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Abstract We show that a matrix game within groups in a finite-island model is effectively
equivalent to a matrix game in a well-mixed population. The effective game matrix is a sum
of interaction effects minus competition effects, weighted by identity measures involving up
to three individuals. These identity measures are computed in the absence of selection but
depend on the selection regime and the dispersal pattern: differential viability or fertility,
hard selection or soft selection, uniform dispersal or local extinction followed by uniform
recolonization. Hard selection, which allows for group selection, understood as differen-
tial contributions of groups, reduces competition within groups compared to soft selection.
Moreover, the reduction is more pronounced in the case of uniform dispersal than in the case
of local extinction. Fertility differences add competition effects between an individual and
itself. A personal inclusive payoff can be defined from the effective game matrix and used to
predict the increase or decrease in frequency of a mutant strategy. However, this personal in-
clusive payoff is generally frequency-dependent and its mean does not necessarily increase
over time.

Keywords Evolutionary game ·Matrix game · Finite-island model · Group selection ·
Inclusive fitness · Relatedness

1 Introduction

The replicator equation for a matrix game [36] can be seen as the beginning of evolutionary
game dynamics. Since then, a wide variety of dynamical properties have been characterized
by the entries of the game matrix, their number and their relationships (see, e.g., [12, 13],
and references therein).
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The replicator equation assumes random pairwise interactions in a well-mixed, infinitely-
large population. In real populations, however, interactions among close neighbors, relatives
or similar individuals are more likely to happen than interactions among distant or dissim-
ilar individuals. In order to take into account local interactions among individuals, group-
structured populations have been considered: heterogeneous population [6], island model
or stepping-stone model on a lattice [10, 30, 35], graph structure [26, 34], phenotype space
[1, 37] or set space [33]. Diffusion approximations and fixation probabilities have also been
obtained for family-structured populations [32], island models [17, 31] and under isolation
by distance [29]. See, e.g., [24] for a recent review of game dynamics in group-structured
populations.
In the vast majority of models dealing with interactions in populations subdivided into

group units, the focus is on the evolution of cooperation or altruism, traits that appear to
be disadvantageous from an individual point of view. Moreover, it is usually assumed that
individuals in interaction have additive effects on the fitness of each other, which is a good
approximation if there are small differences in individual strategies. Some authors insist
on the role of kin selection, as accounted for by a personal inclusive fitness [9], which is
obtained by transferring fitness effects from recipients to donors, weighted by some coeffi-
cients of relatedness. Others think that the primary driving force that can explain the spread
of cooperation is group selection, involving extinction and recolonization of demes [20, 21],
or understood more generally as a variable contribution of groups to the whole population
through differential growth or expansion ([39], and references therein), which may prevail
over the effects of individual selection within groups.
Group selection and kin selection, which are closely related (see, e.g., [2, 3, 22]) have

nourished long debates in population genetics and they remain controversial subjects. Con-
fronted with the intricacies of the effects of interactions among individuals in evolutionary
games, some have come to the conclusion that an inclusive fitness approach is useless or
unapplicable [25].
In this paper, we will study a matrix game within groups, not necessarily additive, in

an infinitely-large, finite-island population with partial uniform dispersal or local extinction
followed by uniform recolonization. We will consider that the payoffs are translated into via-
bility or fertility differences under the assumptions of soft selection as well as hard selection,
which allows for differential group outputs. The exact dynamical equations for the strategy
frequencies will be deduced in the limit of weak selection and compared to the replicator
equation for a well-mixed population. The roles of group selection and kin selection will be
commented.
This will complement and extend a previous exact study on general matrix games in an

infinite family-structured population [19] and diffusion approximation results for additive
matrix games in island models for a finite population [17].

