Irreducibility of random polynomials of large degree

Dimitris Koukoulopoulos ${ }^{1}$
Joint work with Lior Bary-Soroker ${ }^{2}$ and Gady Kozma3
${ }^{1}$ Université de Montréal
${ }^{2}$ Tel Aviv University
${ }^{3}$ Weizman Institute

Greek Mathematical Seminar
 16 June 2021

The structure of random polynomials

Question

Pick a polynomial $f(x)$ at random. What can we say about its algebraic structure?

- Distribution of roots?
- Factorization?
- Galois group?

Roots

$$
\begin{gathered}
f(x)=\sum_{j=0}^{n} a_{j} x^{j} \quad \text { with } a_{0} a_{n} \neq 0 \\
\text { roots } \quad z_{j}=r_{j} e^{i \theta_{j}} \quad(j=1,2, \ldots, n) \\
L=L(f)=\log \left(\frac{\left|a_{0}\right|+\left|a_{1}\right|+\cdots+\left|a_{n}\right|}{\sqrt{\left|a_{0} a_{n}\right|}}\right)
\end{gathered}
$$

Theorem

1. Erdős-Turan (1948): $\left|\#\left\{j: \theta_{j} \in[\alpha, \beta]\right\}-\frac{\beta-\alpha}{2 \pi} \cdot n\right| \leqslant 16 \sqrt{n L}$.
2. Hughes-Nikeghbali (2008): $n \geqslant \#\left\{j:\left|r_{j}-1\right| \leqslant \varepsilon\right\} \geqslant n-2 L / \varepsilon$.

Corollary

If $\left(f_{j}\right)_{j=1}^{\infty}$ is a family of polynomials such that $\frac{L\left(f_{j}\right)}{\operatorname{deg}\left(f_{j}\right)} \rightarrow 0$, then almost all their roots are close to the unit circle, and their angles are roughly uniformly distributed around it.

Figure: Roots of ± 1 polynomials of degree $\leqslant 24$ (S. Derbyshire) Google "Baez Roots"

Roots of unity

$$
f(x)=\sum_{j=0}^{n} a_{j} x^{j}=a_{n}\left(x-z_{1}\right) \cdots\left(x-z_{n}\right), \quad a_{0} a_{n} \neq 0
$$

Mahler measure

$$
M(f):=\left|a_{n}\right| \prod_{j=1}^{n} \max \left\{1,\left|z_{j}\right|\right\}=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(e^{i \theta}\right)\right| \mathrm{d} \theta\right)
$$

Fact: If $f(x) \in \mathbb{Z}[x]$, then $M(f) \geqslant 1$ with " $=$ " if- $f f$ is product of cyclotomics.

Conjecture (Lehmer (1933))

There exists a universal constant $c>1$ such that $M(f) \geqslant c$ for all $f(x)$ that have integer coefficients and that are non-cyclotomic.

Theorem (Dobrowolski (1979))

If $f(x) \in \mathbb{Z}[x]$ is non-cyclotomic of deg n, then $M(f) \geqslant 1+c\left(\frac{\log \log n}{\log n}\right)^{3}$.

Irreducibility \& Galois groups of random polynomials

Question

(a) $\mathbb{P}(f(x)=$ irreducible $)=$?
(b) $\mathbb{P}(\operatorname{Gal}(f)=G)=$?

Heuristic: Factoring imposes many relations on coefficients. Unless there are obvious roots, polynomials tend to be irreducible.

Example

If we sample among all 0,1 polynomials, we expect

$$
\mathbb{P}(f(x)=\text { reducible })=\mathbb{P}(f(0)=0)+o_{n \rightarrow \infty}(1) \sim 1 / 2 .
$$

In fact, $\mathbb{P}\left(\operatorname{Gal}(f)=\mathcal{S}_{n-k}\right) \sim 1 / 2^{k+1}$ for each fixed $k \geqslant 0$ (i.e., according to how many initial coeff's vanish, the Galois group is as complex as possible).

