Irreducibility of random polynomials of large degree

Dimitris Koukoulopoulos1

\textit{Joint work with Lior Bary-Soroker}2 \textit{and Gady Kozma}3

1Université de Montréal
2Tel Aviv University
3Weizman Institute

Greek Mathematical Seminar
16 June 2021
The structure of random polynomials

Question

Pick a polynomial $f(x)$ at random. What can we say about its algebraic structure?

- Distribution of roots?
- Factorization?
- Galois group?
Roots

\[f(x) = \sum_{j=0}^{n} a_j x^j \quad \text{with } a_0 a_n \neq 0 \]

roots \(z_j = r_j e^{i\theta_j} \quad (j = 1, 2, \ldots, n) \)

\[L = L(f) = \log \left(\frac{|a_0| + |a_1| + \cdots + |a_n|}{\sqrt{|a_0 a_n|}} \right) \]

Theorem

1. Erdős-Turan (1948):
 \[\left| \#\{ j : \theta_j \in [\alpha, \beta] \} - \frac{\beta - \alpha}{2\pi} \cdot n \right| \leq 16\sqrt{nL}. \]

 \[n \geq \#\{ j : |r_j - 1| \leq \varepsilon \} \geq n - 2L/\varepsilon. \]

Corollary

If \((f_j)_{j=1}^\infty \) is a family of polynomials such that \(\frac{L(f_j)}{\deg(f_j)} \to 0 \), then almost all their roots are close to the unit circle, and their angles are roughly uniformly distributed around it.
Figure: Roots of ±1 polynomials of degree ≤ 24 (S. Derbyshire)

Google “Baez Roots”
Roots of unity

\[f(x) = \sum_{j=0}^{n} a_j x^j = a_n(x - z_1) \cdots (x - z_n), \quad a_0 a_n \neq 0 \]

Mahler measure

\[M(f) := |a_n| \prod_{j=1}^{n} \max\{1, |z_j|\} = \exp \left(\frac{1}{2\pi} \int_{0}^{2\pi} \log |f(e^{i\theta})| \, d\theta \right) \]

Fact: If \(f(x) \in \mathbb{Z}[x] \), then \(M(f) \geq 1 \) with “=” if \(f \) is product of cyclotomics.

Conjecture (Lehmer (1933))

There exists a universal constant \(c > 1 \) such that \(M(f) \geq c \) for all \(f(x) \) that have integer coefficients and that are non-cyclotomic.

Theorem (Dobrowolski (1979))

If \(f(x) \in \mathbb{Z}[x] \) is non-cyclotomic of deg \(n \), then

\[M(f) \geq 1 + c \left(\frac{\log \log n}{\log n} \right)^3. \]
Irreducibility & Galois groups of random polynomials

Question

(a) \(\mathbb{P}(f(x) = \text{irreducible}) = ? \)
(b) \(\mathbb{P}(\text{Gal}(f) = G) = ? \)

Heuristic: Factoring imposes many relations on coefficients. Unless there are obvious roots, polynomials tend to be irreducible.

Example

If we sample among all 0,1 polynomials, we expect

\[
\mathbb{P}(f(x) = \text{reducible}) = \mathbb{P}(f(0) = 0) + o_{n \to \infty}(1) \sim \frac{1}{2}.
\]

In fact, \(\mathbb{P}(\text{Gal}(f) = S_{n-k}) \sim 1/2^{k+1} \) for each fixed \(k \geq 0 \) (i.e., according to how many initial coeff’s vanish, the Galois group is as complex as possible).
Sampling polynomials

\[f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \]

with \(a_j \) sampled according to a probability measure \(\mu \) on \(\mathbb{Z} \).

\(\mu \) is often the uniform measure on a finite set \(\mathcal{N} \subseteq \mathbb{Z} \).

Long history when \(n \) is fixed, \(\mathcal{N} = [-H, H] \cap \mathbb{Z} \) with \(H \to \infty \):

- van der Waarden (1936), Gallagher (1973), Kuba (2009), Dietmann (2013), Chow-Dietmann (2020)

Conclusion: \(\text{Gal}(f) = S_n \) w.h.p. (=with high probability)

Advantage when \(H \) is large: reduce modulo many large primes.
0,1 polynomials

\[f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + 1 \quad \text{with } a_j \in \{0, 1\} \]

Conjecture (Odlyzko-Poonen (1993))
\[f(x) \text{ is irreducible w.h.p.} \]

Theorem (Konyagin (1999))
\[f(x) \text{ is irreducible with probability } \gg 1/\log n. \]

Theorem (Breuillard-Varjú (2019))
Assume GRH. Then w.h.p. \(f(x) \) has Galois group \(A_n \) or \(S_n \).

