SOME SPECIAL VALUES OF COSINE

JAKE LEVINSON

1. INTRODUCTION

We all learn a few specific values of cos(z) (and sin(x)) in high school — such as those in the
following table:

T 0 %71’ %7‘(’ %71' %7’[‘ i
cos(x) § ? 310 -1
sin(z) [0 L [ 22| 1] 0

Surely there are other ‘nice’ values of cos(mm), where m € Q7 In fact, it turns out there are at
least a couple that are more or less as nice as those in the above table, such as

(1.1) cos(Z) = 1(v5-1), cos(%) = (V2 + V6), cos(%) = $\/2+ V2.

We’ll find these and a few others, using basic Galois theory and algebraic number theory. In
particular, we’ll classify the values of m € Z such that cos(%) is, respectively, rational, quadratic,
biquadratic and quartic (i.e., a nested quadratic). Our goal is to proceed algebraically as much as
possible, so we avoid embedding into C. In fact, the only truly analytic fact we need is

(1.2) cos(2Z) > 0 if m > 4.

We also observe that complex conjugation (always) restricts to the involution ¢ — ¢! of Gal(Q(¢)/Q).

2. SETUP (AND RATIONAL VALUES OF cos(2%) FOR m € Z)

Our approach is based on the following fact (pointed out by Adam Kaye): let ( = ¢, = e2mi/m ¢
C be a primitive m-th root of unity. Then

(2.1) a=C+ ¢t =2Re(C) = 2cos(Z).

‘m
In particular, « is real, and ( satisfies a quadratic polynomial over Q(«),
(2.2) al=C+1.
Assuming m # 1,2, so that [Q(¢) : Q] = ¢(m) > 2, we therefore have the tower of fields

In particular, the degree of cos(2X) over Q is ¢(m)/2. We'll consider the cases where it is degree 4,
since those are, for example, root extensions of QQ, hence reasonably tractable to work with.
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2.1. Rational values. First of all, we see that € Q if and only if m = 1,2 or ¢(m) = 2, which
is to say m = 1,2,3,4,6. We note that when m is odd, the identities

(2.3) Com = —CSm /2 and ¢ = G,

show that the cyclotomic extension is the same and that aa,, is a Galois conjugate of «,,, (the map

Cm — ,ng+1)/ % is an automorphism of Q((,,)). In particular, we can skip m = 6: we’ll get it easily

once we have done m = 3. For the others, we have the cyclotomic polynomials

(2.4) filx) =2 —1,
fle) =St —a,
fa(z) = 3;3__11 =2l 4a+1,
Falz) = ij_i Y

For the first two, we obtain ( = 1, —1, respectively, and so

(2.5) a=2cos(2Z)=2,-2form=1,2,
as we learned in high school. For the other two, we observe that —a = —({ + (1) is the linear

term of the minimal polynomial of {! We conclude that
(2.6) a=—1,0 for m = 3,4,
respectively, as we had hoped. Finally, for m = 6, we compute using our result from m = 3,

(2.7) ag=Cs+ (5 =—G - (%= —as,
so ag = 1. We have shown:

Corollary 1. The only values of m for which cos(%) €Q arem=1,2,3,4,6. We have, respec-
tively, cos(%’r) =1,-1, —%,0, %

3. QUADRATIC, BIQUADRATIC AND QUARTIC VALUES

The quadratic values are straightforward, but will nicely illustrate the tools we’ll use for the
degree-4 case. We make use of the following standard facts:

Fact 1. The cyclotomic field Q(e%i/p), where p is an odd prime, contains \/p if p=1 mod 4 and
V=D if p=—1 mod 4. The field Q(e*™/3) contains v/2.

Fact 2. The Galois group of the m-th cyclotomic field is isomorphic to the unit group (Z/mZ)*.
The unit u corresponds to the automorphism ¢ — C*. In particular, complex conjugation is always
represented by the element —1 € Z/mZ.

Also, given a field extension L/K, we denote by N IL( and Tr% the norm and trace maps L — K,
respectively. Our approach is first to identify the extension Q(a) = RN Q(¢) as a root extension
(i.e. a quadratic, biquadratic or nested quadratic), so that « can be expressed in a familiar basis.
We then use the trace and norm of certain intermediate fields to finish the computations.
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3.1. Quadratic values. For this case, we need ¢(m) = 4, which yields m = 5, 8,10, 12. As before,
we save the case m = 2 - odd for the end.
For m = 5, the cyclotomic polynomial is

(3.1) fs(z) =142+ 2% + 23 + 2.

