×3 matrices

$$
\begin{aligned}
& \mathbb{C}^{6}=\left\{M=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\right\} \\
& \cup । \\
& Z=\{\operatorname{rank}(M)<2\}
\end{aligned}
$$

- Equations for Z : all the 2×2 minors

Rank-deficient 2×3 matrices

$$
\begin{aligned}
& \mathbb{C}^{6}=\left\{M=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\right\} \\
& U । \\
& Z=\{\operatorname{rank}(M)<2\}
\end{aligned}
$$

- Equations for Z : all the 2×2 minors
- $0=\operatorname{det}_{[23]}=\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right|=a_{12} a_{23}-a_{13} a_{22}$
- $0=\operatorname{det}_{[13]}=\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{21} & a_{23}\end{array}\right|=a_{11} a_{23}-a_{13} a_{21}$
- $0=\operatorname{det}_{[12]}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}$

Rank-deficient 2×3 matrices

$$
\begin{aligned}
& \mathbb{C}^{6}=\left\{M=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]\right\} \\
& \cup I \\
& U=\{\operatorname{rank}(M)<2\}
\end{aligned}
$$

- Equations for Z : all the 2×2 minors
- $0=\operatorname{det}_{[23]}=\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right|=a_{12} a_{23}-a_{13} a_{22}$
- $0=\operatorname{det}_{[13]}=\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{21} & a_{23}\end{array}\right|=a_{11} a_{23}-a_{13} a_{21}$
$-0=\operatorname{det}_{[12]}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}$
- All three are necessary: $\left[\begin{array}{ccc}* & * & 0 \\ * & * & 0\end{array}\right],\left[\begin{array}{ccc}* & 0 & * \\ * & 0 & *\end{array}\right],\left[\begin{array}{ccc}0 & * & * \\ 0 & * & *\end{array}\right]$

Rank-deficient 2×3 matrices

So, 6 variables, 3 equations $\rightsquigarrow \operatorname{dim}(Z)=3$.

Rank-deficient 2×3 matrices

So, 6 variables, 3 equations $\rightsquigarrow \operatorname{dim}(Z) \neq 3$.
Problem: this is false! In fact $\operatorname{dim}(Z) \geq 4$:

$$
\left[\begin{array}{ccc}
a & b & c \\
t a & t b & t c
\end{array}\right] \rightsquigarrow a, b, c, t
$$

Rank-deficient 2×3 matrices

So, 6 variables, 3 equations $\rightsquigarrow \operatorname{dim}(Z) \neq 3$.
Problem: this is false! In fact $\operatorname{dim}(Z) \geq 4$:

$$
\left[\begin{array}{ccc}
a & b & c \\
t a & t b & t c
\end{array}\right] \rightsquigarrow a, b, c, t
$$

Even worse for $k \times n$ matrices:

- kn variables, $\binom{n}{k}$ equations $\rightsquigarrow k n-\binom{n}{k}$ is negative!
- (Actually $\operatorname{dim}(Z)=(k-1)(n+1)$.)

Rank-deficient 2×3 matrices

So, 6 variables, 3 equations $\rightsquigarrow \operatorname{dim}(Z) \neq 3$.
Problem: this is false! In fact $\operatorname{dim}(Z) \geq 4$:

$$
\left[\begin{array}{ccc}
a & b & c \\
t a & t b & t c
\end{array}\right] \rightsquigarrow a, b, c, t
$$

Even worse for $k \times n$ matrices:

- kn variables, $\binom{n}{k}$ equations $\rightsquigarrow k n-\binom{n}{k}$ is negative!
- (Actually $\operatorname{dim}(Z)=(k-1)(n+1)$.)

Eventual idea: study syzygies (polynomial relations) between the defining equations.

Hilbert (and abstract algebra) to the rescue

Look at all all possible polynomial equations for Z :

- Polynomials in $R=\mathbb{C}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$

Hilbert (and abstract algebra) to the rescue

Look at all all possible polynomial equations for Z :

- Polynomials in $R=\mathbb{C}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
- $I_{Z}=\{f \in R: f(M)=0$ for all $M \in Z\}$

This is an ideal: if $f \in I_{Z}$, then $g f \in I_{Z}$ for any $g \in R$

Hilbert (and abstract algebra) to the rescue

Look at all all possible polynomial equations for Z :

- Polynomials in $R=\mathbb{C}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
- $I_{Z}=\{f \in R: f(M)=0$ for all $M \in Z\}$