Sampling polynomials

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

with a_{j} sampled according to a probability measure μ on \mathbb{Z}.

- μ is often the uniform measure on a finite set $\mathcal{N} \subseteq \mathbb{Z}$.
- Long history when n is fixed, $\mathcal{N}=[-H, H] \cap \mathbb{Z}$ with $H \rightarrow \infty$: van der Waarden (1936), Gallagher (1973), Kuba (2009), Dietmann (2013), Chow-Dietmann (2020)

Conclusion: $\operatorname{Gal}(f)=\mathcal{S}_{n}$ w.h.p.(=with high probability)

- Advantage when H is large: reduce modulo many large primes.

0,1 polynomials

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+1 \quad \text { with } a_{j} \in\{0,1\}
$$

Conjecture (Odlyzko-Poonen (1993))

$f(x)$ is irreducible w.h.p.

Theorem (Konyagin (1999))
$f(x)$ is irreducible with probability $\gg 1 / \log n$.
Theorem (Breuillard-Varjú (2019))
Assume GRH. Then w.h.p. $f(x)$ has Galois group \mathcal{A}_{n} or \mathcal{S}_{n}.
Theorem (Bary-Soroker, K., Kozma (2020+)) $f(x)$ has Galois group \mathcal{A}_{n} or \mathcal{S}_{n} with probability $\geqslant 0.003736$.

The argument of Breuillard-Varjú

(It works for any non-singular μ of compact support.)

- $\mathbb{E}_{x \leqslant p \leqslant 2 x}[\#\{\omega \in \mathbb{Z} / p \mathbb{Z}: f(\omega) \equiv 0(\bmod p)\}] \sim \#\{$ irr. factors of $f\}$
- $\mathbb{E}_{f \in \mathcal{F}} \mathbb{E}_{x \leqslant p \leqslant 2 x}[\#\{\omega \in \mathbb{Z} / p \mathbb{Z}: f(\omega) \equiv 0(\bmod p)\}]$
$=\mathbb{E}_{x \leqslant p \leqslant 2 x}\left[\sum_{\omega \in \mathbb{Z} / p \mathbb{Z}} \mathbb{P}_{f \in \mathcal{F}}(f(\omega) \equiv 0(\bmod p))\right]$
- Given ω, the expression $f(\omega)-\omega^{n}=a_{0}+a_{1} \omega+\cdots+a_{n-1} \omega^{n-1}$ is a random walk in $\mathbb{Z} / p \mathbb{Z}$ of independent increments.
- Breuillard-Varjú proved that, for most ω, the walk mixes as soon as $n \geqslant(\log p)(\log \log p)^{3+\varepsilon}$. So $\mathbb{P}(f(\omega) \equiv 0(\bmod p)) \sim \frac{1}{p}$ for most ω.
- Problem: in order to make effective the very first asymptotic, we need to assume the Generalized Riemann Hypothesis.

New results

Theorem 1 (Bary-Soroker, K., Kozma (2020+))
Let $\mu \neq$ Dirac mass, compactly supported. There is $\theta=\theta(\mu)>0$ s.t.

$$
\mathbb{P}(f(x) \text { has no factors of deg } \leqslant \theta n \mid f(0) \neq 0) \rightarrow 1 .
$$

If μ is uniform on an $A P$ (e.g. on $\{0,1\}$ or $\{-1,+1\}$), we further have

$$
\mathbb{P}(f(x)=\text { irreducible } \mid f(0) \neq 0) \gtrsim-\log (1-\theta) .
$$

Theorem 2 (Bary-Soroker, K., Kozma (2020+)) Let μ be unif. on \mathcal{N}. Then $\mathbb{P}\left(\operatorname{Gal}(f) \in\left\{\mathcal{A}_{n}, \mathcal{S}_{n}\right\} \mid f(0) \neq 0\right) \sim 1$ when: (a) $\mathcal{N}=\{1,2, \ldots, H\}$ for some $H \geqslant 35$.
(b) $\mathcal{N} \subseteq\{-H, \ldots, H\}$ with $\# \mathcal{N} \geqslant H^{4 / 5}(\log H)^{2}$ and $H \geqslant H_{0}$.
(c) $\mathcal{N}=\left\{n^{s}: 1 \leqslant n \leqslant N\right\}$ with sodd and $N \geqslant N_{0}(s)$.