2 Matrix Game for Viability Selection

We consider a large, virtually infinite population subdivided into groups of N individu-
als. This is Wright’s [38] island model but with a finite group size. We assume that there
exist n possible individual strategies denoted by S1, . . . , Sn. An ordered group type i is
represented by a vector of strategies Si = (Si1, . . . , SiN ) whose entries are the strategies
used by the individuals in the group once these are arbitrarily ordered. Moreover, the vec-
tor xi = (xi1, . . . , xin) gives the frequencies of the different strategies in a group of type i.
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Namely, we have

xik = Nik

N
, (1)

where Nik is the number of individuals using strategy Sk among the N individuals in a
group of type i. Note that there are nN different group types, but that several group types
can exhibit the same strategy frequency vector. Finally the frequency of group type i at time
t ≥ 0 is denoted by zi(t). This yields

xk(t) =
∑

i

xikzi(t) (2)

for the frequency of Sk in the whole population at time t ≥ 0.
Generations are assumed discrete, non-overlapping. From one generation to the next, off-

spring are produced in large numbers in each group, every member of the group producing
the same proportion N−1 of offspring. This is followed by viability selection as a result of
a matrix game taking place among the offspring in the same groups. More precisely, we
assume that every offspring uses the same strategy as its parent in random pairwise inter-
actions among offspring within each group and that the payoff akl to an offspring using Sk

against Sl is such that the viability of the offspring takes the form

wkl = 1+ sakl . (3)

Here, 1 represents some reference value and akl a coefficient of selection with respect to an
intensity of selection s. In other words, the payoff translates into an additive effect in units
of selection intensity on a relative viability measure initially set equal to 1.
Note that the viability of an offspring I can be written in the form

wI = 1+ saI , (4)

where

aI =
n∑

k,l=1
aklqkI qlI ′ (5)

represents the payoff to I in interaction with I ′, and I ′ is an offspring chosen at random in
the same group as I . In this notation, qkI represents the frequency of Sk in I (1 if I uses
strategy Sk , and 0 otherwise), and similarly qlI ′ the frequency of Sl in an offspring I ′.
In a group of type i, the mean payoff to Sk is

āik = (Axi )k =
n∑

l=1
aklxil, (6)

while the mean payoff in the entire group is

āi = xi · Axi =
n∑

k,l=1
aklxikxil . (7)
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Here A = [akl]nk,l=1 denotes the game matrix and · the usual scalar product. Therefore,

w̄ik =
n∑

l=1
wklxil = 1+ sāik (8)

is the mean viability of Sk in a group of type i, in which the mean viability is

w̄i =
n∑

k=1
w̄ikxik = 1+ sāi . (9)

Consequently, the frequency of Sk in a group of type i after viability selection is given by

x∗
ik = xikw̄ik

w̄i

= xik + sxik

āik − āi

1− sāi

. (10)

This leads to the approximation

�xik = x∗
ik − xik = sxik(āik − āi ) + o(s), (11)

for the change in the frequency of Sk in a group of type i due to viability differences. Note
that this change can be written in the form [27, 28]

�xik = Covi (qkI ,wI )

Ei (wI )
= sCovi (qkI , aI ) + o(s), (12)

where Ei and Covi denote expectation and covariance, respectively, in a group of type i. As
a matter of fact, we have

Ei (qkI ) = xik,

Ei (aI ) =
n∑

k,l=1
aklEi (qkI qlI ′) =

n∑
k,l=1

aklxikxil, (13)

Ei (qkI aI ) =
n∑

l=1
aklEi (qkI qlI ′) = xik

n∑
l=1

aklxil,

with Ei (wI ) = 1+ sEi (aI ) and Covi (qkI ,wI ) = sCovi (qkI , aI ).

3 Soft Viability Selection with Uniform Dispersal or Local Extinction

In this section, we assume soft viability selection [4] so that the total number of offspring in
each group after viability selection is the same as before viability selection. Moreover, we
make either of the following assumptions: a fraction m of offspring in each group disperse
uniformly among all groups (uniform dispersal); or each group goes extinct with proba-
bility m independently of all other groups and then it is recolonized by offspring coming
uniformly from all remaining groups (local extinction and uniform recolonization). In both
cases, this is followed by random sampling of N individuals within each group to start the
next generation.
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Under these assumptions and with time scaled so that one generation corresponds to s

time units, the frequency of Sk in the whole population at time t + s will be

xk(t + s) =
∑

i

x∗
ikzi(t). (14)

This yields

xk(t + s) − xk(t) = sEz(t)
(
Covi (qkI , aI )

) + o(s) (15)

for the change in the frequency of Sk in the whole population from time t to time t + s.
Here, we have

Ez(t)
(
Covi (qkI , aI )

) =
∑

i

zi(t)Covi (qkI , aI )

=
∑

i

zi(t)Ei (qkI aI ) −
∑

i

zi(t)Ei (qkJ )Ei (aI )

=
∑

i

zi(t)Ei (qkI aI ) − xk(t)ā(t)