This is an ideal: if $f \in I_{Z}$, then $g f \in I_{Z}$ for any $g \in R$

- It is generated by the three determinants:

$$
I_{Z}=\left(\operatorname{det}_{[23]}, \operatorname{det}_{[13]}, \operatorname{det}_{[12]}\right)
$$

Hilbert (and abstract algebra) to the rescue

Look at all all possible polynomial equations for Z :

- Polynomials in $R=\mathbb{C}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$
- $I_{Z}=\{f \in R: f(M)=0$ for all $M \in Z\}$

This is an ideal: if $f \in I_{Z}$, then $g f \in I_{Z}$ for any $g \in R$

- It is generated by the three determinants:

$$
I_{Z}=\left(\operatorname{det}_{[23]}, \operatorname{det}_{[13]}, \operatorname{det}_{[12]}\right)
$$

Hilbert's idea (1890):

- Study the quotient ring R / I_{Z} (set $f=0$ for $f \in I_{Z}$)
- Intuition: the larger R / I_{Z} is, the larger the space Z.

Hilbert's idea (cont'd)

- Study R / I_{z}
- Intuition: size of $R / I_{Z} \longleftrightarrow$ size of Z.

Hilbert's idea (cont'd)

- Study R / I_{z}
- Intuition: size of $R / I_{Z} \longleftrightarrow$ size of Z.
- Specifically, look at the vector space
$\left(R / I_{Z}\right)_{d}:=\left\{\right.$ homogeneous degree- d elements of $\left.R / I_{Z}\right\}$.
Then, as $d \rightarrow \infty: \operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d} \approx d^{\operatorname{dim}(Z)-1}$.

Hilbert's idea (cont'd)

- Study R / I_{Z}
- Intuition: size of $R / I_{Z} \longleftrightarrow$ size of Z.
- Specifically, look at the vector space
$\left(R / I_{Z}\right)_{d}:=\left\{\right.$ homogeneous degree- d elements of $\left.R / I_{Z}\right\}$.
Then, as $d \rightarrow \infty: \quad \operatorname{vim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d} \approx d^{\operatorname{dim}(Z)-1}$.

Warm-up: let's try $R=\mathbb{C}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right]$ (for $Z=\mathbb{C}^{6}, I_{Z}=(0)$).
Claim: $\operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)=O\left(d^{6-1}\right)=O\left(d^{5}\right)$.

How big is a polynomial ring?

Compute $\operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)=\{$ homog. deg- d poly's in 6 variables $\}:$

- Count monomials of total degree d

How big is a polynomial ring?

Compute $\operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)=\{$ homog. deg- d poly's in 6 variables $\}:$

- Count monomials of total degree d
- Put $d+5$ cookies in a line:

How big is a polynomial ring?

Compute $\operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)=\{$ homog. deg-d poly's in 6 variables $\}$:

- Count monomials of total degree d
- Put $d+5$ cookies in a line: cross out / eat 5

How big is a polynomial ring?

Compute $\operatorname{vim}_{\mathbb{C}}\left(R_{d}\right)=\{$ homog. deg-d poly's in 6 variables $\}$:

- Count monomials of total degree d
- Put $d+5$ cookies in a line: cross out / eat 5

How big is a polynomial ring?

Compute $\operatorname{vim}_{\mathbb{C}}\left(R_{d}\right)=\{$ homog. deg-d poly's in 6 variables $\}$:

- Count monomials of total degree d
- Put $d+5$ cookies in a line: cross out / eat 5

- Total \#: $\binom{d+5}{5}=\frac{(d+5)(d+4) \cdots(d+1)}{5!}=\frac{1}{5!} d^{5}+\cdots$.

How big is a polynomial ring?

Compute $\operatorname{vim}_{\mathbb{C}}\left(R_{d}\right)=\{$ homog. deg- d poly's in 6 variables $\}$:

- Count monomials of total degree d
- Put $d+5$ cookies in a line: cross out / eat 5

- Total \#: $\binom{d+5}{5}=\frac{(d+5)(d+4) \cdots(d+1)}{5!}=\frac{1}{5!} d^{5}+\cdots$.

Theorem (Hilbert)

Let R be a graded ring, X the corresponding geometric space.
Then $\operatorname{vim}_{\mathbb{C}}\left(R_{d}\right)$ is eventually a polynomial of $\operatorname{degree} \operatorname{dim}(X)-1$.

