
SOME SPECIAL VALUES OF COSINE

JAKE LEVINSON

1. Introduction

We all learn a few specific values of cos(x) (and sin(x)) in high school – such as those in the
following table:

x 0 1
6π

1
4π

1
3π

1
2π π

cos(x) 1
√

3
2

√
2

2
1
2 0 −1

sin(x) 0 1
2

√
2

2

√
3

2 1 0

Surely there are other ‘nice’ values of cos(mπ), where m ∈ Q? In fact, it turns out there are at
least a couple that are more or less as nice as those in the above table, such as

(1.1) cos(π5 ) = 1
4(
√

5− 1), cos( π12) = 1
2(
√

2 +
√

6), cos(π8 ) = 1
2

√
2 +
√

2.

We’ll find these and a few others, using basic Galois theory and algebraic number theory. In
particular, we’ll classify the values of m ∈ Z such that cos(2π

m ) is, respectively, rational, quadratic,
biquadratic and quartic (i.e., a nested quadratic). Our goal is to proceed algebraically as much as
possible, so we avoid embedding into C. In fact, the only truly analytic fact we need is

(1.2) cos(2π
m ) ≥ 0 if m ≥ 4.

We also observe that complex conjugation (always) restricts to the involution ζ 7→ ζ−1 of Gal(Q(ζ)/Q).

2. Setup (and rational values of cos(2π
m ) for m ∈ Z)

Our approach is based on the following fact (pointed out by Adam Kaye): let ζ = ζm = e2πi/m ∈
C be a primitive m-th root of unity. Then

(2.1) α = ζ + ζ−1 = 2 Re(ζ) = 2 cos(2π
m ).

In particular, α is real, and ζ satisfies a quadratic polynomial over Q(α),

(2.2) αζ = ζ2 + 1.

Assuming m 6= 1, 2, so that [Q(ζ) : Q] = φ(m) ≥ 2, we therefore have the tower of fields

Q(ζ)

Q(α) = Q(ζ) ∩ R

Q

2

φ(m)
2

φ(m)

In particular, the degree of cos(2π
m ) over Q is φ(m)/2. We’ll consider the cases where it is degree 4,

since those are, for example, root extensions of Q, hence reasonably tractable to work with.
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2.1. Rational values. First of all, we see that α ∈ Q if and only if m = 1, 2 or φ(m) = 2, which
is to say m = 1, 2, 3, 4, 6. We note that when m is odd, the identities

ζ2m = −ζ(m+1)/2
m and ζm = ζ2

2m(2.3)

show that the cyclotomic extension is the same and that α2m is a Galois conjugate of αm (the map
ζm 7→ ζ

(m+1)/2
m is an automorphism of Q(ζm)). In particular, we can skip m = 6: we’ll get it easily

once we have done m = 3. For the others, we have the cyclotomic polynomials

f1(x) = x− 1,(2.4)

f2(x) =
x2 − 1
x− 1

= x+ 1,

f3(x) =
x3 − 1
x− 1

= x2 + x+ 1,

f4(x) =
x4 − 1
x2 − 1

= x2 + 1.

For the first two, we obtain ζ = 1,−1, respectively, and so

(2.5) α = 2 cos(2π
m ) = 2,−2 for m = 1, 2,

as we learned in high school. For the other two, we observe that −α = −(ζ + ζ−1) is the linear
term of the minimal polynomial of ζ! We conclude that

(2.6) α = −1, 0 for m = 3, 4,

respectively, as we had hoped. Finally, for m = 6, we compute using our result from m = 3,

(2.7) α6 = ζ6 + ζ−1
6 = −ζ2

3 − ζ−2
3 = −α3,

so α6 = 1. We have shown:

Corollary 1. The only values of m for which cos(2π
m ) ∈ Q are m = 1, 2, 3, 4, 6. We have, respec-

tively, cos(2π
m ) = 1,−1,−1

2 , 0,
1
2 .

