The distribution of the maximum of character sums

Dimitris Koukoulopoulos
(joint work with J. Bober, L. Goldmakher and A. Granville)
Université de Montréal

Analytic Number Theory, a conference to honor É. Fouvry
Centre International de Rencontres Mathématiques

$$
\text { June 18, } 2013
$$

Background \& motivation

Let χ be a Dirichlet character modulo q and define

$$
M(\chi)=\max _{1 \leq z \leq q}\left|\sum_{n \leq z} \chi(n)\right|
$$

If χ is non-principal, then Pólya and Vinogradov showed in 1918 that

$$
M(\chi) \ll \sqrt{q} \log q .
$$

Assuming GRH, Montgomery and Vaughan improved this in 1977 to

$$
M(\chi) \ll \sqrt{q} \log \log q .
$$

This is best possible: Paley had already shown in 1932 that
there is a sequence $q_{n} \rightarrow \infty$ such that $M\left(\left(\frac{q_{n}}{.}\right)\right) \gg \sqrt{q_{n}} \log \log q_{n}$.
However, such extremal examples should be rather rare. Our goal is to study how rare they are.

The distribution of $M(\chi)$: random models

We shall study

$$
P_{q}(\tau):=\frac{\#\left\{\chi(\bmod q): M(\chi)>\frac{e^{\gamma}}{\pi} \tau \sqrt{q}\right\}}{\phi(q)}=\operatorname{Prob}\left(M(\chi)>\frac{e^{\gamma}}{\pi} \tau \sqrt{q}\right) .
$$

We always assume for simplicity that q is prime.
Two questions:
(1) Is there a random model that describes $P_{q}(\tau)$ accurately?
(2) How big is $P_{q}(\tau)$?

Let $\left(X_{p}\right)_{p \nmid q}$ be a sequence of independent random variables, uniformly distributed on $\{z \in \mathbb{C}:|z|=1\}$, and $X_{p}=0$ if $p \mid q$.
(They should model $\chi(p)$ as χ runs through characters modulo q.)
Then we define $X_{n}=\prod_{p^{r} \| n} X_{p}^{r}$, which serves a model for $\chi(n)$.
First attempt: model $\sum_{n \leq z} \chi(n)$ by $\sum_{n \leq z} X_{n}$.
For z large compared to q, this will fail: periodicity is not taken into account.

The distribution of $M(\chi)$: random models, continued

$$
P_{q}(\tau)=\operatorname{Prob}\left(M(\chi)>\frac{e^{\gamma}}{\pi} \tau \sqrt{q}\right) .
$$

$\left(X_{p}\right)_{p \nmid q}$ sequence of independent random variables, uniformly distributed on $\{z \in \mathbb{C}:|z|=1\}, X_{p}=0$ if $p \mid q, X_{n}=\prod_{p^{r} \| n} X_{p}^{r}$.
Second attempt: use Pólya's expansion (χ primitive, $e(x)=e^{2 \pi i x}$):
$\sum_{n \leq z} \chi(n)=\frac{\tau(\chi)}{2 \pi i} \sum_{1 \leq|n| \leq w} \frac{\bar{\chi}(n)(1-e(-n z / q))}{n}+O\left(\frac{q \log q}{w}\right) \quad(1 \leq w \leq q)$.
Our model for $\sum_{n \leq z} \chi(n)$ then becomes

$$
S(z):=\frac{\tau(\chi)}{2 \pi i} \sum_{1 \leq|n| \leq q} \frac{\overline{X_{n}} \cdot(1-e(-n z / q))}{n} .
$$

This model captures the periodicity of χ.
Remark. The standard deviation of $S(z) / \sqrt{q}$ is $\ll 1$. (Compare this to 1 st model: the SD of $T(z)=\sum_{n \leq z} X_{n}$ is \sqrt{z}, and one might expect $T(z) / \sqrt{z}$ to get large relatively often.) Ās a result, $P_{q}(\tau)$ will be rather small.