Rings, modules and gradings

Let R be a ring. An R-module M is a "vector space over R ":

- Can add: $m_{1}+m_{2} \in M$
- Can scalar-multiply by $R: r \cdot m \in M$

Think: ideals, quotient rings, $R^{n}:=\left\{\left(r_{1}, \ldots, r_{n}\right): r_{i} \in R\right\}$ R^{n} is a "rank- n free module", generators $\left(0, \ldots, 1_{i}, \ldots, 0\right)$.

Rings, modules and gradings

Let R be a ring. An R-module M is a "vector space over R ":

- Can add: $m_{1}+m_{2} \in M$
- Can scalar-multiply by $R: r \cdot m \in M$

Think: ideals, quotient rings, $R^{n}:=\left\{\left(r_{1}, \ldots, r_{n}\right): r_{i} \in R\right\}$ R^{n} is a "rank- n free module", generators $\left(0, \ldots, 1_{i}, \ldots, 0\right)$.

A module (or ring) is graded if its elements "have degrees":
Think: $I, R / I$ given by homogeneous polynomials.

- $M \supseteq M_{d}=\{$ deg- d homogeneous elements $\}$,
- Every $m \in M$ decomposes as $m=\sum_{d} m_{d}$
- Multiplying: $\operatorname{deg}(r \cdot m)=\operatorname{deg}(r)+\operatorname{deg}(m)$.

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}, where $I_{Z}=\left(\operatorname{det}_{[23]}, \operatorname{det}_{[13]}, \operatorname{det}_{[12]}\right)$.
Claim: $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$ is a polynomial.

$$
R \xrightarrow{f_{0}} R / I_{Z}
$$

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}, where $I_{Z}=\left(\operatorname{det}_{[23]}, \operatorname{det}_{[13]}, \operatorname{det}_{[12]}\right)$.
Claim: $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$ is a polynomial.

$$
R \xrightarrow{f_{0}} R / I_{Z}
$$

We have $\operatorname{ker}\left(f_{0}\right)=I_{Z}$.

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}, where $I_{Z}=\left(\operatorname{det}_{[23]}, \operatorname{det}_{[13]}, \operatorname{det}_{[12]}\right)$.
Claim: $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$ is a polynomial.

$$
R^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z}
$$

$$
\begin{aligned}
&(1,0,0) \mapsto \operatorname{det}_{[23]} \\
&(0,1,0) \mapsto \operatorname{det}_{[13]} \\
&(0,0,1) \mapsto \operatorname{det}_{[12]}
\end{aligned}
$$

We have $\operatorname{ker}\left(f_{0}\right)=I_{Z}$. Set up f_{1} with image $=I_{Z}=\operatorname{ker}\left(f_{0}\right)$.

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}, where $I_{Z}=\left(\operatorname{det}_{[23]}, \operatorname{det}_{[13]}, \operatorname{det}_{[12]}\right)$.
Claim: $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$ is a polynomial.

$$
R^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z}
$$

$$
\begin{aligned}
(1,0,0) & \mapsto \operatorname{det}_{[23]} \\
(0,1,0) & \mapsto \operatorname{det}_{[13]} \\
(0,0,1) & \mapsto \operatorname{det}_{[12]}
\end{aligned}
$$

We have $\operatorname{ker}\left(f_{0}\right)=I_{Z}$. Set up f_{1} with image $=I_{Z}=\operatorname{ker}\left(f_{0}\right)$.

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longmapsto} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]} \in I_{Z}
$$

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}, where $I_{Z}=\left(\operatorname{det}_{[23]}, \operatorname{det}_{[13]}, \operatorname{det}_{[12]}\right)$.
Claim: $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$ is a polynomial.

$$
\begin{aligned}
& R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z} \\
& (1,0,0) \mapsto \operatorname{det}_{[23]} \\
& (0,1,0) \mapsto \operatorname{det}_{[13]} \\
& (0,0,1) \mapsto \operatorname{det}_{[12]}
\end{aligned}
$$

We have $\operatorname{ker}\left(f_{0}\right)=I_{Z}$. Set up f_{1} with image $=I_{Z}=\operatorname{ker}\left(f_{0}\right)$.

