Syzygies, Hilbert polynomials and matrix varieties

Jake Levinson (University of Michigan)

joint with Nic Ford (UC-Berkeley), Steven Sam (UW-Madison)

> Haverford Colloquium November 15, 2016

I am an algebraic geometer (and combinatorialist).

My way to understand interesting spaces X:

equations defining $X \quad \leftrightarrow \quad$ geometry of X

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I am an algebraic geometer (and combinatorialist).

My way to understand interesting spaces X:

equations defining $X \leftrightarrow$ geometry of X

derivatives

tangent spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

I am an algebraic geometer (and combinatorialist).

My way to understand interesting spaces X:

equations defining $X \quad \leftrightarrow \quad \text{geometry of } X$

derivatives

homogeneous polynomials $x^2y^3 + 2y^5 - x^4y = 0$

tangent spaces X is scale-invariant:

 $x \in X \implies t \cdot x \in X$

I am an algebraic geometer (and combinatorialist).

My way to understand interesting spaces X:

equations defining $X \leftrightarrow$ geometry of XN variables, M equations $\dim(X) \approx N - M$

I am an algebraic geometer (and combinatorialist).

My way to understand interesting spaces X:

equations defining $X \leftrightarrow$ geometry of XN variables, M equations $\dim(X) \approx N - M$

This is not always true.

Motivating example (from linear algebra)

Rank-deficient matrices:

(ロ)、(型)、(E)、(E)、 E) の(の)

Motivating example (from linear algebra)

Rank-deficient matrices:

Relevant to matrix factorization, e.g. Netflix preference model:

$$\underbrace{(\mathsf{users} \times \mathsf{movies})}_{\mathsf{HUGE(!), \ sparse}} = \underbrace{(\mathsf{users} \times \mathsf{features}) \cdot (\mathsf{features} \times \mathsf{movies})}_{\mathrm{rank} \ \leq \ |\mathsf{features}|}$$

Motivating example (from linear algebra)

Rank-deficient matrices:

$$\mathbb{C}^{6} = \{2 \times 3 \text{ matrices } M\}$$

$$\cup | \qquad \qquad \cup |$$

$$Z = \{\operatorname{rank}(M) < 2\}$$

Relevant to matrix factorization, e.g. Netflix preference model:

$$\underbrace{(\mathsf{users} \times \mathsf{movies})}_{\mathsf{HUGE(!), \ \mathsf{sparse}}} = \underbrace{(\mathsf{users} \times \mathsf{features}) \cdot (\mathsf{features} \times \mathsf{movies})}_{\mathrm{rank} \ \leq \ |\mathsf{features}|}$$

Goal: understand Z.

equations, topology, dimension...

• Equations for Z: all the 2×2 minors

• Equations for Z: all the 2×2 minors

$$0 = \det_{[23]} = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} = a_{12}a_{23} - a_{13}a_{22}$$

$$0 = \det_{[13]} = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} = a_{11}a_{23} - a_{13}a_{21}$$

$$0 = \det_{[12]} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

• Equations for Z: all the 2×2 minors

•
$$0 = \det_{[23]} = \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} = a_{12}a_{23} - a_{13}a_{22}$$

• $0 = \det_{[13]} = \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} = a_{11}a_{23} - a_{13}a_{21}$
• $0 = \det_{[12]} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$
• All three are necessary: $\begin{bmatrix} * & * & 0 \\ * & * & 0 \end{bmatrix}$, $\begin{bmatrix} * & 0 & * \\ * & 0 & * \end{bmatrix}$, $\begin{bmatrix} 0 & * & * \\ 0 & * & * \end{bmatrix}$

So, 6 variables, 3 equations $\rightsquigarrow \dim(Z) = 3$.

(ロ)、(型)、(E)、(E)、 E) の(の)

So, 6 variables, 3 equations $\rightsquigarrow \dim(Z) \neq 3$. Problem: this is false! In fact dim $(Z) \ge 4$:

$$\begin{bmatrix} a & b & c \\ ta & tb & tc \end{bmatrix} \rightsquigarrow a, b, c, t$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

So, 6 variables, 3 equations $\rightsquigarrow \dim(Z) \neq 3$. Problem: this is false! In fact dim $(Z) \ge 4$:

$$\begin{bmatrix} a & b & c \\ ta & tb & tc \end{bmatrix} \rightsquigarrow a, b, c, t$$

Even worse for $k \times n$ matrices:

- ▶ kn variables, $\binom{n}{k}$ equations $\rightsquigarrow kn \binom{n}{k}$ is negative!
- (Actually dim(Z) = (k 1)(n + 1).)

