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1 Introduction

Ewens’ (1972) sampling formula (ESF) is the probability distribution of the
number of different types of genes and their frequencies at a selectively neu-
tral locus under the infinitely-many-alleles model of mutation. The coalescent
process of Kingman (1982) describing the genealogy of a sample underlies
the sampling distribution. Kingman (1978) relates the sampling distribution
to partition structures. The population model under which the ESF holds
can be described as a diffusion process which contains as its limit domain
of attraction, when time is scaled appropriately, the Wright-Fisher model,
the Moran model, and Cannings’ (1974) exchangeable model generalizing the
Wright-Fisher model. Earlier papers viewed the ESF as an approximate sam-
pling formula in the Wright-Fisher model. The population gene frequencies
are modelled as a diffusion process by Ethier and Kurtz (1981), and as a ge-
nealogical process by Griffiths (1980) and Donnelly and Tavaré (1987). Joyce
and Tavaré (1987) relate the genealogical process to a linear pure birth and
immigration process. Applied interest is that in the ESF the number of types
is a sufficient statistic for the mutation rate. The stationary distribution of
the population gene frequencies in the diffusion process model is the Poisson
Dirichlet process. Donnelly and Kurtz (1986) study a particle process that
relates the population frequencies, modelled as a measure valued diffusion
process, to the coalescent process.

The distribution of non-mutant lines of descent from a given time in the past
to the present time is studied by Griffiths (1980), Watterson (1984), Tavaré
(1984) and Donnelly and Tavaré (1986), giving a generalization of the ESF
to the distribution of allele types before and after the given time in the past.
The distribution of age-ordered alleles in the ESF is derived in Donnelly and
Tavaré (1986).

The age distribution of a mutation known to be of a given frequency in a
population was first derived in a classic paper by Kimura and Ohta (1973).
Recent papers studying the age distribution use a coalescent approach, a dif-
fusion approach, or a combination of the two. (Slatkin and Rannala, 1997;
Rannala and Slatkin, 1998; Griffiths and Tavaré, 1998; Wiuf and Donnelly,
1999; Stephens, 2000; Wiuf, 2000, 2001; Griffiths, 2003; Griffiths and Tavaré,
2003 ).

In this paper we present an elementary proof of the ESF based on combina-
torial arguments in the framework of the coalescent process. The approach is
used to extend the sampling formula and the Poisson Dirichlet distribution
in the population to the case of a variable population size. The age-ordered
distribution of gene frequencies in a sample and the population is also found
in this case, extending known results.
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The genealogy and age of a rare mutant type considered in Wiuf (2000, 2001)
is studied by the combinatorial approach in this paper.

A connection is explored between the distribution of age-ordered frequencies
and ladder indices and heights in an urn model, corresponding to the sample;
and in a sequence of independent uniform random variables corresponding to
the population.

2 Ewens’ sampling formula: a combinatorial derivation

The ancestry of a random sample of n genes is described back in time by a co-
alescent tree, with vertices where lineages have a common ancestor (Kingman,
1982). Mutations occur along the edges of the coalescent tree according to a
Poisson process of intensity θ/2. Many discrete population models are in the
domain of attraction of the coalescent when time is measured appropriately.
In a Wright-Fisher model of constant size N with an infinitely-many-alleles
model of mutation, novel mutant types are formed at a rate of u per gene
per generation. The distribution of the ancestral tree of a sample of n genes
converges to the coalescent when time is measured in units of N generations,
where θ = 2Nu is the scaled mutation rate per gene per generation and
N → ∞. The number of non-mutant ancestors of a sample of n genes is a
death process back in time, where ancestral lines are lost by either mutation
or coalescence. Griffiths (1980) and Tavaré (1984) study this death process
in the entire population and in a sample of n genes. Ewens (1990) calls the
events in the death process defining events. Lines lost by mutation determine
the family tree of the mutant in the sample with the number of members
of the family as the number of leaves subtended by the mutation. Label the
sample genes and list them in the order in which they are lost backward in
time, following either a mutation or a coalescence. In the case of coalescence,
one of the two genes involved is chosen at random to continue back in time
as a parent gene and the other gene is lost. There are n! different ordered loss
lists. If there are k different types of genes represented in the sample with
nl genes of type l for l = 1, . . . k, then there are n!/[n1! · · ·nk!] possibilities
for the positions of the genes of the different types in the list. However if the
types that have the same number of genes in the sample are not labelled, then
this number of possibilities is divided by [b1! · · · bn!], where bj is the number of
types represented j times in the sample for j = 1, . . . , n such that

∑
j bj = k.

Now consider the probability of each particular sequence of events. When
i genes remain the rate of mutation is iθ/2 and the rate of coalescence is
i(i − 1)/2. The probability that a particular gene is the next one lost and
that it is lost by mutation is θ/[i(θ + i − 1)]. Similarly the probability that
a particular gene of a given type is the next one lost and that it is lost by
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coalescence is (j−1)/[i(θ+ i−1)], where j is the number of genes of the given
type among the i remaining genes. Then it is clear that

n! ·
(

n!

n1! · · ·nk!