−
∑

i

zi(t)Ei (qkJ )Ei (aI ) + xk(t)ā(t)

= Covz(t)(qkI , aI ) −Covz(t)(qkJ , aI ), (16)

where I and J designate two offspring chosen at random in the same group, and

ā(t) =
∑

i

āizi(t) (17)

is the mean payoff in the whole population at time t .
Finally, we define

ẋk(t) = lim
s→0

xk(t + s) − xk(t)

s
. (18)

Then, we obtain

ẋk(t) = Covz(t)(qkI , aI ) −Covz(t)(qkJ , aI ) (19)

for the rate of change in the frequency of Sk in the limit of a small intensity of selection.
On the other hand, a group of type i at time t will be transformed into a group of type j

at time t + s with some probability Pij (s, z(t)), which depends continuously on the intensity
of selection and the frequencies of the different group types at time t . This yields

zj (t + s) =
∑

i

zi(t)Pij

(
s, z(t)

)
(20)

for the frequency of type j at time t + s, or

z(t + s) = z(t)T P
(
s, z(t)

)
(21)
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in matrix notation.
We assume throughout that z(t) is continuous as a function of t . Then, taking the limit

as s tends to 0 on both sides of the previous equation yields

z(t) = z(t)T P
(
0, z(t)

)
. (22)

This means that z(t) is an equilibrium of the recurrence equation

z(t + n + 1) = z(t + n)T P
(
0, z(t + n)

)
(23)

for every integer n ≥ 0. Note that P (0, z(t + n)) is a transition matrix in the absence of
selection.
It can be shown [17] that the entries of

z(t) = lim
n→∞ z(t + n) (24)

are given in the form

zj (t) =
∑

r

cj (r)x1(t)r1 · . . . · xn(t)
rn . (25)

Here, the summation is over all r = (r1, . . . , rn) �= (0, . . . ,0) satisfying 0 ≤ rk ≤ Njk , for
k = 1, . . . , n. Note that Njk is the number of individuals of type Sk in a group of type j .
Moreover, cj (r) represents the number of ways for a group of type j to have rk ancestors of
type Sk for k = 1, . . . , n, all in different groups. The proof relies on the coalescence approach
[14] by tracing the ancestry of a focal group backwards in time under neutrality. Individuals
having the same common ancestor are identical-by-descent (ibd) and they are necessarily of
the same type. On the other hand, the types of individuals that are not ibd are independent.
Let us summarize our findings in a statement in which the explicit dependence on t has

been dropped to simplify the notation.

Result 1 In the case of soft viability selection with coefficients determined by a matrix game
within groups in a finite-island model with uniform dispersal of a fraction m of off-
spring, or local extinction and uniform recolonization with probability m, the rate of
change in the frequency of strategy Sk in the limit of a small selection intensity is
given by

ẋk = Covz(qkI , aI ) −Covz(qkJ , aI ), (26)

where aI and aJ represent the payoffs to two offspring I and J chosen at random in
the same group as defined in (5), and qkI the frequency of Sk in I . Moreover, z is
the equilibrium distribution of the group types with respect to the current strategy
frequencies in the absence of selection as given in (25).

4 Hard Viability Selection with Local Extinction and Uniform Recolonization

In this section, we suppose that the total number of offspring in each group after viability
selection is proportional to the mean viability in the group. This is a case of hard selection
[4]. Moreover, we suppose that each group goes extinct with probability m independently
of all other groups. In this case, it is recolonized by offspring coming from all remaining
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groups weighted by their mean viabilities. In other words, there is local extinction followed
by uniform recolonization
Under the above assumptions, the frequency of Sk in the whole population at time t + s

is given by

xk(t + s) = (1− m)
∑

i

x∗
ikzi(t) + m

∑
i w̄ix

∗
ikzi(t)

w̄(t)
, (27)

where

w̄(t) =
∑

i

w̄izi(t) = 1+ sā(t) (28)

is the mean viability in the whole population at time t . This leads to the approximation

xk(t + s) − xk(t)

= s
{
(1− m)Ez(t)

(
Covi (qkI , aI )

) + mCovz(t)(qkI , aI )
} + o(s), (29)

from which the following conclusion can be drawn mutatis mutandis.

