Intersection Theory
(Day 1). What is it groo for?
(1) Enumerative geometry
(2) Invariants, obstructions,...

History:
1800s: "Itatian school" of $A G$.
M
G
$G$$\left\{\begin{array}{l}\text { Castelnuwvo, Severi, Enriques, } \\ \text { Cremona, Segre, Albanese, } \\ \text { Bertini, del Pezzo, Veronese, } \\ \text { Picard, schubert, Noether }\left(0^{\circ}\right), \\ \text { Kadler... }\end{array}\right.$

Amazing calculations:
e.g. \#twisted cubics tangent to 12 quadric swrfaces

$$
=5,819,539,783,680
$$

But, subtt emres crept in (informal arguments about "genericity", eAy cases, limits...)

Hilbert (1901 ICM): Put this on rigorous footing.
$\rightarrow 15^{\text {th }}$ problem.
\rightarrow Fulton. (1984).
1900s: Another "Who's Who":
Zarisk: Lefschett, Todd, Chow, Samued, Chevalley, Verdier, Serre, Grothendieck, WeIl, Kleiman... Mumbord, Macpherson, Fulton.

Examples
(1) Bézout's Theorem.
$\operatorname{Lot} C, D \subseteq \mathbb{P}_{\mathbb{C}}^{2}$ be integral curves. C\#D.
degrees c, d.
If $C \cap D$ is reduced, $\# C \cap D=c \cdot d$.

Comments:
(1) $c \cdot d$ is a product. This suggests \exists a rig g structure where "multiplication $=$ intersection".
\rightarrow The chow ring of \mathbb{P}^{2}.
(2) We didnt cere which C, D we had, only their degrees,
\rightarrow Essentially a way to classify plane curves.
(2) Lines on a cubic surface

The. Let $C \subseteq \mathbb{P}^{3}$ be a general cubic surface
Then C contains exactly) 27 lives.
It turns out this is a special case of a theorem about vector bundles

The. $\operatorname{lot} x=$ proper varied, $\operatorname{dim}_{i m}=n$. Let E verbile on X, auk $n ?($ same $)$ globally generated
$S \in H^{\circ}(E)$ a general section.
Then S vanishes at a fixed $\#$ of p ts on X, dependent only on E (not s)
\rightarrow This giver an invariant of E, called the top Cher class $c_{n}(E)$ ct this will be an element of the Chow Ring of X.)
egg $E=T X, \Omega X$
$c_{n}(E)$ is an invariant of X
egg. $(27$ lines $) \cdot\left(\right.$ in \mathbb{P}^{3}.
full rack

$$
\begin{aligned}
X & =\operatorname{Gr}(2,4) \\
& =\left\{\text { lines in } \mathbb{R}^{3}\right\}=\{[\ldots]\} / G_{2}
\end{aligned}
$$

Smooth variety. dim 4 .
$E=$ "vector bundle of cubic polynomials on \mathbb{P}^{3} n
$S \in H^{0}(E)$ "cubic Function on each line" S vanish s at $l \in X \Leftrightarrow$ function $\left.\right|_{l} \equiv 0$.
\Leftrightarrow cubic surface contains l.

$$
c_{4}(E)=27 \text { [point] }
$$

Chow ring of $\operatorname{Gr}(2,4)$
eg. E, F vecbolles on X
Does there exist a map of vector bundles of sank $\geqslant k$ (at each ρt)?

Obstruction: A certain combination of Cher classes of E,F must vanish.
(3) Let $S_{1}, S_{2}, S_{3} \subseteq \mathbb{P}^{3}$ be distinct smooth surfaces of degrees s_{1}, s_{2}, s_{3}.
Suppose $S_{1} \cap S_{2} \cap S_{3}=C$, a smooth curve
(egg. twisted cubic is cut ont by $\cdots 3$ quadrics.)
Thai $g(c)=\frac{1}{2}\left(1+\operatorname{deg}(c)\left(s_{1}+s_{2}+s_{3}-4\right)\right.$

$$
\text { genus } \left.-s_{1} \cdot s_{2} \cdot s_{3}\right)
$$

(Canonical

$$
\text { Canonic } O(-4)
$$

Topology, not just enumeration. on \mathbb{P}^{3})

This is a special case of the excess intersection Formula.

3 ens to get codim $=2$
(4) Beantiferl combinatorial theory

The $L_{1}, L_{2}, L_{3}, L_{4} \subseteq \mathbb{R}^{3}$ geneal lines How many lines intersect all 4 ?

$$
A_{n s}=2
$$

Special case of

$$
\text { Let } H_{1}, \ldots, H_{k(n-k)} \begin{gathered}
\operatorname{dim}-(k-1) \text { planes } \\
\text { in } \mathbb{P}^{n-1}
\end{gathered}
$$

How many complementary planer intersect all of them?
Ans: The number of standard Young tableaux

The: twisted cubics through 12 gard lines? Ans: 80160 "Quantum Chow ring"

Day 2. Cycles, multiplicity.
"scheme": separated, finite type $/ k=$ field.
(Hausdorff)
"variety": integral scheme,
Although most applications care mainly about nice spaces (eeg. smooth prog. var.), it is necessary to develop the theory for all schemes, even messy ones.

$$
X=\text { scheme } \text {. }
$$

Def: A k-cycle on $X(k \in \mathbb{N})$ is a (\mathbb{Z}) formal sum of k-dimensional subvarieties of X.

$$
\begin{aligned}
Z_{k}(x)= & \text { free ab. gp of } k \text {-cycles } \\
& \text { on } x \\
Z(x)= & \bigoplus_{k} Z_{k}(x)
\end{aligned}
$$

$$
\left.\begin{array}{c}
Z_{0}(x)=\text { formal sums of pts } \\
Z_{1}(x) \\
\vdots
\end{array}\right\} \begin{aligned}
& \text { curses } \\
& \text { infinite } \\
& \text { rank }
\end{aligned}
$$

If $\operatorname{dim}(X)=k, \quad Z_{k}(X)=\mathbb{Z}^{\text {\#irred. }}$ comp. of dian $\}$ finite
By definition, $Z(x) \equiv Z\left(x^{\text {red }}\right)$.
literally the save formal sums.
(multiplicity!)
To track nonreduced structure, we reed to put coefficients on our sums.

Counting with multiplicity.

* Length:

$$
\begin{aligned}
& R=\text { ring } \\
& M=R-\text { module. }
\end{aligned}
$$

The length of $M, l_{R}(M)$, is the largest n
such that \exists a chair of submodules

$$
0 \nsubseteq M_{1} \subset M_{2} \subsetneq \cdots \underset{+}{c} M_{n}(\underline{c} M)
$$

If Finite, wo say M has Finite le nth.
Main facts:
(1) Additive in short exact sequences:

$$
\begin{aligned}
& 0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \\
& \ell_{R}(B)=\ell_{R}(A)+\ell_{R}(C)
\end{aligned}
$$

(2) $R=k-a l g a t a$
R local ring with maximal ital m
IE $R_{1 m}=k$, then

$$
\ell_{R}(M)=\operatorname{dim}_{k}(M)
$$

$X=$ scheme.
$X^{\prime} \leq X$ irreducible component. (viewed w/ reduced structure).
$O_{x^{\prime}, x}=$ local ring of X along X^{\prime}.
\rightarrow Compute from any affine chart intersecting X^{\prime} :

$$
x \geqslant u=\operatorname{Spec} R
$$

$P=$ minimal prime ideal corresp. to $x^{\prime} \quad\left(x^{\prime} \cap x\right)$.

$$
\begin{aligned}
\theta_{x^{\prime}, x} & =R_{p} \quad \text { Artinion ring }(\operatorname{dim} 0) \\
& =\left\{\frac{f}{g}: g \not \equiv 0 \text { in } x^{\prime} \cap x\right\}
\end{aligned}
$$

If R_{p} is reduced, this is just the function field $k\left(x^{\prime}\right)$.

Otherwise, we're remembering nonveduced structure occurring "generically" along X ':

"generically reduced"
$\theta_{x^{\prime}, x}$ nunrducad.
"generically sonreducad".

Ref: The multiplicity of X^{\prime} in X is

$$
\operatorname{mult}\left(x^{\prime}, x\right):=\ell_{0_{x_{i}^{\prime} x}}\left(\theta_{x^{\prime}, x}\right),<\infty
$$

The fundamental cycle of x is

$$
[x]:=\sum_{\substack{x^{\prime} \leq x \\ \text { isred } \\ \text { comp. }}} \text { malt }\left(x^{\prime}, x\right)\left[x^{\prime}\right]
$$

So $[x] \neq\left[x^{\text {red }}\right]$ even though $Z(x) \equiv Z\left(x^{\text {red }}\right)$.

Likewise: If $Y \leq X$ subscheme
$[Y] \in Z(Y)$ same as $[Y] \in Z(X)$.

Ex:
(1) $x=\operatorname{spec} \frac{k[x, y]}{y^{2} \sqrt{x y} y}$

$$
p=(y)
$$

$R_{p}=$ invert other staffe mi invert x.

$$
\begin{aligned}
& =\text { invert } \\
& =k(x) \text { ingles } y=0 .
\end{aligned}
$$

length 1. $[x]=\left[x^{\prime}\right]$
(2) $x=\operatorname{spec}^{k[x, y]} \frac{f^{2}}{f}=y^{2}-x^{3}-1$ elliptie cuvve.

$$
\begin{aligned}
& p=(f) \\
& R_{p}=\left(\frac{k[x, y]}{f^{2}}\right)_{(f) \quad \text { length }=2} \\
& {[x]=2[E] .}
\end{aligned}
$$

(3)

$$
\begin{aligned}
x & =\operatorname{sicec}_{R(a / r a b)}^{\frac{k[x, y, z]}{(x, y, z)^{2}}} \\
R / m & =k \\
l(R) & =\operatorname{dim}_{k}(R): \text { basis: } 1, x, y, z \\
& =4 .[x]=4[\rho t] .
\end{aligned}
$$

(4) A bad example

In $\mathbb{P}^{4}:$ coors $[X: Y: Z: W: T]$.

$$
\begin{aligned}
& A=\{x=y=0\} \cup\{z=w=0\} \\
& B=0,1 x-z=y-w=0\}
\end{aligned}
$$

Later: In the Chow ring of \mathbb{P}^{4} : all 2D planer ane equivalual
all prints are equivalent.

$$
\begin{aligned}
{[A] \cdot[B] } & =(2[2 D-p \ln r]) \cdot[2 D-\rho \operatorname{lar}] \\
& =2[\rho t] .
\end{aligned}
$$

If B were a general plane, $A \cap B$ would indeed be 2 pts

Now compute $A \cap B$
(*) See next page for "geometric" picture.
Chart $T=1$.

$$
\begin{aligned}
& k[x, y, z, w]: I_{A}=(x, y) \cap(z, w) \\
&=(x z, x w, y z, y w) \\
& I_{B}=(x-z, y-w) \\
& \frac{k[x, y, z, w]}{I_{A}+I_{B}}=\frac{k[x, y]}{\substack{(z=x \\
w=y,}} \begin{array}{l}
x^{2}, x y, y^{2}
\end{array} \text { bairns } 1, x, y . \\
& \text { length }=3 .
\end{aligned}
$$

(\#) $[A] \cdot[B]=2\left[p^{t}\right]$.

$$
[A \cap B]=3[\rho t]
$$

\leadsto Turns out this is because A isn't Cohen-Macunlay.

Coher-Macenley
(The for later: If A, B are smooth, and the dimension of $A \cap B$ is correct, then $[A] \cdot[B]=[A \cap B]$.)
$*$ How did the geomeby work?
A.
 Zariski tangent space.

$$
B: \quad d N
$$

$$
\cdots A \cap B=p t+2 D
$$

tangent space. \Rightarrow length 3 .

Day 3. Rational functions \& Rational equivalence

Divisors of rational functions
$X=$ variety, $\operatorname{dim} n$.
$Z_{n-1}(x)$ is called the group of Weil divisors.
$f \in K(X)^{*}$ rational function.

$$
f: x \rightarrow \mathbb{P}^{\prime}
$$

The divisor of $f, \operatorname{div}(f) \in Z_{n-1}(x)$ is given

$$
\begin{aligned}
& \text { by: } \operatorname{div}(f)=\sum_{D \subseteq x} \operatorname{ord}_{\uparrow}(f)[D] \\
& \text { codim } 1 \\
& \leadsto \operatorname{div}(f)=[\text { zeus }]-[\text { poles }] \text {. } \\
& \text { order of vanishing. } \\
& >0 \text { @ zero of } f \\
& \text { (If } f: X \rightarrow \mathbb{R}^{\prime} \text {, same as } \\
& <0 \text { @ poles of } f \\
& \left.\left[f^{-1}(0)\right]-\left[f^{-1}(\infty)\right] .\right)(=0 \text { for all but finite, } \\
& \text { many D) }
\end{aligned}
$$

$\operatorname{ord}_{D}(f)$: Look in the local ring $\underbrace{O_{D, x}}_{1 \text {-dimit ring }}$
\rightarrow We car write $f=\frac{a}{b}$ with $a, b \in \mathcal{\theta}_{D, x}$.

$$
\operatorname{ord}_{D}(f)=\underbrace{\ell\left(\theta_{D, x} /(a)\right)}_{\operatorname{ord}_{D}(a)}-\underbrace{\ell\left(v_{D, x} /(b)\right)}_{\operatorname{ord}_{D}(b)} .
$$

(doesn't depend on the choices.)
If X is normal, $\theta_{D, x}$ is a DVR
\Rightarrow Principal maximal ideal (t),

$$
\left.\begin{array}{l}
a=t^{k_{a}} \cdot u \\
b=t^{k_{b}} \cdot u^{\prime}
\end{array}\right\} f=t^{k_{a}-k_{b}} u u^{\prime-1}
$$

Hence "divisor", $D \leftrightarrow t$.

Ex: $\quad C=\mathbb{V}\left(Y^{2} Z-X^{3}\right) \leq P^{2}$
cuspidal cubic

$$
f=\frac{y}{x} \in k(c)^{x} .
$$

$$
\begin{aligned}
& Y=0 \sim[0: 0: 1] P_{1} \\
& x=0 \sim[0: 1: 0] P_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{p_{1}, c} / y=\frac{k[x]}{x^{3}} l=3 . \\
& v_{p_{1}, c} / x=\frac{k[y]}{y^{2}} l=2
\end{aligned}
$$

chart $\begin{aligned} & z=1:\left(\frac{k[x, y]}{y^{2}-x^{3}}\right) \quad f=\frac{y}{x} \\ & v_{P_{1}, c}\end{aligned}$

$$
\operatorname{ord}_{p_{1}}(f)=3-2=1
$$

(Comment: Not possible to wite $f=\frac{a}{b} \leftarrow$ ord $=1$ or else $G_{p, c}$ woald be a $\Delta V R!$)
chart $Y=1$: check $\operatorname{ord}_{p_{2}}(f)=-1$.

$$
m \operatorname{div}(f)=\left[P_{1}\right]-\left[P_{2}\right]
$$

Ohs: Total degree of $\operatorname{div}(f)=0$
(Than (Hartshoune II.C.10)
On any proper curve, dir(f) has total degree 0 .)

Rational Equivalence
$Z_{K}(X)$ is analogous to the group of topological cycles in singular homology.

$$
T=\begin{array}{ll}
c_{1}, c_{2} \in Z_{1}^{\text {top }}(T) \\
c_{1}, c_{2} \text { hart homology classes } \\
{\left[C_{1}\right],\left[c_{2}\right] \in H_{1}^{\text {t. }}(T)}
\end{array}
$$

In this example, $\left[C_{1}\right]=\left[c_{2}\right]$ because we can deform C_{1} into C_{2} :

$$
\begin{aligned}
& \frac{2 z}{z}=c_{1}-c_{2} \\
& \frac{2 z}{z}=\left[c_{1}\right]=\left[c_{2}\right] .
\end{aligned}
$$

The algebraic ane log of homotopy / homology equivalence is called rational equivalence.

Two definitions. \sim mare topological $\mathbb{\Downarrow}$
$x=$ scheme .
Def 1: Let $V \leq X \times \mathbb{P}^{1}$ be a subvariety, not contained in a fiber $X \times\{t\}$.
(*) implies: $\pi_{2}: V \rightarrow \mathbb{P}^{1}$ is flat.)

are rationally equivalent.
\leadsto Mora generally we say $\alpha, \beta \in Z_{k}(X)$ are rationally equralar if there exist subvaritios
$V_{1}, \ldots, V_{l} \leq X \times \mathbb{R}^{1}$, of $\operatorname{dim} k+1$, sued that

$$
\alpha-\beta=\sum_{i}\left[v_{i}(0)\right]-\left[v_{i}(\infty)\right]
$$

ie. the transitive closure of the "basic" equivalaces.

Ex: In A^{2} (above),

$$
\begin{align*}
& {\left[\begin{array}{l}
\smile \\
\sim
\end{array}\right]=[X]=[X]+[X]=} \\
& (V(1))=\left[\begin{array}{c}
(V(0)) \\
(V(0)] \\
(\text { empty })
\end{array}\right.
\end{align*}
$$

Def: The $k^{\text {IL }}$ Chow group of x is

$$
A_{k}(x):=Z_{k}(x) / \equiv
$$

Day 4. Rational equivalence (cont'd)
$X=$ scheme.
Last class: defined rational equivalence on X via families over $\mathbb{P}^{\prime}: V \subseteq X \times \mathbb{P}^{\prime}$.

Alternate def:
Let $V^{\prime} \subseteq X$ be a subvariety of dim $k+1$. (not Xx il ${ }^{\prime}$)

Lo f © $k\left(v^{\prime}\right)^{*}$.
We then say $\operatorname{div}(f) \in Z_{k}\left(v^{\prime}\right) \subseteq Z_{k}(x)$ is rationally equiv. to zee.

$$
\left(\begin{array}{cc}
\text { Think: } & \overrightarrow{\Gamma(f)} \\
\downarrow & \leq V^{\prime} \times \mathbb{R}^{\prime} \leq X \times \mathbb{P}^{\prime} \\
f: V^{\prime} \cdots \rightarrow \mathbb{R}^{\prime}
\end{array}\right)
$$

Well use this as the definition today. w The $k^{\text {th }}$ Chow group of x is

$$
A_{k}(x):=z_{k}(x) /\left\langle\operatorname{div}(f): \begin{array}{l}
f \in K\left(v^{\prime}\right)^{x} \\
v^{\prime} \subseteq x \text { subvar }
\end{array}\right\rangle
$$

$$
A(x)=\underset{k}{\oplus} A_{k}(x)
$$

Remarks.
(1) If $Y \stackrel{i}{\leftrightarrows} X$ is a cbeed embedding, we hove

$$
A(y) \xrightarrow{i_{x}} A(x)
$$

(A Subvariet, $V \subseteq Y$ is also $\leq X$.)
As with $Z(x)$, we hare $A\left(X^{\text {red }}\right) \equiv A(x)$.
Soon weill geveratize this to any proper morphism.
(2) $X=$ variety $\operatorname{dim} n$

$$
\begin{aligned}
A_{n-1}(x) & =\text { Werl divisore } / p_{\text {pinccipl diveriors }}(f): f \in k(x) \\
& =C e(x) \cdot \text { Divisor clacs grony. }
\end{aligned}
$$

(3) There's a rabual forgitul map $(x / \mathbb{C}) \quad A_{k}(x) \rightarrow H_{2 k}^{\text {top }}(x)$ by "forgetting the alge ${ }^{\prime} m^{\prime \prime}$.
In geneal this is neither injective nor surjective.

Examples.
(integral)
(1) $C=$ proper curve.

$$
\begin{aligned}
& A_{1}(C)=\mathbb{Z}[C] \\
& A_{0}(C)=C l(C)
\end{aligned}
$$

Note: Since C ir proper, every $\operatorname{div}(f)$ on C has bital degree 0 .
So there's a well-define! surgective homomorphism dey: $A_{0}(C) \rightarrow \mathbb{Z}$.
(2) \mathbb{P}^{2}

$$
\begin{aligned}
& A_{2}\left(\mathbb{P}^{2}\right)=\mathbb{Z} \cdot\left[\mathbb{R}^{2}\right] . \\
& A_{1}\left(\mathbb{R}^{2}\right)=C l\left(\mathbb{P}^{2}\right)=\mathbb{Z} \cdot[\text { live }](\text { Nat shown }) \\
& A_{0}\left(\mathbb{P}^{2}\right)=\mathbb{Z} \cdot[\rho \mid 4)
\end{aligned}
$$

$\tau_{\text {amy tho pts are connected }}$ by a straight line $\equiv P^{1}$. So $A_{8}\left(\mathbb{P}^{2}\right)$ is generated by the class of a point.
Since degree. of pts on curves are well-dufined, no multiple of $[p t]$ is $\equiv 0$.
(3) $\mathbb{A}^{n}: A_{n}\left(\mathbb{A}^{n}\right)=\mathbb{R} \cdot\left[\mathbb{A}^{n}\right]$.
$A_{k}\left(\mathbb{A}^{n}\right)=0$ for $k<n$.
Proof: Euygh to show $[Z]=0$ for $Z \leqslant\left[A^{n}\right]$ irred divensiar $k<n$.
B travilation, assume $\overrightarrow{0} \notin \mathbb{Z}$.
Scale Z by $t \in K$.
(firta)
In the limit, $\lim _{t \rightarrow \infty}(t \cdot z)=$ emply.
\rightarrow Check details (Problem Session) , 廌
Functorialily.
The Chow graps are Eunctorial tur ways
(1) They are covariant for proper morphisms:
(rodey) $\quad \rho: X \rightarrow Y$ poper $\leadsto \rho_{*}: A(x)-A(y)$.
(\approx singuler homology)
(2) They are contravariaul bor flet morphisms.
(after)

$$
\begin{aligned}
f: x \rightarrow y \text { flut } & \sim f^{*}: A(y) \rightarrow A(x) \\
& (=\text { singule cohomology }) .
\end{aligned}
$$

(1) Pushforword.

Sis $p: X \rightarrow Y$ proper mophisn.

proper:
start with: git limit:

Ekungles: Any morphism $X \rightarrow Y$, if X itself is paper.

- Any projection $X \times F \rightarrow X$ whee the fiber F is o pope variety.] C lose embeddings $X \leadsto Y$.
Properness is local on the base So any $X \rightarrow Y$ locally like ex. ruled surface:

Compositions θ base changes of the above.

base change:

$$
\begin{aligned}
x \times \mathbb{P}^{\prime} & \rightarrow \mathbb{P}^{\prime} \\
\text { proper } \downarrow & 0 \\
x & \downarrow \text { proper } . \\
x & \{\cdot\}
\end{aligned}
$$

Day 5: Proper push forward.
Let $p: X \rightarrow Y$ be proper.
LI $V \subseteq X$ be a subvariety, $\operatorname{dim} K$
Proper mar' are closed $\Rightarrow p(v) \subseteq y$ closed subvariety.
dim $\leq k$.

$$
\operatorname{dim} \leq k .
$$

- If $\operatorname{dim} p(V)=k, k(V)$ is a finite lyre field) extemisn of $k(p(V))$.

Def: The pashforward $\rho_{*}: Z_{K}(X) \rightarrow Z_{K}(Y)$ is

$$
p_{ \pm}[v]= \begin{cases}\operatorname{dg}(v: p(v)) \cdot[\rho(v)] & \text { if } \operatorname{dim} p(v)=k . \\ 0 & \text { if } \operatorname{dim} \rho(v)<k .\end{cases}
$$

$$
E_{x}: \quad X=\mathbb{i}_{x}^{\prime} \times \mathbb{P}_{t}^{\prime}
$$

Fraction field:

$$
\begin{aligned}
& C_{1}: \begin{aligned}
\frac{k[x, t]}{x^{2}-t} & \cong k[x], \text { field } k(x) \\
& \cong k(\sqrt{t})
\end{aligned} \text {. } \\
& \cong \text {. }
\end{aligned}
$$

deg. 2 Field extension.

$$
\mathbb{P}_{t}^{1} \stackrel{t_{0}{ }^{\downarrow}}{1} k[t] \stackrel{\text { field }}{ }
$$

$$
\begin{aligned}
& \leadsto \rho_{*}\left[c_{1}\right]=2\left[\mathbb{P}_{t}^{\prime}\right] \\
& \leadsto \rho_{x}\left[c_{2}\right]=0 \quad\left(\underset{\sim}{n o t}\left(t_{1}\right]!\right)
\end{aligned}
$$

* propress will ensure that px descends to a map

$$
A_{k}(x) \rightarrow A_{k}(x)
$$

Foreshadowing: It's often useful to look at the generic fiver of ow mas $X-Y$, ie. base charge (becalize) to the fraction field of Y.

In charts: ow exenple becomes $k(t)[x]$ trade. 2 .

$$
\operatorname{tr} d y \cdot \frac{1}{s}\left\{\begin{array}{l}
\uparrow \\
k(t)
\end{array} \quad\right. \text { tr.degt }
$$

This becomes a variedly over $k(t)$.

- In fact a curve over $k(t)$,
just \mathbb{P}^{\prime} over $k(t)$ in th's example.
$\underset{\left(t-t_{0}\right)}{\Rightarrow} C_{2} \xrightarrow{\text { discopors }}$ (equation $t-t_{0}$ is a unit $\operatorname{in} k(t)$).
$\underset{\left(x^{2}-t\right)}{\Rightarrow} C_{1}$ stays + becomes a "fuzzy point" (degree 2 fie ll

$$
\left(x^{2}-6\right)
$$ extension).

Similar to $\mathbb{R}[x] / x^{2}+1$
\uparrow
\mathbb{R}
still true that $\rho_{*}\left[C_{1}\right]=2\left[S_{\text {pec }} k(t)\right]$.

Theorem. If $\alpha \in Z_{k}(x)$ is andy eq. to zero, them so is $\rho_{x} \alpha \in Z_{k}(y)$.
Than ρ_{*} descends to $A_{k}(X) \rightarrow A_{k}(Y)$.

Proof:- By del, $\alpha=\sum \operatorname{div}\left(G_{i}\right)$ for some subvaricties $V_{i} \subseteq X$

$$
\operatorname{dim}_{i} k+1,
$$

Enough to consider $\alpha=\operatorname{div}(f)$ on one rubverid) $V \subseteq x$ $\operatorname{dim} k+1$.

Enough to show $\rho_{x^{\alpha}}$ rally q. to 0 in $Z_{k}(p(v))$ caller then $Z_{k}(Y)$.
an Reduce to $V=X, \rho(V)=Y$ both X, Y are varieties, $\operatorname{dim}(x)=k+1, \quad \operatorname{dim} y \leq k+1$.
p surjective.

$$
\alpha=\operatorname{div}(f) \text { for } f \in k(x)^{*} \text {. }
$$

Three case depending on $\operatorname{din}(Y)$.
(1) I6 $\operatorname{dim}(Y) \leq k-1 \quad(\operatorname{din} X-2)$.