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longleftrightarrow} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]} \in I_{Z}
$$

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}, where $I_{Z}=\left(\operatorname{det}_{[23]}, \operatorname{det}_{[13]}, \operatorname{det}_{[12]}\right)$.
Claim: $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$ is a polynomial.

$$
\begin{aligned}
& R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z} \\
& (1,0,0) \mapsto \operatorname{det}_{[23]} \\
& (0,1,0) \mapsto \operatorname{det}_{[13]} \\
& (0,0,1) \mapsto \operatorname{det}_{[12]}
\end{aligned}
$$

We have $\operatorname{ker}\left(f_{0}\right)=I_{Z}$. Set up f_{1} with image $=I_{Z}=\operatorname{ker}\left(f_{0}\right)$.

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longmapsto} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]} \in I_{Z}
$$

Is f_{1} injective? If yes, we'd be done:

$$
\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}=\operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)-3 \cdot \operatorname{vim}_{\mathbb{C}}\left(R_{d-2}\right)
$$

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}, where $I_{Z}=\left(\operatorname{det}_{[23]}, \operatorname{det}_{[13]}, \operatorname{det}_{[12]}\right)$.
Claim: $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$ is a polynomial.

$$
\begin{aligned}
& R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z} \\
& (1,0,0) \mapsto \operatorname{det}_{[23]} \\
& (0,1,0) \mapsto \operatorname{det}_{[13]} \\
& (0,0,1) \mapsto \operatorname{det}_{[12]}
\end{aligned}
$$

We have $\operatorname{ker}\left(f_{0}\right)=I_{Z}$. Set up f_{1} with image $=I_{Z}=\operatorname{ker}\left(f_{0}\right)$.

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longmapsto} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]} \in I_{Z}
$$

Is f_{1} injective? If yes, we'd be done:

$$
\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d} \neq \operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)-3 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d-2}\right)
$$

Sadly, it is not injective, $\operatorname{ker}\left(f_{1}\right) \neq 0$.

Syzygies!

Let's describe $\operatorname{ker}\left(f_{1}\right)=$ the module of syzygies.
Elements of $\operatorname{ker}\left(f_{1}\right)$ are relations among the generators of I_{Z} :

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longmapsto} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]}=0 \in R
$$

Syzygies!

Let's describe $\operatorname{ker}\left(f_{1}\right)=$ the module of syzygies.
Elements of $\operatorname{ker}\left(f_{1}\right)$ are relations among the generators of I_{Z} :

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longmapsto} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]}=0 \in R
$$

Syzygies from Laplace expansion:

Syzygies!

Let's describe $\operatorname{ker}\left(f_{1}\right)=$ the module of syzygies.
Elements of $\operatorname{ker}\left(f_{1}\right)$ are relations among the generators of I_{Z} :

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longmapsto} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]}=0 \in R
$$

Syzygies from Laplace expansion:

$$
\begin{aligned}
\ln R: \quad 0 & =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right| \\
0 & =a_{11} \operatorname{det}_{[23]}-a_{12} \operatorname{det}_{[13]}+a_{13} \operatorname{det}_{[12]}
\end{aligned}
$$

Syzygies!

Let's describe $\operatorname{ker}\left(f_{1}\right)=$ the module of syzygies.
Elements of $\operatorname{ker}\left(f_{1}\right)$ are relations among the generators of I_{Z} :

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longmapsto} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]}=0 \in R
$$

Syzygies from Laplace expansion:

$$
\begin{aligned}
\ln R: \quad 0 & =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right| \\
0 & =a_{11} \operatorname{det}_{[23]}-a_{12} \operatorname{det}_{[13]}+a_{13} \operatorname{det}_{[12]} \\
\Longrightarrow \operatorname{ker}\left(f_{1}\right) & \ni\left(a_{11},-a_{12}, a_{13}\right) .
\end{aligned}
$$

Syzygies!

Let's describe $\operatorname{ker}\left(f_{1}\right)=$ the module of syzygies.
Elements of $\operatorname{ker}\left(f_{1}\right)$ are relations among the generators of I_{Z} :

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longmapsto} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]}=0 \in R
$$

Syzygies from Laplace expansion:

$$
\begin{aligned}
\text { In } R: \quad 0 & =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right| \\
0 & =a_{11} \operatorname{det}_{[23]}-a_{12} \operatorname{det}_{[13]}+a_{13} \operatorname{det}_{[12]} \\
\Longrightarrow \operatorname{ker}\left(f_{1}\right) & \ni\left(a_{11},-a_{12}, a_{13}\right) . \\
\text { Similarly: } \quad & \ni\left(a_{21},-a_{22}, a_{23}\right) .
\end{aligned}
$$

Syzygies!