)
· 1

b1! · · · bn!
· (n1 − 1)! · θ · · · (nk − 1)! · θ

1 · θ · · ·n · (θ + n− 1)

=
n!

1b1 · · ·nbn
· 1

b1! · · · bn!
· θk

θ · · · (θ + n− 1)
(1)

is the probability of having k types of genes with bj types represented j times
for j = 1, . . . , n in a sample of size n =

∑
j jbj. This is the sampling formula

conjectured by Ewens (1972) and proved by induction by Karlin and McGregor
(1972). Hoppe (1984) derived the ESF from an urn model representation of
sampling genes.

Notice that, if the n genes are labelled, then the probability that nl given
genes among these are of type l for l = 1, . . . , k is

n!θk ∏k
l=1(nl − 1)!∏n

i=1 i(θ + i− 1)
.

Moreover, if the n sampled genes are labelled and the ancestry is traced back
up to the point of m ancestral genes of given types, say types 1, . . . ,m, then it
suffices to choose these m ancestral genes and proceed as above for the others
to find

(n−m)!θk−m∏m
l=1 nl!

∏k
l=m+1(nl − 1)!∏n

i=m+1 i(θ + i− 1)
(2)

for the probability of having nl given genes of type l for l = 1, . . . , k, types
1, . . . ,m being ancestral and types m + 1, . . . , k being mutant. This is the
formula originally given by Watterson (1984), which also extends Kingman’s
(1982) formula for the case θ = 0.

3 Variable population size

If the population size is variable, the rate of mutation of i genes at time back t
is iθ/2 and the rate of coalescence is i(i− 1)/[2λ(t)], where λ(t) = N(t)/N(0)
and t is expressed in units of N(0) generations. Starting with n genes at the
current time 0 and measuring time backward, the genes are lost by mutation
or coalescence at random times Tn < Tn−1 < · · · < T1 according to a non-
homogeneous death process of rate i[θ+(i−1)λ(t)−1]/2, where i is the number
of remaining genes at time back t. At time Ti = t, the probability that a
particular gene is lost by mutation is [θλ(t)]/[i(θλ(t)+i−1)] and by coalescence
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(j−1)/[i(θλ(t)+ i−1)], where j is the number of remaining ancestral lineages
of the particular gene type in the sample.

Assume n distinct genes at time 0 and allocate each of them a type such that
nl are of type l for l = 1, . . . , k. There are n!/[n1! · · ·nk!] possibilities. The
genes are lost in order and there are n! cases in all to consider. Decompose
these cases by looking at the position of the last gene of each type defined as
the number of remaining genes the last time there remains one gene of the
given type. The outcome will be an ordered sequence 1 = il1 < . . . < ilk ≤ n,
where ilm is the number of genes remaining just before the last gene of type
lm is lost, this type being the m-th oldest, for m = 1, . . . , k, and (l1, . . . , lk)
being a permutation of (1, . . . , k). This sequence configuration is possible if
and only if the inequalities ilm ≤ ∑m−1

ν=1 nlν + 1 hold for m = 1, . . . , k. The
number of arrangements of the n genes satisfying these conditions is, starting
from the last gene lost and ending with the first one,

k∏
m=1

nlm ·
(
∑m

ν=1 nlν − ilm)!(∑m
ν=1 nlν − ilm+1 + 1

)
!
, (3)

with the convention that ilk+1
= n, since there are nlm possible genes for

the last one of type lm to be lost and (
∑m

ν=1 nlν − ilm) possible genes for the
ones lost between the last one of type lm and the last one of type lm+1, for
m = 1, . . . , k. The number of arrangements (3) can also be written as

k∏
m=1

(nlm !) ·

∑m
ν=1 nlν − ilm

nlm − 1

 .

The probability of each such sequence is

E
{

θk ∏k
l=1[(nl − 1)!λ(Til)]

n!
∏n

i=1[θλ(Ti) + i− 1]

}
.

Finally, if the types with the same number of genes are not labelled, the
probability of having k types of genes with bj types represented j times for
j = 1, . . . , n is

n! · θk−1(∏k
l=1 nl

)
·
(∏n

j=1 bj!
) ∑

i,l

ai,lE
{ ∏k

l=2 λ(Til)∏n
i=2[θλ(Ti) + i− 1]

}
, (4)

where

ai,l =

∏k
m=1

∑m
ν=1 nlν − ilm

nlm − 1


 n

n1, . . . , nk


,

5



with i = (i1, . . . , ik) satisfying 1 = il1 < · · · < ilk ≤ n and im ≤ ∑m−1
l=1 nl + 1,

for m = 1, . . . , k, and l = (l1, . . . , lk) being a permutation of (1, . . . , k). Note
that ∑

i

ai,l =
k∏

m=1

{
nlm∑k

ν=m nlν

}
, (5)

which is the probability that type lm is the m-th oldest, for m = 1, . . . , k. The
product on the right side of (5) is obtained by conditioning on the older types
in sequential order from m = 1 to m = k. The sum on the left side of (5) is
obtained by partitioning the event according to the positions of the last genes
of the k different types then using the above number of possible arrangements
of all the genes for each case divided by