Then $A_{k}(Y)=Z_{k}(Y)=0$ so $p_{x} \alpha=0$.
(2) If $\operatorname{dim}(Y)=K+1=\operatorname{dim} X$.

So $k(x)$ is a Finite field ext of $k(y)$.
Recall norms: $N: K(x)^{k} \rightarrow K(y)^{*}$

$$
\begin{aligned}
& k(x) \rightarrow k(y) \\
& N(f)=\operatorname{det}(k(x) \stackrel{f}{\rightarrow} k(x))
\end{aligned}
$$

my of $k(y)$ vector spaces.
$\alpha=\operatorname{div}(t)$.
Fact (Fulton A.3) $\rho_{\alpha} \operatorname{div}(t)=\operatorname{div}(N(f))$.
© properties of local So $\beta^{\alpha}=0$ in $A_{k}(Y)$.
(3)

$$
\text { If } \begin{aligned}
\operatorname{dim}(Y) & =\operatorname{dim}(X)-1 \\
& =k \\
A_{k}(Y) & =Z_{k}(Y)=\mathbb{Z} \cdot[Y] \\
\operatorname{div}(t) & =\sum n_{i}\left[D_{i}\right] \text { or } x \\
(\operatorname{liv}(t) & =\underbrace{\sum n_{i} \operatorname{dy}\left(D_{i}: Y\right)[Y]}_{m}]
\end{aligned}
$$

dropping an $b i$ that didn't contribute (didrit dominate Y).
need this to be 0 !
This is a local calculation (mult.s/ordos/degrees) over $K(Y)$.
So, base charge to $k(y): \quad X \longleftarrow X^{\prime}:=X \underset{y}{x} \operatorname{Spec} k(y)$.

$$
\begin{aligned}
& \rho \downarrow \square \downarrow \\
& Y \longleftarrow \operatorname{Spec} k(Y)
\end{aligned}
$$

Since $\operatorname{dim}(x)$ was $k+l$, and dime $y=k$, So X^{\prime} is a curve over $k(Y)$.
Actually a proper curve since properness is preserved by base change.
So f is now a $2 l^{\prime} l$ function on the proper curve $X^{\prime} / k(Y)$
(61) The total degree of $\operatorname{div}(f)$ on an g prep curve is 0 !
S. $m=0$.

Ever, check functorialidy: $\quad X \xrightarrow{\rho} y \stackrel{q}{\rightarrow} Z, \quad(q \cdot p)_{\gamma}=q_{x} \circ p_{x}$ parer pie on Chou gangs,

Consequence:
If X is a popper scheme, the structive $m p \mathrm{p} X \xrightarrow{\pi}$ Speck is pores. This gins the degree map

$$
\operatorname{deg}: A_{0}(x)-A_{c}\left(\zeta_{\text {peck }}\right)=\mathbb{Z} \text {. }
$$

print count weighted by multiptucty \& field ext'n Agree.
(same as length it $k=\bar{k}$.)

$$
\begin{aligned}
& S_{\text {pec }} \mathbb{C} \rightarrow S_{\text {pec }} \mathbb{R} \\
& \pi_{x}[\mathbb{C}]=2[\mathbb{R}]
\end{aligned}
$$

Day 6. Excision and Flatness.
The simplest example of a flat morptrism is an open embedding $U \stackrel{j}{\stackrel{i}{c}} X$, where U is an open subichene.

We cant pash forward, but we con restrict to u :

$$
\begin{aligned}
f^{x}: z_{k}(x) & \mapsto z_{k}(u) \\
{[z] } & \mapsto\left\{\begin{array}{cl}
{[z \cap u]} & \text { if nonempty } \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

This respects rational equivaleru:
if $V \subseteq x$ is a subvariety,

$$
f^{x} \operatorname{div}(f)=\left\{\begin{array}{cc}
0 & \text { if } \vee \cap u \text { empty } \\
\left(f \in k(v)^{*}\right) \\
\operatorname{div}\left(\left.f\right|_{v \cap u}\right) & \text { if } \vee \cap u \neq \phi
\end{array}\right.
$$

same beet calculations, just discord any terms D_{i} disjoint from u.

Soon we'll generalize to all flat morphisus.

But first:
Theorem (Excision):

$$
X=\text { scheme, } u \underset{\text { open }}{\underset{\sim}{j} X} X \underset{\longleftrightarrow}{\stackrel{i}{\longleftrightarrow}} X \quad z=X \backslash u \text { closed. }
$$

There is a right-exact sequence:

$$
A(z) \stackrel{i_{*}}{\rightarrow} A(x) \xrightarrow{j^{*}} A(u) \rightarrow 0
$$

*) Generalizes Hatshorve II.C. 5 only for divisors on varieties.

Proof: j^{*} subjective: giver $V \subseteq u$ subvariety, lat $\begin{aligned} \bar{V} & =\text { clos we } \\ & \text { of } V\end{aligned}$ in X
\sim then $\bar{v} \cap u=v$.
$j^{*} \cdot i_{x}=0$: true on cycles.

Kerf $j^{*} \subseteq$ in $i_{x}: \quad$ Lat $\alpha \in Z_{k}(x)$ such that $j^{*} \alpha=0$ in $A_{k}(h)$
ie. $j^{*} \alpha=\sum \operatorname{div}\left(f_{i}\right)$ for some
subvarieties $V_{i} \subseteq U_{1}$
ratel $f_{n}, f_{i} \in k\left(v_{i}\right)$.

$$
\left(\operatorname{in} z_{k}(n)\right.
$$

\leadsto Take cosines of each V_{i} ms $\bar{V}_{i} \subseteq X$.
m Think of each f_{i} on V_{i} as \bar{f}_{i} on \bar{V}_{i}. ie. same clement $f_{i} \in k\left(v_{i}\right)^{*} \longleftrightarrow \overline{f_{i}} \in k\left(\bar{v}_{i}\right)$.
"tome from But, $\operatorname{div}\left(\overline{f_{i}}\right)$ may have extra terai $[D]$ where the extra $\quad D \leq X \backslash \boldsymbol{U}=\boldsymbol{Z}$.
local ring'
S

$$
\begin{aligned}
& \text { So, } j^{\alpha}\left(\alpha-\sum \operatorname{dir}\left(\bar{f}_{i}\right)\right)=0 \text { in } Z_{k}(u) \\
& \text { as a cycle on } u . \\
& \alpha-\sum \operatorname{div}\left(\bar{f}_{i}\right)=i_{y \beta} \beta \text { for some cycle } \\
& \beta \in Z_{k}(Z) .
\end{aligned}
$$

$$
\alpha-0=i_{x \beta} \text { in } A_{k}(X)
$$

Corolla (chow grout of \mathbb{P}^{n}).
$(H \omega) \quad \mathbb{A}\left(\mathbb{P}^{n}\right)=\bigoplus_{d=0}^{n} \mathbb{Z} \cdot[$ dined p bare $]$.
\rightarrow Based on decomposition $\mathbb{P}^{n}=\mathbb{A}^{n}-\mathbb{P}^{n-1}$ open closed

Flat families.
A morphisn $f: X \rightarrow Y_{1}$ is flat if all the wept of local rings

$$
\begin{aligned}
& U_{x, x} \in U_{y, y} \text { are flat. } \\
& \quad(y=f(x))
\end{aligned}
$$

$O_{y} \quad O_{x}$
Equivaluatly: in any open affine chart, $R \rightarrow S$ is flat.

Flat morphisms are algebraic "contimuas families".

Fiber dimension: Given $x \in X, y=f(x) \in Y$,

$$
\underbrace{\operatorname{dim} \theta_{x, f^{-1}(y)}}_{\text {fiber dimension }}=\underbrace{\operatorname{dim} \theta_{x, x}-\operatorname{dim} \theta_{y, y}}_{a_{m b} \text { mien }^{\prime} \text { dimensions. }}
$$

We alureys assume a flat morphism has a constant relative dimension $r \geqslant 0$. This means:
(*) whenever $V \subseteq Y$ is a subvaridy of dim k,
then $f^{-1}(v)$ is pure of dimension $k+r$.

$$
\omega\left[f^{-1}(v)\right] \in Z_{k t r}(Y) .
$$

(frotavealal cycle)

Fiber degree: If f is proper and flat of rel dimension 0 , the f is finite and the fiber degree is constant.

$$
(\underset{\text { map }}{\text { finite }}=\underset{\text { finises }}{\text { finite }}+\text { proper })
$$

(over $k=\bar{k}:$ luyth of the fiber is constant.)
Example: $\mathbb{Q}[x, t] / x^{2}-t$: if t has ± 5 in \mathbb{Q}
\uparrow fiber is two pts.

$$
Q[t]
$$

- if $t=0$: fiber is double p l.
- if $t \neq$ square, fiber is Spec $\mathbb{K}(\sqrt{t})$ length $\frac{1}{5}$ but ogre ?

$$
\binom{\text { length }_{\mathbb{Q}(\sqrt{t})}(\mathbb{Q}(\sqrt{t}))=1}{\operatorname{dy}(\mathbb{Q}(\sqrt{t}): \mathbb{Q})=\text { length }^{\left(\mathbb{Q}_{\mathbb{Q}}\right.}(\mathbb{Q}(\sqrt{t}))=2}
$$

Core examples:
(1) Open embeddings $u \stackrel{1}{c}^{\text {(1) }}$
(2) Projections $X \times F \rightarrow X$ (F par of dimension r).
(3) Flatness is local on the base, so anything locally like 2 : vector bundles $E \rightarrow X \quad$ (locally $\left.\mathbb{A}^{n} \times X \rightarrow X\right)$ projective bundle $\mathbb{P}(E) \rightarrow X \quad\left(\right.$ locally $\left.\mathbb{P}^{h^{-1}} x X \rightarrow X\right)$. paper and flat. fiber bundles.
to be continued.
(Day 7 : Flatness contd)
(4) Flatness / sm curve.
$f: X \rightarrow Y$, Y sm cw oe.
Then \in is $f l a t ~ \Leftrightarrow$ every irrad andkeentedded Component of X dominie Y.

Ex:

- but, $x^{\text {red }}$ is flat.
very easy to achieve flatness if iss not already pressed. Also $x \subseteq x$ is flat.
ope
(delete the bad fibers)
(5) Universel Eamilics.

For pajective morphisus $X \subseteq Y \times \mathbb{P}^{n}$, ie. Familics of El projedire vasieties.
f is flat is6 the Hillert polynomiad is the som forall fibers.

$$
\begin{aligned}
& \text { L } z=f^{-1}(y) \text { fiber. } \\
& H_{i}{ }^{1 b} z(d)=\operatorname{din}_{z}^{0}\left(\theta_{z}(d)\right) \\
& (\text { for } d>0 .)
\end{aligned}
$$

ex: conics in $P_{[x, y, z]}^{2}$
4 specibied by C csefficients:

$$
f^{2} y z z^{2}
$$

$$
x y \quad x z
$$

$$
x^{2}
$$

mu $\mathbb{R}^{5}=$ spae of conics.
very siuple example of a moduli cpace.
$(F) \in \mathbb{R}^{5} \Leftrightarrow$ conic in \mathbb{R}^{2},
"Univeral Camily": $\mathbb{P}^{5} \times \mathbb{P}^{2} \geq \Phi=\{(F, p): F(p)=0\}$,

$$
\pi_{\mathbb{P}^{5}} \int_{\mathbb{R}^{2}}
$$

Fibers of $\pi_{1}: F \in \mathbb{R}^{5}$.

$$
\pi_{1}^{-1}(F)=\{F] \times \underbrace{\{\rho: F(\rho)=0\}}_{\text {actual con'c in } \mathbb{R}^{2} \text { ! }}
$$

This family is flat b/c $\mathbb{1 P}^{5}$ is reduced and the Hilbert polynowial is alwayg $\mathrm{Wilb}(d)=2 d+1$.

$$
\left(0 \rightarrow O_{p^{2}}(-2) \rightarrow 0_{p^{2}} \rightarrow O_{c} \rightarrow 0\right)
$$

it's flat even though some fikes are X or arran
2lines Jouple live.
(6) Compositions a Lese chonges of Clat morphisms are fleteng. if x is flad, the restricition of f to ang E \downarrow subscheme $Z \in Y$ is flat.

$$
\left.\begin{array}{l}
x \\
f \\
l \\
y \\
y<f^{-1}(z) \\
i
\end{array}\right\} \text { als. flat }
$$

What's not flat?
(1) If X har a componet that doesn't dominate a componeal of Y. $\Rightarrow X \rightarrow Y$ is not flat.
(algabraically: flat modules are torsionfree).
(2) Blowups $B l_{p}\left(\mathbb{P}^{2}\right)$

$$
\pi \quad \downarrow
$$

$$
p^{2}
$$

T is not blat b/c the fít targend space at p. divension isnt constant.

Blowps are never flat except in trivral cases.

(3) Normalization

$\Rightarrow \pi$ isnit Elat becense the fiber dyree isut constant.
This is alco rever flat nalese the base was alvead, normel.

Flat pullback.
If $f: x \rightarrow Y$ flit of rel din $r \geqslant 0$, we define the pullback on cycles:

$$
\begin{aligned}
f^{*}: Z_{k}(y) & \rightarrow Z_{k+r}(x) \\
{[z] } & \stackrel{f^{*}}{\longmapsto}\left[f^{-1}(z)\right]
\end{aligned}
$$

$z \subseteq y$
(fundamental cycle)

Theorem.
(1) If $z \subseteq y$ is any subschene, $f^{*}[z]=\left[f^{-1}(z)\right]$. In padiculer $f^{*}[y]=[x]$.
(2) (Compatibility) Given a fiber square

$$
x^{\prime} \xrightarrow{f^{\prime}(f(l))} X
$$

(propel $p^{\prime} \downarrow$ o \downarrow p paper

(3) f^{x} descends to ratel y. classes: $f^{*}: A_{k}(Y)-A_{k+r}(x)$.

Day 8. Chow rings!
$X=$ smooth variety. $\operatorname{dim}_{m}=n$.
Write $A^{c}(x):=A_{n-c}(x)$.
Fundament Theorem of Intersection Theory:
(1) The Chow groups have a graded ring structure

$$
A^{c}(x) \times A^{d}(x) \rightarrow A^{c+d}(x)
$$

called the intersection product, satisfying

$$
[A] \cdot[B]=[A \cap B]
$$

$\tau_{\text {subbanetics }}$
τ (fundomeilal cycle) with multiplicity!
if - A, B are Cohen-Macarly (e.g smooth) at the generic pis of $A \cap B$, and

- $\operatorname{codim}(A \cap B)=\operatorname{codim}(A)+\operatorname{codim}(B)$
(2) The pullback $f^{*}: A^{c}(y) \rightarrow A^{c}(x)$ exists for all $(E \mid X \rightarrow Y)$
morphisund of smooth varieties and is a ring map and
satisfies: $f^{*}[Z]=\left[f^{-1}(z)\right]$ if Z is Cohen Mecauby
τ subvariby (funderanald and coding $\left(F_{-}^{-} Z\right)=$
of Y cycle! $\quad \operatorname{codim}(Z)$.
This makes $A(-)$ a contravariant functor:

$$
\underset{\text { smootlelies }}{\text { smongrings. }} \longrightarrow \text { graded } .
$$

(3) (Projection formula)

If $\begin{array}{ll}f: x \rightarrow Y \text { is proper, } & \alpha \in A(x) \\ \beta \in A(y)\end{array}$, then

$$
f_{x}\left(f^{*} \beta \cdot \alpha\right)=\beta \cdot f_{*}(\alpha)
$$

This says: f_{*} is a map of $A(Y)$-modules. $(A(X)$ is alveedy an $A(Y)$ module via f^{*}).

Comments:
(1) Very unclear what $[A] \cdot[B], f^{7}[Z]$ are in the non-CM / mor-treasverse cases.
(2) Being empty comets as traverse.

Ex: $\mathbb{R}^{n} \cdot A\left(\mathbb{P}^{n}\right)=\bigoplus_{c=0}^{n} \mathbb{Z} \cdot\left[L^{c}\right]{\underset{\text { codim-c }}{\text { any }} \text { liner }}^{\text {space }}$ space.

$$
\begin{aligned}
& \leadsto\left[L^{c}\right] \cdot\left[L^{e}\right]=\left[L^{c+e}\right] \\
& \leadsto \text { so } A\left(\mathbb{R}^{n}\right)=\frac{\mathbb{Z}[h]}{h^{n+1}}, h=\text { class of a } \\
& \text { hoperplore }
\end{aligned}
$$

m Gives Bézoul's Theorem:

$$
A\left(R^{2}\right) \cong \frac{\mathbb{Z}[l]}{l^{3}}
$$

If A, B are curves of degrees a, b then $[A]=a[$ line $],[B]=b[$ line $]$.
If $A \cap B$ is finite then $[A \cap B]=[A] \cdot[B]$
 (over ©) since totell is $3.2=6$

$$
[v]=\left[\pi_{1}^{-1}(z)\right]=\pi_{1}^{*}[q] .
$$

$$
\text { Excision } \rightarrow A\left(\mathbb{R}^{\prime} \times p^{\prime}\right)=\oplus \mathbb{Z} \cdot\left\{\begin{array}{l}
{\left[\mathbb{P}^{\prime} \times \mathbb{p}^{\prime}\right]} \\
{\left[\mu^{\prime}\right],[v]} \\
{\left[p^{\prime}\right]}
\end{array}\right.
$$

Products: $[H] \cdot[v]=[\rho]]$.

$$
\begin{aligned}
& {[H]^{2} ? \quad[H]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =0 \text { (emply) rivy map } \\
& \left.[H]^{2}=\pi_{2}^{*}\left(\underset{\sim m p^{\prime}}{(C H B]^{\prime}}\right) .\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex2 } \mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \text {. } \\
& \begin{array}{cc}
\pi_{1} \downarrow & \downarrow^{\pi} \\
\mathbb{R}^{\prime} & R^{\prime}
\end{array} \\
& \begin{array}{cc}
\pi \cdot \downarrow \\
\mathbb{R}^{\prime} & l^{\prime}
\end{array} \\
& \hat{q}
\end{aligned}
$$

Simibery: $\quad(v]^{2}=0$
So, $\quad A\left(\mathbb{p}^{\prime} \times \mathbb{p}^{\prime}\right) \cong \frac{\mathbb{Z}(h, v]}{h^{2}, v^{2}} \quad\left(\right.$ basis $\left.1, h, v, h_{v}\right)$

Gives the "PR'xp" Bézints Therem":
Sny $C=\mathbb{P}_{[x: 4]}^{1} \times \mathbb{P}_{[s: T]}^{1}$ has tyre (a, b) if it is

Cx: in A^{2} chert

$$
\begin{aligned}
& t=\frac{1}{x-1}-\frac{1}{x} \\
& t x(x-1)=x-(x-1) \\
& t x^{2}-t x-2 x-1=0 \\
& 6 \\
& T x^{2}-T x+2 S x-5=0 \\
& 6 \\
& T x^{2}-T X Y+2 S X Y-5 y^{2}=0
\end{aligned}
$$

bideyree $(2,1)$

$$
{ }_{x: Y}^{1} c_{T: S}
$$

If c, has type $\left(a_{1}, b_{1}\right)$
c_{2} has type $\left(a_{2}, b_{2}\right)$,
and $C_{1} \cap C_{2}$ is finite...

$$
\begin{aligned}
{\left[c_{1} \cap c_{2}\right]:\left[c_{1}\right] \cdot\left[c_{2}\right] } & =\left(a_{1}[V]+b_{1}[H]\right)\left(a_{2}[v]+b_{2}[H]\right) \\
& =a_{1},\left[/[V]^{2}+\cdots \quad\right. \text { 目 } \\
& =\left(a_{1} b_{2}+b_{1} a_{2}\right) \underbrace{[H][V]}_{[p+]}
\end{aligned}
$$

Day 9: Some counting problems.
Q: Ld \quad : : $\mathbb{P}^{\prime} \rightarrow \mathbb{P}^{\prime}$ is a map of degree d.

$$
\varphi([T: S])=\left[F(T ; S): G_{T}(T, S)\right]
$$

How many fixed pts does 4 have?
m Look e graph of $\varphi: \Gamma(u) \subseteq \mathbb{P}_{T: S}^{\prime} x \mathbb{P}^{\prime}$,
In A^{2} chart. $\quad \int$ diygnel $\Delta\left(\mathbb{P}^{\prime}\right) \subseteq \mathbb{P}^{\prime} x \mathbb{R}^{\prime}$.
\rightarrow Use the "melbad of undetermined coefficients":
We know $[\Gamma(c)]=a[V]+L[H]$ for some $a, b \in \mathbb{Z}$. as Figure out a, b by intersecting with V, H.
(1) Intused bath $[V]$:

Creonatriclly,

$$
\begin{aligned}
\Gamma(c) \cap v & =1 p t \\
{[[(c)] \cdot[v)} & =1[p t] .
\end{aligned}
$$

Algensially:

$$
\begin{aligned}
& \begin{aligned}
{[r(v)] \cdot[v] } & =\underset{[v]^{2}=0}{(a[(T)+b[v]) \cdot[v]}[[v] \cdot[v]=(p)] .
\end{aligned} \\
& =b[\rho+]_{0} \quad b=1 \text {. }
\end{aligned}
$$

(2) Intersed wall $[\mathrm{H}]$:

Geometrially $[(C L) \cap H]=d[f) \quad(H$ preingess)
Algabaically: $(a[V]+b[(\mid G]) \cdot[H]=a[p \mid]$.

$$
\begin{aligned}
& \text { So }[\Gamma(v)] \cdot d[V]+[H] \text {. } \\
& \text { Simlarty }\left[\Delta\left(p^{\prime}\right)\right]=[v)+[b] \quad\left(\Delta\left(R^{\prime}\right)=\Gamma(i d)\right) \text {. } \\
& \text { So }\left[\Gamma(\varphi) \cap \Delta\left(R^{\prime}\right)\right]=[\Gamma(\zeta)] \cdot\left[\Delta\left(R^{\prime}\right)\right] \\
& \text { funderwewd cycle. }=(d[V]+[H])([V]+[W])
\end{aligned}
$$

$$
=\underbrace{(d+1)}_{\text {\# fixed pls }}[\rho+1] .
$$

ex: $d=1$: (Mobines transformadion)

$$
2 \text { fixed pls! }
$$

Q. About conics in $\mathbb{P}^{2}[x: y: z]$.
a) Given fow geneat quadrin poljnomials F, G, H, J,

$$
S=\operatorname{span}(F, G, H, J)
$$

How maxy elts of S are squerer?

$$
(\text { y to scaling } \leftrightarrow \mathbb{P}(s) \text {.) }
$$

b) Giver two gement quadratio polywomids F, G,

$$
T=\zeta_{\rho<\alpha}(F, G)
$$

How may elts of $\mathbb{P}(T)$ Eactor? $R \subseteq \mathbb{R}^{5}$,
$\mathbb{R}^{5}=$ space of conics. $\xrightarrow{2} \mathbb{P}(S) \cong \mathbb{R}^{3}, \mathbb{P}(T) \cong \mathbb{R}^{\prime}$.
$S Q=\left\{s_{\text {queres }} L^{2}\right\}$.
$R=\{$ redenill coviss $L i \zeta\} . \quad \delta Q \leq R$.

We wat: (a) * $P(\Omega) \cap S Q$
(b) $\# \mathbb{P}(T) \cap R$
(a) $\mathbb{T}_{[a: b: c]}^{2}$ - space of liner forms - $a X+b y+c Z=0$ (dnat $\mathbb{1 P}^{2}$)
$\mathbb{R}^{2} \xrightarrow{u} \mathbb{R}^{5}$ (dund) veronese embedding.

$$
\begin{gathered}
L \longmapsto l^{2}=\left[a^{2}: 2 a b: \cdots\right] \in \mathbb{R}^{5} . \\
{[a: b ; c] \quad 1} \\
(a x+b y+c Z)^{2}=a^{2} X^{2}+2 a b x^{y}+\cdots
\end{gathered}
$$

Imaye $\varphi\left(\mathbb{P}^{2}\right)$ is $s Q$

$$
\text { us } s_{1} \operatorname{din}(S Q)=2 \quad\left(\operatorname{codin} 3 \text { in } \mathbb{P}^{5}\right) .
$$

$$
\text { And } \operatorname{dim} \mathbb{R}(S)=3\left(\operatorname{codim} 2 \text { in } P^{5}\right)
$$

So $(\mathbb{R}(S) \cap \delta Q]=[\mathbb{P}(s)] \cdot[S Q]$ if Einite.

$$
(\text { both shooth })^{a}=\varphi_{*}\left[\mathbb{P}^{2}\right] .
$$

Use pajection Cormuch to "pull" back to the \mathbb{R}^{2}.

$$
[\mathbb{R}(s)] \cdot \varphi_{*}\left[\mathbb{R}^{2}\right]=\varphi_{*}(\underbrace{\left.\varphi^{*}[\mathbb{P}(s)] \cdot\left[\mathbb{R}^{2}\right]\right)}_{\text {Caluwlate in } \mathbb{P}^{2}}
$$

$$
=\varphi_{*}\left(u^{*}[R(S)]\right)
$$

Amounts to sug'r: Calculate $\left[\Psi^{-1}(R(S))\right)$ in \mathbb{R}^{2}
$\omega \mathbb{P}(s)$ ir a colin 2 liver space in 1^{5}. $[P(S)]=[H]^{2}$. Hs hyperplane in \mathbb{P}^{5}.

