SOME SPECIAL VALUES OF COSINE

JAKE LEVINSON

1. INTRODUCTION

We all learn a few specific values of cos(x) (and sin(x)) in high school – such as those in the following table:

x	0	$\frac{1}{6}\pi$	$\frac{1}{4}\pi$	$\frac{1}{3}\pi$	$\frac{1}{2}\pi$	π
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

Surely there are other 'nice' values of $\cos(m\pi)$, where $m \in \mathbb{Q}$? In fact, it turns out there are at least a couple that are more or less as nice as those in the above table, such as

(1.1)
$$\cos(\frac{\pi}{5}) = \frac{1}{4}(\sqrt{5}-1), \quad \cos(\frac{\pi}{12}) = \frac{1}{2}(\sqrt{2}+\sqrt{6}), \quad \cos(\frac{\pi}{8}) = \frac{1}{2}\sqrt{2}+\sqrt{2}.$$

We'll find these and a few others, using basic Galois theory and algebraic number theory. In particular, we'll classify the values of $m \in \mathbb{Z}$ such that $\cos(\frac{2\pi}{m})$ is, respectively, rational, quadratic, biquadratic and quartic (i.e., a nested quadratic). Our goal is to proceed algebraically as much as possible, so we avoid embedding into \mathbb{C} . In fact, the only truly analytic fact we need is

(1.2)
$$\cos(\frac{2\pi}{m}) \ge 0 \text{ if } m \ge 4$$

We also observe that complex conjugation (always) restricts to the involution $\zeta \mapsto \zeta^{-1}$ of $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$.

2. Setup (and rational values of
$$\cos(\frac{2\pi}{m})$$
 for $m \in \mathbb{Z}$)

Our approach is based on the following fact (pointed out by Adam Kaye): let $\zeta = \zeta_m = e^{2\pi i/m} \in \mathbb{C}$ be a primitive *m*-th root of unity. Then

(2.1)
$$\alpha = \zeta + \zeta^{-1} = 2\operatorname{Re}(\zeta) = 2\cos(\frac{2\pi}{m}).$$

In particular, α is real, and ζ satisfies a quadratic polynomial over $\mathbb{Q}(\alpha)$,

(2.2)
$$\alpha \zeta = \zeta^2 + 1.$$

Assuming $m \neq 1, 2$, so that $[\mathbb{Q}(\zeta) : \mathbb{Q}] = \phi(m) \geq 2$, we therefore have the tower of fields

$$\phi(m) \begin{bmatrix} \mathbb{Q}(\zeta) \\ 2 \\ \mathbb{Q}(\alpha) = \mathbb{Q}(\zeta) \cap \mathbb{R} \\ \frac{\phi(m)}{2} \\ \mathbb{Q} \end{bmatrix}$$

In particular, the degree of $\cos(\frac{2\pi}{m})$ over \mathbb{Q} is $\phi(m)/2$. We'll consider the cases where it is degree 4, since those are, for example, root extensions of \mathbb{Q} , hence reasonably tractable to work with.

2.1. Rational values. First of all, we see that $\alpha \in \mathbb{Q}$ if and only if m = 1, 2 or $\phi(m) = 2$, which is to say m = 1, 2, 3, 4, 6. We note that when m is odd, the identities

(2.3)
$$\zeta_{2m} = -\zeta_m^{(m+1)/2} \text{ and } \zeta_m = \zeta_{2m}^2$$

show that the cyclotomic extension is the same and that α_{2m} is a Galois conjugate of α_m (the map $\zeta_m \mapsto \zeta_m^{(m+1)/2}$ is an automorphism of $\mathbb{Q}(\zeta_m)$). In particular, we can skip m = 6: we'll get it easily once we have done m = 3. For the others, we have the cyclotomic polynomials

(2.4)

$$f_1(x) = x - 1,$$

$$f_2(x) = \frac{x^2 - 1}{x - 1} = x + 1,$$

$$f_3(x) = \frac{x^3 - 1}{x - 1} = x^2 + x + 1,$$

$$f_4(x) = \frac{x^4 - 1}{x^2 - 1} = x^2 + 1.$$

For the first two, we obtain $\zeta = 1, -1$, respectively, and so

(2.5)
$$\alpha = 2\cos(\frac{2\pi}{m}) = 2, -2 \text{ for } m = 1, 2$$

as we learned in high school. For the other two, we observe that $-\alpha = -(\zeta + \zeta^{-1})$ is the linear term of the minimal polynomial of ζ ! We conclude that

