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Linkage disequilibrium

D = xAB− xAxB = (ε− εx) (x) +(−εx) (1− x) = 0

Epistasis

positive AB fitter than expected (1− s) < (1− cs)2

negative AB less fit than expected (1− s) > (1− cs)2

absent AB as fit as expected (1− s) = (1− cs)2
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Hill-Robertson effect

Recombination makes more likely

the fixation of beneficial mutants

in finite populations



Moran model for population of size N

I At each time step, one offspring produced by two individuals at random

I Recombinant offspring with probability r = ρ

N

I One individual at random to be replaced by the offspring

I Replacement in all cases with probability 1− s = 1− σ

N

I Type-specific replacement with probability s = σ

N
and then with conditional probability

0 if AB
1− c if Ab or aB
1 if ab
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Ancestral recombination-selection graph (ARSG)

Backwards in time with N2

2 time steps as unit of time as N → ∞

coalescence C of each pair of lineages at rate 1
(Kingman 1982)

recombination R of each lineage at rate ρ

2
(Griffiths and Marjoram 1997)

selection S of each lineage at rate σ

2
(Krone and Neuhauser 1997)
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Probability of fixation of A

xA(0)+ ∑
τ≥0

E [xA(τ +1)− xA(τ)]

xA(0)+ σ

N2 ∑τ≥0 E [xAB(τ)xab(τ)+ cxAb(τ)xab(τ)+(1− c)xAB(τ)xaB(τ)]
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Calculation

2
N2 ∑τ≥0 E [xAB(τ)xab(τ)] →

∫
∞

0 E [xAB(t)xab(t)]dt

E [xAB(t)xab(t)] = P(AB and ab in this order at time t)

where t is for time in units of N2

2 time steps as N → ∞
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Result with positive epistasis (c < 1
2)

P(A fixation)≈ ε +
εσ

2
(c+ x(1−2c))

+
εσ2

12
(c2 + x(1−2c)(1+2c(1− x)))

− εσ3

24
x(1− x)(c+ x(1−2c))

+ ερσ2

432 x(1− x)(1−2c)(3− c)

positive term in ρ
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Result with no epistasis (c = 1
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Final comments

I The analysis confirms the Hill-Robertson effect in favor of
recombination in finite populations with positive or no epistasis

I The approach allows us to get approximations of any order with respect
to σ and ρ , more easily in comparison with previous methods
• branching processes (Barton 1995)
• perturbations around the deterministic trajectory (Barton, Otto 2005)
• perturbations around the neutral process (Lehman, Rousset 2009)

I The results are valid for a wide class of models (exchangeable in the
realm of the Kingman coalescent) and can be extended to other classes
(e.g. lambda coalescent)

I The same approach can be used to study factors of evolution in
multilocus models
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