∏k
m=1(nlm !), in order not to distinguish

genes within types. Also
∑

i,l ai,l = 1. Notice that

n! · θk−1∏k
l=1 nl

∑
i

ai,lE
{ ∏k

l=2 λ(Til)∏n
i=2[θλ(Ti) + i− 1]

}
, (6)

is the probability of having nlm genes of type lm, this type being the m-th
oldest, for m = 1, . . . , k. In the case of a constant population size, taking
lk = k, . . . , l1 = 1, without loss of generality, this probability reduces to

(n− 1)!

nk · (nk + nk−1) · · · (nk + · · ·+ n2)
· θk

θ · · · (θ + n− 1)
, (7)

which is the formula for the age-ordered types given by Donnelly and Tavaré
(1986).

4 Ladder indices and heights in an urn model

There is a representation of the conditional distribution of the partial sums∑m
ν=1 nν , m = 1, . . . , k, given i as the distribution of ladder heights given

ladder indices i in an urn model.

The probability of a particular sequence i is

E
{∏

c 6∈i(c− 1)
∏

d∈i θλ(Td)∏n
i=1[θλ(Ti) + i− 1]

}

=
(n− 1)!∏k
l=2(il − 1)

E
{ ∏k

l=1 θλ(Til)∏n
i=1[θλ(Ti) + i− 1]

}
. (8)

The probability of an age-ordered configuration conditional on i from (6) and
(8) is
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hi(n) =
n
∏k

l=2(il − 1)∏k
l=1 nl

· ai,l

=

∏k
l=2(il − 1)

(n− 1)!
·

k∏
m=1

(∑m
ν=1 nν − im

)
!

(
∑m−1

ν=1 nν − im + 1
)
!
. (9)

By convention the factorial term in the denominator is taken as 1 when m = 1.
Note that

∑
hi(n) = 1, where summation is over

∑k
l=1 nl = n and

∑m−1
l=1 nl ≥

im − 1, m = 2, . . . , k.

Label n balls in an urn 1, 2, . . . , n and draw out balls at random sequentially.
Let i = (i1, . . . , ik) and b = (b1, . . . bk) be ladder indices and ladder heights
where successive maxima occur in the numbers on the balls which are drawn.
The last index k is defined such that bk = n. The probability of a particular
initial pair i1 = 1, b1 is n−1. Then for m > 1 the probability of obtaining
im, bm, conditional on (i1, . . . , im−1) and (b1, . . . , bm−1) is

bm−1 − im−1

n− im−1

· · · bm−1 − im + 2

n− im + 2
· 1

n− im + 1

=
(bm−1 − im−1)!

(bm−1 − im + 1)!

im−1∏
j=im−1

1

n− j
. (10)

The joint probability of a configuration i,b is therefore

P (i,b) =
(n− ik)!

n!
·

k∏
m=2

(bm−1 − im−1)!

(bm−1 − im + 1)!

=
1

n!
·

k∏
m=1

(bm − im)!

(bm−1 − im + 1)!
. (11)

The distribution of the age-ordered frequencies n = (n1, . . . nk) is identical to
the ladder height distribution with bm =

∑m
ν=1 nν . This follows because hi(n)

is proportional to P (i,b). Also comparing the two distributions the marginal
ladder index distribution is

P (i) =
1

n
∏k

m=2(im − 1)
. (12)
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5 Population frequencies

5.1 GEM distribution

In a constant sized population model where λ(t) = 1, t ≥ 0, the age-ordered
frequencies X1, X2, . . . have a GEM distribution

Z1, Z2(1− Z1), Z3(1− Z2)(1− Z1), . . . , (13)

where
{
Zi, i ≥ 1

}
are mutually independent identically distributed (i.i.d.)

random variables with density

θ(1− z)θ−1, 0 < z < 1,

(Donnelly and Tavaré, 1986, Ewens, 1990). This is a random partition repre-
sentation (see Pitman (1996) and references therein). The unordered frequen-
cies are distributed as a Poisson Dirichlet point process (Kingman, 1978).

The population analogue of (2) is derived in Griffiths (1980), Donnelly and
Tavaré (1986).

Let (n1, . . . , nk) be a sample taken from the GEM distribution arranged in
age order and q(n1, . . . , nk) the age-ordered distribution. It is known that the
distribution is (7), however we give a short proof for completeness. Considering
whether the oldest type in the sample is the oldest type in the population or
not

q(n1, . . . , nk) =

(
n

n1

)
· E
(
Zn1

1 (1− Z1)
n−n1

)
· q(n2, . . . , nk)

+ E
(
(1− Z1)

n
)
· q(n1, . . . , nk)

=

(
n

n1

)
· θΓ(n1 + 1)Γ(n− n1 + θ)

Γ(n + θ + 1)
· q(n2, . . . , nk)

+
θ

n + θ
· q(n1, . . . , nk), (14)

where q(n2, . . . , nk) is intrepreted as 1 if k = 1. Simplifying (14)

q(n1, . . . , nk) =
θ

(n− n1)
· (n− 1)!