Let's describe $\operatorname{ker}\left(f_{1}\right)=$ the module of syzygies.
Elements of $\operatorname{ker}\left(f_{1}\right)$ are relations among the generators of I_{Z} :

$$
\left(r_{1}, r_{2}, r_{3}\right) \stackrel{f_{1}}{\longmapsto} r_{1} \operatorname{det}_{[23]}+r_{2} \operatorname{det}_{[13]}+r_{3} \operatorname{det}_{[12]}=0 \in R
$$

Syzygies from Laplace expansion:

$$
\begin{aligned}
& \text { In } R: \quad 0=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right| \\
& 0 \\
&=a_{11} \operatorname{det}_{[23]}-a_{12} \operatorname{det}_{[13]}+a_{13} \operatorname{det}_{[12]} \\
& \Longrightarrow \operatorname{ker}\left(f_{1}\right) \ni\left(a_{11},-a_{12}, a_{13}\right) . \\
& \text { Similarly: } \quad \ni\left(a_{21},-a_{22}, a_{23}\right) .
\end{aligned}
$$

Complete, minimal generators for $\operatorname{ker}\left(f_{1}\right)$.

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}.

$$
R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z}
$$

We had $\operatorname{ker}\left(f_{1}\right) \neq 0$ with two generators.

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}.

$$
\begin{aligned}
R^{2} & \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z} \\
(1,0) & \mapsto\left(a_{11},-a_{12}, a_{13}\right) \\
(0,1) & \mapsto\left(a_{21},-a_{22}, a_{23}\right)
\end{aligned}
$$

We had $\operatorname{ker}\left(f_{1}\right) \neq 0$ with two generators.
So, set up f_{2} with image $\left(f_{2}\right)=\operatorname{ker}\left(f_{1}\right)$.

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}.

$$
\begin{aligned}
R(-3)^{2} & \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z} \\
(1,0) & \mapsto\left(a_{11},-a_{12}, a_{13}\right) \\
(0,1) & \mapsto\left(a_{21},-a_{22}, a_{23}\right)
\end{aligned}
$$

We had $\operatorname{ker}\left(f_{1}\right) \neq 0$ with two generators.
So, set up f_{2} with image $\left(f_{2}\right)=\operatorname{ker}\left(f_{1}\right)$.

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}.

$$
\begin{aligned}
R(-3)^{2} & \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z} \\
(1,0) & \mapsto\left(a_{11},-a_{12}, a_{13}\right) \\
(0,1) & \mapsto\left(a_{21},-a_{22}, a_{23}\right)
\end{aligned}
$$

We had $\operatorname{ker}\left(f_{1}\right) \neq 0$ with two generators.
So, set up f_{2} with image $\left(f_{2}\right)=\operatorname{ker}\left(f_{1}\right)$.
Is f_{2} injective? If yes, we'll be done.

Hilbert's approach for R / I_{Z}

Back to R / I_{Z}.

$$
\begin{aligned}
0 \rightarrow R(-3)^{2} & \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z} \\
(1,0) & \mapsto\left(a_{11},-a_{12}, a_{13}\right) \\
(0,1) & \mapsto\left(a_{21},-a_{22}, a_{23}\right)
\end{aligned}
$$

We had $\operatorname{ker}\left(f_{1}\right) \neq 0$ with two generators.
So, set up f_{2} with image $\left(f_{2}\right)=\operatorname{ker}\left(f_{1}\right)$.
Is f_{2} injective? If yes, we'll be done.

It is!

Hilbert's approach for R / I_{Z}

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R^{1} \xrightarrow{f_{0}} R / I_{Z}
$$

Compute $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$:

Hilbert's approach for R / I_{Z}

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R^{1} \xrightarrow{f_{0}} R / I_{Z}
$$

Compute $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$:
$\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}=1 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)-3 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d-2}\right)+2 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d-3}\right)$

Hilbert's approach for R / I_{Z}

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R^{1} \xrightarrow{f_{0}} R / I_{Z}
$$

Compute $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$:
$\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}=1 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)-3 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d-2}\right)+2 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d-3}\right)$

$$
=\binom{d+5}{5}-3 \cdot\binom{d+3}{5}+2 \cdot\binom{d+2}{5}
$$

$=\cdots$

Hilbert's approach for R / I_{Z}

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R^{1} \xrightarrow{f_{0}} R / I_{Z}
$$