So, 6 variables, 3 equations $\rightsquigarrow \dim(Z) \neq 3$. Problem: this is false! In fact dim $(Z) \ge 4$:

$$\begin{bmatrix} a & b & c \\ ta & tb & tc \end{bmatrix} \rightsquigarrow a, b, c, t$$

Even worse for $k \times n$ matrices:

- ▶ kn variables, $\binom{n}{k}$ equations $\rightsquigarrow kn \binom{n}{k}$ is negative!
- (Actually dim(Z) = (k 1)(n + 1).)

Eventual idea: study **syzygies** (polynomial relations) between the defining equations.

Look at all all possible polynomial equations for Z:

• Polynomials in
$$R = \mathbb{C}\begin{bmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\end{bmatrix}$$

Look at all all possible polynomial equations for Z:

• Polynomials in
$$R = \mathbb{C}\begin{bmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\end{bmatrix}$$

►
$$I_Z = \{f \in R : f(M) = 0 \text{ for all } M \in Z\}$$

This is an **ideal**: if $f \in I_Z$, then $gf \in I_Z$ for any $g \in R$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Look at all all possible polynomial equations for Z:

• Polynomials in
$$R = \mathbb{C} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

►
$$I_Z = \{f \in R : f(M) = 0 \text{ for all } M \in Z\}$$

This is an **ideal**: if $f \in I_Z$, then $gf \in I_Z$ for any $g \in R$

It is generated by the three determinants:

$$I_Z = (\det_{[23]}, \det_{[13]}, \det_{[12]})$$

Look at all all possible polynomial equations for Z:

• Polynomials in
$$R = \mathbb{C}\begin{bmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\end{bmatrix}$$

►
$$I_Z = \{f \in R : f(M) = 0 \text{ for all } M \in Z\}$$

This is an **ideal**: if $f \in I_Z$, then $gf \in I_Z$ for any $g \in R$

It is generated by the three determinants:

$$I_Z = (\det_{[23]}, \det_{[13]}, \det_{[12]})$$

Hilbert's idea (1890):

- Study the **quotient ring** R/I_Z (set f = 0 for $f \in I_Z$)
- Intuition: the larger R/I_Z is, the larger the space Z.

Hilbert's idea (cont'd)

- Study R/IZ
- ▶ Intuition: size of $R/I_Z \iff$ size of Z.

(ロ)、(型)、(E)、(E)、 E) の(の)

Hilbert's idea (cont'd)

- Study R/I_Z
- ▶ Intuition: size of $R/I_Z \iff$ size of Z.
- Specifically, look at the vector space
 (R/I_Z)_d := { homogeneous degree-d elements of R/I_Z }.
 Then, as d → ∞ : vdim_C(R/I_Z)_d ≈ d^{dim(Z)-1}.

・ロト・日本・モート モー うへぐ

Hilbert's idea (cont'd)

- Study R/I_Z
- ▶ Intuition: size of $R/I_Z \iff$ size of Z.
- Specifically, look at the vector space
 (R/I_Z)_d := { homogeneous degree-d elements of R/I_Z }.
 Then, as d → ∞ : vdim_C(R/I_Z)_d ≈ d^{dim(Z)-1}.

Warm-up: let's try
$$R = \mathbb{C} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$
 (for $Z = \mathbb{C}^6$, $I_Z = (0)$).

Claim: $vdim_{\mathbb{C}}(R_d) = O(d^{6-1}) = O(d^5)$.