(n− n1 − 1)!
· Γ(n− n1 + θ)

Γ(n + θ)
· q(n2, . . . , nk),

and (7) follows by recurrence. The distribution of the age-ordered relative
frequencies n/n in a constant sized population model, (7), converges to the
GEM distribution as n →∞ because of the fact that it is a sample distribution
from the GEM distribution.

8



5.2 Variable population size

It is of interest to find the population distribution of age-ordered frequencies in
a variable sized population model. This extends the Poisson Dirichet and GEM
distributions. The limit distribution for the age-ordered relative frequencies
conditional on i is intrepreted as the population distribution. This distribution
can be described in terms of: (i) the event times {Tj , j ≥ 1}; (ii) a stochastic
sequence i generated by a mixture of Bernoulli trials {χj, j ≥ 1} conditionally
independent given {Tj, j ≥ 1} such that P (χj = 1|Tj) = θλ(Tj)/[θλ(Tj)+ j−
1], P (χj = 0|Tj) = 1 − P (χj = 1|Tj); and (iii) the age-ordered frequencies,
conditional on i.

The sequence {Tj, j ≥ 1} is a reverse Markov chain, with transition distribu-
tions

P (Tj > t | Tj+1 = s) = exp

{
−θ

2
(t− s)j −

(
j

2

)∫ t

s

du

λ(u)

}

= exp

{
−jθ

2

∫ t

s

du

pj(u)

}
, (15)

where t > s and pj(u) = θλ(u)/[θλ(u)+j−1]. In the limit there is an entrance
boundary at infinity in the process. It follows from (15) and

P (χj = 1|Tj = t) = pj(t),

that

P (χj = 1, Tj ∈ (t, t + dt) | Tj > t) =
jθ

2
dt + o(dt).

The asymptotic form for nk−1hi(n) as n →∞, with ni/n → xi for i = 1, . . . , k,
is

nk−1hi(n) =
k∏

m=2

(im − 1) · nim−1

(∑m
ν=1 nν − im

)
!(∑m

ν=1 nν − 1
)
!

· n−(im−2)

(∑m−1
ν=1 nν − 1

)
!(∑m−1

ν=1 nν − im + 1
)
!

∼
k∏

m=2

(im − 1)
( m∑

ν=1

xν

)−(im−1)(m−1∑
ν=1

xν

)im−2

=
k∏

l=2

(il − 1) ·
k−1∏
l=1

( l∑
j=1

xj

)il+1−il−1

. (16)
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Note that (n1 − i1)! = (n1 − 1)! and (
∑k

l=1 nl − 1)! = (n − 1)! in simplifying
the first line of (16).

The distribution in (iii) is related to the distribution of ladder heights and
indices in a sequence of i.i.d. uniform random variables on [0,1] as shown in
the next subsection.

5.3 Ladder indices and heights in a sequence of uniform random variables

Let {Ul, l ≥ 1} be a sequence of i.i.d. uniform random variables on [0, 1] and
{Sm, m ≥ 1} the successive maxima which occur in the sequence {Ul, l ≥ 1}
at random indices i (with i1 = 1) such that Sm = Uim , m ≥ 1. Then the joint
probability of the first k indices of successive maxima (i1, . . . , ik) and density
of these maxima {Sm, 1 ≤ m ≤ k} is, by direct argument,

k−1∏
m=1

sim+1−im−1
m . (17)

The marginal probability of obtaining the indices is

∫ k−1∏
m=1

sim+1−im−1
m

k∏
m=1

dsm =
1

ik

k∏
m=2

1

im − 1
, (18)

where integration is over 0 < s1 < s2 < · · · < sk < 1. The conditional
distribution of {Sm, 1 ≤ m ≤ k} given the indices is thus

ik
k−1∏
m=1

(im+1 − 1)sim+1−im−1
m . (19)

Rescaling

ηm =
Sm

Sk

, 1 ≤ m < k,

the joint density of {ηm, 1 ≤ m < k} and Sk is

ik
k−1∏
m=1

(im+1 − 1)ηim+1−im−1
m · s

∑k−1

ν=1
(iν+1−iν−1)

k · sk−1
k

= ik
k−1∏
m=1

(im+1 − 1)ηim+1−im−1
m · sik−1

k . (20)
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The Jacobian of the transformation is sk−1
k . Integrating with respect to 0 <

sk < 1, the density of
{
ηm, 1 ≤ m < k

}
is

k−1∏
m=1

(im+1 − 1)ηim+1−im−1
m , (21)

which is identical to the density (16) of the partial sums {∑m
ν=1 Xν , 1 ≤ m <

k}. In the limit as n → ∞, k → ∞ and Sk → 1, so it follows that the
distribution of {∑m

ν=1 Xν , m ≥ 1} given i is identical to the distribution of
ladder heights in {Ul, l ≥ 1} given that they occur at ladder indices i.