So $\varphi^{*}(\mathbb{P}(s)]=\varphi^{*}[N]^{2}$ on \mathbb{P}^{2}.
H is easier t_{0} describe. t ir given by arglinew condition in the coefficients of $X^{2}, X y, y^{2}, \ldots$
ω gives quadratic condign on $a: b: c$,

$$
\sim \varphi_{x}(4[p-1))=4[p t] \text { in the } \mathbb{R}^{5}
$$

$$
\begin{aligned}
& \text { ie. } \mathcal{G}^{*}[H]=2\left[\text { line in } \mathbb{p}_{c: b: c}^{2}\right] . \\
& \text { So } 4^{*}[H]^{2}=(2[\text { line }])^{2} \\
&=4[\rho \mid] \text { on } \mathbb{R}^{2} . \\
&=4[\rho t] \text { in the } \mathbb{R}^{5} . \\
&=\left[\mathbb{P}(S) \cap \varphi\left(\mathbb{P}^{2}\right)\right]=[P(S) \cap S Q]
\end{aligned}
$$

(b) $\mathbb{P}^{i}=$ spere of conncs. $\geq R(T) \cong \mathbb{P}^{\prime}$.
$\stackrel{v}{R}=$ redruitl conizs し そ
ω Theres a morphirm $\mathbb{P}^{2} \times \mathbb{R}^{2} \xrightarrow{\psi} \mathbb{R}^{5}$

$$
(L, \Gamma) \mapsto L \cdot \tilde{L} .
$$

NoT an enbedding: 2-tol onto inage!

$$
\text { S. } \psi_{x}\left[\mathbb{R}^{2} \times \mathbb{R}^{2}\right]=2[R] .
$$

We are asking $E_{0}[\mathbb{P}(T) \cap R]$.
Use pajectivin Eormula to relate this to $\mathbb{P}^{2} \times P^{2}$:

$$
\begin{aligned}
& \psi_{*}\left(\psi^{*}[\mathbb{R}(T)] \cdot\left[\mathbb{R}^{2} \times \mathbb{P}^{2}\right]\right) \leftarrow=\psi_{*} \psi^{*}[\mathbb{P}(T)] . \\
&= {[\mathbb{P}(T)] \cdot \psi_{*}\left[\mathbb{P}^{2} \times \mathbb{P}^{2}\right] \quad \text { casier to } } \\
& {[\mathbb{R}(T)] \cdot 2[\mathbb{R}] . } \\
& \mathbb{P}(T) \cong \mathbb{R}^{\prime} \text { codimet } . \\
&=\text { in } \mathbb{P}^{5} \cdot[\mathbb{P}(T)]=[H]^{4} .
\end{aligned}
$$

What is $\psi^{y}[H]$ in $\mathbb{P}^{2} x p^{2}$?

$$
\begin{aligned}
& \text { Take } H=\{F: F(\rho)=0\} \quad\left(f \text { ix } p \in \mathbb{R}_{x: \times 18}^{2}\right) . \\
& \psi^{-1} H \leq \mathbb{R}^{2} \times \boldsymbol{p}^{2}=\left(L \times \mathbb{R}^{2} \cup \mathbb{R}^{2} \times L\right) .
\end{aligned}
$$

$$
\text { type }(1,1) \text { on } p^{2} \times p^{2}
$$

$$
\psi^{x}[H]^{u}=?
$$

$$
\psi^{\gamma}[\omega]^{4}=?
$$

$$
=\left(\left[H^{10}\right)-\left(H^{0}\right]\right)^{4}
$$

$$
=\left[\psi^{0}\right]^{4}+4\left[H^{\circ}\right]^{3}\left[H^{0}\right]+\underbrace{\left[H^{10}\right]^{2}\left[H^{0}\right]^{2}}_{p^{t}}+\phi+\phi
$$

$6[1]$.
Projection Eirumbarar raid

$$
\begin{aligned}
\psi_{x}\left(\psi^{*}[H]^{4} \cdot\left(1 P^{2} \times 1 P^{2}\right]\right) & =[H]^{4} \cdot \psi_{x}\left[R^{2} \times 1 P^{2}\right] \\
\psi_{x}(G[\rho t]) & =[R(T)] 2[R]
\end{aligned}
$$

$$
\begin{aligned}
& G[\rho \|]=2[\mathbb{R}(T) \cap R] . \\
& \text { So }[\mathbb{c} \text { what we } \\
& \text { wank. }
\end{aligned}
$$

SUMMARY OF STEPS
(1) Describe all relevant objeds, express the problem as "intersection of objects (of compluadlay dimension)"
(2) Express their classes in terms of more familiar classes (eeg. hyperplanes). ("graph" problem)
OR.
Use projection formal to shirt the problem to a different space. Express closes there.
(3) (After converting to a problem involving familiar classes on familiar spaces):
Multiply, using Chow ring structure.
(4) (Cleanup)

Verity over/under counting (projection formals)
Verity smoothness/transversality/multiplicity.

Day 10: More on Chow rings.

Def: Degree of a projection variety:
if $X \subseteq \mathbb{P}^{n}$ subvariety $\operatorname{din} k$,
we know $[x]=d\left[L_{k}\right]$
linear space
We def in e $\operatorname{deg}(x):=$ of $\operatorname{dim} k$.

This is also the cardinality of the intersection of X with a geneal complementary linear space:

$$
\left[x \cap L^{k}\right]=[x] \cdot\left[L^{k}\right] \cdot(d \underbrace{\left[L_{k}\right) \cdot\left[L^{k}\right]}_{\substack{\text { codimansion } k}}
$$

geneal codimension k liner spue
(Note: This proves $d \geqslant 0$.)
So last class with 1^{5} : conics in p^{2}
R, reducible conics
SQ = squares of linear forms.

We (equivalenolly) showad: $\operatorname{deg}(R)=(\# R \cap P(T))=3$.

$$
\operatorname{dg}(S Q)=(\# S Q \cap \mathbb{P}(S))=4
$$

Pullbacks and Interfections
One thing we obserwed last ulars:

(codion is correct).

(curvi)! $\mathrm{Cl}(x)=\operatorname{Pic}(x) \underbrace{\text { differw! }}$

$$
\begin{aligned}
& =i_{x}[x] \cdot[H] \\
& =2\left[p^{-1}\right] . \\
& \in A_{0}\left(\mathbb{P}^{n}\right)=\mathbb{Z} .
\end{aligned}
$$

Projection Gormale: $i_{*} i^{*}[H]=i_{x}\left(*^{*}[H] \cdot[X]\right)$

$$
=[H] \cdot i_{*}[X]
$$

$=[H \cap i(x)]$.

Also for now-embe dings:

$$
x \xrightarrow{\epsilon} \mathbb{R}^{n}
$$

$$
i^{*}[H]=3, t
$$

$$
\operatorname{in}_{0} A_{0}(x)
$$

$$
i_{x} i^{*}[H]=i_{*}\left(i^{*}[H] \cdot[x]\right)
$$

$$
i_{x}\left(3_{p}+s\right)=[H] \cdot i_{*}[x]
$$

$$
=[H] \cdot 3[L]
$$

$$
=3[\mathrm{H} \cap \mathrm{~L}] \leftarrow[\mathrm{H} L]
$$

$$
\text { - } 3[p] \quad[H \cap i(x)]
$$

In this case the projection formula is necessary to get the correct multiplicity, since f is nt an isomorphisms.
(1) Were Ait gelling lucky to hare truubverse intersections.

Ex: Blown $X=B l_{\rho} \mathbb{P}^{2} \xrightarrow{T} P^{2}$ blow down map.

HW: Yon showed: $A(x)=\mathbb{Z} \cdot\left\{\begin{array}{l}{[x]} \\ {[\epsilon],[L]} \\ \left.C_{p} t\right]\end{array}\right.$ line not thong h p

- $\pi^{x}[p] \neq\left[\pi^{-1}(p)\right]$ wrong codimenorin!

Bot $\pi^{*}[p]=\pi^{*}[q]$ for any other $p v \in \mathbb{R}^{2}$

$$
=\left[\pi^{-1}(q)\right]=[q, \text { as a point in } X) .
$$

- Also $\tau^{v}[l]=\pi^{x}\left[L^{\prime}\right], L^{\prime}=\lim$ thangh ρ
$=\left[\pi^{-1}\left(l^{\prime}\right)\right] \quad \tilde{l}=$ strict transform.
$=[E \cup E]=[E]+[E]$

Products: $[L]^{2}=[\rho t] \quad\left(\pi^{x}\left[L^{2}\right]=\rho^{t} \circ n \mathbb{R}^{2}\right)$
$[L] \cdot[E]=0$ since $L \cap E \| \phi$
$[E]^{2}=$? Problems not clear how to "more" E.
\sim We know $[L]=\left[\hat{L}^{\prime}\right]+[E] \cdot\left(=\pi^{*}[L]\right)$. milt. (by $[E]$

$$
\begin{aligned}
{[L] \cdot(E) } & =[E] \cdot[E]-[E]^{2} \\
0 & =1[\rho t]+(G]^{2} \\
-1[\rho t] & =[E]^{2}
\end{aligned}
$$

* This proves that E is not ratel equiv e to any other effective cycle., since thun $[E]^{2}$ would be ≥ 0.
(multiplicity of intersection scheme, ie. length of some module)
Bul, [E] $=[L]-\left[\hat{L^{\prime}}\right]$.

Chow ring of X:

$$
A(x)=\frac{\mathbb{Z}[e, l]}{\left(e \cdot e, e^{2}=-l^{2}\right)}
$$

$$
\left(\neq A\left(R^{\prime} \times R^{\prime}\right)\right)
$$

(but insmorphic over Q)
$\left.\mathbb{Q} \otimes A(x) \cong \mathbb{Q} \otimes A\left(P^{\wedge} \vee \mathbb{P}^{\prime}\right).\right)$

Hisloricill, the construction of the chow ring relied on the "moving lemma".

Moving Lemme (Chow, Severi, others)
If $\alpha, \beta \in A(X)$, then thar exist cycle mpresewlativs

$$
\begin{aligned}
& \alpha=\sum n_{i}\left[A_{i}\right] \\
& \beta=\sum m_{j}\left[B_{j}\right]
\end{aligned}
$$

such that the cycles A_{i}, B_{j} interested pairwise transucsely. And, the class $\sum n_{i} m_{j}\left[A_{i} \cap B_{j}\right]$ dosn't depend on the choice of representatives.
\Rightarrow Gives independent definition of interaction products.

Prodenas: (1) very didevcult to pave.
(2) relies on the "global" geometry of X.

But: Useful in practice.

Next goal: ge begone surfaces:

$$
\left\{\text { Lines in } \mathbb{R}^{3}\right\}=\text { Grassmonnion, } 4 D
$$

w The geometry will be more rich.
New phenomena will occur that were invisible until now.

Day 11. Coordinates on $\operatorname{Gr}(2,4)$.
Lines in $1 \mathrm{P}^{3}$
Affine a projective pictures:
 $\mathbb{C}^{4} \backslash\{-\} C^{4}$

How to describe $S \subseteq \mathbb{C}^{4} / L \subseteq \mathbb{P}^{3}$?

C not unique. choice of basis

$$
\operatorname{Gr}(2,4):=M_{2 \times 4}^{0}{ }_{2 \times n}^{0} / l_{2} \text { (row ops) }
$$

Grasenomunion of 21 subrpues of Cl^{h}

Choosin a reprosombative for S be chorsing honagmaos coordinats for $\rho \in \mathbb{R}^{h}$.

$$
[a: b] \sim[\lambda a: \lambda b] \text {. }
$$

Plincker embedding:

 $\left(\binom{4}{2}=6.\right)$
(Mulli, hying the matrid by $g \in G l_{2}$ rescales all C mivoss by $\operatorname{det}(g)$, so we get the same point of P^{5}.)
Call this mpy $p: \operatorname{Gr}(2,4) \rightarrow \mathbb{R}^{5}$.

$$
s \longmapsto p(s)=[c \text { dats }] \text {. }
$$

Thir is called the Plicker embedding.
It is a cloced cembedding, the imang is a closed subvarcty of p^{5}.
\Rightarrow Gives ove lay t defire $\operatorname{Gr}(2,4)$ as a varid.
(shows: Gor (2,4) is pajechiv!)

Two (hebter) coardinate systems on $\operatorname{Gr}(2,4)$.
(1) Stiefel coordinater (madrix coordinatis)
\leftrightarrow homogeneous coords on \mathbb{P}^{3}.
(2)
(1) ${ }_{G L_{2}} R=\mathbb{C}\left[\begin{array}{llll}s_{11} & s_{12} & s_{13} & s_{14} \\ s_{21} & s_{22} & s_{21} & s_{24}\end{array}\right]$. (spec $\left.R=M_{a+2}\right)$.
by an ops: $g \cdot s_{i j}=(g: s)_{\text {ij eatly. }}$

$$
=(\text { rev ij ening of } g-[\cdots . .])
$$

Any $\frac{G L_{2} \text {-invarint ideal giver a clozed subscheve }}{\operatorname{Gr}(2,4)}$.

$$
\text { of } \operatorname{Gr}(2,4) \cdot\left(\frac{g}{\text { for } i^{n}}\right)
$$

Thar's a Eunctor

Ext: $p=[2: 1: 4: 3] \in \mathbb{R}^{3}$.
$Z=\{$ lias cantering $p\} \leq \operatorname{Gr}(2,4)$.

- $\left\{S\right.$ containing $\left.\left[\begin{array}{llll}2 & 1 & 4 & 3\end{array}\right]\right\}$

Ideal for $Z:$

$$
\begin{aligned}
& \text { for } Z \text { : } \\
& {\left[\begin{array}{cccc}
s_{11} & s_{12} & s_{13} & s_{14} \\
s_{21} & s_{22} & s_{23} & s_{24} \\
2 & 1 & 4 & 3
\end{array}\right] \quad \begin{array}{l}
\text { we want }
\end{array} \quad \stackrel{\text { rank } \leq 2}{ } \quad 5 \geq\left[\begin{array}{lll}
2 & 143
\end{array}\right] \text {. }}
\end{aligned}
$$

$n I=$ (all the 3×3 minors of the matrix).
This ideal is Glaze inebriant.

Ex2: $Z=\{$ lives contained in the plane $\underbrace{X-Z=0}\}$

$$
\int x z \quad\left([x: y: z: W] \text { in } p^{3}\right)
$$

$G L_{2} d\left[\begin{array}{ccc}s_{1} & s_{12} & s_{33} \\ s_{12} \\ s_{21} & s_{22} & s_{23} \\ s_{24}\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
\left\{\begin{array}{l}
s_{11}-s_{13}=0 \\
s_{21}-s_{23}=0
\end{array}\right. \text { These two equa }
$$

a $G L_{2}$-invariant ideal.

Ex 3: Any 2×2 minor of $[=S=]$ generate's (on its som a GL2-invaiall idea.

$$
\begin{aligned}
& \operatorname{det}_{12}=\operatorname{det}\left(\cos s_{12}\right)=0 \\
& I=\left(\operatorname{de} A_{12}\right) \text { is } G L_{2} \text {-inuriant. }
\end{aligned}
$$

Note: We can think of this as coming from

$$
\operatorname{det}\left[\begin{array}{lll}
{\left[\begin{array}{ll}
- & S \\
-0 & 0
\end{array}\right.} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=0 \quad\left(=\operatorname{det}_{12}\right) .
$$

which says S intersects $T=\operatorname{span}\left(\left[\begin{array}{lll}0 & 0 & 1\end{array}\right], 1\right)$

$$
(\operatorname{dim}(S+\tau) \leq 3)
$$

that $15, \mathbb{P}(S)$ intersects the line $\mathbb{P}(T)$.
So $I=\left(\operatorname{def}_{12}\right)$ gives the locus:

$$
Z=\{S: \mathbb{P}(S) \text { intirseds }[0: 0: x: x]\} \text {. }
$$

"lines intersecting a given live".
(2) Affine charts

$$
\begin{aligned}
S=\left[\begin{array}{cccc}
2 & 1 & 5 & 5 \\
-1 & 1 & -1 & -4
\end{array}\right] & -\left[\begin{array}{cccc}
1 / 3 & 1 & 5 / 3 & 0 \\
1 / 3 & 0 & 2 / 3 & 1
\end{array}\right] \\
& \backsim\left[\begin{array}{cccc}
1 & 0 & 2 & 3 \\
0 & 1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Since S has $f_{\text {bl }}$ rent, at least ore 2×2 minor must be nonzero.
$4 \operatorname{det}_{12} \pm 0$ for this S. (Along with sere others,
Let $u_{12}=\left\{S: \operatorname{det}_{12} \neq 0\right\} \subseteq \operatorname{Gr}(2,4)$

$$
L_{1}=\{S: \mathbb{P}(\delta) \text { is disjoint from }[0: 0: x: x]\} \text {. }
$$

Observation,
Any $\delta \in U_{12}$ has a unique reproseculative by a matrix with an identity submatrix in col 1,2

$$
\text { ie. } \begin{aligned}
S=\underbrace{[A \mid B]}_{\operatorname{dd}(A) \pm 0} & \sim A^{-1}[A \mid B] \\
& =\left[A^{-1} A \mid A^{\prime} B\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ll|ll}
1 & 0 & \begin{array}{ll}
x & y \\
0 & 1
\end{array} & \underbrace{w}
\end{array}\right] .
$$

This identification makes $u_{12} \equiv A^{4} \subseteq\left(\mathbb{A}^{2 \times 2}\right)$.

$$
S \mapsto x, y, z, w .
$$

w Similarly, we define $u_{i j}$ for $1 \leq i<j \leq 4$. Each chart is $\cong \mathbb{A}^{4}$.
w These give the standard affine ope cover of Gr $(2,4)$
Note: $\mathbb{1}^{3}$

(G coordinate limes $\Leftrightarrow G$ charts).
Ex: Descend the ideal

$$
I=\left(s_{11}-s_{13}, s_{21}-s_{23}\right) \text { to } \operatorname{Gr}(2,4)
$$

Lines contained in the plane $\{X-z=0\}$.
w chart $U_{12}:\left[\begin{array}{llll}1 & 0 & a & b \\ 0 & 1 & c & d\end{array}\right]$.

$$
\leadsto I=\left(\begin{array}{lll}
s_{1}-S_{13} & S_{21}-S_{23} \\
1-a, & 0-c)=(1-a,-c) .
\end{array}\right.
$$

Solutions are: $\left[\begin{array}{llll}1 & 0 & 1 & b \\ 0 & 1 & 0 & d\end{array}\right]: \begin{gathered}\text { row spun } \\ c\end{gathered}$

$$
\subseteq\{x-z=0\}
$$

Precise bijection between $G L_{2}$-invariant ideals of R and subschemes of $\operatorname{Gr}(2,4)$:

Let $P_{2}=$ ideal of all 62×2 minors.
(locus of sank. Heficiond matrices \subseteq Mat $_{2 \times 4}$.)
"Ircderat ide de" for this setting.
Prof. Let $I, J \subseteq R$ be $G l_{2}$-invariant ideals. TEAK:
(1) I,J give the same subschere of $\operatorname{Gr}(2,4)$.
(2) For all 6 charts $u_{i j},\left.I\right|_{u_{i j}}=\left.J\right|_{u_{i j}}$.
(3) I, J have the same saturation with respect to P_{2} : $\bar{I}:=\left\{E:\right.$ for each $i j, f \cdot \operatorname{det}_{i j}^{r} \in I$ for $\left.r \gg 0\right\}$. ($\left.{ }^{C} f \in I\right|_{u_{i j}}$ for ch chat) Equivarth, $I \cap P_{2}^{r}=J \cap P_{2}^{r}$ for $r \gg 0$.

Day 12: $\operatorname{Gr}(2,4)$ contd.
Today: (1) A neat computation (w /charts)
(2) Chow groups! $A(\operatorname{Gr}(2,4))$.
(3) end of class: revisit the GIT/ stiefel coords staff) -

Ex: $\mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \xrightarrow{\text { Segre }} \mathbb{P}^{3}$ as a quadric (whack Q

doubly-rubd surface. two classes of lives on Q.

Weirs going to calculate

$$
\operatorname{Gr}_{r}(2,4) \geq L_{Q} \div\{\text { lines } l=Q\}
$$

$\operatorname{Gr}(2,4)$

WLOG we car take $Q=\{X Y=Z W\}$
Stivesel coords:

$$
S=\left[\begin{array}{cccc}
X & y & Z & W \\
s_{11} & s_{12} & s_{13} & s_{14} \tag{row}\\
s_{21} & s_{22} & s_{23} & s_{24}
\end{array}\right]
$$

We wand $X Y-Z W=0$ for every vector in S.

$$
w \vec{v}=\underline{a}(\operatorname{son} 1)+\underline{b}(\text { row } 2)
$$

If we flog this \vec{v} into " $X Y-Z W=0$ "
weill get something quadratic:

$$
\begin{aligned}
& \text { (7) } a^{2} \underline{f_{11}}+a b \underline{f_{12}}+b^{2} \underline{f_{22}}=0
\end{aligned}
$$

For the expression to vanish for all a, b, $\Leftrightarrow f_{11}, f_{12}, f_{22}$ must be 0
$I=\left(f_{11}, f_{12}, f_{22}\right)$ is the ideal of L_{Q}.
\Rightarrow Chart $u_{12}:\left[\begin{array}{llll}1 & 0 & a & b \\ 0 & 1 & c & d\end{array}\right]$

$$
\begin{aligned}
& f_{11}: 0=a \cdot b \\
& f_{22}: 0=c d \\
& f_{12}: 1=a d+b c
\end{aligned}
$$

Two components:

$$
\begin{aligned}
& a=0: \begin{array}{l}
1=b c \\
d=0
\end{array} \leadsto\left[\begin{array}{llll}
1 & 0 & 0 & t \\
0 & 1 & 1 / t & 0
\end{array}\right]\left\{\begin{array}{l}
\underset{\substack{\text { disjoint } \\
\text { conpbieals! }}}{b=0:} \begin{array}{l}
1=a d \\
c=0
\end{array} \sim\left[\begin{array}{ccc}
1 & 0 & s \\
0 \\
0 & 1 & 0
\end{array} 1 / s\right.
\end{array}\right]
\end{aligned}
$$

Check: they are disjoint in all 6 charts. (a ks smooth!)

Def. A stratification of a variety X is a decomposition
$X=L X_{i}^{0}$ int. pairwise disjoint,
locally closed subvarieties
(open subset of closed subset)

The X_{i}^{\prime} are called open strata or cells. The closures $X_{i}:=\overline{X_{i}^{0}}$ are called closed stave. such that $\forall i$, the cloive $\overline{X_{i}^{0}}$ is a union of $X_{j}^{0} S$.
Equivaluth: If $\overline{X_{i}^{0}}$ intersects X_{j}^{0}, the it contains X_{j}^{0}.

ok

Nor ok.
affine space!
We soy the statification is affine if each $X_{i}^{0} \cong \mathbb{A}^{n_{i}}$ quasi-affine if each $x_{i}^{0} \cong u \underset{\text { open }}{\subseteq} \mathbb{A}^{n_{i}}$
$\left(\right.$ e.g. $\left.X_{i}^{0} \cong\left(G_{n}\right)^{a_{i}} \times \mathbb{A}_{1}^{b_{i}}\right)$

Ex: $\mathbb{P}^{3}=\mathbb{A}^{3} \cup A^{2} \backsim A^{1} \sim \mathbb{A}^{6}=\boldsymbol{A}^{t}$

$$
[x: y: z: 1][x: y: 1: 0][x: 1: 0: 0] \quad[1: 0: 0: 0]
$$

$\mathbb{P}^{r} \times \mathbb{p}^{s}: L\left(\right.$ cell of $\left.\mathbb{p}^{r}\right) \times\left(\right.$ cell of $\left.\mathbb{p}^{s}\right)$

(*) AEEine stratification $m \rightarrow C W$-complex!)

Theorem (Totaro 2014)
If x has an affine stratification with open strata X_{i}^{0}, closed stanta X_{i} then $A(x) \cong \bigoplus_{i} \mathbb{Z} \cdot\left[x_{i}\right]$
(Chow groups but Joesn't say how the ring structure works.)
Proof sketch:
(1) $A(X)$ is generated by the closes $\left[X_{i}\right]$. "en sly": Use excision, induct on ${ }^{*}$ of cells. X_{i}^{0} cell of max dimension. open.

$$
\begin{aligned}
A\left(\begin{array}{ll}
\text { closed } \\
x & x_{i}^{0}
\end{array}\right) \rightarrow A(x) \rightarrow & A\left(x_{i}^{i}\right) \rightarrow 0 \\
& A\left(\mathbb{A}^{n_{i}}\right)=\mathbb{Z} \cdot\left[A^{n_{i}}\right] \\
& \text { affirm spic. }
\end{aligned}
$$

(2) $A(x)$ is free on the closer $\left[x_{i}\right]$ (no relations.) hard. "higher chow groups".
Relations in $A_{i}(X)$ come from $A_{i+1}(X)$. but are 0 if all cells are $/ A^{k \prime} s$.
\Rightarrow We will never need (2),
We will always see it by other means (using intersection pairings.)
\Rightarrow But it's useful to have in mind.

Day 13: Chow ring of $\operatorname{Gr}(2,4)$.
Weill build an affine stratification of $\operatorname{Gr}(2,4)$.

We have seen that there are open charts

$$
\begin{aligned}
U_{12} & =\{\text { lines disjoint from }[0: 0: x: x]\} \\
& \cong\left\{\left[\begin{array}{llll}
1 & 0 & x & x \\
0 & 1 & x & x
\end{array}\right]\right\}, \cong A^{4}
\end{aligned}
$$

To describe the other staila, we introduce a complete flag in \mathbb{U}^{4} :

$$
\mathbb{P}(F)
$$

Wen going to stratify $\operatorname{Gr}(2,4)$ according to how $S \subseteq \mathbb{C}^{4}$ interacts \mathcal{T}.

$$
\left(\begin{array}{lll}
P(\varsigma) \subseteq \mathbb{R}^{3} & \cdots & P(\eta)
\end{array}\right)
$$

Oren stadk: Schubert celk
(8) Cloeed staita: Schubert cycles/varieties classes in
$A(\operatorname{Gr}(2,4)): \quad \delta$ chanert clesus.
Closed stana,

$$
\binom{\chi^{D}(\sigma), e t c}{\equiv}
$$

$$
X^{\phi}=\operatorname{Gr}(2,4)
$$

$\underset{\substack{\text { singuler, } \\ \text { 3-dinde }}}{\mathcal{L}} X^{J}=\{S(S)$ intersects $L\}$.

$$
\begin{aligned}
& \cong \mathbb{P}^{2} \quad X^{\square}=\{s: \mathbb{P}(s) \text { contains } x\} . \\
& \cong \mathbb{R}^{2} \quad X^{\boxminus},\{s: \mathbb{P}(s) \subseteq P\} .
\end{aligned}
$$

$\approx \mathbb{P}^{\prime} \quad X^{\mathbb{F}}=\{S: x \in \mathbb{P}(S) \subseteq p\}$
pt. $\quad X^{\boxplus}=\{L\}=\left\{S: \quad\right.$ " $\left.x \in \mathbb{P}(s) \leq L^{\prime \prime}\right\}$.

Fact: We have containment: $\quad\left(\operatorname{Gr}(k, n): \sum_{i}^{[n-k \rightarrow}\right)$

$$
\begin{aligned}
& x^{\alpha} \geq x^{\sigma} \quad \geqslant x^{\square} \underline{v} x^{\Phi} \geq x^{\square}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ult this is net transurse. }
\end{aligned}
$$

To get the open staval $X_{i}^{0}=X_{i} \backslash X_{j}^{3}$ centring ${ }_{i} X_{i}$.

Fact: The open strata are all affine spaces.
Proof: Most of the stria are easy to check.

$$
\text { Also }\left(X^{\phi}\right)^{0}=U \text { open chat } \cong \mathbb{A}^{4} \text {. }
$$

Wis show $X^{0}, ~\left(X^{\varpi} \cup X^{\square}\right)=A^{3}$.

$$
\left.\begin{array}{c}
\left(X^{Q}\right)^{0}, \\
\left(X^{\square}\right)^{0}=\{S: \quad P(\Omega) \text { intereds } L \text { had doecht contain } X\} \\
\text { and isnd contains in } P
\end{array}\right\} .
$$

$\mathbb{P}(S)$ intersects H and isnt contained in it (since $s, \$ H)$ or in P \leadsto gives $s_{2} \in H, \delta_{2} \notin P$. (by hypothesis)

So, $\left(X^{0}\right)^{0} \equiv \mathbb{A}^{1} \times \mathbb{A}^{2}=\mathbb{A}^{3}$.