Compute vdim_{\mathbb{C}}(R_d) = { homog. deg-*d* poly's in 6 variables } :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Count monomials of total degree d

Compute $vdim_{\mathbb{C}}(R_d) = \{ homog. deg-d poly's in 6 variables \} :$

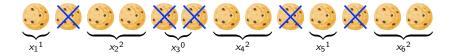
- Count monomials of total degree d
- Put d + 5 cookies in a line:

Compute $\operatorname{vdim}_{\mathbb{C}}(R_d) = \{ \text{ homog. deg-} d \text{ poly's in 6 variables } \}$:

- Count monomials of total degree d
- Put d + 5 cookies in a line: cross out / eat 5

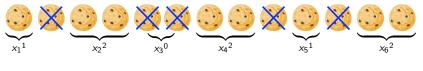
Compute $\operatorname{vdim}_{\mathbb{C}}(R_d) = \{ \text{ homog. deg-} d \text{ poly's in 6 variables } \}$:

- Count monomials of total degree d
- Put d + 5 cookies in a line: cross out / eat 5



Compute $\operatorname{vdim}_{\mathbb{C}}(R_d) = \{ \text{ homog. deg-} d \text{ poly's in 6 variables } \}$:

- Count monomials of total degree d
- Put d + 5 cookies in a line: cross out / eat 5

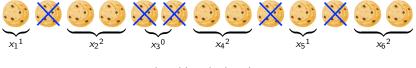


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Total #: $\binom{d+5}{5} = \frac{(d+5)(d+4)\cdots(d+1)}{5!} = \frac{1}{5!}d^5 + \cdots$.

Compute $\operatorname{vdim}_{\mathbb{C}}(R_d) = \{ \text{ homog. deg-} d \text{ poly's in 6 variables } \}$:

- Count monomials of total degree d
- Put d + 5 cookies in a line: cross out / eat 5



► Total #:
$$\binom{d+5}{5} = \frac{(d+5)(d+4)\cdots(d+1)}{5!} = \frac{1}{5!}d^5 + \cdots$$

Theorem (Hilbert)

Let R be a graded ring, X the corresponding geometric space. Then $vdim_{\mathbb{C}}(R_d)$ is eventually a polynomial of degree $\dim(X) - 1$.

Rings, modules and gradings

Let R be a ring. An R-module M is a "vector space over R":

- ▶ Can **add**: $m_1 + m_2 \in M$
- Can scalar-multiply by $R: r \cdot m \in M$

Think: ideals, quotient rings, $R^n := \{(r_1, \ldots, r_n) : r_i \in R\}$ R^n is a "rank-*n* free module", generators $(0, \ldots, 1_i, \ldots, 0)$.

Rings, modules and gradings

Let R be a ring. An R-module M is a "vector space over R":

• Can **add**:
$$m_1 + m_2 \in M$$

• Can scalar-multiply by $R: r \cdot m \in M$

Think: ideals, quotient rings, $R^n := \{(r_1, \ldots, r_n) : r_i \in R\}$ R^n is a "rank-*n* free module", generators $(0, \ldots, 1_i, \ldots, 0)$.

A module (or ring) is **graded** if its elements "have degrees": Think: I, R/I given by homogeneous polynomials.

- $M \supseteq M_d = \{ \text{deg-}d \text{ homogeneous elements} \},$
- Every $m \in M$ decomposes as $m = \sum_d m_d$
- Multiplying: $\deg(r \cdot m) = \deg(r) + \deg(m)$.

Back to R/I_Z , where $I_Z = (det_{[23]}, det_{[13]}, det_{[12]})$.

Claim: $vdim_{\mathbb{C}}(R/I_Z)_d$ is a polynomial.

$$R \xrightarrow{f_0} R/I_Z$$

・ロト・日本・モート モー うへぐ

Back to R/I_Z , where $I_Z = (det_{[23]}, det_{[13]}, det_{[12]})$.

Claim: $vdim_{\mathbb{C}}(R/I_Z)_d$ is a polynomial.

$$R \xrightarrow{f_0} R/I_Z$$

We have $\ker(f_0) = I_Z$.

Back to R/I_Z , where $I_Z = (det_{[23]}, det_{[13]}, det_{[12]})$.

Claim: $vdim_{\mathbb{C}}(R/I_Z)_d$ is a polynomial.

$$egin{array}{ccc} R^3 & \stackrel{f_1}{\longrightarrow} R & \stackrel{f_0}{\longrightarrow} R/I_Z \ (1,0,0) \mapsto \det_{[23]} \ (0,1,0) \mapsto \det_{[13]} \ (0,0,1) \mapsto \det_{[12]} \end{array}$$

We have $\ker(f_0) = I_Z$. Set up f_1 with image $= I_Z = \ker(f_0)$.

Back to R/I_Z , where $I_Z = (det_{[23]}, det_{[13]}, det_{[12]})$.