Result 2 In the case of hard viability selection with local extinction and uniform recolo-
nization with probability m, Result 1 for the rate of change in the frequency of Sk

becomes

ẋk = Covz(qkI , aI ) − (1− m)Covz(qkJ , aI ), (30)

where I and J are two offspring chosen at random in the same group.

5 Hard Viability Selection with Uniform Dispersal

Now suppose hard selection as in the previous model but with uniform dispersal so that each
group receives the same number of migrants. Then, the relative size of a group of type i after
dispersal of a proportion m of offspring will be (1− m)w̄i + mw̄, where w̄i is its relative
size before dispersal and w̄ the average relative group size in the whole population.
Moreover, the frequency of Sk in a group of type i at time t after selection and migration

will be

x̃∗
ik(t) = (1− m)w̄ix

∗
ik + m

∑
j w̄j x

∗
jkzj (t)

(1− m)w̄i + mw̄(t)

= (1− m)xik + mxk(t) + s(1− m)āikxik + sm
∑

j

ājkxjkzj (t)

− s
{
(1− m)āi + mā(t)

}{
(1− m)xik + mxk(t)

} + o(s). (31)

Then, the frequency of Sk in the whole population at time t + s is given by

xk(t + s) =
∑

i

x̃∗
ik(t)zi(t), (32)
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and we have the approximation

xk(t + s) = xk(t) + s

(∑
i

āikxikzi(t) − ā(t)xk(t)

)

− s(1− m)2
(∑

i

āixikzi(t) − ā(t)xk(t)

)
+ o(s). (33)

This yields the following result.

Result 3 In the case of hard viability selection with uniform dispersal of a fraction m of
offspring, Result 1 for the rate of change in the frequency of Sk becomes

ẋk = Covz(qkI , aI ) − (1− m)2Covz(qkJ , aI ), (34)

where I and J are two offspring chosen at random in the same group.

6 Matrix Game for Fertility Selection

In this section, we assume that the matrix game takes place among parents within groups so
that the mean payoff to a parent using Sk in a group of type i is given by

āik = (
Axi (k)

)
k
, (35)

where

xi (k) = Nxi − ek

N − 1 (36)

is the mean strategy used against Sk in a group of type i. This assumes random pairwise
interactions among the N parents of a group and excludes self-interactions. Here, ek denotes
the standard kth n-dimensional coordinate vector, so that xi (k) = (xi1(k), . . . , xin(k)) with

xik(k) = Nik − 1
N − 1 (37)

and

xil(k) = Nil

N − 1 , (38)

for l �= k. Moreover, it is assumed that the payoff has an effect on fertility in such a way that
the mean fertility of a parent using Sk in a group of type i is given by

w̄ik = 1+ sāik = 1+ sN

N − 1
(

(Axi )k − akk

N

)
. (39)

This fertility model corresponds to a situation in which the viability of an offspring whose
parent uses Sk against another parent in the same group using Sl is wkl = 1+ sakl . In other
words, the viability of an offspring I is given by wI = 1+ saI as previously with a payoff
in the form

aI =
n∑

k,l=1
aklqkI qlI ′ , (40)
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where I ′ designates an offspring chosen at random in the same group as I , but produced by
a different parent.
Therefore, all previous results apply modulo this modification in the expression of an

offspring’s payoff.

Result 4 In the case of fertility selection instead of viability selection, Results 1, 2 and 3 for
the rate of change in the frequency of Sk apply with the restriction that only interactions
among non-sib offspring are considered in the payoff aI for an offspring I .

7 Effective Game Matrix

In all the models of the previous sections, the rate of change in the frequency of Sk has been
expressed in terms of the covariances

Covz(qkI , aI ) =
n∑

l,m=1
almCovz(qkI , qlI qmI ′) (41)

and

Covz(qkJ , aI ) =
n∑

l,m=1
almCovz(qkJ , qlI qmI ′), (42)

where I, I ′ and J represent offspring in the same group. In the viability models, these off-
spring are chosen at random among all offspring within the group. In the fertility models,
I and J are chosen at random among all offspring, while I ′ is chosen at random among
all non-sibs of I . In all cases, the covariances are calculated with respect to the equilibrium
distribution of the group types in a neutral population, given the current strategy frequencies
as expressed in (25).
In order to compute the covariances, we introduce the following identity measures for

offspring I , J and K in the same group in a neutral population:

φIJ = Pr(I ≡ J ),

φIJ/K = Pr(I ≡ J �≡ K), (43)

φIJK = Pr(I ≡ J ≡ K).