There's also an important algebraic description of the open cells:
Let $\mathcal{F}=\left\langle e_{4}\right\rangle \subset\left\langle e_{3}, e_{4}\right\rangle \subset\left\langle e_{2}, e_{3}, e_{4}\right\rangle \subset \mathbb{C}^{4}$. "backwirds fly".

So $\left(X^{\phi}\right)^{0}=$ open chert

$$
\begin{aligned}
& =\left\{S: \mathbb{P}(s) \text { disjoin for } \mathbb{P}\left(\left(e_{3}, e_{4}\right)\right)\right\} \\
& {[0: 0: x: x]} \\
& =\left\{\left[\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & z
\end{array}\right]\right\}=A^{4} .
\end{aligned}
$$

The smaller cons are:

$$
\left(X^{0}\right)^{0}=\left\{\left[\begin{array}{cccc}
1 & x & 0 & x \\
0 & 0 & 1 & x
\end{array}\right]\right\}
$$

$$
\left(X^{\text {II }}\right)^{0}=\left\{\left[\begin{array}{llll}
1 & \times & x & 0 \\
0 & 0 & 0 & {[}
\end{array}\right]\right\}
$$

All the PREF'? or

$$
\left(X^{\theta}\right)^{v}=\left\{\left[\begin{array}{llll}
0 & 1 & 0 & x \\
0 & 0 & 1 & x
\end{array}\right]\right\}
$$ matrices!

(Notice: The partition shape appears in the $\left(X^{\text {『 }}\right)^{0}=\left\{\begin{array}{llll}0 & 1 & x & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ highlighted boxes 00)

$$
\chi^{\boldsymbol{B}}=\left\{\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right\}=\left\langle e_{3}, e_{4}\right\rangle .
$$

Ex: For $\left(X^{\prime}\right)^{0}: S$ intersect $\left(e_{3}, e_{4}\right) \sim[0: 0: c: d]$ $\in S$.
bow $S \neq\left(e_{4}\right)$ so $c \neq 0$.
so $[0: 0: 1: d] \in S . \quad\left(2^{n d}\right.$ now of matrix!)

Continue in this way.

$$
\begin{aligned}
& \text { Corollary: } A(\operatorname{Gr}(2, n))=\theta \mathbb{Z} \\
& \text { For Gr(k,n)! } \\
& X^{\lambda: \lambda}=\lambda S_{k} \\
& |\lambda|=\text { coding } X^{\lambda} \\
& (\text { All possible ways } S \text { can intersect } \\
& \text { a complete flag.) }
\end{aligned}
$$ a complete flag.)

Sone easy intersection products:

$$
\left[x^{\boxminus}\right] \cdot\left[x^{\sigma}\right]=0
$$

[lines contaring $x\} \cap\left\{\right.$ liars contained in $\left.p^{\prime}\right\}$. of $2^{\text {nd }}$ flog f^{\prime}.
disjoint if $x \notin P^{\prime}$,

$$
\left[x^{\theta}\right]^{2}=1[\rho t]
$$

$\{$ lias containing $x\} \cap\left\{\operatorname{lins}\right.$ containing $\left.x^{\prime}\right\} \times p(s)$

$$
\begin{gathered}
{\left[x^{\top}\right]^{2}=1[p t]} \\
\left\{\text { lines }[p\} \cap\left\{l_{\text {ines }} \subseteq p^{\prime}\right\}\right. \\
{\left[x^{\oplus}\right] \cdot\left[x^{\sigma}\right]=1[p t]} \\
\{x \in \mathbb{P}(s) \subseteq p\} \cap\left[\text { limns intersecting } L^{\prime}\right\}
\end{gathered}
$$

 for $P(S)$.

(Day 14: $A(G r(2,4))$ contd.)
So for weave calculated:
codim $2 \cdot \operatorname{codim} 2\}$ complementary
codim 3 codim 1$]$ dimension.

Corolloy: The Schubert classes are non-torsion in $\operatorname{A}(\operatorname{Gr}(2,4))$
CE: ex: $\left[X^{\boxplus}\right] \cdot\left[x^{\square}\right]=1\left[\rho^{t}\right]$
We know $[\rho]]$ is not torsion (since $\operatorname{Gr}(2,4)$ is proper.)
$\Rightarrow\left[x^{\oplus}\right],\left[\chi^{0}\right]$ also not torsion

Next products:
colin 1. coding 2

$$
\left[x^{0}\right] \cdot\left[x^{\omega}\right]
$$

$\{S: \mathbb{P}(\delta)$ intersects $L\} \cap\{S: x \in \mathbb{P}(S)\} \quad$ possible

$$
=\{S: x \in \mathbb{R}(\delta) \subseteq \operatorname{span}(x, L)\} .
$$

$=\left[X^{\oplus}\right]$ for this new blog

$$
\left[x^{\infty}\right] \cdot\left[x^{\square}\right]
$$

S : interacts L

$$
\begin{gathered}
\subseteq p \\
=\{\delta:(\operatorname{L\cap } P) \in \mathbb{P}(\delta) \subseteq P\} .
\end{gathered}
$$

codim 1. codim 1:

$$
\left[x^{\infty}\right]^{2}=\left[x^{\square}\right] \cdot\left[x^{D}\right]
$$

lines IP(S) intersecting L, l'.
\Rightarrow doesn't give a smaller Schubert variety
\Rightarrow Also not a union of Schubert varieties
In fact its irreducith for geneal
L, L' (called Richardson variety)
Ex:

$$
\begin{array}{ll}
L=(0: 0: x: x) & L^{\prime}=[x: x: 0: 0 \\
\chi^{D}(L)=\left\{d d_{12} \leq 0\right\} & X^{0}\left(L^{\prime}\right)=\left\{d d_{34^{\prime}}=0\right\}
\end{array}
$$

Check in each chert that this is is red. In the chart u_{13} :

$$
\left[\begin{array}{llll}
1 & a & 0 & b \\
0 & c & 1 & d
\end{array}\right] \quad \begin{aligned}
& d e 1_{12}=c=0 \\
& d e_{34}=-b=0
\end{aligned}
$$

We il calculate $\left[x^{ \pm}\right]^{2}$ using the method of undetermined coefficients:

We knar $\left[X^{0}\right]^{2}=a\left[X^{\varpi}\right]+b\left[X^{\theta}\right]$.
ω Well multiply by each complementog class to pick out each coefficient.
(We can do this's because our geneators we sele-dual: for each gevealor

$$
\alpha \in A_{k}\left(G_{r}\right), \forall!\beta \in A_{n-k}\left(G_{r}\right)
$$ Such that:

$$
\alpha \cdot \beta=1\left[p^{t}\right]
$$

and $\alpha^{\prime} \cdot \beta=0$ for all other generators $\alpha^{\prime} \in A_{k}(G r)$.)
(1) Multiply $\log \left[x^{\infty}\right]$:

$$
\underbrace{\left[x^{\nabla}\right]^{2} \cdot\left[x^{\infty}\right]}_{\text {triple intersection: }}=a \cdot \underbrace{\left[x^{\infty}\right]^{2}}_{=1 \zeta \mid]}
$$

$\mathbb{P}(S) \cdot$ intersecting L, L^{\prime}

$$
\text { - } x \in \mathbb{P}(s)
$$

$$
\Rightarrow 1[p-t]
$$

$$
\Rightarrow a=1 \text {. }
$$

I choice of S.
(2)

$$
\begin{gathered}
{\left[x^{0}\right]^{2} \cdot\left[x^{\Theta}\right]} \\
=1[p 1] \\
\text { (siminly) }
\end{gathered}
$$

w So $a=b=1$,

$$
\left[x^{0}\right]^{2}=\left[x^{\oplus}\right]+\left[x^{\ominus}\right]
$$

Complutes $A(\operatorname{Gr}(2,4))$!
(1) Quection from day 1 of cless:

How many lines interect 4 giver lines in \mathbb{P}^{3} ? (geneal)

$$
\begin{aligned}
L_{1} & L_{1}, L_{2}, L_{3}, L_{4} \\
\sim & Z=X^{0}\left(L_{1}\right) \cap X^{\omega}\left(L_{2}\right) \cap X^{0}\left(L_{3}\right) \cap X^{0}\left(L_{4}\right) .
\end{aligned}
$$

Assumey timeveralily,

$$
[z]=\left[x^{0}\right]^{4}
$$

$$
\begin{aligned}
& =\left(x^{\oplus}+x^{\theta}\right)\left(x^{\sigma}+x^{\theta}\right) \\
& =2[\rho t] \in A(\operatorname{G}(2, y))
\end{aligned}
$$

Ans: $2!$
(2) $C \leq \mathbb{R}^{3}$ smooth curve of deg d.
a) What is the class of $Z=\{$ lives intersecting $C\}$?
b) How ming liner intersect 4 geneal curves of degrees d_{1}, \cdots, d_{4} ?
a) $\operatorname{dim}(Z)=3: \cdot 1 \operatorname{dim}$ of choice of $x \in C$

- 2 dimes of directions of lines through x.
T. mate the dimension cones precise, we use an incidence correspondence:

$$
\left.\begin{array}{rl}
G r(2,4) \times C & \supseteq \Phi=\{(\mathbb{P}(S), x): \\
\pi_{1} & (x \in \mathbb{C}(S)
\end{array}\right\}
$$

(2) $Z \quad C \operatorname{dim} 1$.

Fiber of π_{2} : $\pi_{2}^{-1}(x)=\{$ lines through $x\}$
(*) 2 dimil.

$$
=X^{\infty}(x)
$$

$\Rightarrow \operatorname{dim} \Phi$.
(\Rightarrow Also Φ is irreducible!
The: If $f: X \rightarrow Y$ poe, subjective map of scheme, Y imeducith, all fibers $f^{-1}(g)$ also irreducible \& all the same dimension.
Then X is irreducible!

Fiber of $\pi_{1}: L$ line $\in Z$,

$$
\begin{aligned}
& \pi_{1}^{-1}(L)=\underline{L \cap C} \\
& \Rightarrow \text { Finite (generally } \mid \text { pt) }
\end{aligned}
$$

$\Rightarrow \operatorname{din} \Phi=\operatorname{dim} Z$

$$
\Rightarrow \operatorname{dim} z=3
$$

So: $[z]=a\left[x^{0}\right]$.
To find $a:[z] \cdot\left[x^{\text {『 }}\right]=a[\rho t]$.
lives $\mathbb{P}(s): \mathbb{P}(g)$ intersects C,

$$
x_{s}^{x \in \mathbb{R}(s) \leq}
$$

d choices of $P(S)$

$$
(=\operatorname{deg}(c))
$$

$C \cap P=d$ points.

$$
\text { So }[z]=d\left[x^{0}\right)
$$

(b) Given 4 genera curves $C_{i} \subseteq r^{3}$,

$$
\operatorname{deg}\left(c_{1}\right)=d_{i},
$$

how may lines interred all 4 ?

$$
\begin{aligned}
& \sim\left[z_{1} \cap z_{2} \cap z_{3} \cap z_{4}\right] \\
= & \left(d_{1}\left[x^{0}\right]\right) \cdot \cdots\left(d_{4}\left[x^{0}\right]\right) \\
= & \prod_{i} d_{i} \cdot\left(x^{g}\right)^{4} \\
= & 2 \prod_{i} d_{i}\left[{ }_{p} 1\right] .
\end{aligned}
$$

Day 15: Various enumerative problems.

Def: A homogeneous space is a variety X with a transitive action by a group variety G.
ex: $\mathbb{P}^{n} g G L_{n+1} \quad p^{r} x \mathbb{p}^{s} s G L_{r+1} x G L_{s+1}$.
$G_{r}\left(k, C^{n}\right) \circlearrowleft G L_{n}$
E clipper curve S itself.

Lemme lobs: If $G=G b_{n}$ or product of $G b_{n}{ }^{\prime}$, and $Z \subseteq X$ subvariety, then $[g Z]=[z]$. Sketch fr Gl $_{n}$ is rational.

So we car explicitly give the rational equivalence.

Kleimanis Theorem. Le x be a homogeneous (pace w/ grays variety G.
Let $Y, Z \subseteq X$ be subvarieties of coding $C_{1} d$. Then there's an open subset $U \in G$ st. for all $g \in U$, $Y \cap g Z$ has codinension $c+d$ (empty it $c+d<0$) and is generically reduced (in particular, Y and $g Z$ are
generically shot aby $Y \cap g Z$).
Therefore $[y \cap g Z]=[Y] \cdot[g Z]$.

$$
\begin{aligned}
(= & {[Z] \text { it } } \\
G & \left.=G l_{n+1}, \text { etc }\right)
\end{aligned}
$$

(If Y, Z are smooth, $Y \cap J Z$ can also be taken to be smooth.)

Moving Lemme for homogenises spaces".

Ex. If $\mathcal{F}=$ complete fly, $\left(\right.$ in $\left.\mathbb{R}^{3}\right)$

$$
X^{P}(\mathcal{F})=\left\{\operatorname{lins}^{(i n s}(S): x \in \mathbb{P}(S) \subseteq P\right\} \subseteq \operatorname{Gr}(2,4)
$$

For $g \in G l_{4}, \quad g \cdot X^{\nabla}(\mathcal{F})=X^{\text {F }}\left(g^{-1} \mathcal{F}\right)$.
Thus if $Y \subseteq \operatorname{Gr}(2,4)$ is any subvariety, choice of flag!
$Z=X^{F}(G)$, then by Kheinemis Thin,

$$
Y \cap g Z \leftarrow(=Y \cap Z \text {, german choice of } F)
$$

is gheranterel to la genariales redial \& to represent the class $[Y] \cdot\left[X^{\mathbb{P}}\right]$.
\Rightarrow Justifiers ow calcultain of $A(\operatorname{Gr}(2,4))$!

Ex: Q : quadric $\{X Y-Z W=0\} \subseteq \mathbb{R}^{3}$.

$$
Z=\{\operatorname{limer} \text { in } Q\} \subseteq \operatorname{Gr}(2,4)
$$

We calculated Z and found $\operatorname{dim} Z=1$.

$$
\text { So }[z]=k \cdot\left[x^{\Phi+}\right]
$$

To find $k:[z] \cdot\left[x^{0}\right]=k\left[\rho^{t}\right]$
$=\left[Z \cap X^{0}(\mathcal{F})\right]$ for geneal choice of \mathcal{F}.

$\Rightarrow 4$ lines.
\Rightarrow So, $k=4$.
(In fact each "ruling"
S. $[z]=4\left[X^{\text {® }}\right]$. of Q gave a component of Z of class $\left.2\left[X^{\Phi}\right].\right)$

Next exampls:
Tou releveal facts about curves:
(1) A swooth cure i- P^{2} of degd has
(Adjunction genus $g=\binom{d-1}{2}$.
formuxk) More geverally a singule cure has "arithmetic genues" $\binom{d-1}{2}$

$$
\begin{aligned}
&\binom{d-1}{2}=\text { true genus }+ \text { 半 singubartires } \\
&(g(\tilde{C}) \text { normalization }) \quad(\text { counht m/mult })
\end{aligned}
$$

$\stackrel{\text { ex: }}{=}$ nodul unbic, dy 3. $\binom{3-1}{2}=\operatorname{trangemil}+1$ 0 :true gens.
(2) (Riemenn-Hurwitz formakk)

Ch4. IE $f: C \rightarrow C^{\prime}$ is a map ot proper smooth curves.
Horlshome $\operatorname{deg}(f)=d$, then the \# of ramif P^{t} is

$$
2 g(c)-2-d\left(2 g\left(c^{\prime}\right)-2\right)
$$

Ex: $S \subseteq \mathbb{p}^{3}$ swooth swrbace of degd, not containing ay lives (so $d>2$).

$$
T(S)=\{\text { tangend lines ti } S\} \subseteq \operatorname{Gr}(2,4)
$$

Whats the claers of T(S)?
(1) Sim count:

$$
\left.\operatorname{Gr}(2,4) \times \mathbb{R}^{3} \geq\{(l, x): l \underset{\text { at tangew } x \in 5}{\substack{\text { at }}}\}\right\}=\Phi
$$

- Fiber of $\pi_{2}: \cong \mathbb{P}^{\prime}$.
s
 $\Rightarrow \mathbb{P}^{\prime}$ of taygent linors

$$
\Rightarrow \text { so } \operatorname{dim} \Phi=\operatorname{dim}(s)+1=3 .
$$

- π_{1} is finite since each l can only touch S Q finitely-many points.

$$
\Rightarrow \operatorname{din} T(s)=\operatorname{dim} \Phi=3 .
$$

(2) So $[T(S)]=k\left[X^{\circ}\right]$,
\Rightarrow Intersect with $X^{P}(F)$,
for geneal k, to find k.

How may lines through x are tangent

$$
\text { to } C=P \cap S \text { ? }
$$

Picture in \mathbb{P}^{2} is:

Projection from x :

$$
\begin{aligned}
& \pi_{x}: \mathbb{P}^{2},\{x\} \rightarrow \mathbb{P}^{1} \\
\Rightarrow & \pi_{x}: C \rightarrow \mathbb{P}^{\prime} .
\end{aligned}
$$

$\Leftrightarrow \ell \cap C$ is a ramification point.
\leadsto we know $g(C)=\binom{J-1}{2} \quad \begin{gathered}\text { (Foruwhk }(1) \\ \text { above })\end{gathered}$
\rightarrow By Rienen-Huwitz, the \# of remit, p :

$$
\begin{aligned}
2\binom{d-1}{2}-2 & -d(0-2) \\
=\cdots & =\frac{d(d-1)}{} \\
\approx S_{0}[T(s)]= & d(d-1)\left[x^{0}\right] .
\end{aligned}
$$

Q: How many lives are rimultaneonds, tangeat to 4 gemere quidic snofaces?
Ans: (By Kleiven's Thin)

$$
\begin{aligned}
{\left[T\left(s_{1}\right) n \cdots n T\left(S_{4}\right)\right] } & =(5 \cdot 4 \underbrace{\left[x^{0}\right]}_{l})^{4} \\
& =5^{4} \cdot 4^{4} \cdot 2[p] \\
& =320,000[p-1] .
\end{aligned}
$$

Day 16. Enmineration a Kleimanis Theorem.

Exappls: C : swooth curve in \mathbb{P}^{3}, deg d, genms g, not conkined in a plene. $(\alpha \geqslant 3)$.

$$
Z=\{\text { chords to } C\} \subseteq \operatorname{Gr}(2,4)
$$

Find the chass of 2 .
dim cond: $\operatorname{dim} Z=2$ (check with an incidese corresp.)

$$
\leadsto \text { So }[z]=a\left[x^{\square}\right]+b\left[x^{\theta}\right]
$$

(1) Find b (easier)
$[z] \cdot\left[x^{\theta}\right]=b[\rho \mid]$.
${ }^{\top}$ liver contained in a plane $\cdot P$

$\Rightarrow\binom{d}{2}$ choices of bisecaul cundainal in P. $=b$ 。
(2) Find a: $[z] \cdot\left[x^{\varpi}\right]=a[\rho t]$.
${ }^{〔}$ lines collaring a given $x \in \mathbb{R}^{3}$.

Thick about procession ETon x :

$$
\pi: \mathbb{P}^{3} \cdot\{x\rceil \sim \mathbb{P}^{2} .
$$

ns $a=$ \# chord through x
$=$ \#t of simple nodes in $\pi(C)$.
For thar to Le correct, we reel to endive $\pi(C)$ hat ar other sigulbrities.
ex! a cusp in $\pi(c)$

x on a tangent Sine.

\Rightarrow But, knobs of all tangent hives to C is a surface in \mathbb{P}^{3}.
\Rightarrow Take $x \notin$ this surface $\Rightarrow \pi(c)$ has no curs.

The other type of singularity to avoid is a multiseeant,
wheh would gave a higher order sigulerits:

$4^{\text {th }}$ order secant uns

\Rightarrow Ionly Cinitely-many of thase.
(Chack Hertshoure IV §z. 6×2.3)

Recall: For a singule worve in $1 P^{2}$:
$\binom{d-1}{2}=$ true genoss + \# singubarites ($g(C)$ normalization) (count m/mult)
$\binom{d-1}{2}=9+\#$ nodes.
So, \#noder $=a=\binom{d-1}{2}-g$.

$$
\leadsto[z]=\left(\binom{d-1}{2}-g\right)\left[x^{\omega}\right]+\binom{d}{2}\left[x^{\theta}\right] .
$$

 How many common chords do they have?

$$
\leadsto Z_{1} \cap Z_{2}
$$

$\curvearrowleft z_{1} \cap g z_{2}$ trasusvere b_{7} Kleimen.
So, $\left[z_{1} \cap z_{2}\right]=\left[z_{1}\right] \cdot\left[z_{2}\right] \quad$ (corresp. to $c_{1}, \overline{g^{-1} \cdot c_{2}}$)

$$
=\left(\left(\binom{d_{1}-1}{2}-g_{1}\right) \square+\binom{d_{1}}{2} \theta\right)(\cdots \simeq+\cdots \theta)
$$

$$
=\left(\binom{d_{1}-1}{2}-g_{1}\right)\left(\binom{d_{2}-1}{2}-g_{2}\right)+\binom{d_{1}}{2}\binom{d_{2}}{2}
$$

Kleimais Therorm: $X=$ honogeneins space w/ grop variet, G.
(*) char 0 only!
a) $Y, Z \leq X$ subuarieties of codims c, d.

The $\exists u \in G$ dease oper s.t. for all $g \in U$, $Y \cap g^{7}$ is generishly reduced + udiu $c+d$.
b) $f: Y \rightarrow X$ morphism, $Y=$ vaiely . $Z \subseteq X$ subvariets coling d.
Then $\exists x \leq G$ demes oper s.t. $f^{-1}(g Z)$ is geverically reduced \& colind, for all $g \in U$.
(1) (a) followe from (b) for $f=i: Y \hookrightarrow X$.
\rightarrow Consequance of geveric smootlorss (char O only) + eary dimasion conoling.

Thim. For amy mp $V \stackrel{f}{W}$ of varidizi, V smoth, then $\exists u$ dense oper in W s.t.
$f^{-1}(x)-u$ is a smoth mophision of al dineasion $=\operatorname{din} V-\operatorname{dim} W$.
(1) all fibess ano smooth \& pure of the give dimasmen.)

Proof of Kleimen. ((b) only)
(1) dim cont.
(2) smoothness arguneal.
(1)

$$
\begin{aligned}
& Y \times Z \times G \geq\{(y, z, g), f(y)=g \cdot z\} \quad\left(=^{\prime \prime} \Gamma(f) \cap g z^{\prime \prime}\right) \\
& \pi_{12} \swarrow \bigvee_{G}^{\pi_{3}}=\Gamma \\
& Y \times Z \quad
\end{aligned}
$$

Fiber of $\pi_{12}: \quad \pi_{12}^{-1}((y, z))=\{g: f(y)=g \cdot z\}$
\cong stabilize of a point
$*$
fiber dimension of π_{12} is $\operatorname{dim} G-\operatorname{dim} X$.
under the action of $G \odot X$.
$G \rightarrow X$
$g \mapsto g x_{0}$ runjective,
(sine Facts transitively)

$$
\Rightarrow S_{0}
$$

$$
\begin{aligned}
\operatorname{dim} \Gamma= & \operatorname{din} Y+\operatorname{dim} Z \\
& +\underbrace{\operatorname{din} G-\operatorname{dim} X}_{\left(\operatorname{dim}\left(\text { fiber of } \pi_{12}\right) .\right)}
\end{aligned}
$$

\Rightarrow also shows F is reduce l. integrd: stabilizers could have >1 connected comps.)
Fibers of $\pi_{3}: \Gamma \rightarrow G$

$$
\begin{aligned}
\pi_{3}^{-1}(g)=r(f) \cap g & =\{(y, z): f(g)=g \cdot z\} . \\
& =f^{-1}(g z) .
\end{aligned}
$$

\Rightarrow This filer may not have the same dimension for all g .

We want it to have din:

$$
\begin{aligned}
\operatorname{dim} f^{-1}(g z)= & \operatorname{dim} Y-(\operatorname{dim} X-\operatorname{din} Z) \\
& \operatorname{codin}_{X}(z) \\
= & \operatorname{dim} Y-\operatorname{dim} G .
\end{aligned}
$$

(2) Smoothness.

Look first $Q(r \backslash$ Sing $r) \rightarrow G$. By construdioi, this is smooth so by gheric smoothness $J U_{1} \leqslant G$ dense open.
s.b. Gibes in T\Singr are roth \& pure of rel, $\operatorname{dim}=\operatorname{dim} \Gamma-\operatorname{din} G$.
\sim we just reed to bond the size of (fiber) n Sing.
look at Sing $r \rightarrow G$.
Geneal fiver Las din
$(\operatorname{dencos} 0$ one $\operatorname{dim}(\operatorname{Sing} \Gamma)-\operatorname{din} G$
$\left.u_{2} \leqslant G\right)<$
$\operatorname{din} r-\operatorname{dim} G$.
$\left(\begin{array}{ll}\text { or is empty }(\text { if } \operatorname{sing} r \text { doesit } \\ & \text { map domineaity to } G)\end{array}\right)$
this would ingty that the gene fiber of $r \rightarrow G$ is Smooth.

This is not alas the case:

So, for $g \in u_{1} \cap u_{2}$,

$$
\operatorname{dim}\left(f^{-1}(g z) \cap \operatorname{Sing}(r)\right)<\operatorname{din}\left(f^{-1}(g z) .\right.
$$

So $f^{-1}(g z)$ is generically smooth.
Comments:
(1) Why doeswt this lead directly to a gemara "roving lennon"?

1) general varieties X may have no automorphisms.
2) particular cocks $Z \leq X$ may nor move (eeg. exc. divisor $E \subseteq B l_{p} p^{2}$)
3) Thees no wo to prandria all possible
sdionel equralacks lesp non-etfectivi ores).
No route to din-counting/guaricty
(2) char p ?
ex: $P^{\prime} \rightarrow R^{\prime}$ g Gl2.

$$
t \rightarrow t^{p}
$$

Every fiter is nonreduced.
In char p_{1} a wecker version of
Kleimanis thm holds it G acts transitively on points t tangend vectors
(Rmk: Thas duesiny appls to $\underset{2 \leqslant k \leqslant n-2}{\operatorname{Gr}(k, n)}$)

Questions we cant answer w/ Kleiwen
(1) $\mathbb{R}^{3} \geq S$ cubic surface.

$$
\operatorname{Gr}(2,4) \geq Z=\{\text { lines } \leq S\}
$$

Later well see by dimension count that Z is Finite For glveat δ.

$$
v z=k \cdot[\rho t]
$$

(I toll you previously: $k=27 \ldots$)
a) Z isnt readily describable as an intersection of dim >0 loci
(2)
$\mathbb{P}_{0}^{5}=\left\{\right.$ conics in $\left.\mathbb{P}^{2}\right\} \underbrace{S_{S} P G L_{6}}_{S P G L_{3}}$
[c] fixed conic. (indued action).

$$
\left.\begin{array}{rl}
Z & :=\left\{c^{\prime}: c^{\prime} \text { tangent } t \text { to c }\right\} \\
& =\left\{c^{\prime}: c^{\prime} \cap c\right. \text { has a st of } \\
\text { malt } \geqslant 2
\end{array}\right\} .
$$

dim count: $\operatorname{dim} Z=4$.
So, $[Z]=k[H]$ in P^{5}, some $k \in \mathbb{Z}$
To find $k:$ compute $[Z \cap L)$
Tgenerer lin

$$
L=\{a F+b G\} \leq \mathbb{p}^{5}
$$ in \mathbb{R}^{r}.