Claim: $vdim_{\mathbb{C}}(R/I_Z)_d$ is a polynomial.

$$egin{array}{ccc} R^3 & \stackrel{f_1}{\longrightarrow} R & \stackrel{f_0}{\longrightarrow} R/I_Z \ (1,0,0) \mapsto \det_{[23]} \ (0,1,0) \mapsto \det_{[13]} \ (0,0,1) \mapsto \det_{[12]} \end{array}$$

We have $\ker(f_0) = I_Z$. Set up f_1 with image $= I_Z = \ker(f_0)$.

$$(r_1, r_2, r_3) \xrightarrow{f_1} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} \in I_Z$$

Back to R/I_Z , where $I_Z = (det_{[23]}, det_{[13]}, det_{[12]})$.

Claim: $\operatorname{vdim}_{\mathbb{C}}(R/I_Z)_d$ is a polynomial.

$$\begin{array}{c} R(-2)^3 \xrightarrow{f_1} R \xrightarrow{f_0} R/I_Z \\ (1,0,0) \mapsto \det_{[23]} \\ (0,1,0) \mapsto \det_{[13]} \\ (0,0,1) \mapsto \det_{[12]} \end{array}$$

We have $\ker(f_0) = I_Z$. Set up f_1 with image $= I_Z = \ker(f_0)$.

$$(r_1, r_2, r_3) \xrightarrow{f_1} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} \in I_Z$$

Back to R/I_Z , where $I_Z = (det_{[23]}, det_{[13]}, det_{[12]})$.

Claim: $\operatorname{vdim}_{\mathbb{C}}(R/I_Z)_d$ is a polynomial.

$$\begin{array}{c} R(-2)^3 \xrightarrow{f_1} R \xrightarrow{f_0} R/I_Z \\ (1,0,0) \mapsto \det_{[23]} \\ (0,1,0) \mapsto \det_{[13]} \\ (0,0,1) \mapsto \det_{[12]} \end{array}$$

We have $\ker(f_0) = I_Z$. Set up f_1 with image $= I_Z = \ker(f_0)$.

$$(r_1, r_2, r_3) \xrightarrow{f_1} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} \in I_Z$$

Is f₁ injective? If yes, we'd be done:

$$\operatorname{vdim}_{\mathbb{C}}(R/I_Z)_d = \operatorname{vdim}_{\mathbb{C}}(R_d) - 3 \cdot \operatorname{vdim}_{\mathbb{C}}(R_{d-2})$$

Back to R/I_Z , where $I_Z = (det_{[23]}, det_{[13]}, det_{[12]})$.

Claim: $\operatorname{vdim}_{\mathbb{C}}(R/I_Z)_d$ is a polynomial.

$$\begin{array}{c} R(-2)^3 \xrightarrow{f_1} R \xrightarrow{f_0} R/I_Z \\ (1,0,0) \mapsto \det_{[23]} \\ (0,1,0) \mapsto \det_{[13]} \\ (0,0,1) \mapsto \det_{[12]} \end{array}$$

We have $\ker(f_0) = I_Z$. Set up f_1 with image $= I_Z = \ker(f_0)$.

$$(r_1, r_2, r_3) \xrightarrow{f_1} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} \in I_Z$$

Is f₁ injective? If yes, we'd be done:

$$\operatorname{vdim}_{\mathbb{C}}(R/I_Z)_d \neq \operatorname{vdim}_{\mathbb{C}}(R_d) - 3 \cdot \operatorname{vdim}_{\mathbb{C}}(R_{d-2})$$

Sadly, it is **not** injective, $\operatorname{ker}(f_1) \neq 0$.

Let's describe $ker(f_1) =$ the module of **syzygies**. Elements of $ker(f_1)$ are **relations** among the generators of I_Z :

$$(r_1, r_2, r_3) \stackrel{f_1}{\mapsto} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} = 0 \in R$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let's describe $ker(f_1) =$ the module of **syzygies**. Elements of $ker(f_1)$ are **relations** among the generators of I_Z :

$$(r_1, r_2, r_3) \stackrel{f_1}{\mapsto} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} = 0 \in R$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Syzygies from Laplace expansion:

Let's describe $ker(f_1) =$ the module of **syzygies**. Elements of $ker(f_1)$ are **relations** among the generators of I_Z :

$$(r_1, r_2, r_3) \stackrel{f_1}{\mapsto} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} = 0 \in R$$