Known results on $P_{q}(\tau)$
In 1979, Montgomery and Vaughan showed that

$$
\frac{1}{\phi(q)} \sum_{\chi(\bmod q)} M(\chi)^{2 k}<_{k} q^{k}
$$

An immediate corollary is that

$$
P_{q}(\tau)=\operatorname{Prob}\left(M(\chi)>\frac{e^{\gamma}}{\pi} \tau \sqrt{q}\right) \ll_{A} \frac{1}{\tau^{A}} .
$$

In 2011, Bober-Goldmakher proved that, for fixed τ and $q \rightarrow \infty$ over primes,

$$
\exp \left\{-\frac{C e^{\tau}}{\tau}\left(1+o_{\tau \rightarrow \infty}(1)\right)\right\} \leq P_{q}(\tau) \leq \exp \left\{-e^{B \sqrt{\tau} /(\log \tau)^{1 / 4}}\right\}
$$

where $C=1.09258 \ldots$ This supports the claim that $P_{q}(\tau)$ is very small. Question: why do the tails of the distribution of $M(\chi)$ have this double exponential decay?

The distribution of $M(\chi)$ vs the distribution of $L(1, \chi)$

$$
\sum_{n \leq \alpha q} \chi(n)=\frac{\tau(\chi)}{2 \pi i} \sum_{1 \leq|n| \leq q} \frac{\bar{\chi}(n)(1-e(-n \alpha))}{n}+O(\log q)
$$

In view of Pólya's expansion, one might conjecture that

$$
P_{q}(\tau):=\operatorname{Prob}\left(M(\chi)>\frac{e^{\gamma}}{\pi} \tau \sqrt{q}\right) \approx \operatorname{Prob}(|L(1, \chi)|>c \tau) .
$$

Granville-Soundararjan: for q prime and $e^{\tau}=o(\log q)$,

$$
\operatorname{Prob}\left(|L(1, \chi)|>e^{\gamma} \tau\right)=\exp \left\{-\frac{C e^{\tau}}{\tau}\left(1+o_{\tau \rightarrow \infty}(1)\right)\right\}
$$

Compare this to

$$
\exp \left\{-\frac{C e^{\tau}}{\tau}\left(1+o_{\tau \rightarrow \infty}(1)\right)\right\} \leq P_{q}(\tau) \leq \exp \left\{-e^{B \sqrt{\tau} /(\log \tau)^{1 / 4}}\right\}
$$

The distribution of $L(1, \chi)$: main ideas

(1) We shall take moments of $L(1, \chi)$, so we need to 'shorten' it. We have that $\log L(1, \chi)=\sum_{p} \chi(p) / p+C_{\chi}$, where C_{χ} is a constant.
PNT $\Rightarrow \log L(1, \chi) \sim \sum_{p \leq e^{q^{\epsilon}}} \chi(p) / p+C_{\chi}$,
$\mathrm{GRH} \Rightarrow \log L(1, \chi) \sim \sum_{p \leq(\log q)^{2+\epsilon}} \chi(p) / p+C_{\chi}$.
But we study $L(1, \chi)$ statistically: for most $\chi(\bmod q)$, Zero-density estimates $\Rightarrow \log L(1, \chi) \sim \sum_{p \leq(\log q)^{100}} \chi(p) / p+C_{\chi}$.
(2) Take moments of

$$
\begin{aligned}
L(1, \chi ; y):=\prod_{p \leq y}\left(1-\frac{\chi(p)}{p}\right)^{-1} & =\sum_{p \mid n \Rightarrow p \leq y} \frac{\chi(n)}{n} \quad\left(y=(\log q)^{100}\right): \\
\frac{1}{\phi(q)} \sum_{\chi(\bmod q)}|L(1, \chi ; y)|^{2 k} & =\frac{1}{\phi(q)} \sum_{\chi(\bmod q)}\left|\sum_{p \mid n \Rightarrow p \leq y} \frac{\tau_{k}(n) \chi(n)}{n}\right|^{2} \\
& =\sum_{\substack{m \equiv n(\bmod q) \\
p \mid m n \Rightarrow p \leq y, p \nmid q}} \frac{\tau_{k}(m) \tau_{k}(n)}{m n} .
\end{aligned}
$$

The distribution of $L(1, \chi)$, continued

 Ignoring the off-diagonal terms (assumption that X_{n} is a good model for $\chi(n)$), and assuming that q is prime,$$
\begin{aligned}
M_{2 k} & :=\frac{1}{\phi(q)} \sum_{\chi(\bmod q)}|L(1, \chi ; y)|^{2 k}=\sum_{\substack{m \equiv n(\bmod q) \\
p \mid m n \Rightarrow p \leq y, p \nmid q}} \frac{\tau_{k}(m) \tau_{k}(n)}{m n} \\
& \approx \sum_{p \mid n \Rightarrow p \leq y} \frac{\tau_{k}(n)^{2}}{n^{2}}=\prod_{p \leq y}\left(1+\frac{\tau_{k}(p)^{2}}{p^{2}}+\frac{\tau_{k}\left(p^{2}\right)}{p^{4}}+\cdots\right) .
\end{aligned}
$$

