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Equations and geometry

I am an algebraic geometer (and combinatorialist).

My way to understand interesting spaces X :

equations defining X ↔ geometry of X

N variables, M equations dim(X ) ≈ N −M

This is not always true.



Motivating example (from linear algebra)

Rank-deficient matrices:

C6 = {2× 3 matrices M}

Z =

⊆

{rank(M) < 2}

⊆

Relevant to matrix factorization, e.g. Netflix preference model:

(users×movies)︸ ︷︷ ︸
HUGE(!), sparse

= (users× features) · (features×movies)︸ ︷︷ ︸
rank ≤ |features|

Goal: understand Z .

I equations, topology, dimension...
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Rank-deficient 2× 3 matrices

C6 =
{
M =

[
a11 a12 a13
a21 a22 a23

]}
Z =

⊆

{ rank(M) < 2 }

⊆

I Equations for Z : all the 2× 2 minors

I 0 = det[23] =

∣∣∣∣a12 a13
a22 a23

∣∣∣∣ = a12a23 − a13a22

I 0 = det[13] =

∣∣∣∣a11 a13
a21 a23

∣∣∣∣ = a11a23 − a13a21

I 0 = det[12] =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21

I All three are necessary:

[
∗ ∗ 0
∗ ∗ 0

]
,

[
∗ 0 ∗
∗ 0 ∗

]
,

[
0 ∗ ∗
0 ∗ ∗

]
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Rank-deficient 2× 3 matrices

So, 6 variables, 3 equations  dim(Z ) = 3.

Problem: this is false! In fact dim(Z ) ≥ 4:[
a b c
ta tb tc

]
 a, b, c , t

Even worse for k × n matrices:

I kn variables,
(n
k

)
equations  kn −

(n
k

)
is negative!

I (Actually dim(Z ) = (k − 1)(n + 1).)

Eventual idea: study syzygies (polynomial relations) between the
defining equations.
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Hilbert (and abstract algebra) to the rescue

Look at all all possible polynomial equations for Z :

I Polynomials in R = C
[
a11 a12 a13
a21 a22 a23

]

I IZ = {f ∈ R : f (M) = 0 for all M ∈ Z}

This is an ideal: if f ∈ IZ , then gf ∈ IZ for any g ∈ R

I It is generated by the three determinants:

IZ = (det [23], det [13], det [12])

Hilbert’s idea (1890):

I Study the quotient ring R/IZ (set f = 0 for f ∈ IZ )

I Intuition: the larger R/IZ is, the larger the space Z .
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Hilbert’s idea (cont’d)

I Study R/IZ
I Intuition: size of R/IZ ←→ size of Z .

I Specifically, look at the vector space

(R/IZ )d := { homogeneous degree-d elements of R/IZ }.

Then, as d →∞ : vdimC(R/IZ )d ≈ ddim(Z)−1.

Warm-up: let’s try R = C
[
a11 a12 a13
a21 a22 a23

]
(for Z = C6, IZ = (0)).

Claim: vdimC(Rd) = O(d6−1) = O(d5).
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How big is a polynomial ring?

Compute vdimC(Rd) = { homog. deg-d poly’s in 6 variables } :

I Count monomials of total degree d

I Put d + 5 cookies in a line:

cross out / eat 5

I Total # :
(d+5

5

)
= (d+5)(d+4)···(d+1)

5! = 1
5!d

5 + · · · .

Theorem (Hilbert)

Let R be a graded ring, X the corresponding geometric space.
Then vdimC(Rd) is eventually a polynomial of degree dim(X )− 1.
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Rings, modules and gradings

Let R be a ring. An R-module M is a “vector space over R”:

I Can add: m1 + m2 ∈ M

I Can scalar-multiply by R: r ·m ∈ M

Think: ideals, quotient rings, Rn := {(r1, . . . , rn) : ri ∈ R}
Rn is a “rank-n free module”, generators (0, . . . , 1i , . . . , 0).

A module (or ring) is graded if its elements “have degrees”:

Think: I , R/I given by homogeneous polynomials.

I M ⊇ Md = {deg-d homogeneous elements},
I Every m ∈ M decomposes as m =

∑
d md

I Multiplying: deg(r ·m) = deg(r) + deg(m).
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Hilbert’s approach for R/IZ

Back to R/IZ , where IZ = (det[23], det[13], det[12]).

Claim: vdimC(R/IZ )d is a polynomial.

R(−2)3
f1−−→

R
f0−−→ R/IZ

(1, 0, 0) 7→ det [23]

(0, 1, 0) 7→ det [13]

(0, 0, 1) 7→ det [12]

We have ker(f0) = IZ . Set up f1 with image = IZ = ker(f0).