The distribution (16) is simplified by making a transformation to independent
exponential random variables

X = (X1, . . . , Xk−1) → V = (V1, . . . , Vk−1),

where
m∑

l=1

xl = exp
{
−

k−1∑
l=m

vl

}
. (22)

The Jacobian of the transformation is

k−1∏
m=1

exp
{
−

k−1∑
l=m

vl

}
, (23)

and making the transformation in (16), the density of V over Rk−1
+ is

k−1∏
m=1

(im+1 − 1) exp
{
− (im+1 − 1)vm

}
. (24)

That is, V1, . . . , Vk−1 are i.i.d. exponential random variables with rates i2 −
1, . . . , ik−1. In the limit there is an infinite number of types, so the age-ordered
population frequencies have a representation

X1 = e−
∑∞

l=1
Vl ,

Xm =
m∑

l=1

Xl −
m−1∑
l=1

Xl

= e−
∑∞

l=m
Vl

(
1− e−Vm−1

)
, m ≥ 2. (25)

An equivalent representation to (25) is that, for m ≥ 1,

− log

(
m∑

l=1

Xl

)
=

∞∑
j=im+1

(j − 1)−1χjWj, (26)
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where {Wj, j > 1} is a sequence of i.i.d. exponential random variables with
rate parameters unity. A third representation of (25) as a random partition is

Xm = ξm−1

∞∏
l=m

(1− ξl), m ≥ 1, (27)

where {ξl, l ≥ 0} are mutually independent random variables, with ξ0 = 1,
and for m ≥ 2, ξm having a density of

(im+1 − 1)(1− z)im+1−2, 0 < z < 1.

Equation (27) is obtained by setting, for l > 1, ξl = 1− e−Vl .

The mean values of the age-ordered frequencies, conditional on i, from (25)
are for m ≥ 1

E(Xm | i) =
1

im

∞∏
l=m+1

(
1− 1

il

)
. (28)

The unconditional mean frequencies can be partially found. We have

E(X1) = E
[
E
(
X1 | i

)]
= E

[ ∞∏
l=2

(
1− 1

il

)]

= E
[ ∞∏

j=2

(
1− 1

j
χj

)]

= E
[ ∞∏

j=2

(
1− θλ(Tj)

j(θλ(Tj) + j − 1)

)]
. (29)

A similar calculation gives that for m ≥ 1

E(Xm) = E
[

1

im

∞∏
j=im+1

(
1− θλ(Tj)

j(θλ(Tj) + j − 1)

)]
. (30)

An alternative expression to (30) is

E(Xm) = E
[

1

θλ(Tim+1) + im

∞∏
l=im+1

θλ(Tl) + l

θλ(Tl+1) + l

]
. (31)

Equation (31) is found by simplifying terms in the product of (30) and shifting
the product index in the denominator by unity.

In the usual constant population size case when λ(t) = 1, t > 0, we have

E(Xm) = E
[

1

θ + im

]
. (32)
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Remark. Convergence of the product in (31) needs justification. Let {τl, l ≥ 1}
be independent exponential random variables with rates {l(l+θ−1)/2, l ≥ 1}.
In the constant sized population case (with notation T ◦

l ), T ◦
l =

∑∞
k=l τk. As

l →∞, T ◦
l , Tl → 0, and Tl ∼ T ◦

l because λ(0) = 1. We assume here that λ(t)
is continuous at t = 0 and |λ′(0)| < ∞. As l → ∞ the general term of the
product satisfies

θλ(Tl) + l

θλ(Tl+1) + l
≈ θ + l + 1 + T ◦

l λ′(0)

θ + l + 1 + T ◦
l+1λ

′(0)

=
θ + l + 1 + (τl + T ◦

l+1)λ
′(0)

θ + l + 1 + T ◦
l+1λ

′(0)

≈ 1 +
τlλ

′(0)

l

≈ 1 +
2Ylλ

′(0)

l3
, (33)

where {Yl, l ≥ 1} are i.i.d. exponential random variables with unit rates. The
product converges because of the cubic term in the denominator in (33).

5.4 Laplace transforms

The Laplace transform of − log(X1), conditional on {Tl, l > 1}, is

E
[
eφ log(X1)

]
= E

[
Xφ

1

]
= E

[ ∞∏
l=2

il − 1

il − 1 + φ

]

= E
[ ∞∏

j=2

(
1− φχj

j − 1 + φχj

)]

=
∞∏

j=2

(
1− φ

j − 1 + φ
· θλ(Tj)

θλ(Tj) + j − 1

)
(34)

=
∞∏

j=2

[
1− ρj

(
ωj − 1

)]−1

, (35)

with notation βl = θλ(Tl) + l − 1, ρl = θλ(Tl)/(l − 1), and ωl = (1 + φ/βl)
−1

for l > 1.