We have (Z/5Z)* = Z/4Z, so there is exactly one quadratic subfield, which must be Q(v/5) by
Fact 1. Hence Q(a) = Q(v/5), so a = a + by/5 for some rational a,b. We will compute the trace
and norm of a (which are, respectively, 2a and a? — 5b%).

The nontrivial automorphism o € Gal(Q(«)/Q)must come from ¢ +— (2 (or, equivalently, ¢3),
since the other map restricts to the identity. Hence the Galois conjugate of avis (? + (72 = (? + (3,
so the trace and norm are

(3.2) Tig W (a) = C+ ¢+ P ¢t =1,
NG (@) = C+¢HE+) =+ 6= -
Hence 2a = —1 and a® — 5b> = —1, which gives
(3.3) a5 =2cos(2F) = — 1:I:I\f
Finally, we know (analytically) that cos(%) should be positive, so we conclude
(3.4) cos(ZE) = 1(\/5— 1).
We also get the m = 10 case as a Galois conjugate, namely
(3.5) a0 =Co+ ¢ = —G — G —ola),

the nontrivial Galois conjugate. We conclude

(3.6) cos(2% ):i(\[—k 1).

For m = 8,12, we can proceed similarly. The cyclotomic polynomials are
(3.7) fa(x) =t +1, fra(w) = at =2 + 1.

We observe that Q((g) contains Q(¢4) = Q(i), and /2 by Fact 1, hence must be the biquadratic
field Q(,/2). The real subfield is then Q(v/2). Likewise, Q((12) contains i and v/—3, so must be
Q(i,4v/3), with real subfield Q(v/3). As before, we compute the trace and norm, writing

(3.8) ag =a+bv2, e = ¢+ dvV/3, a,b,c,d € Q.

Note that the traces are 2a, 2c¢ and the norms are a® — 2b% and ¢ — 3d2.
By abuse of notation, we can write the nontrivial automorphism in both cases as the map ¢ — ¢,
so the remaining Galois conjugate is

(3.9) o) = ¢+ (.
Hence the trace and norm are
(3.10) Trg (@) = ¢+ ¢+ ¢+ (70

N @) = ¢C ¢ ¢
For m = 8, we simplify using (§ = —1, which gives Tr(as) = 0 and N(ag) = —2. For m = 12, we
instead simplify using (% = —1, to get Tr(ai2) = 0, and ¢}, = (% — 1, to get N(aj2) = —3.
After solving for a, b, ¢, d, we obtain:

(3.11) ag = 2cos( ™) = 41/2, a2 = 2cos(3Z) = +v/3.
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Finally, we know (analytically) that cos(%) and cos(f) should be positive. Putting these results
together, we have the following;:
Corollary 2. The only m € Z for which Cos(%”) s quadratic over Q are m = 5,8,10,12. We have:
m_ | 5 | 8] 10 |12
cos(3) | §(VE-1) | 2 [ 1(V5+1) | .

3.2. The Only Biquadratic Value. It may come as a surprise that there is only one value of m
making cos(%) biquadratic over Q, namely m = 24. We expected (correctly) that these would be
the easiest non-quadratic values, but all the others are all “nested quartics”. The following facts
explain why:

Fact 3 (Units mod m). The following facts determine the group structure of (Z/mZ)* :
(a) If p* is an odd prime power, then (Z/p*)* = Z/(p — 1) x Z/p*~'. Moreover, any such
isomorphism sends —1 € (Z/p*)* to the ordered pair (%,0) having order 2.
(b) For any k > 2, (Z)2F)* = 7./2 x 7./2k2. Any such isomorphism sends —1 € (Z/2F7)* to
an element of order 2.
(c) If a,b are coprime, then (Z/ab)* = (Z/a)* x (Z/b)*, and this isomorphism maps —1 to
(—1,-1).
Fact 4. Consider the group G = Z/2F x - .- x Z/2%" and the element g = (2M171, ..., 28=1) which
has order two. Then the quotient G/{(g) has the same decomposition into cyclic groups, except with
the smallest k; decremented by 1.
In particular, if G/{g) is isomorphic to (Z/2)", then every k; =1 and n =1r — 1.

Thus Fact 4 shows that the only way for Q(a,,) to be biquadratic (with Galois group Z/2 x Z/2)
is if Q(() is “triquadratic’, with Galois group (Z/mZ)* = (Z/2)3. By Fact 3, this can only occur
for m = 23 -3 = 24. Note that the cyclotomic polynomial is then
(3.12) foa(z) = 2® — 2t + 1,
and that (24 also satisfies (32 = —1.