(2.6)
$$\alpha = -1, 0 \text{ for } m = 3, 4,$$

respectively, as we had hoped. Finally, for m = 6, we compute using our result from m = 3,

(2.7)
$$\alpha_6 = \zeta_6 + \zeta_6^{-1} = -\zeta_3^2 - \zeta_3^{-2} = -\alpha_3,$$

so $\alpha_6 = 1$. We have shown:

Corollary 1. The only values of m for which $\cos(\frac{2\pi}{m}) \in \mathbb{Q}$ are m = 1, 2, 3, 4, 6. We have, respectively, $\cos(\frac{2\pi}{m}) = 1, -1, -\frac{1}{2}, 0, \frac{1}{2}$.

3. QUADRATIC, BIQUADRATIC AND QUARTIC VALUES

The quadratic values are straightforward, but will nicely illustrate the tools we'll use for the degree-4 case. We make use of the following standard facts:

Fact 1. The cyclotomic field $\mathbb{Q}(e^{2\pi i/p})$, where p is an odd prime, contains \sqrt{p} if $p \equiv 1 \mod 4$ and $\sqrt{-p}$ if $p \equiv -1 \mod 4$. The field $\mathbb{Q}(e^{2\pi i/8})$ contains $\sqrt{2}$.

Fact 2. The Galois group of the m-th cyclotomic field is isomorphic to the unit group $(\mathbb{Z}/m\mathbb{Z})^{\times}$. The unit u corresponds to the automorphism $\zeta \mapsto \zeta^{u}$. In particular, complex conjugation is always represented by the element $-1 \in \mathbb{Z}/m\mathbb{Z}$.

Also, given a field extension L/K, we denote by N_K^L and Tr_K^L the norm and trace maps $L \to K$, respectively. Our approach is first to identify the extension $\mathbb{Q}(\alpha) = \mathbb{R} \cap \mathbb{Q}(\zeta)$ as a root extension (i.e. a quadratic, biquadratic or nested quadratic), so that α can be expressed in a familiar basis. We then use the trace and norm of certain intermediate fields to finish the computations.

3.1. Quadratic values. For this case, we need $\phi(m) = 4$, which yields m = 5, 8, 10, 12. As before, we save the case $m = 2 \cdot \text{odd}$ for the end.

For m = 5, the cyclotomic polynomial is

(3.1)
$$f_5(x) = 1 + x + x^2 + x^3 + x^4.$$

We have $(\mathbb{Z}/5\mathbb{Z})^{\times} \cong \mathbb{Z}/4\mathbb{Z}$, so there is exactly one quadratic subfield, which must be $\mathbb{Q}(\sqrt{5})$ by Fact 1. Hence $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{5})$, so $\alpha = a + b\sqrt{5}$ for some rational a, b. We will compute the trace and norm of α (which are, respectively, 2a and $a^2 - 5b^2$).

The nontrivial automorphism $\sigma \in \text{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ must come from $\zeta \mapsto \zeta^2$ (or, equivalently, ζ^3), since the other map restricts to the identity. Hence the Galois conjugate of α is $\zeta^2 + \zeta^{-2} = \zeta^2 + \zeta^3$, so the trace and norm are

(3.2)
$$\operatorname{Tr}_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha) = \zeta + \zeta^2 + \zeta^3 + \zeta^4 = -1,$$
$$N_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha) = (\zeta + \zeta^{-1})(\zeta^2 + \zeta^3) = \zeta^3 + \zeta^4 + \zeta + \zeta_2 = -1$$

Hence 2a = -1 and $a^2 - 5b^2 = -1$, which gives

(3.3)
$$\alpha_5 = 2\cos(\frac{2\pi}{5}) = -\frac{1}{2} \pm \frac{1}{2}\sqrt{5}.$$

Finally, we know (analytically) that $\cos(\frac{\pi}{4})$ should be positive, so we conclude

