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Laws of Adaptation
A course on biological evolution in eight lectures
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Ways to diversity, or polymorphic LTE

Part II – continuous traits
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Possibility of polymorphic LTE for a continuous trait

The previous situation is the first case where we have met a genuine polymorphic LTE and, as we have seen, it coincides

exactly with the ESS predicted under the same selection regime, in the same way as the monomorphic LTE we have

considered before coincide exactly with fitness maxima or ESS, independently of the genetics of the trait

On the other hand, in the previous situation, the dimorphism was in a sense already “embedded” in the genetics (or

developmental rules) of the trait, while long-term evolution essentially only contributes to “adjust” the phenotypic

frequencies to their adaptively best value

We now investigate whether similar dimorphisms can emerge from the evolution of a continuous trait, assuming the

same frequency dependent selection regime we have already considered, characterized by random pair wise interactions,

with payoff function (x ,x). Moreover, we assume that  has a stationary point with respect to x  at x =x=x°, and

consider an interval (x°-d,x°+d) sufficiently small that we can approximate (x ,x)- (x,x) by a quadratics in (x ,x), by

Taylor expansion about x°:

Consider the following configurations:

(x ,x) (x,x) = A(x x) + 2(A + B)(x x°)[ ](x x) + o d2( ) , A =
1

2

2 (x ,x)

x 2

x =x=x°

, B =
1
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2 (x ,x)

x x
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II: A<0 ; 0<A+2B< -A III: A<0 ; A+2B<0I: A<0 ; A+2B> -A
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not continuously stable
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continuously stable

IV: A>0 ; A+2B<B<0

not LTE

continuously stable
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In the fourth case, x =x=x° is a point of minimum of (x ,x) with respect to x . It is an evolutionarily singular point

(Geritz et al, 1998) to which long term evolution of a continuous trait tends to converge, but that can be invaded by any

mutant, and in its vicinity a polymorphism is necessarily established

An evolutionary state of this kind has been called:  polymorphic evolutionarily attractive state (PEAST) by Christiansen

(1991), from a population genetics perspective, and branching point by Geritz et al. (1998), from a non genetic,

ecological point of view, because a population of clonally reproducing organism (asexual reproduction) splits in two

lineages at such points

These singularities are identified by the following conditions:

The selective process in their neighborhood is called frequency dependent disruptive selection

We now investigate the long term evolution of a trait near such a point

(x ,x)

x x =x=x°
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Assume a trait that can vary in the finite interval [-1,1]

Selection on the trait depends on random pair wise contests with payment function

The limitations on  and  are necessary and sufficient for this selection regime to have a PEAST at x°=0

In a population where the trait has mean     and variance s2 the fitness of an individual of trait value x, and the population
mean fitness are, respectively,

Notice that the mean fitness increases as the phenotypic variance in the population increases

Notice also that in a population where the mean trait value is zero, an individual of trait value x would have greater
fitness than the average population member if and only if x2 > s2; thus, if such individuals were to increase in frequency,
the variance, and therefore the mean population fitness would tend to increase

Maximum variance (s2=1) and fitness would been achieved in a population containing only the two extreme trait values,
(-1,1), with equal frequencies, a composition that corresponds to the unique ESS of the population game with payoff
matrix

If the trait were controlled by one gene and only these two trait values could be expressed, this population would
therefore be at the LTE of the model discussed previously (the manifold                       )

x ,x( ) = 1+ x 2 ( + )xx + x2 , 0 < <

x

W x( ) =W x,x,s2( ) = 1+ x2 ( + )xx + x2 + s2( )

w =W x,s2( ) = 1+ ( + )s2

( 1, 1) ( 1,1)

(1, 1) (1,1)

L h*( ) = L 1
2( )

Long term evolution of a trait near a PEAST (Matessi and Gimelfarb, 2006)
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Assuming that the continuous trait is controlled by one gene, its long term evolution has been investigated numerically

according to the following prescriptions:

(i) start from a monomorphic population with trait value chosen at random in [-1,1]; let AA be the corresponding

genotype

(ii) introduce a mutant allele A  at a small frequency (2 10-7) and assign to all new genotypes, carrying the mutant allele,

trait values chosen at random in [-1,1], either without restrictions (arbitrary dominance, AD), or with the condition that

the trait value of an heterozygote is bounded by the trait values of the corresponding homozygotes (partial dominance,

PD)

(iii) iterate the recursion equations of the short term dynamics till apparent equilibrium (change of gene frequencies

