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The structure of random polynomials

Question
Pick a polynomial f (x) at random. What can we say about its algebraic
structure?
I Distribution of roots?
I Factorization?
I Galois group?
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Roots

f (x) =
n∑

j=0

ajx j with a0an 6= 0

roots zj = rjeiθj (j = 1,2, . . . ,n)

L = L(f ) = log
( |a0|+ |a1|+ · · ·+ |an|√

|a0an|

)
Theorem

1. Erdős-Turan (1948):
∣∣∣#{j : θj ∈ [α, β]} − β − α

2π
· n
∣∣∣ 6 16

√
nL.

2. Hughes-Nikeghbali (2008): n > #{j : |rj − 1| 6 ε} > n − 2L/ε.

Corollary

If (fj)∞j=1 is a family of polynomials such that L(fj )
deg(fj )

→ 0, then almost all
their roots are close to the unit circle, and their angles are roughly
uniformly distributed around it.
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Figure: Roots of ±1 polynomials of degree 6 24 (S. Derbyshire)
Google “Baez Roots”
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Roots of unity

f (x) =
n∑

j=0

ajx j = an(x − z1) · · · (x − zn), a0an 6= 0

Mahler
measure M(f ) := |an|

n∏
j=1

max{1, |zj |} = exp
( 1

2π

∫ 2π

0
log |f (eiθ)|dθ

)
Fact: If f (x) ∈ Z[x ], then M(f ) > 1 with “=” if-f f is product of
cyclotomics.

Conjecture (Lehmer (1933))
There exists a universal constant c > 1 such that M(f ) > c for all f (x)
that have integer coefficients and that are non-cyclotomic.

Theorem (Dobrowolski (1979))

If f (x) ∈ Z[x ] is non-cyclotomic of deg n, then M(f ) > 1 + c
( log log n

log n

)3.
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Irreducibility & Galois groups of random polynomials

Question
(a) P

(
f (x) = irreducible

)
=? (b) P

(
Gal(f ) = G

)
=?

Heuristic: Factoring imposes many relations on coefficients. Unless
there are obvious roots, polynomials tend to be irreducible.

Example
If we sample among all 0,1 polynomials, we expect

P(f (x) = reducible) = P(f (0) = 0) + on→∞(1) ∼ 1/2.

In fact, P(Gal(f ) = Sn−k ) ∼ 1/2k+1 for each fixed k > 0 (i.e., according
to how many initial coeff’s vanish, the Galois group is as complex as
possible).
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Sampling polynomials

f (x) = xn + an−1xn−1 + · · ·+ a1x + a0

with aj sampled according to a probability measure µ on Z.

I µ is often the uniform measure on a finite set N ⊆ Z.

I Long history when n is fixed, N = [−H,H] ∩ Z with H →∞:

van der Waarden (1936), Gallagher (1973), Kuba (2009),
Dietmann (2013), Chow-Dietmann (2020)

Conclusion: Gal(f ) = Sn w.h.p.(=with high probability)

I Advantage when H is large: reduce modulo many large primes.
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0,1 polynomials

f (x) = xn + an−1xn−1 + · · ·+ a1x + 1 with aj ∈ {0,1}

Conjecture (Odlyzko-Poonen (1993))
f (x) is irreducible w.h.p.

Theorem (Konyagin (1999))
f (x) is irreducible with probability� 1/ log n.

Theorem (Breuillard-Varjú (2019))
Assume GRH. Then w.h.p. f (x) has Galois group An or Sn.

Theorem (Bary-Soroker, K., Kozma (2020+))
f (x) has Galois group An or Sn with probability > 0.003736.
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The argument of Breuillard-Varjú

(It works for any non-singular µ of compact support.)

I Ex6p62x

[
#{ω ∈ Z/pZ : f (ω) ≡ 0 (mod p)}

]
∼ #{irr. factors of f}

I Ef∈FEx6p62x

[
#{ω ∈ Z/pZ : f (ω) ≡ 0 (mod p)}

]
= Ex6p62x

[ ∑
ω∈Z/pZ

Pf∈F

(
f (ω) ≡ 0 (mod p)

)]
I Given ω, the expression f (ω)− ωn = a0 + a1ω + · · ·+ an−1ω

n−1 is
a random walk in Z/pZ of independent increments.

I Breuillard-Varjú proved that, for most ω, the walk mixes as soon as
n > (log p)(log log p)3+ε. So P(f (ω) ≡ 0 (mod p)) ∼ 1

p for most ω.
I Problem: in order to make effective the very first asymptotic, we

need to assume the Generalized Riemann Hypothesis.
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New results
Theorem 1 (Bary-Soroker, K., Kozma (2020+))
Let µ 6= Dirac mass, compactly supported. There is θ = θ(µ) > 0 s.t.

P
(
f (x) has no factors of deg 6 θn | f (0) 6= 0

)
→ 1.