Theorem (Bary-Soroker, K., Kozma (2020+))
\(f(x) \) has Galois group \(A_n \) or \(S_n \) with probability \(\geq 0.003736 \).
The argument of Breuillard-Varjú

(It works for any non-singular \(\mu \) of compact support.)

\[
\mathbb{E}_{x \leq p \leq 2x} \left[\# \{ \omega \in \mathbb{Z}/p\mathbb{Z} : f(\omega) \equiv 0 \pmod{p} \} \right] \sim \# \{ \text{irr. factors of } f \}
\]

\[
\mathbb{E}_{f \in \mathcal{F}} \mathbb{E}_{x \leq p \leq 2x} \left[\# \{ \omega \in \mathbb{Z}/p\mathbb{Z} : f(\omega) \equiv 0 \pmod{p} \} \right] = \mathbb{E}_{x \leq p \leq 2x} \left[\sum_{\omega \in \mathbb{Z}/p\mathbb{Z}} \mathbb{P}_{f \in \mathcal{F}} \left(f(\omega) \equiv 0 \pmod{p} \right) \right]
\]

Given \(\omega \), the expression \(f(\omega) - \omega^n = a_0 + a_1 \omega + \cdots + a_{n-1} \omega^{n-1} \) is a random walk in \(\mathbb{Z}/p\mathbb{Z} \) of independent increments.

Breuillard-Varjú proved that, for most \(\omega \), the walk mixes as soon as \(n \geq (\log p)(\log \log p)^{3+\varepsilon} \). So \(\mathbb{P}(f(\omega) \equiv 0 \pmod{p}) \sim \frac{1}{p} \) for most \(\omega \).

Problem: in order to make effective the very first asymptotic, we need to assume the Generalized Riemann Hypothesis.
New results

Theorem 1 (Bary-Soroker, K., Kozma (2020+))

Let $\mu \neq \text{Dirac mass, compactly supported. There is } \theta = \theta(\mu) > 0$ s.t.

$$\mathbb{P}(\text{f(x) has no factors of deg } \leq \theta n \mid f(0) \neq 0) \to 1.$$

If μ is uniform on an AP (e.g. on $\{0, 1\}$ or $\{-1, +1\}$), we further have

$$\mathbb{P}(f(x) = \text{irreducible} \mid f(0) \neq 0) \gtrsim -\log(1 - \theta).$$

Theorem 2 (Bary-Soroker, K., Kozma (2020+))

Let μ be unif. on \mathcal{N}. Then $\mathbb{P}(\text{Gal(f) } \in \{A_n, S_n\} \mid f(0) \neq 0) \sim 1$ when:

(a) $\mathcal{N} = \{1, 2, \ldots, H\}$ for some $H \geq 35$.

(b) $\mathcal{N} \subseteq \{-H, \ldots, H\}$ with $\#\mathcal{N} \geq H^{4/5}(\log H)^2$ and $H \geq H_0$.

(c) $\mathcal{N} = \{n^s : 1 \leq n \leq N\}$ with s odd and $N \geq N_0(s)$.
The proof in a nutshell when $\mathcal{N} = \{1, 2, \ldots, 210\}$

- **Eliminating factors of small degree (Konyagin’s argument):**
 - $\mathbb{P}\left(a_0 + a_1\omega + \cdots + a_{n-1}\omega^{n-1} = -\omega^n\right) \ll n^{-1/2} \ \forall \omega \in \mathbb{C} \setminus \{0\}$. Use when $\omega = e^{2\pi i k/\ell}$ with $0 \leq k < \ell \leq n^{1/10}$.
 - For non-cyclotomic factors of degree $\leq n^{1/10}$, use Dobrowolski’s result on the Mahler measure of non-cyclotomic polynomials.