3. Quadratic, Biquadratic and Quartic values

The quadratic values are straightforward, but will nicely illustrate the tools we’ll use for the
degree-4 case. We make use of the following standard facts:

Fact 1. The cyclotomic field Q(e2πi/p), where p is an odd prime, contains
√
p if p ≡ 1 mod 4 and√

−p if p ≡ −1 mod 4. The field Q(e2πi/8) contains
√

2.

Fact 2. The Galois group of the m-th cyclotomic field is isomorphic to the unit group (Z/mZ)×.
The unit u corresponds to the automorphism ζ 7→ ζu. In particular, complex conjugation is always
represented by the element −1 ∈ Z/mZ.

Also, given a field extension L/K, we denote by NL
K and TrLK the norm and trace maps L→ K,

respectively. Our approach is first to identify the extension Q(α) = R ∩ Q(ζ) as a root extension
(i.e. a quadratic, biquadratic or nested quadratic), so that α can be expressed in a familiar basis.
We then use the trace and norm of certain intermediate fields to finish the computations.
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3.1. Quadratic values. For this case, we need φ(m) = 4, which yields m = 5, 8, 10, 12. As before,
we save the case m = 2 · odd for the end.

For m = 5, the cyclotomic polynomial is

(3.1) f5(x) = 1 + x+ x2 + x3 + x4.

We have (Z/5Z)× ∼= Z/4Z, so there is exactly one quadratic subfield, which must be Q(
√

5) by
Fact 1. Hence Q(α) = Q(

√
5), so α = a + b

√
5 for some rational a, b. We will compute the trace

and norm of α (which are, respectively, 2a and a2 − 5b2).
The nontrivial automorphism σ ∈ Gal(Q(α)/Q)must come from ζ 7→ ζ2 (or, equivalently, ζ3),

since the other map restricts to the identity. Hence the Galois conjugate of α is ζ2 + ζ−2 = ζ2 + ζ3,
so the trace and norm are

TrQ(α)
Q (α) = ζ + ζ2 + ζ3 + ζ4 = −1,(3.2)

N
Q(α)
Q (α) = (ζ + ζ−1)(ζ2 + ζ3) = ζ3 + ζ4 + ζ + ζ2 = −1.

Hence 2a = −1 and a2 − 5b2 = −1, which gives

(3.3) α5 = 2 cos(2π
5 ) = −1

2 ±
1
2

√
5.

Finally, we know (analytically) that cos(π4 ) should be positive, so we conclude

(3.4) cos(2π
5 ) = 1

4(
√

5− 1).

We also get the m = 10 case as a Galois conjugate, namely

(3.5) α10 = ζ10 + ζ−1
10 = −ζ3

5 − ζ−3
5 − σ(α),

the nontrivial Galois conjugate. We conclude

(3.6) cos(2π
10 ) = 1

4(
√

5 + 1).

For m = 8, 12, we can proceed similarly. The cyclotomic polynomials are

(3.7) f8(x) = x4 + 1, f12(x) = x4 − x2 + 1.

We observe that Q(ζ8) contains Q(ζ4) = Q(i), and
√

2 by Fact 1, hence must be the biquadratic
field Q(i,

√
2). The real subfield is then Q(

√
2). Likewise, Q(ζ12) contains i and

√
−3, so must be

Q(i, i
√

3), with real subfield Q(
√

3). As before, we compute the trace and norm, writing

(3.8) α8 = a+ b
√

2, α12 = c+ d
√

3, a, b, c, d ∈ Q.

Note that the traces are 2a, 2c and the norms are a2 − 2b2 and c2 − 3d2.
By abuse of notation, we can write the nontrivial automorphism in both cases as the map ζ 7→ ζ5,

so the remaining Galois conjugate is

(3.9) σ(α) = ζ5 + ζ−5.

Hence the trace and norm are

TrQ(α)
Q (α) = ζ + ζ−1 + ζ5 + ζ−5.(3.10)

N
Q(α)
Q (α) = ζ6 + ζ−4 + ζ4 + ζ−6.

For m = 8, we simplify using ζ4
8 = −1, which gives Tr(α8) = 0 and N(α8) = −2. For m = 12, we

instead simplify using ζ6
12 = −1, to get Tr(α12) = 0, and ζ4

12 = ζ2
12 − 1, to get N(α12) = −3.