Then Granville and Soundararajan proceed to show that $\log M_{2 k}=2 e^{\gamma} k+C^{\prime} k / \log k+O\left(k / \log ^{2} k\right)$, which allows them to estimate $\operatorname{Prob}\left(|L(1, \chi)|>e^{\gamma} \tau\right)$ quite accurately.
Remark. In fact, they observe that

$$
\log \left(1+\frac{\tau_{k}(p)^{2}}{p^{2}}+\frac{\tau_{k}\left(p^{2}\right)}{p^{4}}+\cdots\right)=\log I_{0}(2 k / p)+O\left(k / p^{2}\right)
$$

where $I_{0}(t)=\sum_{n \geq 0}\left(\frac{t / 2}{n!}\right)^{2}$ is the modified Bessel function of the 1st kind. In particular, most of the contribution to $M_{2 k}$ comes from primes $p \approx k$.

New results on $P_{q}(\tau)=\operatorname{Prob}\left(M(\chi)>\frac{e^{\gamma}}{\pi} \tau \sqrt{q}\right)$

Recall Bober-Goldmakher's result: for τ fixed and $q \rightarrow \infty$ over primes,

$$
\exp \left\{-\frac{C e^{\tau}}{\tau}\left(1+o_{\tau \rightarrow \infty}(1)\right)\right\} \leq P_{q}(\tau) \leq \exp \left\{-e^{B \sqrt{\tau} /(\log \tau)^{1 / 4}}\right\} .
$$

There are two issues to be addressed:

- There is a discrepancy between upper and lower bounds.
- The result is not uniform in τ and q.

Theorem (Bober, Goldmakher, Granville, K. (2013))

Let $\theta>14 / 15, q$ be prime and $2 \leq \tau \leq \log \log q-\log \log \log q-5$. Then

$$
\exp \left\{-\frac{C e^{\tau}}{\tau}\left(1+o_{\tau \rightarrow \infty}(1)\right)\right\} \leq P_{q}(\tau) \leq \exp \left\{-e^{\tau+O_{\theta}\left(\tau^{\theta}\right)}\right\}
$$

Remark. On GRH, the theorem holds when $\tau \leq \log _{2} q-\log _{4} q+O(1)$. It seems likely that it can be shown unconditie ${ }^{\tau}=o(\log q)$ can be obtained unconditionally.

A reduction to the distribution of $L(1, \chi)$: lower bounds

 For lower bounds on $P_{q}(\tau)$, we follow Bober-Goldmakher and note that$$
\begin{aligned}
\sum_{n \leq q / 2} \chi(n) & \sim \frac{\tau(\chi)}{2 \pi i} \sum_{1 \leq|n| \leq q} \frac{\bar{\chi}(n)(1-e(-n / 2))}{n} \\
& =\frac{\tau(\chi)}{\pi i} \sum_{\substack{1 \leq|n| \leq q \\
n \text { odd }}} \frac{\bar{\chi}(n)}{n}=\frac{2 \tau(\chi)}{\pi i} \begin{cases}\sum_{1 \leq n \leq q} \frac{\bar{\chi}(n)}{n} & \text { if } \chi(-1)=-1, \\
0 & \text { if } \chi(-1)=1\end{cases}
\end{aligned}
$$

When χ is odd, the right hand side is essentially $L(1, \bar{\chi})$, divided by the Euler factor at $p=2$.

One can then obtain the claimed lower bound on $P_{q}(\tau)$ using the methods of Granville-Soundararajan.

The upper bound is significantly harder. The main issue is to understand where $\sum_{n \leq z} \chi(n)$ is maximized (ideas about pretentious characters).