(3.4)
$$\cos(\frac{2\pi}{5}) = \frac{1}{4}(\sqrt{5}-1)$$

We also get the m = 10 case as a Galois conjugate, namely

(3.5)
$$\alpha_{10} = \zeta_{10} + \zeta_{10}^{-1} = -\zeta_5^3 - \zeta_5^{-3} - \sigma(\alpha),$$

the nontrivial Galois conjugate. We conclude

(3.6)
$$\cos(\frac{2\pi}{10}) = \frac{1}{4}(\sqrt{5}+1).$$

For m = 8, 12, we can proceed similarly. The cyclotomic polynomials are

(3.7)
$$f_8(x) = x^4 + 1, \qquad f_{12}(x) = x^4 - x^2 + 1.$$

We observe that $\mathbb{Q}(\zeta_8)$ contains $\mathbb{Q}(\zeta_4) = \mathbb{Q}(i)$, and $\sqrt{2}$ by Fact 1, hence must be the biquadratic field $\mathbb{Q}(i,\sqrt{2})$. The real subfield is then $\mathbb{Q}(\sqrt{2})$. Likewise, $\mathbb{Q}(\zeta_{12})$ contains *i* and $\sqrt{-3}$, so must be $\mathbb{Q}(i,i\sqrt{3})$, with real subfield $\mathbb{Q}(\sqrt{3})$. As before, we compute the trace and norm, writing

(3.8)
$$\alpha_8 = a + b\sqrt{2}, \qquad \alpha_{12} = c + d\sqrt{3}, \qquad a, b, c, d \in \mathbb{Q}$$

Note that the traces are 2a, 2c and the norms are $a^2 - 2b^2$ and $c^2 - 3d^2$.

By abuse of notation, we can write the nontrivial automorphism in both cases as the map $\zeta \mapsto \zeta^5$, so the remaining Galois conjugate is

(3.9)
$$\sigma(\alpha) = \zeta^5 + \zeta^{-5}.$$

Hence the trace and norm are

(3.10)
$$\operatorname{Tr}_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha) = \zeta + \zeta^{-1} + \zeta^{5} + \zeta^{-5}.$$
$$N_{\mathbb{Q}}^{\mathbb{Q}(\alpha)}(\alpha) = \zeta^{6} + \zeta^{-4} + \zeta^{4} + \zeta^{-6}.$$

For m = 8, we simplify using $\zeta_8^4 = -1$, which gives $\operatorname{Tr}(\alpha_8) = 0$ and $N(\alpha_8) = -2$. For m = 12, we instead simplify using $\zeta_{12}^6 = -1$, to get $\operatorname{Tr}(\alpha_{12}) = 0$, and $\zeta_{12}^4 = \zeta_{12}^2 - 1$, to get $N(\alpha_{12}) = -3$.

After solving for a, b, c, d, we obtain:

(3.11)
$$\alpha_8 = 2\cos(\frac{2\pi}{8}) = \pm\sqrt{2}, \qquad \alpha_{12} = 2\cos(\frac{2\pi}{12}) = \pm\sqrt{3}.$$

Finally, we know (analytically) that $\cos(\frac{\pi}{4})$ and $\cos(\frac{\pi}{6})$ should be positive. Putting these results together, we have the following:

Corollary 2. The only $m \in \mathbb{Z}$ for which $\cos(\frac{2\pi}{m})$ is quadratic over \mathbb{Q} are m = 5, 8, 10, 12. We have:

3.2. The Only Biquadratic Value. It may come as a surprise that there is only one value of m making $\cos(\frac{2\pi}{m})$ biquadratic over \mathbb{Q} , namely m = 24. We expected (correctly) that these would be the easiest non-quadratic values, but all the others are all "nested quartics". The following facts explain why:

Fact 3 (Units mod m). The following facts determine the group structure of $(\mathbb{Z}/m\mathbb{Z})^{\times}$:

- (a) If p^k is an odd prime power, then $(\mathbb{Z}/p^k)^{\times} \cong \mathbb{Z}/(p-1) \times \mathbb{Z}/p^{k-1}$. Moreover, any such isomorphism sends $-1 \in (\mathbb{Z}/p^k)^{\times}$ to the ordered pair $(\frac{p-1}{2}, 0)$ having order 2.
- (b) For any $k \ge 2$, $(\mathbb{Z}/2^k)^{\times} \cong \mathbb{Z}/2 \times \mathbb{Z}/2^{k-2}$. Any such isomorphism sends $-1 \in (\mathbb{Z}/2^k\mathbb{Z})^{\times}$ to an element of order 2.
- (c) If a, b are coprime, then $(\mathbb{Z}/ab)^{\times} \cong (\mathbb{Z}/a)^{\times} \times (\mathbb{Z}/b)^{\times}$, and this isomorphism maps -1 to (-1, -1).