After solving for a, b, c, d, we obtain:

(3.11) α8 = 2 cos(2π
8 ) = ±

√
2, α12 = 2 cos(2π

12 ) = ±
√

3.
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Finally, we know (analytically) that cos(π4 ) and cos(π6 ) should be positive. Putting these results
together, we have the following:

Corollary 2. The only m ∈ Z for which cos(2π
m ) is quadratic over Q are m = 5, 8, 10, 12. We have:

m 5 8 10 12
cos(2π

m ) 1
4(
√

5− 1)
√

2
2

1
4(
√

5 + 1)
√

3
2 .

3.2. The Only Biquadratic Value. It may come as a surprise that there is only one value of m
making cos(2π

m ) biquadratic over Q, namely m = 24. We expected (correctly) that these would be
the easiest non-quadratic values, but all the others are all “nested quartics”. The following facts
explain why:

Fact 3 (Units mod m). The following facts determine the group structure of (Z/mZ)×:
(a) If pk is an odd prime power, then (Z/pk)× ∼= Z/(p − 1) × Z/pk−1. Moreover, any such

isomorphism sends −1 ∈ (Z/pk)× to the ordered pair (p−1
2 , 0) having order 2.

(b) For any k ≥ 2, (Z/2k)× ∼= Z/2× Z/2k−2. Any such isomorphism sends −1 ∈ (Z/2kZ)× to
an element of order 2.

(c) If a, b are coprime, then (Z/ab)× ∼= (Z/a)× × (Z/b)×, and this isomorphism maps −1 to
(−1,−1).

Fact 4. Consider the group G = Z/2k1 ×· · ·×Z/2kr and the element g = (2k1−1, . . . , 2kr−1), which
has order two. Then the quotient G/〈g〉 has the same decomposition into cyclic groups, except with
the smallest ki decremented by 1.

In particular, if G/〈g〉 is isomorphic to (Z/2)n, then every ki = 1 and n = r − 1.

Thus Fact 4 shows that the only way for Q(αm) to be biquadratic (with Galois group Z/2×Z/2)
is if Q(ζm) is ‘triquadratic’, with Galois group (Z/mZ)× ∼= (Z/2)3. By Fact 3, this can only occur
for m = 23 · 3 = 24. Note that the cyclotomic polynomial is then

(3.12) f24(x) = x8 − x4 + 1,

and that ζ24 also satisfies ζ12
24 = −1.

For this case, we see that Q(ζ24) contains Q(ζ12) and Q(ζ8), hence is precisely Q(i,
√

2,
√

3). The
real subfield is thus Q(α24) = Q(

√
2,
√

3), so we can write

(3.13) α24 = ζ24 + ζ−1
24 = a+ b

√
2 + c

√
3 + d

√
6.

A direct calculation shows that the Galois conjugates of α24 are

β = ζ5
24 + ζ19

24 ,

γ = ζ7
24 + ζ17

24 ,(3.14)

δ = ζ11
24 + ζ13

24 .

We observe that α24 = −δ. The corresponding automorphism ζ24 7→ ζ11
24 sends ζ12 7→ ζ−1

12 , hence
fixes α12 =

√
3. Thus it must be the map that negates

√
2 and

√
6. We equate coefficients,

concluding that

(3.15) a = c = 0.

By similar reasoning, the map ζ24 7→ ζ7
24 fixes α8 =

√
2. Thus it negates

√
6, so

(3.16) (α+ γ)2 = (2b
√

2)2 = 8b2
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and, using ζ12
24 = −1,

(3.17) (ζ24 + ζ−1
24 + ζ7

24 + ζ17
24 )2 = 2ζ8

24 − 2ζ4
24 + 4 = 2,

where the last equality is from the cyclotomic polynomial. A similar computation with α+β shows
that d = ±1

2 , and so

(3.18) α24 = ±1
2(
√

2±
√

6).

Both signs must be the same (and both give positive real numbers), but we have chosen our ζ’s so
that α2

24 − 2 = α12 =
√

3, which forces the inner sign to be +.