Syzygies from Laplace expansion:

In R:
$$0 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix}$$
$$0 = a_{11} \det_{[23]} - a_{12} \det_{[13]} + a_{13} \det_{[12]}$$

Let's describe $ker(f_1) =$ the module of **syzygies**. Elements of $ker(f_1)$ are **relations** among the generators of I_Z :

$$(r_1, r_2, r_3) \stackrel{f_1}{\mapsto} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} = 0 \in R$$

Syzygies from Laplace expansion:

$$\begin{array}{ll} \ln R: & 0 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} \\ \\ & 0 = a_{11} \det_{[23]} - a_{12} \det_{[13]} + a_{13} \det_{[12]} \\ \\ \Longrightarrow & \ker(f_1) \ni (a_{11}, -a_{12}, a_{13}). \end{array}$$

Let's describe $ker(f_1) =$ the module of **syzygies**. Elements of $ker(f_1)$ are **relations** among the generators of I_Z :

$$(r_1, r_2, r_3) \stackrel{f_1}{\mapsto} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} = 0 \in R$$

Syzygies from Laplace expansion:

$$\begin{array}{ll} \ln R: & 0 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} \\ \\ & 0 = a_{11} \det_{[23]} - a_{12} \det_{[13]} + a_{13} \det_{[12]} \\ \\ \Longrightarrow & \ker(f_1) \ni (a_{11}, -a_{12}, a_{13}). \\ \\ \text{Similarly:} & \ni (a_{21}, -a_{22}, a_{23}). \end{array}$$

Let's describe $ker(f_1) =$ the module of **syzygies**. Elements of $ker(f_1)$ are **relations** among the generators of I_Z :

$$(r_1, r_2, r_3) \stackrel{f_1}{\mapsto} r_1 \det_{[23]} + r_2 \det_{[13]} + r_3 \det_{[12]} = 0 \in R$$

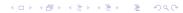
Syzygies from Laplace expansion:

$$\begin{array}{ll} \ln R: & 0 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} \\ & 0 = a_{11} \det_{[23]} - a_{12} \det_{[13]} + a_{13} \det_{[12]} \\ \Longrightarrow & \ker(f_1) \ni (a_{11}, -a_{12}, a_{13}). \\ \text{Similarly:} & \ni (a_{21}, -a_{22}, a_{23}). \end{array}$$

Complete, minimal generators for $ker(f_1)$.

$$R(-2)^3 \xrightarrow{f_1} R \xrightarrow{f_0} R/I_Z$$

We had ker(f_1) $\neq 0$ with two generators.



$$R^{2} \xrightarrow{f_{2}} R(-2)^{3} \xrightarrow{f_{1}} R \xrightarrow{f_{0}} R/I_{Z}$$

$$(1,0) \mapsto (a_{11}, -a_{12}, a_{13})$$

$$(0,1) \mapsto (a_{21}, -a_{22}, a_{23})$$

We had ker $(f_1) \neq 0$ with two generators.

So, set up f_2 with image $(f_2) = \text{ker}(f_1)$.

$$R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R \xrightarrow{f_0} R/I_Z$$

(1,0) \mapsto ($a_{11}, -a_{12}, a_{13}$)
(0,1) \mapsto ($a_{21}, -a_{22}, a_{23}$)

We had ker $(f_1) \neq 0$ with two generators.

So, set up f_2 with image $(f_2) = \ker(f_1)$.

$$R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R \xrightarrow{f_0} R/I_Z$$

(1,0) \mapsto ($a_{11}, -a_{12}, a_{13}$)
(0,1) \mapsto ($a_{21}, -a_{22}, a_{23}$)

We had ker $(f_1) \neq 0$ with two generators. So, set up f_2 with image $(f_2) = \text{ker}(f_1)$.

Is f₂ injective? If yes, we'll be done.

$$\begin{array}{c} \mathbf{0} \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R \xrightarrow{f_0} R/I_Z \\ (1,0) \mapsto (a_{11}, -a_{12}, a_{13}) \\ (0,1) \mapsto (a_{21}, -a_{22}, a_{23}) \end{array}$$

We had ker $(f_1) \neq 0$ with two generators.

So, set up f_2 with image $(f_2) = \text{ker}(f_1)$.

Is f₂ injective? If yes, we'll be done.

It is!