Compute $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$:
$\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}=1 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)-3 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d-2}\right)+2 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d-3}\right)$

$$
=\binom{d+5}{5}-3 \cdot\binom{d+3}{5}+2 \cdot\binom{d+2}{5}
$$

$$
=\cdots
$$

$$
=\frac{1}{2} d^{3}+2 d^{2}+\frac{5}{2} d+1
$$

Hilbert's approach for R / I_{Z}

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R^{1} \xrightarrow{f_{0}} R / I_{Z}
$$

Compute $\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}$:
$\operatorname{vdim}_{\mathbb{C}}\left(R / I_{Z}\right)_{d}=1 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d}\right)-3 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d-2}\right)+2 \cdot \operatorname{vdim}_{\mathbb{C}}\left(R_{d-3}\right)$

$$
=\binom{d+5}{5}-3 \cdot\binom{d+3}{5}+2 \cdot\binom{d+2}{5}
$$

$$
=\cdots
$$

$$
=\frac{1}{2} d^{3}+2 d^{2}+\frac{5}{2} d+1
$$

In particular: $\operatorname{dim}(Z)=3+1=4$.

Hilbert's Syzygy Theorem

The sequence

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z}
$$

is called a (graded) free resolution of R / I_{Z}.
The property $\operatorname{image}\left(f_{i+1}\right)=\operatorname{ker}\left(f_{i}\right)$ is called "exactness".

Hilbert's Syzygy Theorem

The sequence

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R / I_{Z}
$$

is called a (graded) free resolution of R / I_{Z}.
The property image $\left(f_{i+1}\right)=\operatorname{ker}\left(f_{i}\right)$ is called "exactness".

Theorem (Hilbert's Syzygy Theorem, 1890)

Every graded R-module M has a graded free resolution, terminating after finitely-many steps (at most $\operatorname{dim}(R)$ needed).

Therefore, for $d \gg 0, \operatorname{vdim}_{\mathbb{C}}\left(M_{d}\right)$ is a polynomial, called the Hilbert polynomial hilb $_{M}(d)$.

What does the Hilbert polynomial tell us about X ?

- Topology: $\operatorname{deg}\left(\operatorname{hilb}_{R}\right)=n \rightsquigarrow$ dimension of $X=n+1$
- Algebra/geometry:
$n!\cdot($ leading coefficient $) \rightsquigarrow$ the degree of X

What does the Hilbert polynomial tell us about X ?

- Topology: $\operatorname{deg}\left(\operatorname{hilb}_{R}\right)=n \rightsquigarrow$ dimension of $X=n+1$
- Algebra/geometry:
$n!\cdot($ leading coefficient $) \rightsquigarrow$ the degree of X
And more:

$$
\operatorname{hilb}_{R}(0)=\begin{gathered}
\text { Euler characteristic of the } \\
\text { projective variety of } X
\end{gathered}
$$

(homogeneous eqns: \rightsquigarrow projectivization of X X scale-invariant)

Improving on the Hilbert polynomial

Hilbert polynomials are great, but there was more data:

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R^{1} \xrightarrow{f_{0}} R / I_{Z}
$$

Improving on the Hilbert polynomial

Hilbert polynomials are great, but there was more data:

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R^{1} \xrightarrow{f_{0}} R / I_{Z}
$$

Lemma (Nakayama)
The minimal graded free resolution is unique.

Improving on the Hilbert polynomial

Hilbert polynomials are great, but there was more data:

$$
0 \rightarrow R(-3)^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R^{1} \xrightarrow{f_{0}} R / I_{Z}
$$

Lemma (Nakayama)
The minimal graded free resolution is unique.
Record \#, deg of syzygies at each step: the Betti table $\beta\left(R / I_{Z}\right)$:

$$
\begin{array}{cccc|c}
\cdots & 2 & 1 & 0 & \beta_{i, d} \\
\hline- & - & - & 1 & d=0 \\
- & - & - & - & d=1 \\
- & - & 3 & - & d=2 \\
- & 2 & - & - & d=3
\end{array}
$$

Betti tables tell us more

The Betti table $\beta(M)$ tells us:

- The projective dimension and regularity
- Defining equations, deformation theory, smoothness

Betti tables tell us more

The Betti table $\beta(M)$ tells us:

- The projective dimension and regularity
- Defining equations, deformation theory, smoothness

Example (3D interpolation)

Fix 7 points in $3 \mathrm{D}, Z=\left\{p_{1}, \ldots, p_{7}\right\} \subseteq \mathbb{C}^{3}$.
Is there a low-degree curve $(x(t), y(t), z(t)) \subseteq \mathbb{C}^{3}$ through all 7 ?
Hilbert polynomial of Z can't tell (same for any 7 points).
Betti table can: Yes if $\beta_{2,3} \neq 0$, no otherwise!