Corollary 3. The only m ∈ Z for which cos(2π
m ) is biquadratic is m = 24, and the resulting value

is cos(2π
24 ) = 1

4(
√

2 +
√

6).

3.3. Quartic Values. Lastly, we consider the other values of m for which φ(m) = 8, namely
m = 15, 16, 20, 30. As usual, we will get m = 30 ‘for free’ as a Galois conjugate. In all three of
these cases, the Galois groups are

(3.19) Gal(Q(ζ)/Q) = Z/2× Z/4, Gal(Q(α)/Q) = Z/4.

In particular, Q(α) contains a unique quadratic subfield. In each case, we will identify the subfield
as Q(

√
r) for some r, then express Q(α) as Q(

√
r,
√
a+ b

√
r). In other words, we will ultimately

write

(3.20) cos(2π
m ) = c1 + c2

√
r + c3

√
a+ b

√
r + c4

√
ar + br

√
r.

We will work through the case m = 20; the cases m = 15, 16 are similar. We make the following
observations:

• Q(ζ5),Q(
√

5),Q(i) are all subfields of Q(ζ20);
• Since Gal(Q(ζ20)/Q) ∼= Z/4 × Z/2, there is a unique biquadratic subfield, which must

therefore be Q(i,
√

5).
• The other two degree-4 subfields have Galois groups isomorphic to Z/4; these must be Q(α)

and Q(ζ5) (to distinguish them, note that Q(α) is real and Q(ζ5) is not.)
Putting these thoughts together, we see that the lattice of subfields of Q(ζ20) is the following:

Q(ζ20)

Q(i,
√

5) Q(ζ5) Q(α) = Q(ζ) ∩ R

Q(
√

5)Q(i)Q(
√
−5)

Q

In particular, we conclude that the quadratic subfield of Q(α20) is Q(
√

5).
By a similar analysis (identifying the biquadratic subfield and its real quadratic degree-2 subfield)

we determine that the quadratic subfield of Q(α15) is Q(
√

5) and the quadratic subfield of Q(α16)
is Q(

√
2).
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Now we proceed as follows: we know that α20 is quadratic over Q(
√

5). We will compute its
(relative) norm and trace,

TrQ(α)

Q(
√

5)
(α) = T = a+ b

√
5,(3.21)

N
Q(α)

Q(
√

5)
(α) = N = c+ d

√
5.

These determine the minimal polynomial of α over Q(
√

5), namely

(3.22) α2 − Tα+N = 0,

so we can solve for α using the quadratic formula.
The Galois conjugates of α over Q are

β = ζ3
20 + ζ17

20 ,

γ = ζ7
20 + ζ13

20 ,(3.23)

δ = ζ9
20 + ζ11

20 .

We note that ζ 7→ ζ9 fixes ζ4
20 + ζ−4

20 = α5. We proved earlier that Q(α5) = Q(
√

5), so in fact
this is the identity automorphism of Q(

√
5). Thus the nontrivial conjugate of α over Q(

√
5) is δ.

Consequently,

T = α+ δ = ζ20 + ζ9
20 + ζ11

20 + ζ19
20 = 0,(3.24)

N = α · δ = ζ10
20 + ζ12

20 + ζ8
20 + ζ10

20 = −2− (ζ2
20 + ζ−2

20 ),(3.25)

where we have used ζ10
20 = −1. In particular,

(3.26) α20 = ±
√

5
2 + 1

2

√
5.

As always, we take the positive root.
We apply this same method to the other values m = 15, 16, 30. Our results are summarized as

follows:

Corollary 4. The only m ∈ Z for which cos(2π
m ) is a “nested quartic” are m = 15, 16, 20, 30. We

have:
m 15 16 20 30

cos(2π
m ) 1

8(1 +
√

5 +
√

30− 6
√

5
)

1
2

√
2 +
√

2 1
4

√
10 + 2

√
5 1

8(−1 +
√

5 +
√

30 + 6
√

5
)
.

Note: the field α15 and α30 generate the same field extension over Q.
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