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R^1 \xrightarrow{f_0} R/I_Z$$

Compute vdim_C $(R/I_Z)_d$:

<□ > < @ > < E > < E > E のQ @

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R^1 \xrightarrow{f_0} R/I_Z$$

Compute vdim_{\mathbb{C}} $(R/I_Z)_d$:

 $\mathsf{vdim}_{\mathbb{C}}(R/I_Z)_d = 1 \cdot \mathsf{vdim}_{\mathbb{C}}(R_d) - 3 \cdot \mathsf{vdim}_{\mathbb{C}}(R_{d-2}) + 2 \cdot \mathsf{vdim}_{\mathbb{C}}(R_{d-3})$

・ロト・日本・モート モー うへぐ

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R^1 \xrightarrow{f_0} R/I_Z$$

Compute vdim_{\mathbb{C}} $(R/I_Z)_d$:

 $\operatorname{vdim}_{\mathbb{C}}(R/I_Z)_d = 1 \cdot \operatorname{vdim}_{\mathbb{C}}(R_d) - 3 \cdot \operatorname{vdim}_{\mathbb{C}}(R_{d-2}) + 2 \cdot \operatorname{vdim}_{\mathbb{C}}(R_{d-3})$ $= \binom{d+5}{5} - 3 \cdot \binom{d+3}{5} + 2 \cdot \binom{d+2}{5}$ $= \cdots$

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R^1 \xrightarrow{f_0} R/I_Z$$

Compute vdim_{\mathbb{C}} $(R/I_Z)_d$:

 $\operatorname{vdim}_{\mathbb{C}}(R/I_Z)_d = 1 \cdot \operatorname{vdim}_{\mathbb{C}}(R_d) - 3 \cdot \operatorname{vdim}_{\mathbb{C}}(R_{d-2}) + 2 \cdot \operatorname{vdim}_{\mathbb{C}}(R_{d-3})$ $= \binom{d+5}{5} - 3 \cdot \binom{d+3}{5} + 2 \cdot \binom{d+2}{5}$ $= \cdots$ $= \frac{1}{2}d^3 + 2d^2 + \frac{5}{2}d + 1.$

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R^1 \xrightarrow{f_0} R/I_Z$$

Compute vdim_{\mathbb{C}} $(R/I_Z)_d$:

 $\operatorname{vdim}_{\mathbb{C}}(R/I_Z)_d = \mathbf{1} \cdot \operatorname{vdim}_{\mathbb{C}}(R_d) - \mathbf{3} \cdot \operatorname{vdim}_{\mathbb{C}}(R_{d-2}) + \mathbf{2} \cdot \operatorname{vdim}_{\mathbb{C}}(R_{d-3})$ $= \begin{pmatrix} d+5\\5 \end{pmatrix} - \mathbf{3} \cdot \begin{pmatrix} d+3\\5 \end{pmatrix} + \mathbf{2} \cdot \begin{pmatrix} d+2\\5 \end{pmatrix}$ $= \cdots$ $= \frac{1}{2}d^3 + 2d^2 + \frac{5}{2}d + 1.$

In particular: $\dim(Z) = 3 + 1 = 4$.

Hilbert's Syzygy Theorem

The sequence

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R \xrightarrow{f_0} R/I_Z$$

is called a (graded) free resolution of R/I_Z .

The property $image(f_{i+1}) = ker(f_i)$ is called "exactness".

Hilbert's Syzygy Theorem

The sequence

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R \xrightarrow{f_0} R/I_Z$$

is called a (graded) free resolution of R/I_Z .

The property image $(f_{i+1}) = \ker(f_i)$ is called "exactness".

Theorem (Hilbert's Syzygy Theorem, 1890)

Every graded R-module M has a graded free resolution, terminating after **finitely-many** steps (at most dim(R) needed).

Therefore, for $d \gg 0$, $vdim_{\mathbb{C}}(M_d)$ is a polynomial, called the **Hilbert polynomial** hilb_M(d).

What does the Hilbert polynomial tell us about X?

- ▶ Topology: deg(hilb_R) = $n \rightsquigarrow$ dimension of X = n + 1
- Algebra/geometry:
 - $n! \cdot (\text{leading coefficient}) \rightsquigarrow \text{the degree of } X$

・ロト・日本・モート モー うへぐ

What does the Hilbert polynomial tell us about X?