Fact 4. Consider the group $G = \mathbb{Z}/2^{k_1} \times \cdots \times \mathbb{Z}/2^{k_r}$ and the element $g = (2^{k_1-1}, \ldots, 2^{k_r-1})$, which has order two. Then the quotient $G/\langle g \rangle$ has the same decomposition into cyclic groups, except with the smallest k_i decremented by 1.

In particular, if $G/\langle g \rangle$ is isomorphic to $(\mathbb{Z}/2)^n$, then every $k_i = 1$ and n = r - 1.

Thus Fact 4 shows that the only way for $\mathbb{Q}(\alpha_m)$ to be biquadratic (with Galois group $\mathbb{Z}/2 \times \mathbb{Z}/2$) is if $\mathbb{Q}(\zeta_m)$ is 'triquadratic', with Galois group $(\mathbb{Z}/m\mathbb{Z})^{\times} \cong (\mathbb{Z}/2)^3$. By Fact 3, this can only occur for $m = 2^3 \cdot 3 = 24$. Note that the cyclotomic polynomial is then

(3.12)
$$f_{24}(x) = x^8 - x^4 + 1,$$

and that ζ_{24} also satisfies $\zeta_{24}^{12} = -1$.

For this case, we see that $\mathbb{Q}(\zeta_{24})$ contains $\mathbb{Q}(\zeta_{12})$ and $\mathbb{Q}(\zeta_8)$, hence is precisely $\mathbb{Q}(i, \sqrt{2}, \sqrt{3})$. The real subfield is thus $\mathbb{Q}(\alpha_{24}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$, so we can write

(3.13)
$$\alpha_{24} = \zeta_{24} + \zeta_{24}^{-1} = a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}.$$

A direct calculation shows that the Galois conjugates of α_{24} are

(3.14)
$$\beta = \zeta_{24}^5 + \zeta_{24}^{19} + \zeta_{24}^{17} + \zeta_{24}$$

We observe that $\alpha_{24} = -\delta$. The corresponding automorphism $\zeta_{24} \mapsto \zeta_{24}^{11}$ sends $\zeta_{12} \mapsto \zeta_{12}^{-1}$, hence fixes $\alpha_{12} = \sqrt{3}$. Thus it must be the map that negates $\sqrt{2}$ and $\sqrt{6}$. We equate coefficients, concluding that

$$(3.15) a = c = 0$$

By similar reasoning, the map $\zeta_{24} \mapsto \zeta_{24}^7$ fixes $\alpha_8 = \sqrt{2}$. Thus it negates $\sqrt{6}$, so

(3.16)
$$(\alpha + \gamma)^2 = (2b\sqrt{2})^2 = 8b$$

and, using $\zeta_{24}^{12} = -1$,

(3.17)
$$(\zeta_{24} + \zeta_{24}^{-1} + \zeta_{24}^{7} + \zeta_{24}^{17})^2 = 2\zeta_{24}^8 - 2\zeta_{24}^4 + 4 = 2,$$

where the last equality is from the cyclotomic polynomial. A similar computation with $\alpha + \beta$ shows that $d = \pm \frac{1}{2}$, and so

(3.18)
$$\alpha_{24} = \pm \frac{1}{2}(\sqrt{2} \pm \sqrt{6}).$$

Both signs must be the same (and both give positive real numbers), but we have chosen our ζ 's so that $\alpha_{24}^2 - 2 = \alpha_{12} = \sqrt{3}$, which forces the inner sign to be +.

Corollary 3. The only $m \in \mathbb{Z}$ for which $\cos(\frac{2\pi}{m})$ is biquadratic is m = 24, and the resulting value is $\cos(\frac{2\pi}{24}) = \frac{1}{4}(\sqrt{2} + \sqrt{6})$.

3.3. Quartic Values. Lastly, we consider the other values of m for which $\phi(m) = 8$, namely m = 15, 16, 20, 30. As usual, we will get m = 30 'for free' as a Galois conjugate. In all three of these cases, the Galois groups are

(3.19)
$$\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) = \mathbb{Z}/2 \times \mathbb{Z}/4, \qquad \operatorname{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q}) = \mathbb{Z}/4.$$

In particular, $\mathbb{Q}(\alpha)$ contains a unique quadratic subfield. In each case, we will identify the subfield as $\mathbb{Q}(\sqrt{r})$ for some r, then express $\mathbb{Q}(\alpha)$ as $\mathbb{Q}(\sqrt{r}, \sqrt{a+b\sqrt{r}})$. In other words, we will ultimately write