The moments of X1 can be found from (34), for k = 0, 1, . . ., by setting φ = k

13



to obtain

E(Xk
1 ) = E

 ∞∏
j=2

(
1− k

k + j − 1
· θλ(Tj)

θλ(Tj) + j − 1

) . (36)

A representation shown by (35) is

− log(X1) =
∞∑

j=2

γj, (37)

where {γj, j > 1} are mutually independent random variables with Laplace
transforms

E
(
e−φγj

)
=
[
1− ρj

(
ωj − 1

)]−1

, j > 1.

The random variable γj has an atom at zero with probability (1 + ρj)
−1, and

a continuous density of

∞∑
l=1

(
ρj

1 + ρj

)l

· 1

1 + ρj

·
βl

jγ
l−1

(l − 1)!
e−βjγ

=
ρj

1 + ρj

· βj

1 + ρj

· e−
βj

1+ρj
γ

=
ρj

1 + ρj

· (j − 1) · e−(j−1)γ, γ > 0. (38)

Of course − log(X1) is continuous, which agrees with

P
( ∞∑

j=2

γj = 0
)

=
∞∏

j=2

(1 + ρj)
−1 = 0,

since the series diverges to zero, because ρj is asymptotic to j−1. Note that
directly from (34) γj = χjκj, for j > 1, where {χj, j > 1} and {κj, j > 1}
are independent with {κj, j > 1} mutually independent exponential random
variables with rates {j − 1, j > 1}. The Laplace transform of − log(Xm),
conditional on im and {Tl, l > 1} is

E
[
eφ log(Xm)

]
= E

[(
1− e−Vm−1

)φ
∞∏

j=m

e−φVj

]

=
im∏
j=2

(
1 +

φ

j − 1

)−1

·
∞∏

j=im+1

[
1− ρj

(
ωj − 1

)]−1

. (39)

The first product in (39) is obtained from

14



E
[(

1− e−Vm−1

)φ]
= (im − 1)

∫ ∞

0
e−(im−1)v

(
1− e−v

)φ

dv

= (im − 1)
∫ 1

0
yim−2(1− y)φdy

= (im − 1)B(im − 1, φ + 1)

=
im∏
j=2

j − 1

j − 1 + φ
.

The structure of (39) clearly implies that

− log(Xm) =
im∑

k=2

δk +
∞∑

j=im+1

γj, (40)

where {δj, j > 1} are independent exponential random variables such that
δj has rate j − 1. Trying to simplify (39) furthur by taking expectation with
respect to im seems complicated.

As an application, it is of interest to calculate the probability pO that the
oldest type in a sample of genes is the oldest type in the population. In a
constant size population, from the GEM distribution

pO = 1− E
(
(1−X1)

n
)

= 1− θ

θ + n
=

n

θ + n
.

In a variable-sized population model, using (36)

pO =
n∑

k=1

(−1)k−1

(
n

k

)
E

 ∞∏
j=2

(
1− k

k + j − 1
· θλ(Tj)

θλ(Tj) + j − 1

) . (41)

5.5 GEM distribution equivalence with a constant population size

The consistency of the representation (27) with the GEM distribution in a
constant sized population model where λ(t) = 1, t ≥ 0, is shown in this section.
A long calculation shows that moments in the finite-dimensional distributions
of (27) coincide with moments in the GEM representation in the constant
population size model. Let r1, . . . , rm be non-negative integers. In the GEM
distribution
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E
[ m∏

l=1

Xrl
l

]
=

m∏
l=1

E
[
Zrl

l

(
1− Zl

)∑m

ν=l+1
rν
]

= θm
m∏

l=1

B
(
rl + 1,

m∑
ν=l+1

rν + θ
)

= θm
m∏

l=1

rl!Γ
(∑m

ν=l+1 rν + θ
)

Γ
(∑m

ν=l rν + θ + 1
)

=
Γ(θ)

Γ
(
|r|+ θ

) · θm
m∏

l=1

rl!∑m
ν=l rν + θ

. (42)

Notation used is |r| = ∑m
ν=1 rν . To show the equivalence of the GEM distribu-

tion and (27), moments in (27) are calculated and shown to agree with (42).
An identity that establishes the equivalence is that for m > 1

E
( m∏

l=1

Xrl
l

)
=

θ

θ + rm

· rm−1!rm!

(rm−1 + rm)!