The proof in a nutshell when $\mathcal{N}=\{1,2, \ldots, 210\}$

- Eliminating factors of small degree (Konyagin's argument):
- $\mathbb{P}\left(a_{0}+a_{1} \omega+\cdots+a_{n-1} \omega^{n-1}=-\omega^{n}\right) \ll n^{-1 / 2} \quad \forall \omega \in \mathbb{C} \backslash\{0\}$. Use when $\omega=e^{2 \pi \frac{\kappa}{z}}$ with $0 \leqslant k<\ell \leqslant n^{1 / 10}$.
- For non-cyclotomic factors of degree $\leqslant n^{1 / 10}$, use Dobrowolski's result on the Mahler measure of non-cyclotomic polynomials.
- Eliminating factors of large degree:
- If f has factor of deg k, so does $f_{p}:=f(\bmod p) \quad \forall p$.
- Ford, Eberhard-Ford-Green, Meisner: if f_{p} is unif. distr. among deg n monics over \mathbb{F}_{p}, then $\mathbb{P}\left(f_{p}\right.$ has factor of deg $\left.k\right) \approx k^{-0.086}$.
- If $\mathcal{N}=\{1, \ldots, H\}$ and $p_{1}, \ldots, p_{r} \mid H$, then $f_{p_{1}}, \ldots, f_{p_{r}}$ independent:

$$
\mathbb{P}(f \text { has factor of deg } k) \lesssim k^{-r \times 0.086} \leqslant k^{-1.032} \quad \text { if } r \geqslant 12 .
$$

- Using an idea of Pemantle-Peres-Rivin, $r=4$ suffices. Smallest $H=2 \cdot 3 \cdot 5 \cdot 7=210$ [Bary-Soroker and Kozma (2020)].

The idea of Pemantle-Peres-Rivin

$$
\nu\left(f_{p} ; m\right):=\#\left\{\text { irr. factors of } f_{p}\right\}
$$

- Most f_{p} with a deg k factor are s.t. $\nu\left(f_{p} ; k\right) \sim \frac{\log k}{\log 2}$
- But, for almost all f_{p}, we have $\nu\left(f_{p} ; m\right) \sim \log m$ for all $m \leqslant n$. Call this high probability event E_{p}.
- Since E_{p} occurs with high probability, we may condition on it at a small loss.
- Conditionally on E_{p}, the probability of f_{p} having a deg k factor is $\approx k^{\log 2-1} \approx k^{-0.3}$. Since $4 \times 0.3>1$, four primes suffice.

What about $\mathcal{N}=\{1,2, \ldots, 211\} ?$

$$
\frac{\#\{1 \leqslant n \leqslant 211: n \equiv a(\bmod 5)\}}{211}= \begin{cases}1 / 5-1 / 1055 & \text { if } a=0 \\ 1 / 5+4 / 1055 & \text { if } a=1 \\ 1 / 5-1 / 1055 & \text { if } a=2 \\ 1 / 5-1 / 1055 & \text { if } a=3 \\ 1 / 5-1 / 1055 & \text { if } a=4\end{cases}
$$