For this case, we see that Q((24) contains Q((12) and Q(Cg), hence is precisely Q(i, v/2,v/3). The
real subfield is thus Q(az4) = Q(v/2,1/3), so we can write
(3.13) aog = Coa + (o)t = a+bV2 + V3 4 dV6.

A direct calculation shows that the Galois conjugates of a4 are

/8:<§)4+ 2127

(3.14) V=Gt i,
s=cih+ i
We observe that agy = —6. The corresponding automorphism (a4 +— (41 sends (i2 — Cﬁl, hence

fixes a1a = v/3. Thus it must be the map that negates v/2 and v6. We equate coefficients,
concluding that

(3.15) a=c=0.
By similar reasoning, the map (24 — (3, fixes ag = V2. Thus it negates v/6, so
(3.16) (a+7)? = (2bv/2)% = 8b?
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and, using (37 = —1,

(3.17) (ot + Goa! + G+ Gof)* = 2G84 — 205, +4 =2,
where the last equality is from the cyclotomic polynomial. A similar computation with o+ 3 shows
that d = j:%, and so

(3.18) azg = £ (V2 £ V6).

Both signs must be the same (and both give positive real numbers), but we have chosen our (’s so
that a2, — 2 = a12 = /3, which forces the inner sign to be +.

Corollary 3. The only m € Z for which Cos(%) 18 biquadratic is m = 24, and the resulting value

is cos(2) = 1(vV2+ V6).

3.3. Quartic Values. Lastly, we consider the other values of m for which ¢(m) = 8, namely
m = 15,16, 20,30. As usual, we will get m = 30 ‘for free’ as a Galois conjugate. In all three of
these cases, the Galois groups are

(3.19) Gal(Q(()/Q) = Z/2x /4,  Gal(Q()/Q) = Z/4.
In particular, Q(«) contains a unique quadratic subfield. In each case, we will identify the subfield
as Q(y/r) for some r, then express Q(«) as Q(\/r, v/a + by/r). In other words, we will ultimately

write

(3.20) cos(2E) = ¢ +02\/;+03\/a+b\/17+04\/ar+br\/7:.

We will work through the case m = 20; the cases m = 15, 16 are similar. We make the following
observations:
e Q(¢5),Q(v5),Q(4) are all subfields of Q(Ca);
e Since Gal(Q((20)/Q) = Z/4 x Z/2, there is a unique biquadratic subfield, which must
therefore be Q(i, v/5).
e The other two degree-4 subfields have Galois groups isomorphic to Z/4; these must be Q(«)
and Q({5) (to distinguish them, note that Q(«) is real and Q((s) is not.)

Putting these thoughts together, we see that the lattice of subfields of Q((a0) is the following:
Q(¢20)

N

V/5) @) =Q(¢)NR

\\\
\/

In particular, we conclude that the quadratic subfield of Q(agg) is Q(v/5).
By a similar analysis (identifying the biquadratic subfield and its real quadratic degree-2 subfield)
we determine that the quadratic subfield of Q(ay5) is Q(v/5) and the quadratic subfield of Q(av6)

is Q(v2).
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Now we proceed as follows: we know that asg is quadratic over Q(\/g) We will compute its
(relative) norm and trace,

Q(a) _
(3.21) Trg g (@) =T = a+ b5,
Q(a) N -
Nom(@) =N =c+ dv/s.
These determine the minimal polynomial of a over Q(y/5), namely
(3.22) o> —Ta+ N =0,

so we can solve for a using the quadratic formula.
The Galois conjugates of o over QQ are

B =+ G0
(3.23) Y=o + o
0= Gy + Cao-
We note that ¢ — ¢ fixes (5 + (39 = 5. We proved earlier that Q(as) = Q(v/5), so in fact

this is the identity automorphism of Q(v/5). Thus the nontrivial conjugate of o over Q(v/5) is 6.
Consequently,

(3.24) T=a+3§=Co+ o+ G+ G0 =0,
(3.25) N =6 =G + G + o+ G = 2~ (G + G,
where we have used C218 = —1. In particular,

(3.26) asy = £1/3 + 15

As always, we take the positive root.
We apply this same method to the other values m = 15,16,30. Our results are summarized as
follows:

Corollary 4. The only m € Z for which cos(zw) 1$ a “nested quartic” are m = 15,16, 20,30. We

m

have:
m 15 16 20 30
cos(2) | 2(14+V5+v30—6V5) | 3vV2+ V2| 1vV10+2V5 | 1(=14+ V5 + /304 6V5).

Note: the field a15 and as3g generate the same field extension over Q.