10-12 in one generation) is attained; to avoid spurious accumulation of alleles discard any allele that has a frequency

10-7; if any change has occurred in the population, it is considered that a successful invasion has taken place

(iv) repeat the procedure from point (ii) above for a large number of cycles (at least 105 but most of the time 106 or more)

(v) computation runs have been executed for a number of values of the selection parameters ( , ) and runs with any

given combination of parameter values have been replicated
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An example:
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Results

In all runs (except one with AD) at termination the mean was in absolute value less than 10-3 and the variance exceeded

0.95, indicating that the          manifold had been almost attained

In this respect there was no essential difference between AD and PD, except that with PD evolution was faster

The terminal genetic configuration – number of alleles and dominance relations between alleles – was very variable

among runs; the number of alleles varied between 2 and 3 with PD, between 4 and 7 with AD. This indicates that once

the          manifold has been achieved, any genetic configuration supporting it is adaptively equivalent

The specific values of the selection parameters, corresponding to different selection strength, had no perceptible

influence on the course of long term evolution

collective scatter plot of ten runs with PD each with

different values of the selection parameters

collective scatter plot of ten replicates of runs with PD

with the same values of the selection parameters

L 1
2( )

L 1
2( )
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The          manifold is the unique LTE

To prove this assertion we need to complement Lessard (1984), to account for the fact that in the present system

mutations can generate all sorts of trait values different from the pair {-1,1}

But from Lessard (1984) we already know that, when the population only contains trait values from {-1,1}: (i)           is a

short term equilibrium if it can be reached; (ii) no mutation introducing trait values only from {-1,1} can perturb the

population away from this manifold; (iii) no other short term equilibrium exists with this property

Thus we only have to prove that mutations with trait values taken from the interval (-1,1) cannot invade L, and that no

uninvadable equilibrium with such trait values exists

Consider a population at a short term, one-gene polymorphic equilibrium with n alleles, {A1,…,An}, of frequencies

                       , and suppose that a mutant allele A0, of frequency (t) 0 at generation t=0,1,…, is introduced

The frequency of A0 is subject to the recursion

where           is the mean fitness of the resident population before introduction of A0, and

Hence A0 invades if                                and is eliminated if

Let           and            be the mean and the variance of the trait in the resident population before introduction of A0, and

Then:

L 1
2( )

L 1
2( )

 ̂
p = (p̂1,…, p̂n )

W x( ) = W x, x, s2( ) = 1+ x2 ( + )xx + x2 + s2( )

w = W x,s2( ) = 1+ ( + )s2

w0 p̂( ) = W X A0Ai( )( ) p̂i
i=1

n

(t +1) = (t)
w0 p̂( )

w p̂( )
+ o( )

w p̂( )

w0 p̂( ) w p̂( ) > 0 w0 p̂( ) w p̂( ) < 0

x p̂( ) s2 p̂( )

x0 p̂( ) = X A0Ai( ) p̂i
i=1

n

, s0
2 p̂( ) = X2 A0Ai( ) p̂i

i=1

n

w0 p̂( ) w p̂( ) = s0
2 p̂( ) s2 p̂( ) ( + )x p̂( )x0 p̂( ) + x2 p̂( )



Université de Montréal - Département de Matématiques et de Statistique - Oct. 2006

9Carlo Matessi  IGM-CNR  Pavia  Italy

Suppose now that the resident population is at equilibrium on         , so that the mean of the trait is zero and its variance is

one, and consider any mutant allele A0 such that |X(A0Ai)| 1, with strict inequality at least for some i=1,…,n.

Clearly,                . Hence

so that A0 is eliminated, as we had to prove

To complete the proof that          is a LTE we now should show that also mutant alleles A0 such that |X(A0Ai)|=1 for all

i=1,…,n, but |X(A0A0)|<1, are eliminated; this case however is more cumbersome because first order approximation of

the recursion for (t) is no longer sufficient and one has to look at the second order approximation. For this reason the

proof is avoided here, but can be found in the original article

Now we show instead that there is no other LTE beside         . Suppose, in fact, that the resident population is at an

equilibrium which is not on         , so that necessarily

and introduce a mutant allele A0 with the properties that

Hence,

so that A0 invades, as we had to prove

L 1
2( )

s0
2 p̂( ) < 1

w0 p̂( ) w p̂( ) = s0
2 p̂( ) 1 < 0 since >0

L 1
2( )

L 1
2( )