(3.20)
$$\cos(\frac{2\pi}{m}) = c_1 + c_2\sqrt{r} + c_3\sqrt{a + b\sqrt{r}} + c_4\sqrt{ar + br\sqrt{r}}.$$

We will work through the case m = 20; the cases m = 15, 16 are similar. We make the following observations:

- $\mathbb{Q}(\zeta_5), \mathbb{Q}(\sqrt{5}), \mathbb{Q}(i)$ are all subfields of $\mathbb{Q}(\zeta_{20})$;
- Since $\operatorname{Gal}(\mathbb{Q}(\zeta_{20})/\mathbb{Q}) \cong \mathbb{Z}/4 \times \mathbb{Z}/2$, there is a unique biquadratic subfield, which must therefore be $\mathbb{Q}(i,\sqrt{5})$.
- The other two degree-4 subfields have Galois groups isomorphic to $\mathbb{Z}/4$; these must be $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\zeta_5)$ (to distinguish them, note that $\mathbb{Q}(\alpha)$ is real and $\mathbb{Q}(\zeta_5)$ is not.)

Putting these thoughts together, we see that the lattice of subfields of $\mathbb{Q}(\zeta_{20})$ is the following:

In particular, we conclude that the quadratic subfield of $\mathbb{Q}(\alpha_{20})$ is $\mathbb{Q}(\sqrt{5})$.

By a similar analysis (identifying the biquadratic subfield and its real quadratic degree-2 subfield) we determine that the quadratic subfield of $\mathbb{Q}(\alpha_{15})$ is $\mathbb{Q}(\sqrt{5})$ and the quadratic subfield of $\mathbb{Q}(\alpha_{16})$ is $\mathbb{Q}(\sqrt{2})$. Now we proceed as follows: we know that α_{20} is quadratic over $\mathbb{Q}(\sqrt{5})$. We will compute its (relative) norm and trace,

(3.21)
$$\operatorname{Tr}_{\mathbb{Q}(\sqrt{5})}^{\mathbb{Q}(\alpha)}(\alpha) = T = a + b\sqrt{5},$$
$$N_{\mathbb{Q}(\sqrt{5})}^{\mathbb{Q}(\alpha)}(\alpha) = N = c + d\sqrt{5}.$$

These determine the minimal polynomial of α over $\mathbb{Q}(\sqrt{5})$, namely

$$(3.22) \qquad \qquad \alpha^2 - T\alpha + N = 0,$$

so we can solve for α using the quadratic formula.

The Galois conjugates of α over \mathbb{Q} are

(3.23)
$$\beta = \zeta_{20}^3 + \zeta_{20}^{17},$$
$$\gamma = \zeta_{20}^7 + \zeta_{20}^{13},$$
$$\delta = \zeta_{20}^9 + \zeta_{20}^{11}.$$

We note that $\zeta \mapsto \zeta^9$ fixes $\zeta_{20}^4 + \zeta_{20}^{-4} = \alpha_5$. We proved earlier that $\mathbb{Q}(\alpha_5) = \mathbb{Q}(\sqrt{5})$, so in fact this is the identity automorphism of $\mathbb{Q}(\sqrt{5})$. Thus the nontrivial conjugate of α over $\mathbb{Q}(\sqrt{5})$ is δ . Consequently,

(3.24)
$$T = \alpha + \delta = \zeta_{20} + \zeta_{20}^9 + \zeta_{20}^{11} + \zeta_{20}^{19} = 0,$$

(3.25)
$$N = \alpha \cdot \delta = \zeta_{20}^{10} + \zeta_{20}^{12} + \zeta_{20}^{8} + \zeta_{20}^{10} = -2 - (\zeta_{20}^{2} + \zeta_{20}^{-2}),$$

where we have used $\zeta_{20}^{10} = -1$. In particular,

(3.26)
$$\alpha_{20} = \pm \sqrt{\frac{5}{2} + \frac{1}{2}\sqrt{5}}.$$

As always, we take the positive root.

We apply this same method to the other values m = 15, 16, 30. Our results are summarized as follows:

Corollary 4. The only $m \in \mathbb{Z}$ for which $\cos(\frac{2\pi}{m})$ is a "nested quartic" are m = 15, 16, 20, 30. We have:

Note: the field α_{15} and α_{30} generate the same field extension over \mathbb{Q} .