Look at $C \xrightarrow{i} \mathbb{P}^{2}$

$$
\cong \mathbb{p}^{\prime} \hookrightarrow p^{2}
$$

$$
a F+b G=\text { eq of }
$$

$$
\begin{gathered}
2^{n d} \text { conic. } \\
c^{\prime}=\{a F+b G=0\} .
\end{gathered}
$$

$$
C \cong P_{[T: S]}^{\prime} .
$$

$a F+b G$ gives a quartic eqn. on $\mathbb{R}^{\prime} \equiv C$.
We wat it to hove a double rood, ie. $\operatorname{discriminata}(a F+b G)=0$
\Rightarrow this is a degree $2 \cdot 4-2=6$
polynomid in a, b.
\Rightarrow So, 6 values where disco $=0$

So $[Z]=G[H]$.
Say C_{1}, \ldots, C_{5} are genanal conics.
z_{1}, \ldots, z_{5} loc of tengent cunct

$$
\begin{aligned}
\Rightarrow\left[z_{1}\right] \cdot \cdots \cdot\left[z_{5}\right] & =6^{5}[\rho 1] . \\
& =7776[\rho 1] .
\end{aligned}
$$

\Rightarrow Pribun: $Z_{1} \cap \cdots Z_{5}$ is NOT a transerse intersedioi
It will have the form

$$
\underbrace{A}_{\text {finititsol }} \vee \underbrace{B}_{\text {dim>0 }}=A \cup S Q .
$$

Problem is

$$
\begin{aligned}
& Z \geq\left\{\text { squares } L^{2} \text { of liner forms }\right\} \\
&=S Q \leq \mathbb{1}^{5} . \\
&<2 \text { dimensional! }
\end{aligned}
$$

PGL3
$C \mathbb{P}^{2} \quad$ Bat the indued action $\underset{\text { manics. }}{\text { Col }} \subset \mathbb{R}^{5}$ is not transitive.
e.g. $\int Q$ is $P G L_{3}$-invariant.

And applying PGLg has no meaning in terms of the loci Z.

Day 18: Wrap-up an transveraality Vector bundles!

What dies an intersection product tell us?
Say $Z_{1, \ldots,} Z_{k} \subset X$ are subvasidics.
$S_{\text {arg wine computed }}\left[z_{1}\right] \cdot \cdots \cdot\left[z_{k}\right]=\alpha \in A(x)$.
Sone class.
What car me conclude about $Z_{1} \cap \cdots \cap Z_{k}$?
(1) α is a "lower bound" for $Z_{1} \cap \cdots \cap Z_{k}$.

- of conses $Z_{, ~, ~}^{1} \cdots Z_{k}$ could hove dimension too loge.
- it can never Lave dimension too sural (under the intersection "(empty).
- if the codinearmis is correct, the multiplicities are " $\geqslant \alpha$ ":

$$
\alpha=\sum_{w \subseteq z_{1} n-n z_{k}} k_{w}:[\omega],
$$

where $1 \leq k_{w} \leq \operatorname{moll}(w, z, a \cdots n z k)$
Coaly be -
\therefore non- CM
case)
(2) If $\alpha \neq 0, Z_{1}, \cdots, Z_{k}$ cant be empty!
($\Rightarrow \underset{=x}{e x}$ J conic tangent to 5 conics)
(3) If $\alpha=0 \cdot Z_{1} n \cdots n Z_{z}$ is either empty or not dimensiully trumsuese.
$\operatorname{eg} X^{\square} \cdot X^{\boxminus}=0$ in $N(\operatorname{Gr}(2,4))$
$\underset{\text { lines } \exists x}{\tau} \quad \begin{aligned} & \text { liner } \\ & \leq p p .\end{aligned}$
geneal interedion is ϕ.
$\begin{gathered}\text { specid } \\ (x \in P)\end{gathered}$
$\underbrace{\top}(x, P)$

$$
\operatorname{din} \frac{1}{3}
$$

(tor brg!).
(4) If α is a non-effectur class.
(not reprecentale by ar etfectui cycle)
ej. $\alpha=-1[p]$.
then $Z, \cap \cdots \cap Z_{k}$ monst be nonempty and dim to. lage

For dim >0, its hard to know which closer ar effective.
eq.

$$
\begin{aligned}
& \overline{M_{0, n}}=\text { mali pace of stall } \\
& \widetilde{M_{g, n}}
\end{aligned}
$$

this ir open for $n \geq 7$.

But on $X^{\prime \prime} \operatorname{Gr}_{r}(2,4) \quad\left(\operatorname{Gr}\left(k_{,} C^{n}\right)\right)$:
$\alpha \in \mathcal{A}(x)$ is effective
$\Leftrightarrow \alpha$ is a $\geqslant 0$ linear comb. ${ }^{6} 6$ Schubert class.

Proof: Kleiman's Thu + dual Schubert classes.

Vector bundles (- Degaveacy loci)

LeE: $V \xrightarrow{\pi} X$ is a vector bole of rank
(HExer r over X ib \exists ope cover
II 5.18) \quad UT $]$ of x, ~ compatible isoms

$$
\begin{array}{cc}
\pi^{-1}\left(u_{i}\right) & \stackrel{i}{u_{i}} \\
\pi \downarrow & u_{i} \times \mathbb{A}^{r} \\
u_{i} & \pi_{i} \downarrow \\
u_{i}
\end{array}
$$

and rit. $\quad \varphi_{j} \cdot \varphi_{i}^{-1}:\left(u_{i} \cap u_{j}\right) \times \mathbb{A}^{n} \sigma$
is liver on each fiber.

$$
\binom{u_{i} \cap u_{j} \rightarrow G L_{r}}{u^{u} \longmapsto T_{n}}
$$

Ex: $\operatorname{Gr}(k, V)$ has thur tantologial Inndles S, Q, defined as follower:
$\delta:$

$$
=\underbrace{V \times \operatorname{Gr}(k, v)} \geq S=\{(v, s): v \in s\} .
$$

trivial
vector bole
$\pi_{2}$$\pi_{2}$

$$
\operatorname{Gr}(k, V)
$$

Obs: If $\left(v_{1}, s\right),\left(v_{2}, \delta\right)$ are \in same fiver then $\left(v_{1}+v_{2}, S\right)$ is also finer.
$\Rightarrow S$ is a subbundh of $V \times G r$,

$$
\operatorname{rack}=k=\operatorname{din}(s)
$$

filers are $\pi_{2}^{-1}(s)=\{v: v \in S\}=S$.

To trivialitee: sag $U_{12}=\left\{\operatorname{det}_{12}\right.$ to $\}$ $(G r(2, y))$

$$
\begin{array}{cc}
\mathbb{C}^{4} \times u \quad S \mid u \cong u \times \mathbb{A}_{s_{1}, s_{2}}^{2} \\
{[x y z w]\left[\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & d
\end{array}\right]}
\end{array} \begin{aligned}
& \text { (puirs } \\
& \left(\left[\begin{array}{lll}
1 & 0 & a \\
0 & 1 & c
\end{array}\right], \vec{v} \in S\right)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{v}=\left[\begin{array}{ll}
s_{1} & s_{2}
\end{array}\right]-\left[\begin{array}{llll}
1 & 0 & a & b \\
0 & 1 & c & d
\end{array}\right] \\
& =\left[\begin{array}{llll}
s_{1} & s_{2} & a s_{1}+c s_{2} & b s_{1}+d_{2}
\end{array}\right] \\
& \mathbb{A}_{s_{1}, s_{2}}^{2}
\end{aligned}
$$

To chonge to ansther chart:

$$
\begin{aligned}
& \vec{v}=\vec{s} \cdot S^{2} \\
& =(\stackrel{\rightharpoonup}{s} g) \cdot\left(g^{-1} S\right) \\
& \begin{array}{c}
\text { linew } \\
\text { chage of coordinates on }
\end{array} \underbrace{(\mathrm{sg})}_{c} G_{2} \text { chayge or }
\end{aligned}
$$

S_{1}, S_{2} bacir for S

Similuty 7 tantological quatient bundle Q ((inars are \mathbb{C}^{4} / s)

It can't be writter as on incidere correspondence $(Q \notin$ trivial budle) (have to wee charts).
\Rightarrow Tuntilogiuel $S E S$ on $\operatorname{Gr}(K, V)$:

$$
\begin{aligned}
& 0 \rightarrow S \rightarrow \underbrace{V \times G r(k, V)}_{\text {trival bundh }} \rightarrow Q \rightarrow 0 . \\
& {\left[\mathbb{P}^{n}: 0 \rightarrow O(-1) \rightarrow V \times \mathbb{P}(V) \rightarrow Q \rightarrow 0 .\right]}
\end{aligned}
$$

\Rightarrow Much easier to work ghorally rather thon in chook - just as long as all recipes are nalural.

Cd: Fix vGV, gires a "constand sectlon"
($\ddagger 0)$

$$
\sigma: G r=V \neq G r .
$$

\rightarrow The also indures a rection

$$
\begin{aligned}
& \bar{\sigma}: G r \rightarrow \mathbb{Q} \\
& \bar{\sigma}=\operatorname{calwags~}_{\substack{v \\
\text { dresint } \\
\text { viry }}} \quad \mathbb{C}^{n} / S^{n} \\
& \text { but } S \text { variel. }
\end{aligned}
$$

\Rightarrow Wher is $\bar{\sigma}=0$?
(vanishing locur)

$$
\begin{aligned}
V(\bar{\sigma}) & =\left\{\begin{array}{c}
\delta \in G r: \bar{\sigma}(s)=\overrightarrow{0}\} \\
\hat{\zeta} \bar{v}=\bar{o}: \mathbb{C}^{n} / s \\
\mathcal{C} \\
V \in S
\end{array}\right. \\
& =\chi^{\oplus}(v)
\end{aligned}
$$

all S containing v

Notice: $\mathbb{V}(\bar{\sigma})$ is codinemsion 2.

In ganeal we expect
$\mathbb{V}(\sigma: X \rightarrow E)$ to hove
codimeasion $=\operatorname{rank}(E)$.
Lobally: $\sigma=[\} \begin{aligned} & \operatorname{rank}(E) \\ & \text { coefficiant rector. }\end{aligned}$
$\Rightarrow r$-tuph of regules functions.

Dog 19: Chen + Segre classes
These are chassis examples of degeneracy loci:

Important fact:
Prop. (comnaly).
LD $M=$ axis matrix of ring ats $x_{i j} \in R$.
$I_{d}=($ ideal of $(d+1) \times(d+1)$ miners of $m) \quad(r a, k \leqslant J d \cos)$
Then the codime of $R^{\prime} I_{I_{j}}$ is $\leqslant(a-d)(b-d)$.

$$
=\text { in the use } R=k\left[x_{i j}\right] \text {. }
$$

Pf sketch: ($\mathrm{P} \cdot \mathrm{b}$, nomier ring case).
Invert the $b_{\text {of }}$ left $d \times J$ miner $u=\left\{\frac{1}{d e d z}\right\} \leq \mathbb{A}^{a \times b}$.

So codon $\leq(a-d)(b-d) \quad\left(K_{\text {rall }}\right)$.
\Rightarrow Weill gearatize to vector buidles.
$E \xrightarrow{\pi} \mathcal{X}$ is a rank r vectur buadle.
$s_{1}, \ldots, s_{k}: X \rightarrow E$ sections. locally: $\left.\begin{array}{rl} & \uparrow \\ & \downarrow \\ & \leftarrow k \rightarrow c c c \\ s_{1} & \ldots \\ s_{k} & \\ 1 & \\ & \leftarrow k\end{array}\right]$
$\leftarrow k \rightarrow$
(1) If $1 \leq k \leq r$: the (Chern) deganary loas of $\vec{s}=\left(\vec{s}, \ldots \vec{s}_{k}\right)$
is: $C D(\vec{s})=\left\{x \in X: \vec{s}_{1}(x), \ldots, \vec{s}_{k}(x)\right.$ are lin dep. $\}$
(A) scherve structur: meximal minoore.
(4) If $k=r+1-i$, expected codim is i
(examp: $k=1: \operatorname{CD}\left(\vec{s}_{1}\right)=\mathbb{V}\left(\vec{s}_{1}\right)$, expected codion r).
(2) If $k \geqslant r$: the (Segr) degenency lows is

$$
S D(\vec{s})=\left\{x \in X: \quad \stackrel{\zeta}{s}(x), \ldots, \vec{s}_{k}(x) \text { deerit span } E_{x}\right\}
$$

*) Scheme stractive: maximal minors.
(20) of $k=r-l+i$: expectel codim is i.

This: $X=$ smooth.
(1) If $k=r+l-i$ and $\operatorname{Codim}(\operatorname{cs}(\vec{s}))=i$, the the class
$[\operatorname{CD}(\vec{s})]$ owl depends on E and it's called the ill Churn class $C_{i}(E)$.
(2) If $k=r-1+i$ and $\operatorname{codin}(5 s(s))$
$\ldots[\operatorname{SD}(\vec{s})]=:(-1)^{i} S_{i}(E)$, the th Syne class.
(1) of course
the loci car be lamer. (Laver well see that
Never smatter (by prop)

$$
\begin{aligned}
& c_{i}\left(E^{*}\right)=(-1)^{i} c_{i}(E) \\
& \left.s_{i}\left(E^{*}\right)=(-1)^{i} s_{i}(E)\right)
\end{aligned}
$$

Ex: $E=\theta(1) \oplus \theta(2)$ on p^{2} rank 2.

$$
\text { section } s=\left[\begin{array}{l}
L \\
Q
\end{array}\right]=\left[\begin{array}{l}
x+Y \\
Y^{2}-x Z
\end{array}\right] \text {. }
$$

One section:
$k=1$.
codim 2

$$
C D(\vec{s})=\left\{x \in \mathbb{R}^{2}: \vec{s}(x)=\left[\begin{array}{l}
L(x) \\
Q(x)
\end{array}\right]=\overrightarrow{0}\right\}
$$

$$
\Rightarrow L=Q=0
$$

$$
=2 \text { points. }
$$

$$
\Rightarrow \quad c_{2}(\theta(1) \oplus \theta(2))=2\left[\rho^{t}\right] .
$$

Two sections:
colin.

$$
c_{1}=-s_{1}
$$

$$
\left.\begin{array}{rl}
C D(\vec{s})=\left\{x \in \mathbb{R}^{2}:\right. & \operatorname{det}\left[\begin{array}{cc}
L_{1} & L_{2} \\
Q_{1} & Q_{2}
\end{array}\right]
\end{array}=c\right\} .
$$

$=\{$ cubic care $\}$.

$$
\begin{aligned}
\Rightarrow \quad c_{1}(\theta(1) \odot \theta(2)) & =3[\text { line }] . \\
& =-s_{1}(\theta(1) \oplus \theta(2)) .
\end{aligned}
$$

Three sections:
S_{2}
colin 2
Exercise. Find a rise choice of matrix.

$$
\text { It's } 7 \text { points. }\left(s_{2}(E)\right) \cdot\left[\begin{array}{l}
d e g \\
d y z
\end{array}\right]
$$ Corms

Rok: This is also "the Locus where a general $\operatorname{map} O_{p^{2}}^{\theta^{3}} \rightarrow \underset{\Theta(2)}{O(1)}$ drops rank." $\left(0_{x} \stackrel{s}{\rightarrow} E\right.$ sane as $\left.s \in H^{(}(E)\right)$

Ex: $\quad X=\operatorname{Gr}(2,4)$
Recall: $0 \rightarrow s \rightarrow \underbrace{\mathbb{C}^{4} \times x}_{\text {trivicl }} \rightarrow \mathbb{Q}_{4}-0$.

Fius: $0 \rightarrow 5-\mathbb{C}^{4} \rightarrow \mathbb{C}^{4} / s \rightarrow 0$

$$
E=\operatorname{Sym}^{2}\left(\delta^{x}\right)
$$

S^{x} : bondle of linee forms on h. ck2 $\left[0 \rightarrow Q^{*} \rightarrow \mathbb{C}^{4 *}-l^{*} \rightarrow 0\right]$
$S_{y n^{2}}\left(s^{*}\right)$: Landle of quadratic forns on S
$L_{\text {s }}$ K $=3$. (locally " $s^{2}, s t, t^{2 "}$.)
Lel's make the coneretri suy $F=X Y-Z W$ on \mathbb{R}^{3}.

$$
\begin{aligned}
& \in H^{0}\left(O_{\mathbb{P}^{3}}(2)\right)=k^{10} \\
& =S_{y m^{2}}\left(\mathbb{C}^{4 z}\right)
\end{aligned}
$$

\Rightarrow F gives a section of the trivial buadle

$$
\operatorname{Sym}^{2}\left(\mathbb{C}^{4 x}\right) \times G r
$$

B) Cuactoriality/rutralitit of $\operatorname{Sym}^{2}(-)$, the map

$$
\mathbb{C}^{n^{x}} \times \mathrm{Gr} \xrightarrow{\text { res }} \ell^{*} \quad\left(\begin{array}{c}
\text { restriction } \\
\text { of finctionals })
\end{array}\right.
$$

indrecs

$$
\begin{aligned}
& \delta_{m^{2}}\left(\mathbb{C}^{4 *}\right) \times G r \xrightarrow{\text { res }} S_{y^{m}}{ }^{2}\left(S^{*}\right) \\
& F=X Y-\left.Z W \cdot{ }^{*} F\right|_{S} \text { (or each } S^{\prime \prime} \\
& \text { (as } S \text { veries.) }
\end{aligned}
$$

Try this out.
1 section: $\vec{s}=$ "F|S"section. "XY-ZW|S".

Codin 3 .

$$
C D(\vec{s})=\left\{s \in G_{r}:\left.F\right|_{s}=0\right\}
$$

C

$$
\left(S_{y} w^{2}\left(s^{4}\right)\right.
$$

sank 3.)

ζ
$X Y-Z W$ vanister on S.
\uparrow
$\mathbb{P}(s) \leqslant$ quadio $Q=\{x+-8 w]$.
$=$ \{lines contained in the quadoic \}.
C 2 1-peromiter fanities of linas.
$C_{3}\left(\operatorname{Sym}^{2}\left(8^{\alpha}\right)\right)=4\left[X^{\text {『 }}\right]$. (worked ouv eartier).
(Day 20)
2 sections. S_{1}, S_{2} quadrics F, G.

$$
Q_{1} Q_{2}
$$

codin 2.
$\left(c_{2}\right) \quad \operatorname{CD}\left(s_{1}, s_{2}\right)=\left\{s \in G r:\left.F\right|_{S},\left.G\right|_{s}\right.$ are $\left.\begin{array}{l}\text { linecin tependert }\end{array}\right\}$.

\rceil
tur quadnatic fors on $P(S)=P^{1}$.
lin. $d_{\text {p }} \Leftrightarrow$ Scrue sots on P ! (A prportionel).

$$
\begin{aligned}
& \text { ie. } Q_{1} \cap \mathbb{P}(S)=Q_{2} \cap \mathbb{P}(s) \\
\subset Q_{1} \cap Q_{2} \cap \mathbb{P}(s) & =\text { same } 2 \text { pts } \ldots \mathbb{P}(s)
\end{aligned}
$$

Note: $Q_{1} \cap Q_{2}=$ sone smorth cavre C of dy 4 geves 1

$$
\begin{aligned}
& =\{s: 5 \text { is a chort of } c\} \\
c_{2}\left(s \sin ^{2} s^{k}\right) & =\left(\binom{4-1}{2}-1\right) \amalg+\binom{4}{2} \theta
\end{aligned}
$$

$$
\text { c } 2 \Phi+6 \theta
$$

3 sections.

$$
\operatorname{CD}\left(s_{1}, s_{2}, s_{3}\right)=
$$

cadiml.
c.

$$
\begin{aligned}
& c_{1} \\
& \left(=-s_{1}\right)
\end{aligned}
$$

$\left\{S: F I_{S}, G l_{S}, H I_{s}\right.$ lin. dep:on $\left.S\right\}$.

Idee: thil says $\exists a, b, c$

$$
\underbrace{a F+b G+c H} \equiv 0 \text { on } S \text {. }
$$

gives sone other quadric Q^{\prime} s.t. $\mathbb{P}(S) \subseteq Q^{\prime}$.

$$
=\bigcup\left\{s: \mathbb{P}(s) \subseteq Q^{\prime}\right\}
$$

T quadrics Q^{\prime},

$$
Q^{\prime}=\{a F+b G+c H=0\}
$$

1 divil for
τ ench Q^{\prime}.
$P_{a, b, c}^{2}$ of chaces of Q^{1}
\Rightarrow some locar of din 3 (Codin 1 ir $\operatorname{Gr}(2,4))$

$$
\frac{4 \text { sections: }}{(5,6)} \quad S D\left(S_{1}, \ldots, S_{4}\right)=\left\{\int G G r \text { : the } 4\right.
$$

$$
\begin{array}{lccc}
\text { Segre: } & s_{2} & s_{3} & s_{4} \\
\text { Hedediut } & 4 & 5 & 6
\end{array}
$$

grien quadrics dowit

$$
\text { span } \left.\delta y^{2}\left(s^{*}\right)\right\} \text {. }
$$

Dadiute gesmatry (oy vey!)

$$
\begin{aligned}
s_{2}\left(\operatorname{Sym}^{2} b^{*}\right) & =3\left[x^{\Theta}\right]+7\left[x^{\oplus}\right] . \\
s_{3}() & =-10\left[x^{\oplus}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (10) "wnion" " Expectin": } c_{1}\left(5_{y} \text { n }^{2}\left(b^{*}\right)\right) \\
& \operatorname{Gr}(2,4) \times \mathbb{R}_{4,1,6}^{2}=3\left[x^{0}\right] \text {. } \\
& \left\{\left(s, Q^{\prime}\right): P(s) \subset Q^{\prime}\right\} \quad\left(=-S_{1}\left(\operatorname{Sym}^{2}\left(\ell^{*}\right)\right)\right) \\
& \pi / \\
& \text { (Introull with } X^{\text {® }} \text {.) }
\end{aligned}
$$

$$
\operatorname{su}(\quad)=10\left[x^{\boxplus}\right]=10[p \mid]
$$

*) I computed these wring some tricks!
Question: Led $E_{1}, E_{2}, \ldots, F_{6}$ are antitray quadratic

$$
\text { polys }=X_{1} Y_{1} Z_{2} W \text {. }
$$

Bores thar exist a line $L \subseteq \mathbb{P}^{3}$ s.) $\left\{\left.F_{i}\right|_{L}\right\}$ dosing give all of the quadratic for on L ?
Yes. ALWAYS. \exists at least 10 such $L \quad\left(\tau_{\delta_{4}}\left(\delta_{y n}{ }^{2} 1^{t}\right)\right)$

Question: Ld E he any quadadio poly in XYZW
Does V(F) contain a live?
Yes AlWAYS because $C_{3}\left(S_{y m^{2}} l^{t}\right) \neq 0$.

Qunstui: How may bires bie on a cubtic

$$
\begin{aligned}
& \text { swhace? }\left(\sin ^{3}\right) \\
& F \in H^{0}\left(O_{\mathbb{P}^{3}}(3)\right) \\
& l \\
& S_{y^{3}}\left(\mathbb{C}^{4 x}\right)
\end{aligned}
$$

\pm restricton.

$$
\begin{aligned}
& \text { " } \mathrm{Fl}_{\mathrm{s}}{ }^{\text {" }} \mathrm{Sywn}^{3}\left(\ell_{8}^{x}\right) \text { cubic fus on } S \text {. } \\
& \left\{\text { rank } 4 \text { (locally } s^{3}, s^{2} t\right. \text {, } \\
& \mathbb{P}(s) \subseteq \text { cubric of } \\
& \left.\Leftrightarrow \mathrm{F}\right|_{S} \equiv 0
\end{aligned}
$$

\Rightarrow What is the vanushing bocus of 1 sections ak.a. $C_{4}\left(S_{y m}{ }^{\prime} \mathrm{l}^{6}\right)$ and why is it $27[p \mid]$??

Rewark. There's and equivabence
vec bdles/ $x \stackrel{\sim}{\longleftrightarrow}$ locally free sheaws of O_{x}-modules.

Beware:
good termivology
injective mp "
of vee blews
"geverivally injechivi map or vec boles"
\longmapsto "injection my of wo deles + injective on ead
"injectivi map of loce frese a sheares.

Ex: $\quad X=\mathbb{R}^{2}$
$\mathbb{P}^{2} x \mathbb{A}^{2} \xrightarrow{u} E \quad$ u dominard!

Gesmatrially: - isomorofism on fibers umbers

$$
\begin{gathered}
\text { det }=X^{3}-Y^{2} Z=0 . \\
(\text { cuspidel cubic }) . \\
\left(\sim c_{1}(O(1) \otimes \theta(2))-3[\text { lime }]\right) \\
\text { - rank } 0 \text { if } \underbrace{X=Y: Y Z=X^{2}=0 .} \\
{[0: 0: 1] \in \mathbb{P}^{2} .}
\end{gathered}
$$

Algainically, $\mathbb{A}_{x, y}^{2}$ chart: $R=k[x, y]$

$$
R^{2} \xrightarrow{4} R^{2} \quad b,\left[\begin{array}{ll}
x & y \\
y & x^{2}
\end{array}\right]
$$

- Injedivi as map of modules

Leconse tat $4=x^{3}-y^{2}$ NZD on R
\Rightarrow Loculization is exect, so φ is injecdive over all locat rings \& o genvic pt $k(x, y)$.

- Look \& fine $(x, y)=(1,1)$

$$
\text { iv } \otimes \frac{k[x, y]}{(x-1, y-1)}
$$

$k^{2} \longrightarrow k^{2}$ b) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ which has souk 1.
(horal ir $\operatorname{Tor}_{1}\left(\frac{k[x, y]}{(x, y, y)}, \operatorname{coker} \varphi\right)$)

Look e fibs $(0,0)$:

$$
h^{2} \rightarrow k^{2} \quad b>\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \quad\left(\begin{array}{lll}
\operatorname{ran} k & 0
\end{array}\right)
$$

Look e fiber $(1,0) \notin$ cuspidet colic:

$$
h^{2}-h^{2} b_{y}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \operatorname{rank} 2
$$

Day 26: Propetios of Chern $~$ Segre Clarses.