(r1, r2, r3)
f17−→ r1 det [23] + r2 det [13] + r3 det [12] ∈ IZ

Is f1 injective? If yes, we’d be done:

vdimC(R/IZ )d 6= vdimC(Rd)− 3 · vdimC(Rd−2)

Sadly, it is not injective, ker(f1) 6= 0.
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∣∣∣∣∣∣
a11 a12 a13
a11 a12 a13
a21 a22 a23

∣∣∣∣∣∣
0 = a11 det [23] − a12 det [13] + a13 det [12]

=⇒ ker(f1) 3 (a11,−a12, a13).

Similarly: 3 (a21,−a22, a23).
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Hilbert’s approach for R/IZ

Back to R/IZ .

0→ R(−3)2
f2−−→

R(−2)3
f1−−→ R

f0−−→ R/IZ

(1, 0) 7→ (a11,−a12, a13)

(0, 1) 7→ (a21,−a22, a23)

We had ker(f1) 6= 0 with two generators.

So, set up f2 with image(f2) = ker(f1).

Is f2 injective? If yes, we’ll be done.

It is!
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Hilbert’s approach for R/IZ

0→ R(−3)2
f2−→ R(−2)3

f1−−→ R1 f0−−→ R/IZ

Compute vdimC (R/IZ )d :

vdimC(R/IZ )d = 1 · vdimC(Rd)− 3 · vdimC(Rd−2) + 2 · vdimC(Rd−3)

=

(
d + 5

5

)
− 3 ·

(
d + 3

5

)
+ 2 ·

(
d + 2

5

)
= · · ·

= 1
2d

3 + 2d2 + 5
2d + 1.

In particular: dim(Z ) = 3 + 1 = 4.



Hilbert’s approach for R/IZ

0→ R(−3)2
f2−→ R(−2)3

f1−−→ R1 f0−−→ R/IZ

Compute vdimC (R/IZ )d :

vdimC(R/IZ )d = 1 · vdimC(Rd)− 3 · vdimC(Rd−2) + 2 · vdimC(Rd−3)

=

(
d + 5

5

)
− 3 ·

(
d + 3

5

)
+ 2 ·

(
d + 2

5

)
= · · ·

= 1
2d

3 + 2d2 + 5
2d + 1.

In particular: dim(Z ) = 3 + 1 = 4.



Hilbert’s approach for R/IZ

0→ R(−3)2
f2−→ R(−2)3

f1−−→ R1 f0−−→ R/IZ

Compute vdimC (R/IZ )d :

vdimC(R/IZ )d = 1 · vdimC(Rd)− 3 · vdimC(Rd−2) + 2 · vdimC(Rd−3)

=

(
d + 5

5

)
− 3 ·

(
d + 3

5

)
+ 2 ·

(
d + 2

5

)
= · · ·

= 1
2d

3 + 2d2 + 5
2d + 1.

In particular: dim(Z ) = 3 + 1 = 4.



Hilbert’s approach for R/IZ

0→ R(−3)2
f2−→ R(−2)3

f1−−→ R1 f0−−→ R/IZ

Compute vdimC (R/IZ )d :

vdimC(R/IZ )d = 1 · vdimC(Rd)− 3 · vdimC(Rd−2) + 2 · vdimC(Rd−3)

=

(
d + 5

5

)
− 3 ·

(
d + 3

5

)
+ 2 ·

(
d + 2

5

)
= · · ·

= 1
2d

3 + 2d2 + 5
2d + 1.

In particular: dim(Z ) = 3 + 1 = 4.



Hilbert’s approach for R/IZ

0→ R(−3)2
f2−→ R(−2)3

f1−−→ R1 f0−−→ R/IZ

Compute vdimC (R/IZ )d :

vdimC(R/IZ )d = 1 · vdimC(Rd)− 3 · vdimC(Rd−2) + 2 · vdimC(Rd−3)

=

(
d + 5

5

)
− 3 ·

(
d + 3

5

)
+ 2 ·

(
d + 2

5

)
= · · ·

= 1
2d

3 + 2d2 + 5
2d + 1.

In particular: dim(Z ) = 3 + 1 = 4.



Hilbert’s Syzygy Theorem

The sequence

0→ R(−3)2
f2−→ R(−2)3

f1−−→ R
f0−−→ R/IZ

is called a (graded) free resolution of R/IZ .

The property image(fi+1) = ker(fi ) is called “exactness”.