Here, the symbol ≡ means identical-by-descent (ibd) and �≡ non-identical-by-descent (non-
ibd). Note that

φIJ = φIJ/K + φIJK,

φI/J = Pr(I �≡ J ) = 1− φIJ , (44)

φI/J/K = Pr(I �≡ J, I �≡ K,J �≡ K) = 1− φIJ − φIK/J − φJK/I .

These measures will be used to develop the formulas (41) and (42).
Conditioning on the ibd status of two offspring I and I ′ in the same group, we find that

Covz(qkI , qlI qmI ′) = φII ′(xkδklm − xkxlδlm)

+ φI/I ′(xkxmδkl − xkxlxm). (45)

Here, δkl = 1 if k = l, and 0 otherwise, and similarly δklm = 1 if k = l = m, and 0 otherwise.
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Analogously, for three offspring I , I ′ and J in the same group, we have

Covz(qkJ , qlI qmI ′) = φJII ′(xkδklm − xkxlδlm)

+ φJI/I ′(xkxmδkl − xkxlxm)

+ φJI ′/I (xkxlδkm − xkxlxm). (46)

Note that this covariance given that J is not ibd to I and I ′ is equal to 0.
Finally, we find that

Covz(qkI , aI ) = xk

(
n∑

l=1
aI

klxl −
n∑

l,m=1
aI

lmxlxm

)
(47)

and

Covz(qkJ , aI ) = xk

(
n∑

l=1
aJI

kl xl −
n∑

l,m=1
aJI

lm xlxm

)
, (48)

where

aI
kl = φII ′akk + φI/I ′akl (49)

and

aJI
kl = φJII ′akk + φJI/I ′akl + φJI ′/I alk. (50)

Note that aII
kl = aI

kl when J is replaced by I .
For the viability or fertility models of the previous sections, this leads to a rate of change

in the frequency of Sk in the form of the replicator equation [36]

ẋk = xk

(
(A◦x)k − x · A◦x

)
, (51)

for some effective game matrix A◦ = [a◦
kl].

Result 5 With viability or fertility selection within groups in a finite-island model with co-
efficients of selection given by a game matrix A = [akl], the rate of change in the fre-
quency of Sk is given by the replicator equation as in a well-mixed population with an
effective game matrix A◦ = [a◦

kl], where

a◦
kl = aI

kl − aJI
kl (52)

in the case of soft selection with uniform dispersal of a fraction m of offspring, or local
extinction and uniform recolonization with probability m,

a◦
kl = aI

kl − (1− m)aJI
kl (53)

in the case of hard selection with local extinction and uniform recolonization with prob-
ability m, and

a◦
kl = aI

kl − (1− m)2aJI
kl (54)

in the case of hard selection with uniform dispersal of a fraction m of offspring. In all
cases, the entries aI

kl and aIJ
kl are given by (49) and (50), respectively.
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8 Computation of the Identity Measures

8.1 Case of Uniform Dispersal

The identity measures for three offspring I , J and K chosen at random among all offspring
in the same group in a neutral population before uniform dispersal of a fraction m of off-
spring satisfy the equilibrium equations

φIJ = 1

N
+

(
1− 1

N

)
(1− m)2φIJ ,

φIJK = 1

N2
+ 3

N

(
1− 1

N

)
(1− m)2φIJ (55)

+
(
1− 1

N

)(
1− 2

N

)
(1− m)3φIJK.

The solution is given by

φIJ = 1

Nm(2− m) + (1− m)2
,

(56)

φIJK =
[

N + 2(N − 1)(1− m)2

N2m(3− 3m + m2) + (3N − 2)(1− m)3

]
φIJ .