· E
([m−2∏

l=1

Xrl
l

]
·Xrm−1+rm

m−1

)
. (43)

It then follows by induction on m that (42) is satisfied. Note that for m = 1,
directly from (27),

E
(
Xr1

1

)
= E

[ ∞∏
l=1

il+1 − 1

il+1 + r1 − 1

]
,

and for m > 1,

E
[ m∏

l=1

Xrl
l

]
= E

[m−1∏
α=1

ξrα+1
α (1− ξα)

∑α

ν=1
rν ·

∞∏
l=m

(1− ξl)
∑m

ν=1
rν

]

= E
[m−1∏

α=1

(iα+1 − 1)B(rα+1 + 1, iα+1 +
α∑

ν=1

rν − 1)

·
∞∏

l=m

il+1 − 1

il+1 + |r| − 1

]
. (44)

The expectation of the last product in (44) conditional on im is
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E
[ ∞∏
l=m

il+1 − 1

il+1 + |r| − 1

]

= E
[ ∞∏
j=im+1

(
1− χj|r|

j + |r| − 1

)]

=
∞∏

j=im+1

(
1− θ|r|

(j + |r| − 1)(j + θ − 1)

)

=
∞∏

j=im+1

[
(j − 1)(j + θ + |r| − 1)

(j + |r| − 1)(j + θ − 1)

]

=
1

(im − 1)!
· Γ(θ + im)Γ(|r|+ im)

Γ(θ + |r|+ im)
. (45)

Simplification of the second last line in (45) to the last line follows by taking
the limit of the product from im + 1 to n as n → ∞ and applying Euler’s
formula

Γ(z) = lim
n→∞

n!nz∏n
j=0(z + j)

.

If m = 1, im = 1, this shows that

E
(
Xr1

1

)
=

Γ(θ + 1)Γ(r1 + 1)

Γ(θ + r1 + 1)
,

in agreement with (42). The term containing im in (44) when m > 1 is thus

(im − 1)B(rm + 1, im + |r| − rm − 1)

· 1

(im − 1)!
· Γ(θ + im)Γ(|r|+ im)

Γ(θ + |r|+ im)

=
Γ(rm + 1)Γ(im + |r| − rm − 1)Γ(θ + im)

(im − 2)!Γ(θ + |r|+ im)
. (46)

The probability that im = im−1 + j, for j ≥ 1, conditional on im−1 is

θ(im−1 + j − 2)!Γ(θ + im−1)

(im−1 − 1)!Γ(im−1 + j + θ)
. (47)

The expected value of the expression (46) conditional on im−1 is obtained by
multiplying (46) by (47) and summing; that is

θΓ(rm + 1)Γ(θ + im−1)

(im−1 − 1)!Γ(θ + rm + 1)

∞∑
j=1

B(θ + rm + 1, j − 1 + im−1 + |r| − rm)

=
θrm!Γ(θ + im−1)

(im−1 − 1)!Γ(θ + rm + 1)
B(θ + rm, im−1 + |r| − rm). (48)
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Simplification from the second last line in (48) follows by expressing the Beta
function as an integral, then summing in the integrand. The identity used is
that for a > 0, b > 0,

∞∑
j=1

B(a + 1, b + j − 1) = B(a, b).

Multiplying the last line in (48) by the term containing im−1 in (44)

(im−1 − 1)B(rm−1 + 1, im−1 + |r| − rm − rm−1 − 1)

results in the expression

θ

θ + rm

· rm!rm−1!

(rm + rm−1)!

· Γ(rm−1 + rm + 1)Γ(im−1 + |r| − rm−1 − rm − 1)Γ(θ + im−1)

(im−1 − 2)!Γ(θ + |r|+ im−1)
. (49)

Comparing (46) and (49) establishes the identity (43) and therefore completes
the proof of the equivalence of the GEM representation and (27).

6 Genealogy of a derived type in a population of constant size

In the case of a constant population size, the probability that a sample of n
genes contains nl genes of type l for l = 1, . . . , k with

∑
l nl = n does not

depend on the order in which the sampled genes are lost backward in time
either by mutation or coalescence. Therefore, if a given type is represented r
times and known to have been derived from another type in the sample, the
probability for the last gene of this type to be lost when there remain m + 1
genes for m = 1, . . . , n− r is given by

n−m− 1

r − 1


n− 1

r


, (50)

which converges to q(1 − q)m−1 as n and r tend to infinity such that r/n
converges to q. The time of occurrence of this event, represented by Tm+1,
is distributed as the sum of independent exponential variables of parameters
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i(θ + i− 1)/2 for i = m + 1, . . . , n, whose expectation is

n∑
i=m+1

2

i(θ + i− 1)
. (51)

Multiplying and summing over m, the mean age of the mutation that has
given rise to the family of size r is

n−r∑
m=1

n−m− 1

r − 1


n− 1

r


·

n∑
i=m+1

2

i(θ + i− 1)
. (52)

The limit of (52) as n →∞ is

2q

θ − 1

∫ 1

0

1− vθ−1

1− v
· v

1− (1− q)v
dv. (53)

If θ → 0 and n →∞, then the mean age, calculated directly from (52), is

∞∑
m=1

q(1− q)m−1 · 2

m
= − 2q

1− q
log(q). (54)

Kimura and Ohta (1973) derived the classical formula (54). Griffiths and Mar-
joram (1996), Griffiths and Tavaré (1998), Wiuf and Donnelly (1999) and
Stephens (2000) show that the mean age of a mutation that gave rise to a
family of size r is (52) when θ = 0. Griffiths (2003) shows that there is a
simplification to

2r(n− r)−1
n∑

j=r+1

j−1. (55)

In the treatment of the above authors only the lineages containing a given
mutation are considered, with other mutations not affecting lineages.