Which Betti tables are possible?

Modern Goal: Classify Betti tables. Which tables can occur?
\rightsquigarrow Combinatorics to describe behaviors of spaces, equations.

Which Betti tables are possible?

Modern Goal: Classify Betti tables. Which tables can occur?
\rightsquigarrow Combinatorics to describe behaviors of spaces, equations.
Many restrictions on β :

$$
\text { Exactness } \rightsquigarrow \underbrace{\sum_{d} \beta_{i, d}}_{\text {column } i} \leq \underbrace{\sum_{d} \beta_{i+1, d}}_{\text {column } i+1}+\underbrace{\sum_{d} \beta_{i-1, d}}_{\text {column } i-1}
$$

Which Betti tables are possible?

Modern Goal: Classify Betti tables. Which tables can occur?
\rightsquigarrow Combinatorics to describe behaviors of spaces, equations.
Many restrictions on β :

$$
\text { Exactness } \rightsquigarrow \underbrace{\sum_{d} \beta_{i, d}}_{\text {column } i} \leq \underbrace{\sum_{d} \beta_{i+1, d}}_{\text {column } i+1}+\underbrace{\sum_{d} \beta_{i-1, d}}_{\text {column } i-1}
$$

Many others - mostly linear inequalities on the $\beta_{i, d}$.

Which Betti tables are possible?

Modern Goal: Classify Betti tables. Which tables can occur?
\rightsquigarrow Combinatorics to describe behaviors of spaces, equations.
Many restrictions on β :

$$
\text { Exactness } \rightsquigarrow \underbrace{\sum_{d} \beta_{i, d}}_{\text {column } i} \leq \underbrace{\sum_{d} \beta_{i+1, d}}_{\text {column } i+1}+\underbrace{\sum_{d} \beta_{i-1, d}}_{\text {column } i-1} .
$$

Many others - mostly linear inequalities on the $\beta_{i, d}$.

Boij-Söderberg theory (2006)

Study Betti tables up to rational multiple:

$$
B S_{n}:=\mathbb{Q} \geq 0 \cdot\{\beta(M): \text { graded modules } M\} .
$$

$B S_{n}$ is called the cone of Betti tables.

Boij-Söderberg theory is growing rapidly

Graded Betti tables are fully understood:
Theorem (Eisenbud-Schreyer 2008)
The Betti cone $B S_{n}$ is rational polyhedral, with explicitly-known extremal rays and facets.

Boij-Söderberg theory is growing rapidly

Graded Betti tables are fully understood:
Theorem (Eisenbud-Schreyer 2008)
The Betti cone $B S_{n}$ is rational polyhedral, with explicitly-known extremal rays and facets.

Extremal rays: "pure" (sparse) tables and resolutions ($\beta(M)$ has as few as entries as possible)

Boij-Söderberg theory is growing rapidly

Graded Betti tables are fully understood:
Theorem (Eisenbud-Schreyer 2008)
The Betti cone $B S_{n}$ is rational polyhedral, with explicitly-known extremal rays and facets.

Extremal rays: "pure" (sparse) tables and resolutions ($\beta(M)$ has as few as entries as possible)

Facets: via geometry of \mathbb{P}^{n} : cohomology of vector bundles
Duality: Betti tables \longleftrightarrow "cohomology tables"

Boij-Söderberg theory is growing rapidly

Recent advances (Berkesch, Eisenbud, Erman, Fløystad, Ford, Kummini, L., Sam, Smith, Weyman...) :

Boij-Söderberg theory is growing rapidly

Recent advances (Berkesch, Eisenbud, Erman, Fløystad, Ford, Kummini, L., Sam, Smith, Weyman...) :

- Multigraded polynomials, toric rings, (some) homogeneous coordinate rings
- Partial results, many open questions: describe rays, facets...
- Bi-graded Betti tables over $R=\mathbb{C}\left[x_{0}, x_{1}, y_{0}, y_{1}\right]\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$

$$
x_{0}^{3} y_{0}+x_{0} x_{1}^{2}\left(y_{0}+y_{1}\right)+x_{1}^{3} y_{0}=0 \quad(\text { bi-degree }(3,1))
$$

Boij-Söderberg theory is growing rapidly

Recent advances (Berkesch, Eisenbud, Erman, Fløystad, Ford, Kummini, L., Sam, Smith, Weyman...) :