Moreover, we have the equality

φIJ/K = φIJ − φIJK. (57)

In the limit of a large group size (N → ∞) and a small dispersal rate (m → 0) so that the
product tends to a constant (Nm → M), the above identity measures converge to

φ
(∞)
IJ = 1

2M + 1 ,

φ
(∞)
IJK = 1

(2M + 1)(M + 1) , (58)

φ
(∞)
IJ/K = M

(2M + 1)(M + 1) ,

respectively. Note that

φ
(∞)
IJK

φ
(∞)
JK

= φ
(∞)
IJ/K + φ

(∞)
IK/J

φ
(∞)
J/K

= 2φ(∞)
IJ

1+ φ
(∞)
IJ

= 1

M + 1 . (59)

The above equation states that the probability for a third individual to be ibd to at least one
of two previous individuals chosen at random in the same group does not depend on the
event that the two previous individuals are ibd or not. Moreover, this probability is given by
the scaled rate of coalescence 1 over this scaled rate plus the scaled rate of migration M .
This is in agreement with the Ewens sampling formula [5] with migration playing the role of
mutation and identity-by-descent that of identity-by-state under the infinitely-many-alleles
assumption.
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Note that we have

φIJ = 1

N
+

(
1− 1

N

)
φII ′ ,

φIJK = 1

N
φIJ +

(
1− 1

N

)
φJII ′ , (60)

φIJ/K =
(
1− 1

N

)
φJI/I ′ ,

if I ′ is an offspring chosen at random among all non-sibs of I in the same group. This leads
to the relationships

φII ′ = NφIJ − 1
N − 1 ,

φJII ′ = NφIJK − φIJ

N − 1 , (61)

φJI/I ′ = NφIJ/K

N − 1 ,

between identity measures for offspring I , J and K chosen at random among all offspring
in the same group and identity measures for offspring I , I ′ and J chosen at random in the
same group under the restriction that I and I ′ are not sibs. Note that there is no difference
in the limit of a large group size. Moreover, we have always φJI ′/I = φJI/I ′ by symmetry.

8.2 Case of Local Extension and Uniform Recolonization

In the case of local extinction and uniform recolonization with probabilitym, the equilibrium
equations become

φIJ = 1

N
+

(
1− 1

N

)
(1− m)φIJ ,

φIJK = 1

N2
+ 3

N

(
1− 1

N

)
(1− m)φIJ +

(
1− 1

N

)(
1− 2

N

)
(1− m)φIJK, (62)

from which

φIJ = 1

Nm + 1− m
,

(63)

φIJK =
[

N + 2(N − 1)(1− m)

N2m + (3N − 2)(1− m)

]
φIJ ,

whose limiting values, as N → ∞ and m → 0 so that Nm → M , are

φ
(∞)
IJ = 1

M + 1 ,

(64)

φ
(∞)
IJK = M

(M + 1)(M + 3) .

Note that the relationships in (59) do not hold in this case.
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On the other hand, the relationships in (61) between identity measures for offspring cho-
sen at random without restriction and offspring chosen at random under the restriction that
two given offspring are not sibs are still valid.

9 Discussion

9.1 Effective Game Matrix

We have shown that a matrix game within groups in a finite-island model with partial dis-
persal or local extinction is equivalent to a matrix game in a well-mixed population defined
with respect to some effective game matrix. Then, everything that is known about such ma-
trix games (see, e.g., [12, 13]) can be applied mutatis mutandis.
The equivalence holds in the limit of weak viability or fertility selection with coefficients

given by the entries of a game matrix A = [akl] as a result of pairwise interactions within
groups. The corresponding effective game matrix A◦ = [a◦

kl] is a linear combination of two
matrices, AI = [aI

kl] for the effects of I in interaction with an offspring I ′ that may be ibd
or not to I , and AJI = [aJI

kl ] for the effects of I in competition with another offspring J that
may be ibd to either I or I ′, or both.
In the case of soft selection followed by uniform dispersal or local extinction, compe-

tition occurs effectively among all offspring within groups before dispersal whatever the
dispersal rate is. In the case of hard selection followed by uniform dispersal, competition
occurs after dispersal and is effective only in a proportion (1− m)2 of the group, which is
the probability for two competitors to come from the same group. If hard selection is fol-
lowed by local extinction and uniform recolonization, then this proportion becomes 1− m,
which corresponds to the probability for the whole group not to have been recolonized.
Note that local extinction and uniform recolonization following hard selection has the

same effect on the strategy frequencies in the whole population as proportional dispersal,
that is, dispersal of a fraction m of offspring in each group and replacement by as many
migrant offspring chosen at random among all migrants so that dispersal does not change
the number of offspring in each group.
More important is the fact that hard selection, which allows for group selection under-

stood as differential contributions of groups, reduces competition within groups compared
to soft selection. Moreover, the effect becomes more pronounced as the dispersal rate or
extinction probability increases.
In all cases, the entries of the effective game matrix are sums of interaction effects minus

competition effects. They take the form

a◦
kl = φII ′akk + φI/I ′akl − φIcII ′akk − φIcI/I ′akl − φIcI ′/I alk. (65)