L 1
2( )

x p̂( ) 0 or s2 p̂( ) < 1 or both

 
X A0Ai( ) = 1 i = 1,…, n s0

2 p̂( ) = 1 and if x p̂( ) 0 then sign x0 p̂( )( ) = sign x p̂( )( )

w0 p̂( ) w p̂( ) = 1 s2 p̂( ) + ( + ) x p̂( )x0 p̂( ) + x2 p̂( ) > 0 since , > 0

w0 p̂( ) w p̂( ) = s0
2 p̂( ) s2 p̂( ) ( + )x p̂( )x0 p̂( ) + x2 p̂( )
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Buildup of “genetic-free” dimorphism (Matessi and Gimelfarb, 2006)

It seems that adaptive dimorphism of the type considered in ESS theory and by Lessard (1984) can, in principle, also

emerge from the long term evolution of a continuous trait when selection is disruptive

But this result is once again too much dependent on the specific genetic structure assumed for the trait: one gene with

arbitrary or partial dominance

Even within the one-gene case, had we assumed additive alleles – a special case of partial dominance occurring when

X(AiAj)=e(Ai)+e(Aj) – dimorphism would have been impossible, because already with two alleles there would be

necessarily three morphs: X(A1A1)  X(A1A2)  X(A2A2)

In fact, in the case of one-gene and additivity, for a trait limited to the interval [-1,1], it can be shown (Matessi,

Gimelfarb and Gavrilets, 2001) that with disruptive selection identical to that considered sofar there is a unique LTE, with

two alleles of equal frequency, A1 and A2 say, of effects e- = -0.5 and e+ = 0.5 respectively. The mean of the trait is zero

but the variance is only 0.5, because the majority phenotype is X(A1A2) = 0, with a frequency of 0.5

With two genes, assuming, as is generally the case in reality, that variation of each gene alone can only cover part of the

total range of variability of a trait, [-1,1] in our model, even if the limitation of additivity is removed there cannot be less

that three morphs (-1,0,1) and variance at a LTE remains well below the maximum level of 1.0, unless recombination

between the genes is rather small. Of course, with several genes the variation of the trait at equilibrium would rapidly

become almost continuous, presumably without any significant difference between additivity and free dominance

There is however a particular model of genetic expression and develoment, of a continuous trait with variation limited to

a finite range, which can quite easily lead to sharp dimorphism in long term evolution under disruptive selection, with

any kind of genetics or even without any genetic variation of the primary trait, and that could be feasible for some

biological characters
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Variable expression of a trait

The genetic expression of traits is never exact: there always is a certain amount of variation at constant genotype, due to

a variety of internal and external factors and disturbances

Moreover, as documented by abundant experimental evidence, such non-genetic variation can in its turn be modulated by

genetic factors that may be subject to natural or artificial selection

For example there is a well known and important phenomenon, known as genetic canalization, consisting in the fact that

in adaptive traits that are kept by natural selection near an optimal value, non-genetic variation (and minor a-specific

genetic noise) is more or less repressed by genetic and developmental factors that can be experimentally disrupted, thus

revealing large amounts of hidden variation

We may thus assume that in the same way as variability of expression can be genetically reduced, it can also be

magnified by appropriate genetic factors



Université de Montréal - Département de Matématiques et de Statistique - Oct. 2006

12Carlo Matessi  IGM-CNR  Pavia  Italy

Consider therefore a genetically determined continuous trait that, in the absence of expression variability, would have

some value x [-1,1] but, due to external disturbances, actually assumes a different value y [-1,1], a random variable

with Beta distribution over [-1,1], of mean x

y = Y(G)  Beta distribution over [-1,1] : expressed trait value of individual of genotype G

E{y|G} = x = X(G) [-1,1] : genotypic value, exclusively determined by genotype

X(G) = ±1    Y(G) = X(G) ,   > 0

According to this model, the case of strict genetic determination considered so far obtains for , while the purely

dimorphic case considered by Lessard (1984) obtains for  = 0. Observe that this model is independent of any specific

assumption about the genetic determination of the genotypic value X(G), that could be controlled by any number of

genes, with any type of dominance pattern among their alleles

Var y | G{ } =
1 X2 (G)

+1
, 0

Distribution of trait value given genotypic value x

-1 x 1

large 

-1 x 1

 = 0

Pr y = 1 | G{ } =
1 X(G)

2
= 0 Pr 1< y < 1 | G{ } = 0       

Pr y = 1 | G{ } =
1+ X(G)

2
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Selection on the primary trait