If µ is uniform on an AP (e.g. on {0,1} or {−1,+1}), we further have

P
(
f (x) = irreducible | f (0) 6= 0

)
& − log(1− θ).

Theorem 2 (Bary-Soroker, K., Kozma (2020+))
Let µ be unif. on N . Then P(Gal(f ) ∈ {An,Sn}

∣∣ f (0) 6= 0
)
∼ 1 when:

(a) N = {1,2, . . . ,H} for some H > 35.

(b) N ⊆ {−H, . . . ,H} with #N > H4/5(logH)2 and H > H0.

(c) N = {ns : 1 6 n 6 N} with s odd and N > N0(s).
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The proof in a nutshell when N = {1,2, . . . ,210}
I Eliminating factors of small degree (Konyagin’s argument):

I P
(

a0 + a1ω + · · ·+ an−1ω
n−1 = −ωn

)
� n−1/2 ∀ω ∈ C \ {0}.

Use when ω = e2πi k
` with 0 6 k < ` 6 n1/10.

I For non-cyclotomic factors of degree 6 n1/10, use Dobrowolski’s
result on the Mahler measure of non-cyclotomic polynomials.

I Eliminating factors of large degree:
I If f has factor of deg k , so does fp := f (mod p) ∀p.
I Ford, Eberhard-Ford-Green, Meisner: if fp is unif. distr. among deg

n monics over Fp, then P(fp has factor of deg k) ≈ k−0.086.
I If N = {1, . . . ,H} and p1, . . . ,pr |H, then fp1 , . . . , fpr independent:

P(f has factor of deg k) . k−r×0.086 6 k−1.032 if r > 12.

I Using an idea of Pemantle-Peres-Rivin, r = 4 suffices.
Smallest H = 2 · 3 · 5 · 7 = 210 [Bary-Soroker and Kozma (2020)].
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The idea of Pemantle-Peres-Rivin

ν(fp;m) := #{irr. factors of fp}

I Most fp with a deg k factor are s.t. ν(fp; k) ∼ log k
log 2

I But, for almost all fp, we have ν(fp;m) ∼ logm for all m 6 n.
Call this high probability event Ep.

I Since Ep occurs with high probability, we may condition on it at a
small loss.

I Conditionally on Ep, the probability of fp having a deg k factor is
≈ k log 2−1 ≈ k−0.3. Since 4× 0.3 > 1, four primes suffice.
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What about N = {1,2, . . . ,211}?

#{1 6 n 6 211 : n ≡ a (mod 5)}
211

=



1/5− 1/1055 if a = 0,
1/5 + 4/1055 if a = 1,
1/5− 1/1055 if a = 2,
1/5− 1/1055 if a = 3,
1/5− 1/1055 if a = 4,

I Very small Fourier transform at all non-zero frequencies mod 5

I Analogous situation for polynomials with missing digits (work of
Moses & Porritt, building on ideas of Dartyge-Mauduit & Maynard).

Adapt methods joint level of distribution for reductions mod 2,3,5,7:∑∑∑∑
g=(g2,g3,g5,g7)

deg(gp)6( 1
2+ε)n

x -gp(x) ∀p

∣∣∣∣P(f :
g2|f2, g3|f3
g5|f5, g7|f7

)
− 1∏

p67 pdeg(gp)

∣∣∣∣� 1
n10 .
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What about N = {0,1}?

Following Dartyge-Mauduit, after Fourier inversion, apply Hölder:
for any s ∈ N, we have∑∑∑∑

g=(g2,...,g7)
deg(gp)=kp,x -gp(x) ∀p

∑∑∑∑
f=(f2,...,f7)
(fp,gp)=1 ∀p

∏
06j<n

|µ̂(ψ210
(
x j f/g))|

6
∑∑∑∑

g=(g2,g3,g5,g7)
deg(gp)=kp,x -gp(x) ∀p

∑∑∑∑
f=(f2,...,f7)
(fp,gp)=1 ∀p

∏
06j<n/s

|µ̂(ψ210(x j f/g))|s.

Gain: replace µ by µ ∗ · · · ∗ µ︸ ︷︷ ︸
s times

that is more regular (think CLT).

Loss: replace n by n/s, so this limits kp 6 n/s at best.
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The Galois group

I We proved that f (x) is irreducible w.h.p. (or with positive prob.)
I Assuming f (x) is irreducible, we want to show Gal(f ) ∈ {An,Sn}.
I f (x) irreducible iff Gal(f ) is transitive

I Łuczak-Pyber :
#Tn

#Sn
= o(1), where Tn =

⋃
G6Sn transitive

G 6=An,Sn

G.

I New goal: construct gf ∈ Gal(f ) that behaves quasi-uniformly in
Sn, so that the odds that it lies in Tn are small by Łuczak-Pyber
(and thus so are the odds that Gal(f ) 6= An,Sn).

I Take gf to be the Frobenius automorphism modulo a prime p for
which the measure µ is sufficiently well-distributed
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Thank you!
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