Here, I ′ designates an offspring chosen at random in the same group as I before dispersal,
with the restriction of not being a sib of I in fertility models, and in interaction with it.
On the other hand, Ic is an offspring chosen at random in the same group as I , before
dispersal in the case of soft selection, but after dispersal in the case of hard selection, and
in competition with it. Therefore, the above identity measures involving Ic in the case of
hard selection are those in the case of soft selection as computed in the previous section,
but multiplied by 1− m or (1− m)2 in models with local extinction or uniform dispersal,
respectively. Moreover, I and I ′ can be permuted in the last term of (65) so that

a◦
kl = φII ′akk + φI/I ′akl − φIcII ′akk − φIcI/I ′akl − φI ′

cI/I ′alk, (66)

where I ′
c designates an offspring in competition with I ′.
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9.2 Personal Inclusive Payoff

The effective game matrix corresponds to a mean payoff to Sk given by

a◦
k• = φII ′akk + φI/I ′ak• − φIcII ′akk − φIcI/I ′ak• − φI ′

cI/I ′a•k, (67)

where

ak• = (Ax)k =
n∑

l=1
aklxl (68)

and

a•k = (
AT x

)
k
=

n∑
l=1

alkxl . (69)

This can be interpreted as a personal inclusive payoff. As a matter of fact, the overall ex-
pected payoff to Sk played by an offspring I is akk if I is ibd to the interacting offspring I ′
but not ibd to a competitor Ic , while it is ak• if I is not ibd to I ′ and not ibd to Ic . Moreover,
we must subtract a•k , the expected payoff to I ′ not ibd to I , if its competitor I ′

c is ibd to I .
Consider the special case of a game matrix A = [akl] with entries in the additive form

akl = −ck + bl, (70)

where ck represents some cost associated to playing Sk and bl some benefit associated to
interacting with Sl . Then, the inclusive payoff to Sk is

a◦
k• = −(1− φIcI )ck + (φII ′ − φIcII ′ − φI ′

cI/I ′)bk

+ (φI/I ′ − φIcI/I ′)b• + φI ′
cI/I ′c•, (71)

where

c• =
n∑

l=1
clxl (72)

and

b• =
n∑

l=1
blxl . (73)

Actually, this is equivalent to a frequency-independent inclusive payoff to Sk given by

a◦◦
k• = −(1− φIcI )ck + (φII ′ − φIcII ′ − φI ′

cI/I ′)bk. (74)

This is the case since the replicator equation

ẋk = xk

(
a◦

k• − a◦
••

)
, (75)

where a◦•• = ∑n

k=1 a
◦
k•, is the same if a

◦
k• is replaced by a◦◦

k• .
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In general, however, the inclusive payoff to Sk will be frequency-dependent. One of the
original objectives of the inclusive fitness approach [9] was to find a quantity that is maxi-
mized under the effects of natural selection in the case of interactions among related indi-
viduals. The main idea was to transfer fitness effects from recipients to donors weighted by
coefficients of relatedness and then to apply Fisher’s [7] Fundamental Theorem of Natural
Selection to this inclusive fitness to predict an increase of its mean. However, this requires
that the inclusive fitness is frequency-independent.
Although a frequency-dependent inclusive fitness can account for the selection effects

in a population, its usefulness may be questioned. This can explain recent criticisms about
the inclusive fitness approach [25]. The sign of a◦

k• − a◦••, however, informs us about the
initial fate of a mutant strategy Sk introduced in small frequency into a population that
was previously fixed or at equilibrium. In the additive case with cl = bl = 0 for all l �= k,
the condition for the initial increase in frequency of Sk , a◦

k• − a◦•• > 0, is the same as the
condition for its increase to fixation. Moreover, it reduces to

bk

ck

>
1− φIcI

φII ′ − φIcII ′ − φI ′
cI/I ′

. (76)

This is an extension of Hamilton’s [9] rule for the evolution of altruism, which corresponds
to the case φII ′ = R and φIcI = φIcII ′ = φI ′

cI/I ′ = 0.
In the general framework of matrix games in group-structured populations, the notion of

effective game matrix appears to be more useful since a linear game in a well-mixed popu-
lation is entirely characterized by its game matrix. The terminology is akin to the notion of
effective size in population genetics, defined as “the number of breeding individuals in an
idealized population that would show the same amount of dispersion of allele frequencies
under random genetic drift or the same amount of inbreeding as the population under con-
sideration” [38]. In the case of a matrix game, the effective game matrix mimics in a single
population all interactions that may occur locally in a subdivided population.