Def: EN ${ }^{T} \times$ vecbith rant r.
The botal chan clars is

$$
c(E)=1+c_{1}(E)+c_{2}(E)+\cdots+c_{r}(E)
$$

Likerik the totec Syacclars is

$$
\begin{equation*}
s(E)=1+s_{1}(E)+s_{2}(E)+\cdots+s_{\operatorname{din}}\left(x_{1}\right. \tag{£}
\end{equation*}
$$

Ex: $\quad E=S y^{2}$ \& x or $\operatorname{Gr}(2,4)$.

$$
S(E)=1-30+\underset{s_{1}}{(3 \theta+7 \theta)-10} s_{2}+\frac{16}{s_{3}} s_{4} .
$$

Exy exercse: $c\left(s^{*}\right)=1+0+日$.
$c_{1} \quad c_{2}$

Theorean (Formal propertires of $c(E), \zeta(E)$)
(1) Functorality, $f: X \rightarrow Y, E=$ vec bde on Y.

$$
\begin{aligned}
& c\left(f^{*} E\right)=f^{*} c(E) \\
& s\left(f^{*} E\right)=f^{*} s(E)
\end{aligned}
$$

(2) "Normalizalun": For line bundles $\mathfrak{L}=\boldsymbol{O}(\boldsymbol{D})$,

$$
c_{1}(\mathcal{L})=[D] .
$$

(3) Whitry sum Gormals:

If $0 \rightarrow A \sim B \sim C \rightarrow 0$ is a SES of vec bdes,
then $c(A) \cdot C(C)=C(B)$

$$
\left(\sum_{j+k=i} c_{j}(A) c_{k}(C)=c_{i}(B)\right)
$$

Same for $5(-)$.

Serciel case: If $E=\bigoplus L_{i}$ line bundles,
by induction:

$$
\begin{aligned}
c(E) & =\prod_{i} c\left(L_{i}\right) \\
& =\prod_{i}\left(1+c_{1}\left(L_{i}\right)\right) \\
& =1+\underbrace{\sum_{i} c_{1}\left(L_{i}\right)}+\underbrace{\sum_{i<j} c_{1}\left(L_{i}\right) c_{1}\left(L_{j}\right)+\cdots}
\end{aligned}
$$

elonemtary symactric polynomials in $c_{1}\left(L_{j}\right)$

This holds ago when E is filtered with live bundle quotients L_{i}.
(4) For any $E, s(E)=\frac{1}{c(E)}$

Ex: If $E=\oplus L_{i}$

$$
c(E)=\pi\left(1+c_{1}\left(L_{i}\right)\right)
$$

So, $\quad s(E)=\pi \frac{1}{1+c_{1}\left(L_{i}\right)}$

$$
\begin{aligned}
& =\prod_{i}\left(1-c_{1}\left(L_{i}\right)+c_{1}\left(L_{i}\right)^{2}-c_{1}\left(L_{i}\right)^{3}+\cdots\right)
\end{aligned}
$$

th homgenouss rymundrit polynomials in $C_{1}\left(L_{j}\right)$.
" \sum all monomials of toted degree:" in the $c_{1}\left(L_{j}\right) ;$.

Quastrows: 1 Is $S_{y m}{ }^{2}\left(\ell^{*}\right)$ on $\operatorname{Gr}(2,4)$ the pullacile of a veer bottle from a lower-dineurioit variety?

Ans: No. Becenise sn would have to vanish. But $S_{n}(E)=10[p t]$.
(2) Does Q contain any subbundler?

$$
\text { iss. } \begin{aligned}
\quad & \circ \rightarrow \mathcal{L} \rightarrow Q \rightarrow \mathcal{L}^{\prime} \sim 0 \\
& \text { or } Q=\mathcal{L} \oplus \mathcal{L}^{\prime} .
\end{aligned}
$$

Ans! (Easy exurbs): $c(\mathbb{Q})=1+\square+\square$ and this cavil L factored as

$$
\begin{aligned}
c(\mathcal{L}) c\left(\mathcal{L}^{\prime}\right) & =(1+a 0)(1+b \sigma) \\
& =1+(a+b) 0+a b \underbrace{\sigma^{2}} \\
& =(\theta+D)
\end{aligned}
$$

So, No.

Splitting principle.
(whines)" "To pare a pilynowied relation involving cherntsye classes, it suction to pom it for sums of line bundles."
(*'really: veep bides Filtered b, l.b.s).

Theorem: $E \rightarrow x$.
There coasts a morpherio $f: y \rightarrow x$ such that
(1) $E^{*}: A(X) \rightarrow A(Y)$ is injualive.
(2) $f^{*} E$ is filtered by line bundles.

$$
\left.\begin{array}{l}
0 \rightarrow E^{\prime} \rightarrow E^{*} E-\mathcal{L}^{\prime} \rightarrow 0 \\
0 \rightarrow E^{\prime} \rightarrow E^{\prime}-\left(\mathcal{L}_{2} \rightarrow 0\right. \\
\text { ek. }
\end{array}\right\} \begin{aligned}
& c\left(f^{*} E\right) \\
& =\pi\left(1+c_{1}\left(L_{i}\right)\right) .
\end{aligned}
$$

IDEA: Prove the relation in $A(Y)$.
Then by (1) it holds in $A(x)$!

Ex: $\quad c_{i}(\vec{E})=(-1)^{i} c_{i}(E)$.
Probe) If $E=\oplus L_{i}$, then $E^{*}=\bigoplus_{i} L_{i}^{*}$
(also it E is filtered by L_{i}, E^{*} filtered by L_{i}^{*}.)

Factor $c(E), c\left(E^{*}\right)$ and compare:

$$
\begin{aligned}
& c(E)=\pi\left(1+c_{1}\left(L_{i}\right)\right) \\
& c\left(E^{*}\right)=\pi\left(1-C_{1}\left(L_{i}\right)\right) \quad \text { because } \\
& c_{1}\left(L^{*}\right)=-c_{1}(L)
\end{aligned}
$$

(b) normalization properly.)
So,

$$
c_{i} \cdot\left(E^{*}\right)=(-1)^{i}(\underbrace{\left.\begin{array}{c}
i_{1} \text { th elem . (yin } f_{n} \\
\text { in }\left(L_{j}\right) \text { 's }
\end{array}\right)}_{C_{1} \cdot(E)}
$$

By the splitting principle, the relation holds for all E.

Ex 2: $E \rightarrow x$-k 2.
Claim:

$$
\begin{aligned}
c\left(S_{y, w^{2} E} E\right)=1 & +3 c_{1}(E)+2 c_{1}(E)^{2}+4 c_{2}(E) \\
& +4 c_{1}(E) c_{2}(E) .
\end{aligned}
$$

Proof: If $E=\mathcal{L}, \Theta \mathcal{L}_{2}$,

$$
\text { tha } \operatorname{sym}^{2}(E)=\mathcal{L}_{1}^{\otimes 2} \oplus \mathcal{L}_{1} \otimes \mathcal{L}_{2} \oplus \mathcal{L}_{2}^{\otimes 2}
$$

(Simitoly, if $0 \rightarrow \mathcal{L}_{1}-E \rightarrow \mathcal{L}_{2} \rightarrow 0$,
them $S_{y m}{ }^{2} E$ is filtered by thase buadles

$$
\left.\begin{array}{l}
0 \rightarrow E^{\prime} \rightarrow S_{y m^{2}} E \rightarrow S_{y m^{2}} L_{2} \rightarrow 0 \\
0 \rightarrow L_{2}^{\alpha^{2}} \otimes^{2} \rightarrow E^{\prime} \rightarrow L_{1} \otimes L_{2} \rightarrow 0
\end{array}\right)
$$

Comput chern classas

$$
\| \begin{aligned}
& \text { sed } \alpha=c_{1}\left(\mathcal{L}_{1}\right), \quad \beta=c_{1}\left(\mathcal{L}_{2}\right) . \\
& c(E)=(1+\alpha)(1+\beta)=1+\underbrace{(\alpha+\beta)}_{c_{1}(E)}+\underbrace{\alpha \beta}_{c_{2}(E)} .
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{y^{2}} 2 \\
&(E)= \mathcal{L}_{1}^{\otimes 2} \oplus \mathcal{L}_{1} \otimes \mathcal{L}_{2} \oplus \mathcal{L}_{2}^{\theta^{2}} \\
& \uparrow \quad \rho \\
& c\left(\mathcal{L}_{1}^{\theta 2}\right)=(1+2 \alpha) \\
& c\left(\mathcal{L}_{1} \otimes \mathcal{L}_{2}\right)=(1+(\alpha+\beta)) \\
& c\left(\mathcal{L}_{2}^{\theta 2}\right)=(1+2 \beta)
\end{aligned}
$$

So $c\left(\operatorname{Syn}^{2} E\right)=(1+2 \alpha)(1+\alpha+\beta)(1+2 \beta)$.
(74) Symmetric in α, β.

$$
\left.\Rightarrow=\stackrel{\text { som }}{\Rightarrow} \rho^{\prime \prime}\right\rangle \text { i- } \underbrace{(\alpha+\beta)}_{c_{1}(E)}, \underbrace{\alpha \beta}_{c_{2}(\alpha)} .
$$

Expand ont:

$$
=1+\underbrace{3(\alpha+\beta)}_{c_{1}(E)}+\underbrace{2(\alpha+\beta)^{2}+4 \alpha \beta}_{2 c_{1}(E)^{2}+4 c_{2}(E)}+\underbrace{4 \alpha \beta(\alpha+\beta)}
$$

\Rightarrow By the splitting principle, the relation holds for all E of out 2 .

Lires on a cabric surfaco.

$$
E=S_{y m}{ }^{3} R^{x} \text { on } \operatorname{Gr}(2,4)
$$

We want $\mathrm{C}_{4}(E)=$ varishing of a section.

$$
\left(=\left\{56 G_{r}(2,4):\left.F\right|_{S} \equiv 0\right\}\right)
$$

Exer: $c\left(\rho^{*}\right)=1+\sigma+日$.
protend this faclors as $=(1+\alpha)(1-\beta)$

$$
\begin{aligned}
& \alpha+\beta=D \\
& \alpha \beta=\theta .
\end{aligned}
$$

factors of

$$
\begin{aligned}
& \text { Factors of } \\
& S_{y m}{ }^{3}\left(1^{\gamma}\right) ? \mathcal{L}_{1}^{22} \theta \mathcal{L}_{2} \sim(1+2 \alpha+\beta) \\
& \left(\text { pratuod } \beta^{*}=\mathcal{L}_{1} \otimes \mathcal{L}_{2}\right) \mathcal{L}_{2} \otimes \mathcal{L}_{2}^{\theta^{2}} \sim(1+\alpha+2 \beta) \\
& \mathcal{L}_{2}^{* 3} \longrightarrow(1+3 \beta)
\end{aligned}
$$

\Rightarrow producl is symuntric is α, β.
\Rightarrow quartic torm is $c_{4}=3 \alpha \cdot(2 \alpha+\beta)(\alpha+2 \beta) 3 \beta$

$$
\begin{aligned}
& =9 \alpha \beta \cdot\left(2(\alpha+\beta)^{2}\right. \text {. } \\
& { }^{9} S_{\theta}\left(2 \sigma^{2}+{ }_{\sigma} \theta\right) \\
& c_{2}\left(8^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =9 日\left(2 \theta^{2}+\theta\right) \\
& =9 \theta(3 日-2 \sigma) \quad(\theta \cdot \pi=0) . \\
& =27 \underbrace{\theta}_{[p+3} .
\end{aligned}
$$

Cor: Every cubric surtace contains a bime. $\binom{$ becance }{$c_{4} \neq 0}$
Cor: A genat cabir surface corlains exadly 27 limes

Day 22: Chern \& Segre cont'd.

Remerk 1. Other degereracy loci
$E, f \rightarrow X$ vec bluer ranke e,f.
$T: E \rightarrow E$ map of vee boles.
$\substack{ \\ \\ \\X}$
For eack k, let $D_{k}(T):=\left\{x \in X: \operatorname{rank}\left(T_{x}: E_{x} \rightarrow E_{x}\right) \leq k\right\}$.
(6) $(k+1) \times(k+1)$ minors (b cally).
expected codim $=(e-k)(f-k)$.
Thum! If codim is correct,
$\left[D_{K}(T)\right]=$ a parlicular (vaiversab) poljnowide

$$
\therefore c_{i}(E), c_{j}(F)
$$

Thom-Portcons formula.
a Recomess Chorn/segre charses!
locus where:
Segre classes: $O_{x}^{\infty K} \rightarrow E$ not surjecbure
Chern classes: $O_{x}^{\text {©R }} \rightarrow E$ not injuctine.

Renark 2. It's straighlGorwerd to show

$$
\left[\operatorname{co}\left(\vec{r}_{i}\right)\right]=\left[\operatorname{cD}\left(\vec{s}_{i}^{\prime}\right)\right]
$$

b) upticatly goving \& Rativial equivalares.

$$
\begin{aligned}
& t \vec{s}_{1}+(1-t) \vec{s}_{1}^{\prime} \\
& t \vec{s}_{2}+(1-t) \vec{s}_{2}^{\prime}
\end{aligned}
$$

* Asswaly codimansioy are corract.

Problen: What if E has no glabat Cections? How to ever deline $c(E), s_{i}(E)$?

Ans: Find deb. in temas of natural chon operations that speciabizes to the degneracy locess one if enough sections exist.

Frist step: (easinst cases)
(aimn
Defi X schewe, \mathcal{L} lime bolle on X.
If s is a ritionat section of $\mathcal{L}\left(s \in H^{0}\left(\left.\mathcal{L}\right|_{u}\right)\right.$,
(locall $\left.s=\frac{f}{g}\right)$

It still makes sense to define $\operatorname{div}(s) \in A_{n-1}(x)$ for a rational section.

$$
\left(\begin{array}{l}
\text { Zens - poles) })
\end{array}\right.
$$

The finest chernchess of \mathcal{L} is $c_{1}(\mathcal{L}):=[\operatorname{div}(s)]$ For amer ratel suction S.

Agrear with "vanishing of a section" if \mathcal{L} has global sections.

Even better: We can define homomphisus
(Fulton

$$
A_{k}(x) \rightarrow A_{k-1}(x) \quad " \alpha \mapsto c_{1}(\mathcal{L}) \cap \alpha "
$$

$$
[z] \longmapsto c_{1}\left(\left.\mathcal{L}\right|_{z}\right)
$$

If \mathcal{L} has a global section s st. $W(s) \cap Z$ is transverse, the $c_{1}(\mathcal{L} \mid z)=[V(s) \cap Z]$.
\Rightarrow This effectriely defines the find case of an intersection product.

Projective Buadles
It $E{ }^{\pi} X$ vectir bde at rank r.
$P(E) \stackrel{\pi}{\pi} x$ projectivization of E, Fibers are $\mathbb{P}\left(E_{x}\right)$.
Set-theoretically: $\mathbb{P}(E)=\left\{(x, L): x \in X, L_{\text {line }}^{\subseteq} E_{x}\right\}$.
Scheme theoratically:

$$
\begin{aligned}
& \left(E=\operatorname{Sec} \operatorname{Sym} \cdot\left(E^{*}\right)\right. \\
& \left.R(E)=\operatorname{Proj} \operatorname{Sym}^{\prime} \cdot\left(E^{*}\right)\right)
\end{aligned}
$$

Ex: $\&$ on $\operatorname{Gr}(2,4)$ associated

$$
1 \leq \underbrace{G r \times \mathbb{C}^{4}}_{\text {trivine bdell }}
$$

$$
\{(S, v): v \in \delta\} .
$$

"rectro/subspres corrsipordaca" on \mathbb{C}^{4}.

On $\mathbb{P}(\epsilon)$: A prove of $\mathbb{R}(\sigma)$ is a pair $\left(x \in X, L \leq E_{x}\right)$
$\mathbb{P}(E) \notin L$ So, there is a tanolological $S E S$ on $P(E)$ $\pi \downarrow$

$$
x \times \quad 0 \rightarrow \theta_{E}(-1) \rightarrow \pi^{*} E \rightarrow Q_{E} \rightarrow 0
$$

$\underset{(x, L) \text { is: }}{\text { Fiber } 0} 0 \rightarrow L \rightarrow E_{X} \rightarrow E_{x} / L \rightarrow 0$
Very similes to (on $\mathcal{R}\left(\mathbb{C}^{n}\right)$):

$$
0 \rightarrow O(-1) \rightarrow 0^{\theta n} \rightarrow Q \rightarrow 0
$$

Fiber at $\quad 0 \rightarrow L \rightarrow \mathbb{C}^{n} \rightarrow \mathbb{C}^{n} / L \rightarrow 0$

Commas: Nothing special about projective boles! May other worietres have naiad tandobyical families.
(1)

$$
\begin{aligned}
& \left(\mathbb{P}\left(\mathbb{C}^{k}\right)\right)^{n} \geq U= \\
n>k & \left.\left(L_{1}, \ldots, L_{n}\right): L_{1}+\cdots+L_{n}=\mathbb{C}^{k}\right\} . \\
& \text { "spanning bine arrangements". }
\end{aligned}
$$

On u there are n line bunter $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$

$$
\mathscr{L}_{i}=\left.\pi_{i}^{*} \theta(-1)\right|_{u} .
$$

and that's a sujjection

$$
\begin{aligned}
& \text { Some }
\end{aligned}
$$

"kend hundl".

$$
\left(\oplus \mathcal{L}: \mapsto \sum \mathcal{L}:=\mathbb{C}^{k}\right)
$$

$\sin \omega$ by definction $\operatorname{span}\left(L_{1}, \ldots, L_{n}\right)=\mathbb{C}^{k}$ on u.
(2) Flog bundles: $E^{\pi} X$ rank r

$$
\mathrm{Fl}(E) \stackrel{=}{\rightarrow} \times \text { Elog bundk. }
$$

Fibers are 6 lay varietres $F l\left(E_{X}\right)=\left\{J \in E_{x}\right.$ complete flay $\}$.

$$
\left[\mathcal{F}^{L}: F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{r}=E_{x}\right\} .
$$

So on $\mathrm{Fl}(E), \pi^{*} E$ has a complate flag or subluodles

$$
\begin{aligned}
& \mathcal{F}_{1} \leqslant \cdots \leqslant \underbrace{\mathcal{F}_{r-2} \leqslant \mathcal{F}_{r-1}}_{\text {lim bual }} \leqslant \pi_{\mathcal{F}_{r-L}}=E_{r-1} \text { linebdr} .
\end{aligned}
$$

(3) $c=$ smooth poper cave gemur g.

$$
\operatorname{Jac}^{d}(C)=\{L: L \text { is a dy-d hive bdk on C }\}
$$

nontrinat: $\mathrm{Ta}_{c}{ }^{\partial}(C)$ is repreandalle b) a scheme. (ine exists)

On $\operatorname{Jac}^{d}(C) \times C$, thar rhanla be a univerad line buade (called the Poincari bunder) \mathcal{L} s.t.
(a) $\underset{\substack{(\underline{L}, x}}{(L, x \in C)}:\left.\mathcal{L}\right|_{(L, x)}=L_{x}$

Day 23: Projective bundles contd.
$X=$ schemes
$E \rightarrow X$ vecboter rank r
(* no more
$P(E) \stackrel{\pi}{\rightarrow} X$. flat rel bim $P-1$, proper.

On $\mathbb{P}(G):$

$$
0 \rightarrow \theta_{E}(-1)-\pi^{*}: E \rightarrow Q_{\varepsilon} \rightarrow 0
$$

$(x, L): 0 \rightarrow L \rightarrow E_{x} \rightarrow E_{x / L} \rightarrow 0$.
$\Rightarrow O_{E}(1)$ controls all the geometry
(res.tol)

$$
0 \rightarrow Q_{E}^{*} \rightarrow \pi^{*} E^{*} \rightarrow O_{E}(1) \rightarrow 0
$$

Suppose E^{*} Lon $X \theta$ Lar a Section $u \in H^{0}\left(E^{*}\right)$.
(s, for each $x: \varphi_{x}: E_{x} \rightarrow \mathbb{C}$)

- Lift φ to $\pi^{*} \varphi \in H^{0}\left(\pi^{*} E^{*}\right)$
- Map to $\overline{\pi^{y} \varphi} \in H^{0}\left(O_{G}(1)\right)$.

Compare: $\quad \mathbb{V}(u)=\left\{x \in X: \quad u_{x} \equiv 0\right\} \leq X$.

$$
\begin{aligned}
& \mathbb{V}\left(\pi^{*} \varphi\right)=\left\{(x, \iota) \in \mathbb{P}(E): \varphi_{x}=0\right\} \leq \mathbb{P}(E) \\
& =\pi^{-1} \operatorname{V}(\varphi) \\
& \mathbb{V}\left(\overline{\pi^{*} u}\right)=\left\{(x, L): \overline{\varphi_{x}} \equiv 0 \in L^{*}\right\} \text {. } \\
& C_{r} \bar{u}_{x} \in L^{*} \\
& \text { (8) } 1 . \\
& \left.\varphi_{X}\right|_{L}=0 \text { sher } e_{x}: E_{x} \rightarrow \mathbb{C} \text {. } \\
& \text { in } \mathbb{P}(E) \\
& =\left\{(x, L): L \subseteq \operatorname{ker} \varphi_{x} \leqslant E_{x}\right\} \subseteq P(E) \text {. }
\end{aligned}
$$

o twisting hyperpore in each $\mathbb{P}\left(E_{x}\right)$.
Note: this concerns the whole filer if $x \in \mathbb{V}(4)$
since $\varphi_{x} \equiv 0$ on E_{x} for those fibers.

Def: For $i \geqslant 0$, the $i^{\text {th }}$ Segre homomaphism

$$
\begin{aligned}
& A_{k}(x) \rightarrow A_{k-i}(x) \quad " \frac{c_{1}(\mathcal{L}) \cap \alpha "}{} \quad=c_{1}(\mathcal{L} \mid \alpha) " \\
& \alpha \mapsto S_{i}(E) \cap \alpha " \quad \\
& S_{i}(E) \cap \alpha: \pi_{*}\left(c_{1}\left(Q_{E}(1)\right)^{r-1+i} \cap \pi^{*} \alpha\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { prevers } & \text { lole } r-1+i \\
\text { divanson. } & \text { gaint } r-1 \text { dims . } \\
\in A_{k+c-1}(\mathbb{P}(\xi)) \text {. }
\end{array}
$$

Notr: the ith Segre cless is $S_{i}(E) \cap[X]$.

Claine This agrees with $\delta D\left(\varphi^{(i)}, \ldots, u^{(r-1+i)}\right)$ degenerey bocus if the dimanom is correct.
Prood Soond out definition using $\alpha=[x]$.

$$
S_{i}(E) \cap[X]:=\pi_{*}(c_{i} \theta_{E}(1)^{1-1+i} \cap \underbrace{\pi^{*}[x]}_{[\mathbb{R}(E))}) .
$$

By def of " $c_{1}(\mathcal{L}) \cap$-", this can be represented by intereding vuishing
loci of sections if thay) exist (and cut down the diveroson as expected.)

$$
\pi_{*}\left(\bigcap_{i} \bigvee V\left(\overline{\pi^{*} \varphi^{(i)}}\right)\right)
$$

(otherwist vid ned to ue rationel seltors an mare Complicatad)

$$
\begin{aligned}
& =\pi_{x}\left\{(x, L): L \subseteq \operatorname{ker} \varphi_{x}^{(1)} \text { and } \leq \operatorname{ker} \varphi_{x}^{(2)}\right\} \\
& \text { Ls } \bigcap_{i} \operatorname{ker} 4_{x}^{(0)} \\
& =\left\{x \in X \text { : sher exists } L \text { in } \bigcap_{i} \text { key } \varphi_{x}^{(i)}\right\} \text {. } \\
& 1 \\
& y_{x}^{(1)}, \ldots, y_{x}^{(\sim 1+1)} \operatorname{don} t \operatorname{span} E_{x}^{*} . \\
& =S D\left(\varphi^{(1)}, \ldots, \varphi^{(r-1+i)}\right) \text {. }
\end{aligned}
$$

What about the some formula with $c_{1} \theta_{\epsilon}(1)^{k}, k<r$?

$$
\begin{gathered}
(r-1+i \\
i \leq 0)
\end{gathered}
$$

Theorem (1) For $i<0$ and all α,

$$
\pi_{x}\left(c_{1} \theta_{E}(1)^{r-1+i} \cap \pi^{*} \alpha\right)=0
$$

(2) For all α,

$$
\pi_{x}\left(c_{1} \theta_{E}(1)^{r-1} \cap \pi^{*} \alpha\right)=\alpha .
$$

Proof: Enough to prove for $\alpha=[z], z \subseteq X$ suburiely.
By rustriding $E_{1} \mathbb{P}(G)$ to Z_{1} we effectively replace X by z.
\Rightarrow ie assume $X=Z$
$a_{\text {varied }} \operatorname{dim} k$.
(1) $A_{k}(x) \rightarrow A_{k-i}(x)$
$<$ luger then $\operatorname{dim}(x)$!
$\Rightarrow \equiv 0$ automatically.
(2)

$$
\begin{aligned}
& A_{k}(x) \rightarrow A_{k}(x) \\
& \underline{n} \mathbb{Z} \cdot[x]
\end{aligned}
$$

We know the Eormalo must give some integer multiple:

$$
\pi_{x}\left(c_{1} \theta_{E}(1)^{r-1} \cap \pi^{x}[x]\right)=n \cdot[x]
$$

for some $n \in \mathbb{Z}$.
\Rightarrow We reed $n=1$.
Led $u \stackrel{i}{\leftrightarrows} X$ be any open sot.
Restrict whole bundle to U.

$$
\begin{aligned}
& E,\left.\mathbb{P}(E) \hookleftarrow E\right|_{u}, \mathbb{P}(E(u) \\
& \begin{array}{lll}
\downarrow & 0 & \downarrow \\
x & \sim
\end{array}
\end{aligned}
$$

$$
\left.\theta_{E}(1)\right|_{\pi^{-1} u}=\theta_{E \mid u}(1) \text {, etc. }
$$

\Rightarrow This commutes with the whole formula (left-hand side)
\Rightarrow and, $i^{*}[x]=[u]$, so we get the same $n \in \mathbb{Z}$ (right-hand side).
\Rightarrow Take $u=$ trivializing open sod,

$$
\begin{aligned}
\left.E\right|_{u} \cong u \times \mathbb{A}^{r} \\
\left.\mathbb{P}(E)\right|_{u} \cong u \times \mathbb{P}^{r-1}
\end{aligned}
$$

Now $c_{1} v(1)^{r-1} \cap \pi^{*}[x]$
\Rightarrow intersect r-1 hyperplanes in \mathbb{P}^{r-1} !

$$
\begin{aligned}
& =u \times\left\{p^{-1}\right\} \\
& \frac{1}{u_{x}}(\quad)=1 \cdot[u] .
\end{aligned}
$$

Note: Sometimes say " $S_{0}(E)=1$ " in light of this theorem.

Cooley: $\pi^{*}: A(X)-A(\mathbb{P}(E))$ is infective.