- Multigraded polynomials, toric rings, (some) homogeneous coordinate rings
- Partial results, many open questions: describe rays, facets...
- Bi-graded Betti tables over $R=\mathbb{C}\left[x_{0}, x_{1}, y_{0}, y_{1}\right]\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$

$$
\text { - } x_{0}^{3} y_{0}+x_{0} x_{1}^{2}\left(y_{0}+y_{1}\right)+x_{1}^{3} y_{0}=0 \quad(\text { bi-degree }(3,1))
$$

- Computer-aided exploration in Macaulay2, Sage...
- Cohomology of vector bundles on $\mathbb{P}^{n} \times \mathbb{P}^{m}$, on toric varieties, on curves...

Syzygies of matrix varieties

My interest: matrices and subvarieties $Z \subset \mathbb{C}^{k n}=$ Mat $_{k \times n}$.

Syzygies of matrix varieties

My interest: matrices and subvarieties $Z \subset \mathbb{C}^{k n}=$ Mat $_{k \times n}$.

- Say Z is "preserved by row operations" if $G L_{k} \cdot Z=Z$. \rightsquigarrow i.e., Z defined only based on rowspan $(M) \subseteq \mathbb{C}^{n}$.

Syzygies of matrix varieties

My interest: matrices and subvarieties $Z \subset \mathbb{C}^{k n}=\mathrm{Mat}_{k \times n}$.

- Say Z is "preserved by row operations" if $G L_{k} \cdot Z=Z$. \rightsquigarrow i.e., Z defined only based on rowspan $(M) \subseteq \mathbb{C}^{n}$.
- Examples:
- Degeneracy loci: $Z=\{M: \operatorname{rank}(M) \leq r\}$
- Incidence loci: given planes $P_{i} \subseteq \mathbb{C}^{n}$,

$$
\rightsquigarrow Z=\left\{M: \operatorname{dim}\left(\operatorname{rowspan}(M) \cap P_{i}\right) \geq d_{i} \text { for each } i\right\} .
$$

- Tangent spaces of varieties $V \subset \mathbb{P}^{n-1}$

Syzygies of matrix varieties

My interest: matrices and subvarieties $Z \subset \mathbb{C}^{k n}=\mathrm{Mat}_{k \times n}$.

- Say Z is "preserved by row operations" if $G L_{k} \cdot Z=Z$. \rightsquigarrow i.e., Z defined only based on rowspan $(M) \subseteq \mathbb{C}^{n}$.
- Examples:
- Degeneracy loci: $Z=\{M: \operatorname{rank}(M) \leq r\}$
- Incidence loci: given planes $P_{i} \subseteq \mathbb{C}^{n}$,

$$
\rightsquigarrow Z=\left\{M: \operatorname{dim}\left(\operatorname{rowspan}(M) \cap P_{i}\right) \geq d_{i} \text { for each } i\right\} .
$$

- Tangent spaces of varieties $V \subset \mathbb{P}^{n-1}$
- Study $G L_{k}$-equivariant modules, resolutions, Betti tables
- Record $G L_{k}$-action on syzygies, not just the degrees

Syzygies of matrix varieties

Representations of $G L_{k}$ correspond to Young diagrams:

$$
\square \longmapsto V_{\square}\left(\mathbb{C}^{k}\right) \otimes R
$$

The $G L_{k}$-equivariant free resolution for R / I_{Z} :

$$
0 \rightarrow R_{甲} \rightarrow R_{\boxminus}^{3} \rightarrow R_{\varnothing} \rightarrow R / I_{Z}
$$

Syzygies of matrix varieties

Representations of $G L_{k}$ correspond to Young diagrams:

$$
\square \longleftrightarrow V_{\boxminus}\left(\mathbb{C}^{k}\right) \otimes R
$$

The $G L_{k}$-equivariant free resolution for R / I_{Z} :

$$
0 \rightarrow R_{\oplus} \rightarrow R_{\boxminus}^{3} \rightarrow R_{\varnothing} \rightarrow R / I_{z}
$$

Questions:

- Is the Betti cone $B S_{k, n}$ rational polyhedral?
- $\operatorname{Mat}_{k \times k}, \operatorname{pdim}(M)=1$: yes! [Ford-L.-Sam '16]
- What are its extremal rays, facets?
- Cohomology of vector bundles on Grassmannians $\operatorname{Gr}(k, n)$
- Duality exists in this setting [Ford-L. '16]

Thank you!