Assume exactly the same disruptive selection regime considered so far. Hence an individual of trait value y  confronting

an opponent of trait value y experiences a fitness payoff

so that in a population where the overall mean and variance of the trait are     and    , the fitness of an individual of

phenotype y, and the mean population fitness are respectively

However, only selection among genotypes is evolutionarily effective. Hence we need to evaluate the selection

experienced by individuals that have the same genotype G, that is the same genotypic value x=X(G). This is given by the

expectation of W(y) with respect to y, conditional on G

Moreover observe that, if the mean and variance of the genotypic values in the population are     and     , then

Hence, the fitness of individuals of genotypic value x, and the mean population fitness can be written in terms of genetic

parameters as

y ,y( ) = 1+ y 2 ( + )yy + y2 , 0 < <

W y( ) =W y,y,s2( ) = 1+ y2 ( + )yy + y2 + s2( ) , 1 y 1

w =W y,s2( ) = 1+ ( + )s2

y s2

y = E y{ } = E X(G){ } = x , 1 x 1

s2 = Var y{ } =
1 x2 + sG

2

1+

x sG
2

WG(x) =WG x, x,sG
2( ) = 1+

1+ x2

1+
( + )xx +

1+ x2 + sG
2( )

1+
, 1 x 1

w =WG x,sG
2( ) = 1+ ( + )

1 x2 + sG
2

1+
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This fitness representation has basically the same structure as that considered in the previous model without variability of

expression. In fact, assuming as before, that the trait is controlled by a single gene,  all the results obtained in that case

concerning the long term evolution of the primary trait, can be shown to carry over to this case

In particular, the manifold         , where only two genotypic values, -1 and 1, coexist at equal frequencies, is the unique

LTE also in this case. It follows from the assumptions of the model that, whenever such manifold is achieved, since

x = ±1, expression variability is no longer observable because the non-genetic variance is reduced to zero. This means

that only two trait values, identical to the genotypic values, are found in the population

Selection on genes controlling the extent of expression variability

The genetic configuration just described might not be achieved if we suppose that genes that modulate the parameter ,

defining the amount of non-genetic variation of the trait, do exist

Let then = (H) be a function of a segment H of the genotype, consisting of one or more genes, and suppose that in a

population monomorphic for = (H) a mutation arises at one of these genes leading to the new genotype H  and to the

mutant varibility parameter = (H )

The fitness of these mutants that have genotypic value x=X(G), WH( ,x), is computed by taking the expectation of W(y)

with respect to y, conditional on both G and H :

which, if the resident population is monomorphic also for x=X(G), reduces to

while the mean population fitness is

L 1
2( )

WH(x, ) =WH x, , x,sG
2 ,( ) = 1+

1+ x2

1+
( + )xx +

1+ x2 + sG
2( )

1+
, 1 x 1

WH(x, ) =WH x, ,x,0,( ) = 1+
1+ x2

1+
x2 +

1+ x2

1+
x2 , 1 x 1

WG x,0( ) = 1+ ( + )
1 x2

1+
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From this we verify immediately that, provided x  ±1, a mutant of expression variability invades this resident

population if and only if it induces a greater variability; in fact

Moreover, it can be proved that this is true not only for a totally monomorphic population as shown here, but also in a

population that is genetically polymorphic for the primary trait, a condition that is to be expected to prevail under

disruptive selection. Hence long term evolution of genes that control the variability of expression of the primary trait

tend to enhance such variability to its maximum. In other words: ° = 0 is a LTE for 

Considering the simultaneous evolution of the primary trait (controlled by a single locus) and of its expression variability

we conclude that the LTE configuration is the union of the following states

(1) a strictly genetic dimorphism with x = y = ±1 (at equal frequencies), and   0

(2) a phenotypic dimorphism, with y = ±1 (at equal frequencies), and  = ° = 0, supported by a number of

genotypic values indifferently distributed in [-1,1], determining various probability of expressing one or the

other morph

(3) a phenotypic dimorphism, with y = ±1, and  = ° = 0, supported by a genetic monomorphism with

genotypic value fixed at x = 0 in order to ensure equal probabilities of expressing the two morphs

It is clear, therefore, that in all cases, from a phenotypic point of view, these configurations are just different ways in

which the           manifold is realized and maintained in the population. If we take into account that this result would

remain broadly valid even if  the primary trait were controllod by several loci (as supported by numerical explorations) it

seems that a complex genetic structure (primary genes and modifiers of expression) is required in order to produce what

ESS theory can predict with amazing lightness

WH x, ,x,0,( ) WG x,0( ) =
1 x2

1+( ) 1+( )
( ) > 0 for < , x ( 1,1)

L 1
2( )