Prod: Partial invuze is

$$
\begin{equation*}
\alpha \mapsto \pi^{*} \alpha \mapsto \pi_{x}\left(c_{1} \theta_{E}(1)^{r-1} n-\right) \tag{匀}
\end{equation*}
$$

Cordery lat $E \rightarrow X$ vec balk rkr.
There exists $\pi: Y \rightarrow X$ proper, flat, such thad:
(1) $\pi^{x}: A(x) \rightarrow A(Y)$ is injective
anod
(2) $\pi^{*} E$ is filtered by line bundtes

Proors Lus $\mathrm{Y}=\mathrm{Fl}(E) \mathrm{flay}$ bundle.
This is a tower of proective buadles:

$$
\begin{aligned}
& \vdots \quad \text { Note: } O_{n} \mathbb{P}\left(\theta_{\varepsilon}\right) \\
& \mathbb{P}\left(Q_{\epsilon}\right): 0 \rightarrow \mathcal{L}_{2} \rightarrow \pi^{*} Q_{E} \rightarrow Q^{\prime} \rightarrow 0 \quad \overline{\mathcal{L}}_{2} \text { gives. } \\
& \text { ravk } 2 \text { Subbundle } \\
& \pi \downarrow
\end{aligned}
$$

Wher finished, $\pi^{*} E$ is completel, Filtered by line bundles.

Day 24: Chow groups of Projective bundles a Vector bundus
$E \stackrel{\pi}{\rightarrow} X$ vec bole res.
$\mathbb{P}(E)^{\pi} \rightarrow X \quad$ priblle, rel dimer-l.
Multrple ways to pridue clases in $\mathbb{P L E}$:

$$
\begin{aligned}
c_{1} \theta_{E}(1)^{i} & \cap \pi^{*} \alpha: \alpha \in A_{j}(x) \\
& \text { ns } A_{j+(r-1)-i}(\mathbb{P}(E)) .
\end{aligned}
$$

If $0 \leq i \leq r-1$, thil class represeands
a "twisting linear space (codim i) over α ".
Theorem
(1) $\pi^{*}: A_{k-r}(x) \rightarrow A_{k}(E)$ is an isomorphison for all k.
(2) $\theta_{E}: \bigoplus_{i=0}^{r-1} A_{K-(\Gamma-1)+i}(x) \rightarrow A_{k}(\mathbb{P}(E))$
is an isomorphisu $\not \forall k$.

$$
\left(\otimes \alpha_{i}\right) \longmapsto \sum c_{1} \theta_{E}(i)^{i} n \pi^{*} \alpha_{i}
$$

Rom: Up to rindewy / shifting, $A(\mathbb{P}(E)) \cong A(x)^{Q r-1}$ Later well see $A(B(E))$ is a free module over $A(x)$

Proof: 4 thins: (1) π^{*} surjective
(2) θ_{E} sujecobir
(3) θ_{E} injective
(4) π^{*} infective.
(3) Extent the corollary from last class. Suppose $\theta_{E}\left(\oplus \alpha_{i}\right)=0$.

$$
\sum_{i=0}^{r-1} c_{i} \theta_{E}(1)^{i} \wedge \pi^{*} \alpha_{i}=0
$$

Apply $c_{1} O_{E}(1)$ one more tine, then π_{x} :

$$
\pi_{*}\left(\sum_{i=0}^{r-1} \cdots i^{\bullet 1} n \pi^{*} \alpha_{i}\right)
$$

All lower terms vanish, left with

$$
=\alpha r-1
$$

So $\alpha_{r-1}=0$. Rince and repeat.
(1) $\pi^{*}: A(x)-A(\sigma)$ surjective.

Exciswo: f $z \subseteq x$ closed,

$$
x=x-z \text { open }
$$

than $E l_{z} \subseteq E$ closed,

$$
\begin{gathered}
E l_{u} \subseteq E \cdot r_{u} \\
A\left(\left.E\right|_{z}\right) \rightarrow A(E) \rightarrow A\left(E l_{u}\right) \rightarrow 0 \\
\vec{u}^{*} \uparrow \pi^{*} \uparrow \rightarrow \pi^{*} \uparrow \\
A(z) \rightarrow A(x) \rightarrow A(u) \rightarrow 0
\end{gathered}
$$

Diggrem chase: 16 coks 1,3 swoj

$$
\Rightarrow \text { col } 2 \text { surg. }
$$

By Noetheriar induction, can assum \# Surj.

Enough to show for U
Take x to be teivalizing,
So: reduce to $E=u \times \mathbb{A}^{r}=$ trivial bundle.

By composing $u \times A^{\prime} \rightarrow u \times A^{r^{-1}} \rightarrow \cdots \rightarrow U \times \mathbb{A}^{\prime}$
(each $x \times / s^{i}-u \times \Delta^{i-1}$ is a

$$
\downarrow
$$

rack (burke.)
Enough to show when $r=1$. (for all varideres x)

$$
A_{k-1}(x) \rightarrow A_{k}\left(x \times / A^{\prime}\right)
$$

Let $Z \subseteq X \times A^{\prime}$ sulvarich of $\operatorname{dim} k$.

$$
\pi(z) \leq x \quad(\operatorname{dim} k \text { or } k-1)
$$

Case (: $\operatorname{dim} \pi(z)=k-1<\operatorname{din} z$
Then $z=\pi^{-1}(\pi(z))$.
The $[z]=\pi^{*}([\pi(z)])$

Case 2. $\quad \operatorname{dim} \pi(z)=\operatorname{din} z=k$.
Wore on $\overline{\pi(Z)} \subseteq X$ and forgat about X.

$$
\underbrace{\left(\overline{\pi(z)} \times A^{\prime}\right)}_{C l(\overline{\pi(Z)}) \rightarrow \underbrace{A_{k-1}(\overline{\pi(Z)})} \underbrace{A_{k}\left(\overline{\pi(z)} \times A^{\prime}\right)})}
$$

Hartshorne: this is an isomorphism-
\Rightarrow surjective.
(2) θ_{E} surgective.

Excision: can pass to open set U
Not recessory (nor useful) to tovivilize completely (cant reduce to rank I either way since $\mathcal{A} \mathbb{P}^{n} \rightarrow \mathbb{R}^{n^{-1}}$.)

Instead trivialize partly to where

$$
E \cong E^{\prime} \oplus \mathbb{C}
$$

C trivial Sunrend.
$\mathbb{P}\left(E^{\prime} \oplus \mathbb{C}\right)$ is celled the projective

$$
\begin{aligned}
&\left(\begin{array}{c}
\text { completion of } \\
\mathrm{p}^{\prime}, \\
\text { are } \\
(x,
\end{array}\langle e, t\rangle\right) \\
&\left(E_{x}^{\prime}\right. \text { scaler. } \\
& \in \mathbb{C} .
\end{aligned}
$$

$$
\begin{aligned}
& Z=\{t=0\} \underset{c}{\subseteq} \mathbb{P}\left(E^{\prime} \oplus \mathbb{C}\right)=\mathbb{P}\left(E^{\prime}\right) \\
& \text { clued "hyperplane e } \infty \\
& \text { in each fiber }{ }^{n} \\
& u=\{t \neq 0\} \underset{\text { op }}{\subseteq} \mathbb{P}\left(E^{\prime} \oplus \subset\right) \\
& L(x,\langle e, t\rangle) \sim \text { divide } b, t:\left(x,\left\langle\frac{1}{t} e, 1\right\rangle\right)
\end{aligned}
$$

$$
[e: b] \leadsto\left[\frac{1}{t} e: 1\right]
$$

$$
\text { S. } u \cong E^{\prime}
$$

$$
\text { (Amelogous to } \left.\mathbb{R}^{n}=\mathbb{A}^{n}-\mathbb{P}^{n-1}\right) \quad \mathbb{P}\left(E^{\prime} \oplus \mathbb{C}\right)
$$

Note: Since Z is a hyperpbue in each fiber, $[Z]=c_{1}\left(0_{\mathbb{P}\left(E^{\prime} \odot C\right)}(1)\right)$ (represents any twisting hypaplane.)

Modified excision:

$$
\begin{aligned}
& \xrightarrow[\text { (smaller) }]{(\text { tiger })} \alpha j^{* *} \alpha=\pi^{*} \beta_{0} \\
& A_{*}\left(\mathbb{P}\left(E^{\prime}\right)\right) \xrightarrow{i_{\gamma}} A_{*}\left(\mathbb{P}\left(E^{\prime} \oplus()\right)\right)^{j^{*}} \rightarrow A_{*}\left(E^{\prime}\right) \\
& \pi^{*} \stackrel{\Gamma}{\text { ! }} \text {, } \quad \uparrow \pi^{*} / \pi^{*} \\
& \beta_{0} A_{x-r}(x)
\end{aligned}
$$

Notes $i_{*} \pi^{*} \beta=c_{1} \theta(1) \cap \pi^{*} \beta$ (Portion of $\pi^{*} \beta$ supported on hyperplane @ ∞.) Let $\alpha \in A_{k}\left(\mathbb{P}\left(E^{\prime} \oplus \mathbb{C}\right)\right)$

By surjectivity on E^{\prime},
$j^{*} \alpha=\pi \|_{E}^{*} \beta_{0}$ for some

$$
\beta_{0} \in A(\chi)
$$

B, excision, $\alpha-\pi^{\alpha} \beta$ o comas Coom $A_{k}\left(\mathbb{P}\left(E^{\prime}\right)\right)$

So

$$
\alpha-\pi^{*} \beta_{0}=i_{*}\left(\sum_{i=0}^{r-2} c_{1} \theta_{E^{\prime}}(1)^{i} \cap \pi^{*} \beta_{i}\right)
$$

For sone $\beta_{i} \in A(x)$.
(Inductive hypothesis on $A\left(\mathbb{P}\left(E^{\prime}\right)\right)$.)
B) Note, $i *$ of this has one ext $C_{1} O(1)$ factor.

$$
=\sum_{i=0}^{r^{2}} c_{i}()^{i-1)} \cap \pi^{*} \beta_{i}
$$

So, $\alpha=\underbrace{\tau_{i}^{x} \beta_{0}}_{\substack{i=0 \\ \text { term }}}+\underbrace{\sum_{i=1}^{r-1} c_{1}()^{i} n \sigma^{r} \beta_{i}}_{\text {kems } i=1, \ldots, r-1 \text {. }}$
(4) π^{*} injective on $A(x)-A(E)$.

Eurued $E \underset{o \mu}{\longrightarrow} \operatorname{P}(E \oplus \mathbb{C})$:
Dingrain chase:

$$
\begin{aligned}
& A_{k}(\mathbb{P}(E)) \rightarrow A_{k}(\mathbb{P}(E \otimes C)) \rightarrow A_{k}(E) \\
& \widehat{T^{*} \alpha} \vec{u}^{*} \uparrow \quad \pi \quad \pi_{E}^{*} \alpha=0 \text {. } \\
& \propto \quad A_{K-r}(x) \\
& \text { If } \pi_{c}^{*} \alpha=0 \text {, } \pi^{*} \alpha=i_{*} \gamma \\
& \Rightarrow \pi^{x} \alpha=\sum_{i=0}^{r-1} c_{1}()^{i+1} \wedge \pi^{x} \beta_{i} \text {. }
\end{aligned}
$$

Arelation! Contradicts θ_{E} being injective.

Day 25: The top Cher class - our Eirert intersection product!
$E \underset{\sigma}{\underset{\sigma}{r}} X$ vex bdl rank

Note: π is Elect,
σ is popes

Theorem: For all $k, \pi^{*}: A_{k-r}(x) \rightarrow A_{k}(E)$ is an isomorphism.

$$
[z] \mapsto\left[\pi^{-1} z\right]_{\left.E\right|_{z}}
$$

Wise going to think of this as a moving leman for vector bundles:

Every Cycle class $\alpha \in A_{k}(E)$ is rat 'by equiv. to a sum $\sum\left[\pi^{-1}\left(Z_{i}\right)\right]$ for various $Z_{i} \subseteq X$.

Def: The Gysin map $A_{k}(E) \rightarrow A_{k-p}(X)$ is

$$
s^{*}:=\left(\pi^{*}\right)^{-1}
$$

Fact: is not obvious. That theorem took work! But some sale equiv.s on E are obvious.

Ex 1: Let $z \subseteq E$ subvariety $\operatorname{din} k$ let $t \in k^{*}$

Set $\in Z:=\left\{\left(x, t e_{\nu}\right):\left(x, e_{x}\right) \in Z\right\}$. multiply by a global scaler.

In fact $Z_{\infty}=\lim _{t \rightarrow \infty} t Z$ makes sense and is rationally equivaluat to Z.

E live ball $\downarrow \pi$

In this example,

$$
z_{\infty}=\pi^{-1}\left(x_{1}\right) \cup \pi^{-1}\left(x_{2}\right) \cdot \pi^{-1}\left(x_{3}\right)
$$

So,

$$
\begin{aligned}
s^{*}[z \underbrace{s^{*}}_{\substack{\text { rid } l_{y} \\
\text { equiv. }}}\left[z_{\infty}\right] & =s^{*}\left(\pi^{-1}\left(x_{1}\right)\right)+\cdots+s^{*}\left(\pi^{-1}\left(x_{3}\right)\right) \\
& =\left[x_{1}\right]+\left[x_{2}\right]+\left[x_{3}\right] .
\end{aligned}
$$

Ext: In quanal $\lim _{t \rightarrow \infty} f$ is not a union of fibers.

$$
\begin{aligned}
& E-k^{2} \\
& \downarrow \\
& c \text { curve }
\end{aligned}
$$

Now $\quad Z_{\infty}=\operatorname{lime~in~}_{\pi^{-1}\left(x_{1}\right)} \cup \underset{\pi^{-1}\left(x_{2}\right)}{\text { line in }}$
$\left[z_{\infty}\right] \neq \pi^{*}\left[x_{1}\right]+\pi^{*}\left[x_{2}\right]$

- In fad $s^{*}[z]=0$ since $A_{-1}(C)=0$.
- If E had a global section $\sigma^{\prime}: X \rightarrow E$, we could use σ^{\prime} to shift 8 :

$$
\sigma^{\prime}+z:=\left\{\left(x, \sigma^{\prime}(x)+e_{x}\right):\left(x, e_{1}\right) \in z\right\}
$$

This would probelly move Z off the Zero section.

Rok: Which lines did we g^{μ} in $\pi^{-1}\left(x_{i}\right)$?

Tangent Space:
$\mathbb{G}_{m} \downarrow$
$T_{\sigma\left(x_{1}\right)} E \cong \underbrace{}_{\text {"Wiz" }} \simeq \underbrace{T_{x_{1}}}_{\substack{\text { vertical" } \\ \text { (fibs) }}} c \oplus \underbrace{T_{r(x)}\left(\pi^{-1}(x,)\right)}$

$$
T_{\sigma(x,)} Z \text { is a lin in } T_{\sigma(x)} E .
$$

In this example,
$T_{\sigma\left(x_{1}\right)}\left(Z_{\infty}\right)$ is the projection of $T_{\gamma\left(x_{1}\right)}(z)$ into the Giber.

Exs:
$E \lim _{b i n d x}$

X swfice

\square

$$
\Rightarrow T_{\sigma(x)} z_{\infty}=\underbrace{T_{x}(z \cap \sigma(x))}_{x \text { directuvs }} \oplus \underbrace{T_{\sigma(x)}\left(\pi^{-1}(x)\right)}_{\text {entire fiber. }}
$$

Goneral stationat: $S \subseteq V \oplus W^{\text {のGM (Wonly). }}$ liver subrpace
Them $\lim _{t \rightarrow \infty} t S=(S \cap V) \pi_{2}(S)$ split.
(Exer).

S: $\quad T_{\sigma(x)}\left(z_{\infty}\right)=\underbrace{\left(T_{\sigma(x)} Z \cap T_{\sigma(x)} \sigma(x)\right)}_{\begin{array}{c}\text { tangeni) space } \\ \text { aling } Z \cap \sigma(x)\end{array}} \oplus \underbrace{\pi_{2}\left(T_{\sigma(x)} z\right)}_{\begin{array}{c}\text { ontward" } \\ \text { direchious } \\ \text { in } E .\end{array}}$

Recall def:
$A, B \subseteq X$ subvaridies, $x \in A \cap B$.
We say A, B indersect transurah $Q x$ if A, B, X ar smoith $d x$ and $T_{x} A+T_{x} B=T_{x} X$.
Ci.e. $T_{x} A \wedge T_{x} B$ is as suall us possible.)

Proposition: $Z \subseteq E$ rubvariety, dim k.
Suppoce Z interseds $\sigma(X)$ (zero section) transuersely.
Then $s^{*}[z]=[z \cap \sigma(x)]$.
Prot: (1) Ruplaen Z by $t z$.
Doesn'd chaje $z \cap r(x),[z]$, tranrvorsality,
Take limit as $t \rightarrow \infty$.

Now $Z_{\infty} \subseteq \pi^{-1}(Z \cap \sigma(x))$
some honogevens subviridy,

$$
\mathcal{C}\left(G_{m}-\text { invariant }\right)
$$

(2) We claim $Z_{\infty}=\pi^{-1}(Z \cap \sigma(x))$

Examine tangent spas:

$$
T_{z}\left(z_{\alpha}\right) \subseteq T_{z} X \oplus T_{z}\left(\pi^{-1}(z)\right)
$$

\uparrow split subspace
By tausivesality, $T_{z}\left(z_{0}\right)+\underbrace{T_{z} X}=T_{z} E$
So by split-mess,

$$
T_{z}\left(z_{\infty}\right) \geq T_{z}\left(\pi^{-1}(z)\right) .
$$

S. by G_{m} invariance of $Z_{\infty}, Z_{\infty} \geq \pi^{-1}(z)$ True for all $z \in z_{a} \cap \sigma(x)$.

So, $\quad z_{\infty}=\pi^{-1}(z \cap \sigma(x))$.
So, by definition of the Gysin map,

$$
s^{x}[z]=s^{x}\left[z_{\infty}\right]=[z \cap \sigma(x)]
$$

(8) Ow Gives intersection product!
"Intersection with the zero section".
(*) By abuse of notation, s^{x} is ak sometimes called " σ^{-x} ", where $\sigma: x \rightarrow E$ zero section. not Clad.
(1) "pullicick along the zoo section".

Def: The top Cher homomorphism

$$
c_{r}(E) \cap: A_{k}(x) \rightarrow A_{k-r}(x)
$$

is by definition $\alpha \mapsto \underbrace{s^{*}}_{\Gamma} \circ \underbrace{\sigma_{*}(\alpha)}_{\tau}$

The tip Cherncluse is $C_{r}(E) \cap[x]$. (aka. Euler class)

Prop: If E hat a global section $s: x \rightarrow E$ such that $\mathbb{V}(s)$ has u dime r,
then $c_{r}(E) \cap[x]=[\mathbb{V}(s)]$

Proof: $\sigma(x)$ is Niles equaled fo $s(x)$
So,

$$
\begin{aligned}
s^{*} \circ \sigma_{*}[x] & \left.=s^{*}[\sigma(x)]\right) \text { by wile } \\
& =s^{*}[s(x)]^{2} \text { quiz. } \\
& =[s(x) \cap \sigma(x)]^{2} \text { by traverumity } \\
& =[V(s)] .
\end{aligned}
$$

(Extra detail: also tree with multiplicity:
$Z_{\infty}=\lim _{t \rightarrow \infty} t Z$ hes same multiplicity as $Z \cap \sigma(x)$ does:

$$
\left[z_{\infty}\right]=2\left[\pi^{-1}(z)\right]
$$

Day 26
(1) Other Chern classes ${c_{i}}_{i}(E)$?

There's a formate like for $s_{i}(E)$ It reduces to c_{r}.

$$
\begin{aligned}
& \left.E \quad X \times \mathbb{P}^{r-i}\right\} \text { define } \tilde{E}=\pi_{1}^{*} E \otimes \pi_{2}^{*} \theta(1) \text {. } \\
& \pi \downarrow \\
& \text { Def: } c_{i}(E) \cap \text { : } A_{k}(x) \rightarrow A_{k-i}(x)
\end{aligned}
$$

(HW): If E has appropriate sections $\sigma_{1}, \ldots, \sigma_{r-i+1}$

$$
c_{i}(E) \cap[x]=C D\left(\sigma_{1}, \ldots, \sigma_{(-i+1}\right)
$$

(2) Formal properties

$$
\left.\begin{array}{rl}
0 & \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \\
& c(A) c(C)=c(B) \\
& s(A) s(C)=S(B) \\
\text { For cap } E, & s(E)=\frac{1}{c(E)}
\end{array}\right\} \text { WW. }
$$

Cones a Normal bundles

Def: A cone C over a scheme X is Spec of a sheaf of graded O_{x}-algebras.
ie. $C \xrightarrow{\pi} x$

$$
\mathbb{W}_{p}^{己} \text { (same as grading) }
$$

Ex: (1) Affine cone over any projective vanity: $X=\operatorname{Proj} R$ graded ring

$$
\bar{x}=S_{\operatorname{pec}} R
$$

$$
\tilde{X}\left(\operatorname{in} \mathbb{A}^{n+1}\right) \quad X\left(\operatorname{in} \mathbb{P}^{n}\right)
$$

" G_{m} invariant affine variety".
(2) vector bundles
(3) Last class

$$
E \quad 2 \text { subusidy. } \operatorname{Sym}^{\circ}\left(E^{*}\right) / g
$$

$$
\downarrow \text { vecuble }
$$ ideal in

x $S y^{\prime}{ }^{\circ}\left(E^{*}\right)$
We de inced $Z_{\infty}:=\lim _{t \rightarrow \infty} t Z$.

$$
\begin{aligned}
& \underset{\downarrow}{E}: E=S_{p e c} \underbrace{y m}\left(\bullet\left(E^{*}\right)\right. \text {. } \\
& X \quad \text { over symmetric abs. } \\
& \text { locally } R\left[e_{1}, \ldots, e^{r}\right]
\end{aligned}
$$

This is a come!
Given by "lowest degree terms" in 5 .
((4) Normal cones!')
$X=\operatorname{smooth}$ varich
$\ddot{Z}=$ smooth subveridy.

$$
\left.0 \rightarrow T_{z} \rightarrow T_{x}\right|_{z} \rightarrow N_{z / x} \rightarrow 0
$$

$<$ tangent directions away from Z.

Rank: $c\left(T_{x} \mid z\right)=c\left(T_{z}\right) \cdot c\left(N_{z / x}\right)$ May consequences of this formula!

Key ides: $z \subset x^{\curvearrowleft}$ dion.
$N_{z / x}$ dime This ir like e

$\sigma(z)$ atomy S act $p=\sin$.
(3): In this case we get a tangent "cone" showing $\tilde{C} \cap Z$ to first order.

Def: X scheme.
Z subscherna
The normal one to z in $x \quad C_{z}(x)$
is Spec of when

$$
\begin{aligned}
& \text { pec } A \text { when } \\
& x
\end{aligned} \quad \&=\left.I_{d \geqslant 0}^{d}\right|_{I_{z}^{d+1}}
$$

Fact: If X, Z are smooth,

$$
\begin{aligned}
& I_{z}{ }^{d} / I_{z}^{d+1} \cong \operatorname{Sym}^{d}\left(I_{z} / I_{z}^{2}\right) \\
& \text { So } A=S_{y m}{ }^{0}\left(I_{z} / I_{z}^{2}\right) .
\end{aligned}
$$

$I_{z} /_{I_{z}^{2}}$ is the conormal bundle

$$
N_{z / x}^{*},
$$

"functions on x, to first order near $\not{ }^{\prime \prime}$.

So $A=\operatorname{Sym}^{\circ}\left(N_{z / x}^{*}\right)$
and $C_{z}(x)=N_{z / x}$

Prof. $x \geq 8$ swooth varieties.
${ }^{2} W$ arbitreny.
$Z \cap W$ scheme thoretic inderuction.
Then the nomal cone to ZOW in W enubeds in $N_{z / x}$

$$
\text { P6: } N_{z / x}=\operatorname{Sect} S_{y n^{\prime}}(\underbrace{N_{z}^{*}}_{I_{z / x}})
$$

Sinee WCSX, we Live

$$
\begin{aligned}
& o_{x} \rightarrow O_{w} \\
& g_{z} \mapsto g_{z+} J_{w} \\
& I_{w}
\end{aligned}
$$

So $g_{z} \rightarrow \tilde{g}_{\text {ZnW }}$ ideald ind zach of

$$
\begin{aligned}
& \underbrace{\prod_{d \geq 0} g_{z i w}^{d} / g_{z+1}^{d+1}}_{\sqrt{\geqslant 0} S_{z}^{d} / g_{z}^{\alpha-1}} \underbrace{}_{=A}
\end{aligned}
$$

Gives

$$
N_{z / x} \hookleftarrow C_{z n w}(w) .
$$

Day 27: Intersection products a Deformation to the normal bund

Bet: $x \geq Z$ smooth codimed.
tubules W arbitress, pare dirk. null.

Def: The interaction product of $z b^{\prime} y$ in x
is

$$
\left(Z_{x} w\right):=s^{*}\left[C_{z_{n W}}(w)\right]
$$

By sin map
perturb, then intersect with $\sigma(7)$ (zero section).

Key cases.
(1) w, z intersect transversely. $T_{p} Z+T_{p} w=T_{p} x$
for all $p \in Z \cap W$.
\Rightarrow In this case $C_{Z \cap w}(w)=\left.N_{Z / X}\right|_{Z \cap w}$
fills up the space.
So $s^{*}[\quad]=[Z \cap \omega]$.
(Also: if Z NW is empty: get $\underline{0}$.)
(2) $W=Z$: self-intersection.

$$
C_{z \cap w}(w)=z \stackrel{\sigma}{\longleftrightarrow} N_{z / x}
$$

no extra normal directions, just get the zero section again.

$$
\begin{aligned}
\left(z_{x} z\right) & =s^{*}(\sigma(z)) \\
& =s^{*} \sigma_{x}[z]=c_{d}\left(N_{z / x}\right) \cap[z]
\end{aligned}
$$

Similorly, if $W \subseteq Z$,

$$
\left(Z_{x} w\right)=s^{*} \sigma_{*}[w]=c_{d}\left(N_{z / x}\right) \wedge[w]
$$

"perturb W off of 7 out ints $X^{\prime \prime}$.
(3) w, ZnW swoot but not traniverse. Say Z nW $\longrightarrow W$ codind'.

So, $C_{\text {Znw }}(w)=\left.N_{z n w / w} \hookrightarrow N_{z / x}\right|_{\text {Znw }}$ rank d' rankd.

Ther $\left(z_{\dot{x}} w\right)=c_{d-d^{\prime}}\left(\right.$ quotienl bundk $\left.\left.N_{z / x}\right|_{z, w} / /_{z_{i n} w / w}\right)$.

$$
n[z \cap w]
$$

This is called the excess normal bindl.

$$
\text { (rike is } \cong \frac{T_{p} x}{T_{p} Z+T_{p}} \text {.) }
$$

(Proof: Multiplicativity of top Chern class.)
(4) Ow intended uses:
$X=$ smooth, $\operatorname{dim} n$.
$A, B=$ arbitrary cycles, dims a, b.
Then $X \stackrel{\Delta}{\longleftrightarrow} X \times X$ codim n, smooth!
$A \times B \longrightarrow X \times X \quad \operatorname{din} a+b$. (ugh)
Note: $\Delta(X) \cap(A \times B)=A \cap B$ essentially b) definition.