- **Eliminating factors of large degree:**
 - If f has factor of deg k, so does $f_p := f \pmod{p} \ \forall p$.
 - **Ford, Eberhard-Ford-Green, Meisner:** if f_p is unif. distr. among deg n monics over \mathbb{F}_p, then $\mathbb{P}(f_p \text{ has factor of deg } k) \approx k^{-0.086}$.
 - If $\mathcal{N} = \{1, \ldots, H\}$ and $p_1, \ldots, p_r | H$, then f_{p_1}, \ldots, f_{p_r} independent:
 \[
 \mathbb{P}(f \text{ has factor of deg } k) \lesssim k^{-r \times 0.086} \leq k^{-1.032} \quad \text{if } r \geq 12.
 \]

- Using an idea of Pemantle-Peres-Rivin, $r = 4$ suffices. Smallest $H = 2 \cdot 3 \cdot 5 \cdot 7 = 210$ [Bary-Soroker and Kozma (2020)].
The idea of Pemantle-Peres-Rivin

\[\nu(f_p; m) := \# \{ \text{irr. factors of } f_p \} \]

- Most \(f_p \) with a deg \(k \) factor are s.t. \(\nu(f_p; k) \sim \frac{\log k}{\log 2} \)
- But, for almost all \(f_p \), we have \(\nu(f_p; m) \sim \log m \) for all \(m \leq n \). Call this high probability event \(E_p \).
- Since \(E_p \) occurs with high probability, we may condition on it at a small loss.
- Conditionally on \(E_p \), the probability of \(f_p \) having a deg \(k \) factor is \(\approx k^{\log 2 - 1} \approx k^{-0.3} \). Since \(4 \times 0.3 > 1 \), four primes suffice.
What about $\mathcal{N} = \{1, 2, \ldots, 211\}$?

\[
\frac{\# \{1 \leq n \leq 211 : n \equiv a \pmod{5}\}}{211} = \begin{cases}
1/5 - 1/1055 & \text{if } a = 0, \\
1/5 + 4/1055 & \text{if } a = 1, \\
1/5 - 1/1055 & \text{if } a = 2, \\
1/5 - 1/1055 & \text{if } a = 3, \\
1/5 - 1/1055 & \text{if } a = 4,
\end{cases}
\]

- Very small Fourier transform at all non-zero frequencies mod 5
- Analogous situation for polynomials with missing digits (work of Moses & Porritt, building on ideas of Dartyge-Mauduit & Maynard).

Adapt methods \rightsquigarrow joint level of distribution for reductions mod 2,3,5,7:

\[
\sum \sum \sum \sum \sum_{g=(g_2,g_3,g_5,g_7), \deg(g_p) \leq \left(\frac{1}{2} + \varepsilon \right) n, x \mid_{g_p(x)} \forall p} \Pr\left(f : g_2 \mid f_2, g_3 \mid f_3, g_5 \mid f_5, g_7 \mid f_7 \right) - \frac{1}{\prod_{p \leq 7} p^{\deg(g_p)}} \ll \frac{1}{n^{10}}.
\]
What about $\mathcal{N} = \{0, 1\}$?

Following Dartyge-Mauduit, after Fourier inversion, apply Hölder: for any $s \in \mathbb{N}$, we have

$$\sum_{g=(g_2,\ldots,g_7)} \sum_{f=(f_2,\ldots,f_7)} \prod_{0 \leq j < n} |\hat{\mu}(\psi_{210}(x^j f / g))|$$

$$\leq \sum_{g=(g_2,g_3,g_5,g_7)} \sum_{f=(f_2,\ldots,f_7)} \prod_{0 \leq j < n/s} |\hat{\mu}(\psi_{210}(x^j f / g))|^s.$$

Gain: replace μ by $\underbrace{\mu \ast \cdots \ast \mu}_{s \text{ times}}$ that is more regular (think CLT).

Loss: replace n by n/s, so this limits $k_p \leq n/s$ at best.
The Galois group

- We proved that \(f(x) \) is irreducible w.h.p. (or with positive prob.)
- Assuming \(f(x) \) is irreducible, we want to show \(\text{Gal}(f) \in \{A_n, S_n\} \).
- \(f(x) \) irreducible iff \(\text{Gal}(f) \) is transitive

\[\text{Łuczak-Pyber} : \quad \frac{\#T_n}{\#S_n} = o(1), \quad \text{where} \quad T_n = \bigcup_{G \leq S_n \text{ transitive} \atop G \neq A_n, S_n} G. \]

- **New goal:** construct \(g_f \in \text{Gal}(f) \) that behaves quasi-uniformly in \(S_n \), so that the odds that it lies in \(T_n \) are small by Łuczak-Pyber (and thus so are the odds that \(\text{Gal}(f) \neq A_n, S_n \)).

- Take \(g_f \) to be the Frobenius automorphism modulo a prime \(p \) for which the measure \(\mu \) is sufficiently well-distributed.
Thank you!