Similarly to the the derivation of (50), the probability for a gene of the derived
type to be lost when there remain m + 1 genes among which j of the derived
type for j = 2, . . . , r and m = j, . . . , n− r + j − 1 ism− 1

j − 1

 ·
n−m− 1

r − j


n− 1

r


,
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whose limit is m− 1

j − 1

 qj(1− q)m−j,

and the time of occurrence of the coalescence event responsible for this loss
has expectation

n−r+j−1∑
m=j

m− 1

j − 1

 ·
n−m− 1

r − j


n− 1

r


·

n∑
i=m+1

2

i(θ + i− 1)
, (56)

whose limit as n →∞ is

2qj

θ − 1
·
∫ 1

0

(1− vθ−1)vj

(1− v)(1− (1− q)v)j
dv. (57)

Additionally, as θ → 0 the limit is

∞∑
m=j

m− 1

j − 1

 qj(1− q)m−j · 2

m
= 2

(
q

1− q

)j ∫ 1

q

(1− y)j−1

yj
dy. (58)

In the case j = 2, (58) evaluates to

2q

1− q
+

2q2

(1− q)2
log(q), (59)

which corresponds to the expected time it takes for all genes of the derived
type to coalesce.

The above treatment shows that, in the limit, the total number of genes re-
maining the first time there remain j − 1 genes of the derived type, denoted
by M(j), is distributed as a sum of j independent geometric variables of pa-
rameter q, and therefore the distribution of qM(j) as q tends to 0 converges to
the distribution of a sum of j independent exponential variables of parameter
1. Moreover, assuming qM(j) = x fixed and multiplying the unit of time by q,
the last time there remain j genes of the derived type converges in distribution
to its mean, which is 2/x, as θ and q tend to 0, since its variance, which is
given by

n∑
i=x

q
+1

4

q2i2(θ + i− 1)2
,

is bounded by ∫ ∞

x
q
−1

(
4

q2y4

)
dy =

4q

3(x− q)3
,
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which converges to 0 as q tends to 0, in agreement with Wiuf (2000). This
means that the last time there remain j genes of the derived type is distributed,
in the limit, as twice the inverse of a gamma distribution.

7 Genealogy of a derived type with variable population size

When the population size is variable, the probability of having r genes of a
derived type and n − r genes of an ancestral type in a sample of size n for
r = 1, . . . , n− 1 is

(n− 1)! · θ
r

n−r∑
m=1

n−m− 1

r − 1


n− 1

r


E

{
λ(Tm+1)∏n

i=2[θλ(Ti) + i− 1]

}
. (60)

The probability of this event, given that there are two types in the sample, is
proportional, as θ tends to 0, to

n

r
·

n−r∑
m=1

n−m− 1

r − 1


n− 1

r


E(λ(Tm+1)), (61)

which converges, as n and r tend to 0 such that r/n converges to q, to

L(q) =
∞∑

m=1

(1− q)m−1E(λ(Tm+1)). (62)

Moreover, given a frequency q of the derived type, the last gene of this type
is lost by mutation when there remain m + 1 genes with probability

(1− q)m−1

L(q)
E(λ(Tm+1)), (63)

for m ≥ 1, and the time of occurrence of this event is Tm+1 with this proba-
bility.

The coalescent process in a variable sized population can be coupled with a
process in a population of constant size N(0) by measuring time backwards in
units of τ =

∫ t
0 λ(s)−1ds. In a population which decreases in size exponentially
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back in time N(t) = N(0)e−βt, that is λ(t) = e−βt, and βt = log(1 + βτ). In
such a case

E(λ(Tm+1)) = E

{
1

1 + βTm+1

}
, (64)

where Tm+1 is distributed as a sum of independent exponential variables of
parameters i(i− 1)/2 for i = m + 1, . . . , n. Keeping qm = x and qβ = b fixed
as q tends to 0, the variable βTm+1 converges in distribution to 2b/x. Then
the variable qM = X, where M represents the number of genes remaining
just after the loss of the last gene of the derived type has a limiting density
function, as q tends to 0, that is proportional to

f(x) =
e−x

1 + 2b/x
, (65)

for x > 0. Moreover, the time of occurrence of this event in time units of
qN(0) generations is distributed, as q tends to 0, as

(1/b) log(1 + 2b/X). (66)

Similarly, since the probability that the sampled genes are lost in a given order
depends only on the position of the last gene of the derived type, the variable
qM(j) = X(j), where M(j) represents the number of genes remaining the
first time there remain j − 1 genes of the derived type, will be distributed, as
q tends to 0, as a sum of j independent random variables, one of which has a
density function proportional to f(x) and the other j− 1 have an exponential
distribution with parameter 1. Moreover, the time of occurrence of this event
in time units of qN(0) generations will be distributed, as q tends to 0, as

(1/b) log(1 + 2b/X(j)). (67)

Again, this is in agreement with Wiuf (2000, 2001).
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