9.3 Coefficients of Relatedness

The identity measures in the expressions of the inclusive payoff to Sk are coefficients of
relatedness between donors and recipients that involve up to three individuals. In all cases,
they represent the probability for the recipient to be ibd (identical-by-descent) to the donor
and ibd or not ibd to the individual in interaction with the donor. Similar identity measures
have already been considered for kin selection in Mendelian populations with inbreeding
(see, e.g., [8, 15, 19, 23]).
Note that the recipient can be the donor itself, I , or the individual in interaction with it,

I ′, and then the coefficient of relatedness to consider is

φII/I ′ = φI/I ′ (77)

or

φI ′II ′ = φII ′ , (78)

respectively. When the donor, I , and the individual in interaction with it, I ′, are not ibd, the
recipient can be a competitor of I or I ′, but the coefficient of relatedness to consider is the
same since

φI ′
cI/I ′ = φIcI/I ′ (79)

by symmetry.
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All coefficients of relatedness are computed in the absence of selection. Exact expres-
sions are given by the identity measures calculated in Section 8 for three offspring chosen
at random in the same group, excluding the possibility that two sibs may be in interaction in
the case of fertility models. These expressions generally depend on the assumptions made:
soft selection or hard selection, differential viabilities or differential fertilities, uniform dis-
persal or local extinction and uniform recolonization. Approximations in the case of a large
group size are the same for fertility models and viability models. In the case of uniform
dispersal, these approximations are related to the Ewens sampling formula, which predict
that the probability for a third offspring to be ibd to at least one of two previous offspring is
the same or given that they are not ibd.

9.4 Complete Uniform Dispersal

In the case of uniform dispersal with m = 1, offspring in the same group are ibd only if
they have the same parent. For I , I ′, Ic and I ′

c chosen at random in the same group before
dispersal, we have

φII ′ = 1

N
,

φIcII ′ = 1

N2
, (80)

φI ′
cI/I ′ = φIcI/I ′ = N − 1

N2
,

in the absence of constraint, but

φII ′ = φIcII ′ = 0,
(81)

φI ′
cI/I ′ = φIcI/I ′ = 1

N
,

under the constraint that I and I ′ are not sibs. This leads to entries of the effective game
matrix in the case of soft selection in the form

a◦
kl =

(
1− 2

N
+ 1

N2

)
akl + 1

N

(
1− 1

N

)
(akk − alk) (82)

for the viability model, but in the form

a◦
kl =

(
1− 1

N

)
akl − 1

N
alk (83)

for the fertility model. This means that the effective game matrix for the soft fertility model
with complete dispersal is

A◦ = A − A + AT

N
. (84)

This is in agreement with Hilbe [11]. The same effective game matrix had been obtained
previously for fertility models in well-mixed finite populations [16, 18]. In the light of our



Dyn Games Appl (2011) 1:301–318 317

present analysis, this particular form of the effective game matrix can be explained by neg-
ative effects of competition between two sibs, or since interactions occur among parents in
the fertility model, negative effects of competition between a parent and itself.
Note that these competition effects disappear in the case of hard selection since

φIcII ′ = φI ′
cI/I ′ = φIcI/I ′ = 0, (85)

if Ic , I ′
c and I are chosen at random in the same group after dispersal. This leads to an

effective game matrix

A◦ = [
akl − N−1(akl − akk)

]
(86)

for the hard viability model, but A◦ = A for the hard fertility model, both in the case of
complete dispersal.

9.5 Finite Number of Groups

With a finite number of groups, D, and an intensity of selection given by the inverse of
the total population size, s = (ND)−1, the limit as D → ∞ leads to a diffusion whose
drift functions are given by the time derivatives of the expected changes in the strategy
frequencies [17]. Then, the effective game matrices in Result 5 come into play in diffusion
approximations. In particular, they can be used to compute probabilities of fixation to find
conditions for weak selection to favor one strategy to replace another one [16].
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