- Topology: deg(hilb_R) = $n \rightsquigarrow$ dimension of X = n + 1
- Algebra/geometry: $n! \cdot (\text{leading coefficient}) \rightsquigarrow \text{the degree of } X$

And more:

Euler characteristic of the $hilb_R(0) =$ projective variety of X

(homogeneous eqns: \rightsquigarrow projectivization of X X scale-invariant)

Improving on the Hilbert polynomial

Hilbert polynomials are great, but there was more data:

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R^1 \xrightarrow{f_0} R/I_Z$$

Improving on the Hilbert polynomial

Hilbert polynomials are great, but there was more data:

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R^1 \xrightarrow{f_0} R/I_Z$$

Lemma (Nakayama)

The minimal graded free resolution is unique.

Improving on the Hilbert polynomial

Hilbert polynomials are great, but there was more data:

$$0 \to R(-3)^2 \xrightarrow{f_2} R(-2)^3 \xrightarrow{f_1} R^1 \xrightarrow{f_0} R/I_Z$$

Lemma (Nakayama)

The minimal graded free resolution is unique.

Record #, deg of syzygies at each step: the **Betti table** $\beta(R/I_Z)$:

•••	2	1	0	$\beta_{i,d}$
—	_	_	1	d = 0
_	_	_	_	d = 1
_	_	3	_	d = 0 $d = 1$ $d = 2$ $d = 3$
_	2	_	_	<i>d</i> = 3

Betti tables tell us more

The Betti table $\beta(M)$ tells us:

- The projective dimension and regularity
- Defining equations, deformation theory, smoothness

(ロ)、(型)、(E)、(E)、 E) のQの

Betti tables tell us more

The Betti table $\beta(M)$ tells us:

- The projective dimension and regularity
- Defining equations, deformation theory, smoothness

Example (3D interpolation)

Fix 7 points in 3D, $Z = \{p_1, \ldots, p_7\} \subseteq \mathbb{C}^3$.

Is there a low-degree curve $(x(t), y(t), z(t)) \subseteq \mathbb{C}^3$ through all 7?

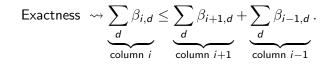
Hilbert polynomial of Z can't tell (same for any 7 points). Betti table can: **Yes** if $\beta_{2,3} \neq 0$, **no** otherwise!

Modern Goal: Classify Betti tables. Which tables can occur?

 \rightsquigarrow Combinatorics to describe behaviors of spaces, equations.

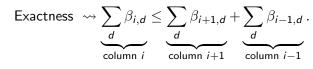
Modern Goal: Classify Betti tables. Which tables can occur?

 \rightsquigarrow **Combinatorics** to describe behaviors of spaces, equations. Many restrictions on β :



Modern Goal: Classify Betti tables. Which tables can occur?

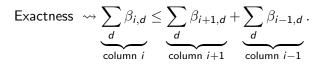
 \rightsquigarrow **Combinatorics** to describe behaviors of spaces, equations. Many restrictions on β :



Many others – mostly *linear inequalities* on the $\beta_{i,d}$.

Modern Goal: Classify Betti tables. Which tables can occur?

 \rightsquigarrow **Combinatorics** to describe behaviors of spaces, equations. Many restrictions on β :



Many others – mostly *linear inequalities* on the $\beta_{i,d}$.

Boij-Söderberg theory (2006)

Study Betti tables up to rational multiple:

$$BS_n := \mathbb{Q}_{\geq 0} \cdot \{\beta(M) : \text{ graded modules } M\}.$$

 BS_n is called the **cone of Betti tables**.

Graded Betti tables are fully understood:

Theorem (Eisenbud-Schreyer 2008)

The Betti cone BS_n is rational polyhedral, with explicitly-known extremal rays and facets.

Graded Betti tables are fully understood:

Theorem (Eisenbud-Schreyer 2008)

The Betti cone BS_n is rational polyhedral, with explicitly-known extremal rays and facets.

Extremal rays: "pure" (sparse) tables and resolutions $(\beta(M)$ has as few as entries as possible)

Graded Betti tables are fully understood:

Theorem (Eisenbud-Schreyer 2008)

The Betti cone BS_n is rational polyhedral, with explicitly-known extremal rays and facets.