- Very small Fourier transform at all non-zero frequencies mod 5
- Analogous situation for polynomials with missing digits (work of Moses \& Porritt, building on ideas of Dartyge-Mauduit \& Maynard).
Adapt methods \rightsquigarrow joint level of distribution for reductions mod 2,3,5,7:

$$
\begin{aligned}
& \sum_{\boldsymbol{g}=\left(g_{2}, g_{3}, g_{5}, g_{7}\right)} \sum \sum_{\mathbb{P}}\left|\mathbb{P}\left(f: \begin{array}{l}
g_{2}\left|f_{2}, g_{3}\right| f_{3} \\
g_{5}\left|f_{5}, g_{7}\right| f_{7}
\end{array}\right)-\frac{1}{\prod_{p \leqslant 7} p^{\operatorname{deg}\left(g_{p}\right)} \mid}\right| \ll \frac{1}{n^{10}} . \\
& \begin{array}{c}
\operatorname{deg}\left(g_{p}\right) \leqslant\left(\frac{1}{2}+\varepsilon\right) n \\
x \nmid g_{p}(x) \forall p
\end{array}
\end{aligned}
$$

What about $\mathcal{N}=\{0,1\} ?$

Following Dartyge-Mauduit, after Fourier inversion, apply Hölder: for any $s \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum \sum_{\substack{\boldsymbol{g}=\left(g_{2}, \ldots, g_{7}\right) \\
\operatorname{deg}\left(g_{p}\right)=k_{p}, x \not g_{p}(x)}} \sum_{\substack{ }} \sum_{\substack{\boldsymbol{f}=\left(f_{2}, \ldots, f_{7}\right) \\
\left(f_{p}, g_{p}\right)=1}} \sum_{\forall p} \prod_{0 \leqslant j<n}\left|\hat{\mu}\left(\psi_{210}\left(x^{j} \boldsymbol{f} / \boldsymbol{g}\right)\right)\right| \\
\leqslant & \sum_{\substack{\boldsymbol{g}=\left(g_{2}, g_{3}, g_{5}, g_{7}\right) \\
\operatorname{deg}\left(g_{p}\right)=k_{p}, x \nmid g_{p}(x)}} \sum_{\substack{ }} \sum_{\substack{\boldsymbol{f}=\left(f_{2}, \ldots, f_{7}\right) \\
\left(f_{p}, g_{p}\right)=1 \forall p}} \sum_{\substack{ }} \prod_{0 \leqslant j<n / s}\left|\hat{\mu}\left(\psi_{210}\left(x^{j} \boldsymbol{f} / \boldsymbol{g}\right)\right)\right|^{s} .
\end{aligned}
$$

Gain: replace μ by $\underbrace{\mu * \cdots * \mu}_{s \text { times }}$ that is more regular (think CLT).
Loss: replace n by n / s, so this limits $k_{p} \leqslant n / s$ at best.

The Galois group

- We proved that $f(x)$ is irreducible w.h.p. (or with positive prob.)
- Assuming $f(x)$ is irreducible, we want to show $\operatorname{Gal}(f) \in\left\{\mathcal{A}_{n}, \mathcal{S}_{n}\right\}$.
- $f(x)$ irreducible iff $\mathrm{Gal}(f)$ is transitive
- Łuczak-Pyber: $\frac{\# \mathcal{T}_{n}}{\# \mathcal{S}_{n}}=o(1), \quad$ where $\quad \mathcal{T}_{n}=\bigcup_{\substack{G \leqslant \mathcal{S}_{n} \text { transitive } \\ G \neq \mathcal{A}_{n}, \mathcal{S}_{n}}} G$.
- New goal: construct $g_{f} \in \operatorname{Gal}(f)$ that behaves quasi-uniformly in \mathcal{S}_{n}, so that the odds that it lies in \mathcal{T}_{n} are small by Łuczak-Pyber (and thus so are the odds that $\left.\operatorname{Gal}(f) \neq \mathcal{A}_{n}, \mathcal{S}_{n}\right)$.
- Take g_{f} to be the Frobenius automorphism modulo a prime p for which the measure μ is sufficiently well-distributed

Thank you!