So $\Delta(x) \underset{x \neq x}{\bullet}(A \times B) \in \underset{a+b-n}{A}(A \cap B)\left(\xrightarrow{i x} A_{a+b-n}(x)\right)$
Thu This makes $A(x)$ a graded, commablive ring.

Similarly: $X \xrightarrow{f} \underset{Y}{Y}$ of smooth varieties. $d=\operatorname{dim} X-\operatorname{dim} Y$, Z subvariely din k

Graph of $f: X \xrightarrow{\Gamma} X \times Y$ ar $\Gamma(f)$. Smoth! Codim $=\operatorname{din} Y$.

$$
\begin{gathered}
x \times z \leq x \times y \\
\text { By } \operatorname{def} n, \Gamma(f) \cap(X \times z)=f^{-1}(z) . \\
\text { ms } \Gamma(\epsilon)_{X x^{4}}(X \times z) \in A_{k-1}\left(f^{-1}(z)\right)\left(\xrightarrow{i v} A_{k-2}(x)\right) .
\end{gathered}
$$

For this to nork, we need $(Z \dot{\chi}$) to descoul to saill equivaleara in the W argument. (Kepp Z fixed.)

Thm. The map

$$
\begin{aligned}
z_{k}(x) & \rightarrow A_{k-\alpha}(z) \\
W & \mapsto(z \cdot w)
\end{aligned}
$$

descunds to $A_{k}(x)$.

Think of this in two steps: (Gysin)

$$
\begin{aligned}
Z_{k}(x) & \stackrel{D N B}{\rightarrow} Z_{k}\left(N_{z / x}\right)
\end{aligned} \stackrel{s^{*}}{\longrightarrow} A_{k-j}(z) .
$$

Enough to show that the first step descends to $A_{k}(x)$, since we know 5^{x} does.
$D N B=$ "Deformation to the Normal Bundt".
(Cone)

Note on blowups:

$$
\begin{aligned}
& D \longrightarrow \tilde{X}=B I_{z}(x) \\
& \downarrow \\
& \downarrow \\
& z \longrightarrow X \text { smooth. (for singticty) }
\end{aligned}
$$

The exceptional divisor D is the projectivized normal bundle!

$$
\text { (*) } \Delta=\mathbb{P}\left(N_{z / x}\right) \text {. }
$$

This is the exthorioview of last class's picture of $N_{\text {lx }}$. (tubular neighborhood).
(interior view).
Deformation to the normal bundle

$$
\begin{aligned}
Z \times \mathbb{P}^{\prime} \longleftrightarrow & X \times \mathbb{P}^{\prime} \\
& Z \times\{\infty\} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note: } \\
& N_{z \times\{\infty\} / X \times \mathbb{R}^{\prime}}=N_{z / x} \in \underset{\text { trivial }}{\mathbb{C}} \\
& \text { trivial (from } \mathbb{P}^{\prime} \\
& M=M(z, x):=B l_{z \times\{9\}}\left(x \times \mathbb{p}^{\prime}\right) \text {. }
\end{aligned}
$$ factor)

(3) Exceptional divisor is

$$
\mathbb{P}\left(N_{z \times\{\infty\} / X \times \mathbb{R}^{\prime}}\right)=\mathbb{P}\left(N_{z / x} \oplus \mathbb{C}\right) \text {. }
$$

The projective completion of $N_{z / x}$.

> Not:
> $=\pi$ \mathbb{R}^{\prime} (Since M is irreducible).

$$
M_{\infty}=\underbrace{B_{z}(x)}_{\text {externs }} \cup \underbrace{\mathbb{P}\left(N_{z / x} \oplus \mathbb{C}\right)}_{\text {interior }}
$$

joined along $\mathbb{P}\left(N_{z / x}\right)$.

Not: By universal property of blowups,

$$
\begin{aligned}
& \underbrace{}_{Z \times\{0\}}\left(Z \times \mathbb{R}^{1}\right) \subseteq B C_{Z \times 601}\left(X \times p^{\prime}\right) \\
& =Z \times \mathbb{R}^{\prime} \stackrel{\theta}{\longleftrightarrow} M
\end{aligned}
$$

became $Z \times\{\infty\}$ is a Cartier divisor on $Z \times p$!

$$
(t=\infty) .
$$

For $t \neq \infty$, this ir just $Z \times\{t\} \stackrel{i}{c} X \times\{t\}$.
for $t=\infty$, this is $Z \times\{\infty\} \stackrel{\sigma}{\hookrightarrow} N_{z / x} \subseteq M_{\infty}$.
$\Rightarrow M(Z, X)$ deforms (degenerates) the inclusion $Z \xrightarrow{i} X$ into the inclusion $z \stackrel{\sigma}{\longrightarrow} N_{z / x}$ as the zero section.
(Day $28!$)
Continuing: $Z \xrightarrow{i^{i}} X$.

$$
\begin{aligned}
& M=M(Z, x):=B l_{Z \times\{0\}}\left(X \times \mathbb{P}^{\prime}\right) \\
& \downarrow \\
& \mathbb{P}^{\prime} \\
& Z \times \mathbb{P}^{\prime} \longleftrightarrow M \text { mostly as } Z \hookrightarrow X \\
& \qquad \begin{array}{l}
t=\infty \\
=
\end{array} \text { as } Z \stackrel{\sigma}{\longleftrightarrow} N_{Z / x} \subseteq M_{\infty}
\end{aligned}
$$

One last lemma needed:
(pullback)
Gysin map Bor Cartier divisors
$D \stackrel{i}{\hookrightarrow} X$ Cartier divisor
We have $c_{1} G(D) \cap,: A_{k}(x) \rightarrow A_{k-1}(x)$.
We need something stronger:
"Gysin map":

$$
\begin{aligned}
& i^{*}: A_{k}(x) \rightarrow A_{k-1}(D) \\
& \binom{\text { Prop }}{\text { (Fulton }}
\end{aligned}
$$

Mai- observation about i^{*} :
If $\left.O(D)\right|_{D}$ is trial, then the $2^{\text {nd }}$ farl ot the der is 0
that is, $i^{*} i_{x}[W]=0$ for $W \subseteq D$.

Ex: $\quad X \geq D=\pi^{-1}(p)$ so $\theta(D)=\pi^{*} \theta(1)$.

$$
=\left.\underset{\mathbb{R}^{\prime}}{\downarrow} \longleftrightarrow \frac{\downarrow}{p} \quad O(D)\right|_{D}=\left.\pi^{*} O(D)\right|_{p}
$$

vec boll on a pt!

$$
\Rightarrow \text { trivial. }
$$

Note: $\theta_{D}(D)$ is the normal lek to $D!\left(N_{\Delta / x}\right)$ This is saying D has a trivia normal bale if $D=\pi^{-1}(\rho)$ from $X \xrightarrow{\pi} C$ carve.

Proposition: $Z_{k}(x) \xrightarrow{D N B} Z_{k}\left(N_{z / x}\right)$

$$
w \quad \longmapsto \quad c_{z_{n w}}(w)
$$

This mp deseende to $A_{k}(x) \rightarrow A_{k}\left(N_{z / x}\right)$.
Proot: Excision:

$$
M_{\infty} \underset{(t=\infty)}{\stackrel{\text { cosed }}{\longrightarrow}} M(Z, x) \underset{(t \neq \infty)}{\stackrel{\text { open }}{\stackrel{ }{2}}} X \times \mathbb{A}^{\prime}
$$

wher $M_{\infty}=B l_{z}(x) \cup \mathbb{P}\left(N_{z / x} \oplus \mathbb{C}\right)$. extaio interior.

$$
\begin{aligned}
& \text { Gies } \\
& A_{k+1}\left(M_{\infty}\right) \xrightarrow{i x} A_{k+1}(M(z, x)) \xrightarrow{j^{*}} A_{k+1}\left(x \times / A^{\prime}\right) \rightarrow 0 . \\
& \text { (Gysin } \\
& \text { mp for } M_{a} \text {) } \\
& i^{*} \downarrow \ldots \pi^{*} \\
& A_{k}\left(M_{\infty}\right) \leftarrow \cdots A_{k}(x)
\end{aligned}
$$

Note: M_{00} is a Cartier diumor : $t=\infty$
And sinet $M_{\infty}=\pi^{-1}(\infty)$ from $M(z, x) \backsim \mathbb{R}^{1}$,
i^{*} varishes on $i_{*}\left(A_{k+1}\left(M_{\infty}\right)\right)$
\Rightarrow Gives well-defind mop

$$
\begin{aligned}
A_{k+1}\left(X \times A^{\prime}\right) & \rightarrow A_{k}\left(M_{\infty}\right) \\
S & \mapsto i^{*}(\bar{S})
\end{aligned}
$$

Exumive:

$$
\begin{aligned}
& A_{k}(x) \stackrel{\pi^{* *}}{\rightarrow} A_{k+1}\left(X \times \not \mathbb{A}^{\prime}\right)-A_{k}\left(M_{a}\right)
\end{aligned}
$$

$$
\begin{aligned}
& M(z \cap w, w)
\end{aligned}
$$

by natwality of blowups 9

$$
\left(\left.\mathrm{Be}_{(Z \cap L /) \times\{\infty\}}\left(w \times \mathbb{P}^{1}\right) \subseteq B\right|_{Z \times\{a\}}\left(Z \times \mathbb{P}^{1}\right)\right)
$$

and $M(z \cap w, w) \cap M_{\infty}$

$$
\begin{gathered}
\left.=\underset{\text { (extain) }}{B \ell_{\text {znw }}(w) \cup \mathbb{P}\left(C_{\text {ZnW }}(w) \oplus \mathbb{C}\right)} \begin{array}{c}
\text { (interior) }
\end{array}\right) .
\end{gathered}
$$

Lastly, $N_{z / x} \subseteq M_{\infty}$ is an open subset. (compleat of $\mathrm{Bl}_{2}(x)$)

So, $\quad A_{k}\left(M_{\infty}\right) \rightarrow A_{k}\left(N_{z / x}\right)$.

$$
M_{\infty}(z \cap w, w) \mapsto C_{z \cap w}(w)
$$

Cor: Existuce + Eunctirrality of Chow rings of Smooth varieties! (graded by colin).

Cor (Projective bundle formula)
$E \stackrel{\pi}{\rightarrow} x$ rec bode.
$\mathbb{P}(E) \rightarrow x \quad \rho r o j$ bundle.
Ring structure of $A(\mathbb{P}(E))$ is:

- We have $A(X) \xrightarrow{\pi^{*}} A(\mathbb{R}(E))$.
- As an $A(X)$-algebra,

$$
A(\mathbb{P}(E)) \cong A(x)[\zeta] \quad c_{1} \theta_{E}(1)
$$

are
relation,
home of der.
(8)

$$
\begin{array}{rr}
\left(\varphi^{r}+c_{1}(E) \varphi^{r-1}+\cdots\right. & c_{1} O_{E}(1) \\
\cdots+c_{r-1}(E) \varphi \\
+c_{r}(E)
\end{array}
$$

Prob: On $\mathbb{P}(E)$, we hare

$$
0 \rightarrow 0_{E}(-1) \rightarrow \pi^{*} E \rightarrow Q_{E} \rightarrow 0
$$

So, $\frac{c\left(\pi^{*} E\right)}{c\left(O_{E}(-1)\right)}=c\left(Q_{E}\right)$
$\pi^{x} c(E)$

$$
=\frac{1+\pi^{*} c_{1}(E)+\cdots+\pi^{*} c_{r}(E)}{1-\zeta}=\underbrace{c\left(Q_{E}\right)}_{\substack{\text { rank } r-1 \\ \text { rec bdl. }}}
$$

\Rightarrow deg \sim part of this equation vanishes.

$$
\begin{aligned}
= & \left(1+\cdots+\pi^{*} c_{r}(E)\right)\left(1+Y+T^{2}+\cdots\right)=c\left(Q_{E}\right) . \\
& \downarrow \text { deyrpart: } \\
& \rho_{r}+Y^{r-1} c_{1}(E)+\cdots Y c_{r-1}(E)+c_{r}(E)=0
\end{aligned}
$$

By additive description, this gives the corred Chow groups. (No other relations or the groups would be too small.)

Similes idea: Grassmann bundles:
$E-X$ re boll.
$\underline{\operatorname{Gr}}(k, E) \stackrel{\pi}{\sim} X$ Grassmam bundt. Fiber:
On Gre, we have

$$
0 \rightarrow B_{E} \rightarrow \pi^{x} E \rightarrow Q_{E} \rightarrow 0
$$ rank k subbundtu.

So, $A\left(G_{-}\right)$is described by relations from:

8

$$
\begin{aligned}
& \frac{c\left(\pi^{x} E\right)}{c\left(s_{E}\right)}= \underbrace{c\left(Q_{E}\right)}_{\|_{\text {rank }}^{c} r-k} \\
& \operatorname{vamish}^{c} r_{\text {val }}, \ldots, r \text { parts }
\end{aligned}
$$

$$
A\left(\underline{G_{r}}\right) \approx \frac{A(X)\left[s_{1}, \ldots, c_{k}\right]}{\text { relations } B} c_{i}\left(\ell_{\Sigma}\right)
$$

Dry 29 : Excess intersections.
$x=s_{\text {moith }}$ vorict .
u
$Y_{i}=$ Subvarieties, regubly cubeded.
ow defivitui of intresection product gives:

$$
\left(Y_{1} \cdot \ldots \cdot Y_{r}\right) \in A\left(\cap Y_{i}\right)
$$

If $Z \subseteq \cap Y_{i}$ is a connected congonead (opu)

$$
\Rightarrow B_{y} \text { apphiy (oph) } A\left(\cap Y_{i}\right) \stackrel{r^{*}}{\substack{\text { (open) }}} A(Z)
$$

we get a class in $A(Z)$, danoted

$$
\left(Y_{1} \cdot \cdots \cdot Y_{r}\right)^{Z}
$$

calles the yuivelance of Z in $\left(Y_{1} \cdot \cdots \cdot Y_{r}\right)$.
Then

$$
\underbrace{\left(Y_{1} \cdot \cdots \cdot Y_{P}\right)}_{\text {globab prodnct }}=\sum_{\begin{array}{c}
Z \subseteq n Y_{i} \\
\text { conn. Comp. }
\end{array}} \underbrace{\left(Y_{1} \cdot \cdots \cdot Y_{r}\right)^{Z}}_{\text {"bocil contribultin cron }}
$$

By default $\left(Y_{1} \cdot \ldots \cdot Y_{\rho}\right)$ is computed via

$$
\begin{gathered}
X \stackrel{\Delta}{\hookrightarrow} X^{r} \\
\left(Y_{1} \cdot \cdots \cdot Y_{r}\right)=\Delta(X)_{X^{r}}^{\cdot}\left(Y_{1} X \cdots-Y_{r}\right)
\end{gathered}
$$

If Z is smooth, the quisaberve of Z can be computed in $\mathbb{P}\left(N_{z / x} \oplus 1\right)$:
(projective completion)
How? multiply the classes

$$
\left[\mathbb{P}\left(C_{Z}\left(Y_{i}\right) \oplus \mathbb{1}\right)\right] \in A(\mathbb{P}(N \otimes 1))
$$

projective completion of $C_{Z}\left(Y_{i}\right)$ (closme).
\Rightarrow Amounts to "perturbing the Y_{i} locally at Z, fixing the global pictor".

Ex: $\mathbb{P}^{3} \supseteq S_{1}, S_{2}, S_{3}$ sm surfaces, degs S_{1}, S_{2}, S_{3}

$$
S_{\text {ypole }} S_{1} \cap S_{2} \cap S_{3}=\underbrace{C}_{\substack{\text { sm cwve } \\ d e y \\ \text { genus } g}} \cup \underbrace{X}_{\substack{\text { finitit } \\ \text { sel ot } \\ \text { pos }}}
$$

What is $\operatorname{dy}(x)$?
Idee:

$$
=\underbrace{s_{1} \cdot s_{2} \cdot s_{3}}_{\substack{\left.s_{1} s_{2} s_{3} \\ \text { Bizout, } \beta^{3}\right)}}=\underbrace{\left(s_{1} \cdot s_{2} \cdot s_{3}\right)^{c}}_{\substack{\text { Calculate } \\ \text { locally. }}}+\underbrace{\operatorname{dg}(x)}_{\text {rest. }}
$$

Sines C is smooth, pass to $\mathbb{P}\left(N_{c / p^{3}} \oplus \mathbb{1}\right)$.

Stey 1 . Total chora cless of

$$
\text { SES: }\left.0 \rightarrow T_{C} \rightarrow T_{\mathbb{R}^{3}}\right|_{C} \rightarrow N_{C / \mathbb{R}^{3}} \rightarrow 0 \text {. }
$$

On a cavie, just have c_{1}, so

$$
c_{1}\left(N_{C / \mathbb{P}^{\prime}} \oplus \mathbb{1}\right)=c_{1}\left(N_{C / \mathbb{P}^{3}}\right)
$$

From $c\left(N_{c / \mathbb{R}^{3}}\right)=\frac{c\left(T_{a^{3}} \mid c\right)}{c\left(T_{c}\right)}$,
$g^{\prime \prime} c_{1}(N)=c_{1}\left(T_{R_{3}} l_{c}\right)-\underbrace{d_{1}\left(T_{R_{3}}\right)}_{2-2 g} \begin{gathered}\left.c_{c}\right) \\ O(4)\end{gathered}$

$$
=[4 d-(2-2 g)][p t s]
$$

(technically, a O-cycle in $A_{0}(c)$, not just an integer.)

Chow ring:

$$
A(\mathbb{P}(N \oplus \mathbb{1}))=\frac{A(C)[\zeta]}{\varphi^{3}+\underbrace{\zeta^{2}}_{4 d-2+2 g} \underbrace{[1 / t}_{\substack{c_{1}(N-1)}}\binom{c_{2}=0}{\text { on cave }}}
$$

Step 2: For each S_{i}, Since S_{i} is Smooth,

$$
C_{c}\left(S_{i}\right)=N_{C / S_{i}}
$$

SES of normal bolls:

Fact: It comes from the live bundle

$$
\theta_{N}(1) \otimes N_{S_{i} / \mathbb{R}^{3}} \quad \text { on } \mathbb{P}\left(N_{c / \mathbb{R}^{3}} \oplus 1\right)
$$

Reason: $\quad O_{N}(-1) \longrightarrow \pi^{*} N_{C / \mathbb{P}^{3}}$

$$
0 \rightarrow N_{C / S i} \rightarrow N_{C / R^{3}} \rightarrow N_{S_{i} / \mathbb{P}^{3}} \rightarrow 0
$$

Get a map $O_{N}(-1) \rightarrow N_{S_{i} / \mathbb{P}^{3}}$

$$
\left(C^{N} 0 \rightarrow \theta_{N}(1) \odot N_{s: / P^{3}}\right. \text { section.) }
$$

which vanisher at $\Leftrightarrow l=N_{c} / s_{i}$.

$$
(x, \ell) \in \mathbb{P}(N \otimes \mathbb{I})
$$

$\Rightarrow N_{c} / s_{i}$ cut ont b, a suction of $\theta_{N}(1) \otimes N_{S_{i}\left(\mathbb{R}^{3}\right)}$
So,

$$
\left[\mathbb{P}\left(N_{C / S i} \otimes \mathbb{1}\right)\right]=C_{1}\left(\theta_{N}(1) \otimes N_{S_{i} / P^{3}}\right)
$$

(7) Local class $=\underbrace{c_{1}\left(O_{N}(1)\right)}_{\zeta}+\underbrace{c_{1}\left(N_{s_{i} / R^{2}}\right)}_{\text {of }^{S_{i} \text { sulbere }}}$

$$
\text { along } 6 .=\zeta+d \cdot s_{i}\left[\pi^{*} p^{t s}\right]
$$

Step 3. Multiply:

$$
\begin{aligned}
& \prod_{i=1}^{3}\left(\zeta+d s_{i}\left[\pi^{x} p^{\prime} s\right]\right) \\
=J^{3}+J^{2} d\left(s_{1}+s_{2}+s_{3}\right) \pi^{*}[\rho d s \quad \text { (no higher } & \text { terms } \\
& \text { since } \\
& {[1]^{2}=0 . }
\end{aligned}
$$

$$
=\varphi^{2}[-\underbrace{\left.-(4 d-2+2 g)+d\left(s_{1}+s_{2}+s_{3}\right)\right] \pi^{k}(\rho+s) ~}
$$

(Note: $y^{2} \cdot \pi^{*}\left[p^{d s}\right]$ gives O-acher on $\mathbb{P}(N \oplus 1)$)
Therefor in \mathbb{R}^{3} :

$$
\underbrace{S_{1} S_{2} S_{3}}_{\substack{\text { global } \\ \text { paduol }}}=\underbrace{\left(\delta_{1} \cdot S_{2} \cdot \delta_{3}\right)^{c}}_{\substack{\text { just } \\ \text { calculated! }}}+\underbrace{\operatorname{dey}(x)}_{\text {rest }}
$$

So,

$$
\operatorname{dg}(x)=s_{1} s_{2} s_{3}+4 d-2+2 g-d\left(s_{1}+s_{2}+s_{3}\right)
$$

Ex: $\mathbb{R}^{\prime} c \mathbb{R}^{3}$ ar $t_{\text {wished }}$ unbic. $\begin{array}{r}(d=3, \\ g=0)\end{array}$
Cwt out by 3 quadrics.

$$
\begin{aligned}
0 & =2 \cdot 2 \cdot 2+4 \cdot 3-2+2 \cdot 0-3(2+2+2) \\
& =8+12-2-18
\end{aligned}
$$

(*) $3264 \sim$ All that: $\int 13,6,3$, Variant using $B l_{C} C\left(\mathbb{P}^{3}\right)$.
(eatsior) instead of $\mathbb{P}(N \oplus \mathbb{1})$
Conics.

$$
\mathbb{P}^{5}=\text { conics in } \mathbb{R}^{2}
$$

\uparrow veronese.
$\mathbb{P}_{\text {abc }}^{2}=\underset{\substack{\text { double lines. } \\\left(a x+b y+c \\ z^{2}\right.}}{ } \quad v_{2}^{*} \theta(1)=\theta(2)$.
For C a chic, have
(hyperplane $\subseteq P^{5}$ cuts out conic on \mathbb{P}^{2}.)

$$
H_{C}=\{\text { conics tangent to } C\}
$$

hypeswatace of dey 6.
$\geq V_{2}\left(\mathbb{P}^{2}\right)$ always:
This is the bore locus

$\Rightarrow A$ double line is always "tanga". of the H_{c} 's.
Conics tangiers to 5 conics: $\cap W_{C_{i}}=V_{2}\left(\mathbb{R}^{2}\right) \cup \underbrace{X}_{\text {finite. }}$

Step 1: $N_{V_{2}\left(\mathbb{P}^{2}\right) / \mathbb{P}^{5}} \quad$ rank 3.
On \mathbb{R}^{n} have: (Euler Sequence)

$$
0 \rightarrow O_{\mathbb{R}^{n}} \rightarrow O(1)^{\oplus n+1} \rightarrow T R^{n} \rightarrow 0
$$

So, $c\left(T \mathbb{Q}^{n}\right)=\frac{c\left(O\left(1^{\theta n+1}\right)\right.}{s(\theta)}=\frac{c(\theta(1))^{n+1}}{1}$
$\left(\mathbb{P}^{5}\right) \quad\left(\mathbb{P}^{2}\right)=(1+\mathbb{H})^{n+1}$
Since H pulls back to $2 L$,

$$
0 \rightarrow \underbrace{T \mathbb{R}^{2}}_{c(1)=(1+L)^{3}} \rightarrow \underbrace{\left.T \mathbb{R}^{5}\right|_{v^{2}\left(\mathbb{R}^{2}\right)}}_{(1+2 L)^{6}} \rightarrow N_{v_{2}\left(\mathbb{P}^{2}\right) / \mathbb{R}^{5}} \rightarrow 0 .
$$

Since $v_{2}^{*} \theta(1)=\theta(2)$.

So, the Chow ring is

$$
A(\mathbb{P}(\underbrace{N+1)}_{\text {and } 4})=\frac{A\left(1 P^{2}\right)[\zeta]}{\left(\zeta^{4}+\zeta^{3} \cdot q l+\zeta^{2} \cdot 30 l^{2}\right)}
$$

Step 2: Examine cones $C_{v_{L}\left(\mathbb{P}^{2}\right)}\left(H_{C}\right)$.
H_{C} is singular atony $N_{2}\left(\mathbb{P}^{2}\right)$ because a double bine ri s target to a conic twice:

H_{C} has multiplicity 2 along $v_{2}\left(\mathbb{P}^{2}\right)$.

Our cine is

$$
\left.\left[\mathbb{P}\left(C_{v_{2}\left(\mathbb{R}^{2}\right)}\left(H_{C}\right) \oplus \mathbb{1}\right)\right]=a\right\}+b \pi^{*} L
$$

(divizor)

$$
\text { - } a=2=\text { multiplicity. }
$$

(J is the relative hapockine class, H_{c} boks like 2 hapesplares locelly.)
Relatedly: in $\mathrm{Bl}_{\mathrm{v}_{2}\left(\mathbb{P}^{\nu}\right)}\left(\mathbb{P}^{5}\right), \pi^{*} \mathrm{H}_{c}$

$$
=2[\text { exe. } \cdot d r]
$$

+ [strid larshon of H_{6}].

For b, apply the Gysin mp $\delta^{*}=\left(\pi^{*}\right)^{-1}$

$$
s^{*}[\text { come }]=s^{*}(a / 5+\underbrace{b \pi^{*} L}_{b \cdot L})
$$

S^{*} [cone]
This is the defininion:
of $v_{2}\left(\mathbb{P}^{2}\right) \underset{\mathbb{P}^{5}}{ } H_{c}$!

$$
=\left[v_{2}\left(⿴^{2}\right)\right] \cdot \underbrace{\left[\mathrm{H}_{C}\right]}_{\operatorname{teg} 6} \text { in } \mathbb{R}^{5}
$$

$$
=12 L o_{n} \mathbb{R}^{2}
$$

S. $b=12$

Step 3: Multiply: $\quad\left(2 y+12 \pi^{*} L\right)^{5}$
(Use defining $=\vdots^{(\text {alga) }}$

Sty 4: In \mathbb{R}^{5} :

$$
\begin{aligned}
& \underbrace{\left(H_{c_{1}} \cdot \cdots \cdot H_{C_{7}}\right)}_{C^{5}}=\left(H_{C_{1}} \cdot \cdot \cdot H_{C_{5}}\right)^{v_{2}\left(R^{2}\right)}+\operatorname{deg}(x) . \\
& 7776=4512+\operatorname{deg}(x) \\
& 777 C-4512=3264[\rho]=\operatorname{deg}(x)
\end{aligned}
$$