Extremal rays: "pure" (sparse) tables and resolutions $(\beta(M)$ has as few as entries as possible)

Facets: via geometry of \mathbb{P}^n : cohomology of vector bundles **Duality**: Betti tables \longleftrightarrow "cohomology tables"

Recent advances (Berkesch, Eisenbud, Erman, Fløystad, Ford, Kummini, L., Sam, Smith, Weyman...) :

Recent advances (Berkesch, Eisenbud, Erman, Fløystad, Ford, Kummini, L., Sam, Smith, Weyman...) :

- Multigraded polynomials, toric rings, (some) homogeneous coordinate rings
- > Partial results, many open questions: describe rays, facets...

► Bi-graded Betti tables over
$$R = \mathbb{C}[x_0, x_1, y_0, y_1]$$
 ($\mathbb{P}^1 \times \mathbb{P}^1$)

•
$$x_0^3 y_0 + x_0 x_1^2 (y_0 + y_1) + x_1^3 y_0 = 0$$
 (bi-degree (3, 1))

Recent advances (Berkesch, Eisenbud, Erman, Fløystad, Ford, Kummini, L., Sam, Smith, Weyman...) :

- Multigraded polynomials, toric rings, (some) homogeneous coordinate rings
- > Partial results, many open questions: describe rays, facets...

- Computer-aided exploration in Macaulay2, Sage...
- ► Cohomology of vector bundles on Pⁿ × P^m, on toric varieties, on curves...

My interest: matrices and subvarieties $Z \subset \mathbb{C}^{kn} = \operatorname{Mat}_{k \times n}$.

(ロ)、(型)、(E)、(E)、 E) の(の)

My interest: matrices and subvarieties $Z \subset \mathbb{C}^{kn} = \operatorname{Mat}_{k \times n}$.

Say Z is "preserved by row operations" if GL_k · Z = Z. → i.e., Z defined only based on rowspan(M) ⊆ Cⁿ.

My interest: matrices and subvarieties $Z \subset \mathbb{C}^{kn} = \operatorname{Mat}_{k \times n}$.

- Say Z is "preserved by row operations" if GL_k · Z = Z. → i.e., Z defined only based on rowspan(M) ⊆ Cⁿ.
- Examples:
 - Degeneracy loci: $Z = \{M : \operatorname{rank}(M) \le r\}$
 - Incidence loci: given planes $P_i \subseteq \mathbb{C}^n$,

 $\rightsquigarrow Z = \{M : \operatorname{dim}(\operatorname{rowspan}(M) \cap P_i) \ge d_i \text{ for each } i\}.$

• Tangent spaces of varieties $V \subset \mathbb{P}^{n-1}$

My interest: matrices and subvarieties $Z \subset \mathbb{C}^{kn} = \operatorname{Mat}_{k \times n}$.

- Say Z is "preserved by row operations" if GL_k · Z = Z. → i.e., Z defined only based on rowspan(M) ⊆ Cⁿ.
- Examples:
 - Degeneracy loci: $Z = \{M : \operatorname{rank}(M) \le r\}$
 - Incidence loci: given planes $P_i \subseteq \mathbb{C}^n$,

 $\rightsquigarrow Z = \{M : \operatorname{dim}(\operatorname{rowspan}(M) \cap P_i) \ge d_i \text{ for each } i\}.$

- Tangent spaces of varieties $V \subset \mathbb{P}^{n-1}$
- Study GL_k-equivariant modules, resolutions, Betti tables
 - ▶ Record *GL_k*-action on syzygies, not just the degrees

Representations of GL_k correspond to **Young diagrams**:

The GL_k -equivariant free resolution for R/I_Z :

$$0 \to R_{\rm H} \to R_{\rm H}^3 \to R_{\rm \varnothing} \to R/I_Z$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Representations of GL_k correspond to **Young diagrams**:

The GL_k -equivariant free resolution for R/I_Z :

$$0 \to R_{\rm H} \to R_{\rm H}^3 \to R_{\varnothing} \to R/I_Z$$

Questions:

- ▶ Is the Betti cone *BS_{k,n}* rational polyhedral?
 - $Mat_{k \times k}$, pdim(M) = 1: yes! [Ford-L.-Sam '16]
- What are its extremal rays, facets?
- Cohomology of vector bundles on Grassmannians Gr(k, n)
 - Duality exists in this setting [Ford-L. '16]

Thank you!

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>