Theorem (Hilbert’s Syzygy Theorem, 1890)

Every graded R-module M has a graded free resolution,
terminating after finitely-many steps (at most dim(R) needed).

Therefore, for d � 0, vdimC(Md) is a polynomial, called the
Hilbert polynomial hilbM(d).
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What does the Hilbert polynomial tell us about X?

I Topology: deg(hilbR) = n dimension of X = n + 1

I Algebra/geometry:
n! · (leading coefficient)  the degree of X

And more:

hilbR(0) =
Euler characteristic of the

projective variety of X

(homogeneous eqns:  projectivization of X
X scale-invariant)
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Improving on the Hilbert polynomial

Hilbert polynomials are great, but there was more data:

0→ R(−3)2
f2−→ R(−2)3

f1−−→ R1 f0−−→ R/IZ

Lemma (Nakayama)

The minimal graded free resolution is unique.

Record #, deg of syzygies at each step: the Betti table β(R/IZ ) :

· · · 2 1 0 βi ,d
− − − 1 d = 0
− − − − d = 1
− − 3 − d = 2
− 2 − − d = 3
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Betti tables tell us more

The Betti table β(M) tells us:

I The projective dimension and regularity

I Defining equations, deformation theory, smoothness

Example (3D interpolation)

Fix 7 points in 3D, Z = {p1, . . . , p7} ⊆ C3.

Is there a low-degree curve (x(t), y(t), z(t)) ⊆ C3 through all 7?

Hilbert polynomial of Z can’t tell (same for any 7 points).
Betti table can: Yes if β2,3 6= 0, no otherwise!
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Which Betti tables are possible?

Modern Goal: Classify Betti tables. Which tables can occur?

 Combinatorics to describe behaviors of spaces, equations.

Many restrictions on β:

Exactness  
∑
d

βi ,d︸ ︷︷ ︸
column i

≤
∑
d

βi+1,d︸ ︷︷ ︸
column i+1

+
∑
d

βi−1,d︸ ︷︷ ︸
column i−1

.

Many others – mostly linear inequalities on the βi ,d .

Boij-Söderberg theory (2006)

Study Betti tables up to rational multiple:

BSn := Q≥0 · {β(M) : graded modules M}.

BSn is called the cone of Betti tables.
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Boij-Söderberg theory is growing rapidly

Graded Betti tables are fully understood:

Theorem (Eisenbud-Schreyer 2008)

The Betti cone BSn is rational polyhedral, with explicitly-known
extremal rays and facets.

Extremal rays: “pure” (sparse) tables and resolutions
(β(M) has as few as entries as possible)

Facets: via geometry of Pn: cohomology of vector bundles
Duality: Betti tables ←→ “cohomology tables”
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Boij-Söderberg theory is growing rapidly

Recent advances (Berkesch, Eisenbud, Erman, Fløystad, Ford,
Kummini, L., Sam, Smith, Weyman...) :

I Multigraded polynomials, toric rings, (some) homogeneous
coordinate rings

I Partial results, many open questions: describe rays, facets...

I Bi-graded Betti tables over R = C[x0, x1, y0, y1] (P1 × P1)
I x3

0 y0 + x0x
2
1 (y0 + y1) + x3

1 y0 = 0 (bi-degree (3, 1))

I Computer-aided exploration in Macaulay2, Sage...

I Cohomology of vector bundles on Pn × Pm, on toric varieties,
on curves...
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Syzygies of matrix varieties

My interest: matrices and subvarieties Z ⊂ Ckn = Matk×n.

I Say Z is “preserved by row operations” if GLk · Z = Z .
 i.e., Z defined only based on rowspan(M) ⊆ Cn.

I Examples:

I Degeneracy loci: Z = {M : rank(M) ≤ r}
I Incidence loci: given planes Pi ⊆ Cn,

 Z = {M : dim(rowspan(M) ∩ Pi ) ≥ di for each i}.

I Tangent spaces of varieties V ⊂ Pn−1

I Study GLk-equivariant modules, resolutions, Betti tables

I Record GLk -action on syzygies, not just the degrees
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Syzygies of matrix varieties

Representations of GLk correspond to Young diagrams:

←→ V (Ck)⊗ R.

The GLk -equivariant free resolution for R/IZ :

0→ R → R3 → R∅ → R/IZ

Questions:

I Is the Betti cone BSk,n rational polyhedral?

I Matk×k , pdim(M) = 1: yes! [Ford-L.-Sam ’16]

I What are its extremal rays, facets?
I Cohomology of vector bundles on Grassmannians Gr(k , n)

I Duality exists in this setting [Ford-L. ’16]
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Thank you!