A detour: pretentious characters

Granville-Soundararajan (2006) and Goldmakher (2010) improved the previously known bounds for $M(\chi)$ when χ has odd order g to
$M(\chi) \ll\left\{\begin{array}{ll}\sqrt{q}(\log q)^{1-\delta_{g}+o(1)} & \text { unconditionally, } \\ \sqrt{q}(\log \log q)^{1-\delta_{g}+o(1)} & \text { on GRH. }\end{array} \quad\left(\delta_{g}=1-\frac{g}{\pi} \sin \frac{\pi}{g}\right)\right.$
Idea of the proof: g odd $\Rightarrow \chi(-1)=1$. So Pólya's expansion becomes
$\sum_{n \leq \alpha q} \chi(n) \sim \frac{\tau(\chi)}{2 \pi i} \sum_{1 \leq|n| \leq q} \frac{\bar{\chi}(n)(1-e(-n \alpha))}{n}=-\frac{\tau(\chi)}{2 \pi i} \sum_{1 \leq|n| \leq q} \frac{\bar{\chi}(n) e(-n \alpha)}{n}$.
Let $|\alpha-a / b|<1 /(b B), b \leq B:=e^{\sqrt{\log q}}$. Montgomery-Vaughan showed

$$
\sum_{n \leq x} \frac{\chi(n) e(n \alpha)}{n} \ll \log \log x+\log b+\frac{(\log b)^{3 / 2}}{\sqrt{b}} \log x \quad(x \geq 2)
$$

So, we may assume that $b \leq(\log q)^{1 / 3}$. Also, let $\alpha=a / b$ for simplicity.

Pretentious characters, continued

$\operatorname{ord}(\chi)=g=$ odd, $\chi(-1)=1, \alpha=a / b, b \leq(\log q)^{1 / 3}$. We need to estimate

$$
\sum_{n \leq \alpha q} \chi(n) \sim-\frac{\tau(\chi)}{2 \pi i} \sum_{1 \leq|n| \leq q} \frac{\bar{\chi}(n) e(-n a / b)}{n}
$$

Expand $e(-n a / b)$ in terms of characters $\psi(\bmod d), d \mid b$, to replace $\sum_{n \leq \alpha q} \chi(n)$ by sums of the form

$$
S=\sum_{1 \leq|n| \leq z} \frac{\bar{\chi}(n) \psi(n)}{n}=(1-\chi(-1) \psi(-1)) \sum_{n \leq z} \frac{\bar{\chi}(n) \psi(n)}{n}
$$

For S to be big, χ must be 'close' to $\psi(\chi(p) \approx \psi(p))$. Indeed,

$$
\sum_{n \leq z} \frac{\chi(n) \bar{\psi}(n)}{n} \ll \frac{\log z}{\exp \{\mathbb{D}(\chi, \psi ; z) / 2\}}, \quad \mathbb{D}^{2}(\chi, \psi ; z)=\sum_{p \leq z} \frac{1-\Re(\chi(p) \bar{\psi}(p))}{p}
$$

If $\mathbb{D}(\chi, \psi ; z)$ is small, we say that χ pretends to be ψ.
Also, $\psi(-1)=-\chi(-1)=-1 \Longrightarrow \operatorname{ord}(\psi)=$ even $\neq g$.
But then $\chi \approx \psi \quad \Longrightarrow \quad 1=\chi^{g} \approx \psi^{g} \neq 1, \quad$ a contradiction.

A reduction to the distribution of $L(1, \chi)$: upper bounds

 In bounding $P_{q}(\tau)$ from above, the key step is the following:
Theorem (Bober, Goldmakher, Granville, K. (2013))

Let $\theta>14 / 15, q$ be prime and $2 \leq \tau \leq \log \log q-\log \log \log q-5$. With the exception of $\ll q \exp \left\{-20 \tau e^{\tau}\right\}$ characters $\bmod q$, if $M(\chi)>\frac{e^{\gamma}}{\pi} \tau \sqrt{q}$, then χ is odd, and there is a $b \leq \tau^{10}$ such that

$$
\left|\sum_{\substack{n \in \mathbb{N},(n, b)=1 \\ p \mid n \Rightarrow p \leq e^{\tau}}} \frac{\chi(n)}{n}\right| \geq e^{\gamma} \tau+O_{\theta}\left(\tau^{\theta}\right)
$$

Then $P_{q}(\tau) \leq \exp \left\{-e^{\tau+O_{\theta}\left(\tau^{\theta}\right)}\right\}$, by Granville-Soundararajan.
Main ideas involved in proving the above theorem:
(1) A high moment bound to truncate Pólya's expansion.
(2) Use "pretentious characters" to locate the max of $\left|\sum_{n \leq x} \chi(n)\right|$.
(3) Slow variance of $\sum_{n \leq x} \chi(n)$ (Lipschitz bounds).

Truncating Pólya's expansion

When χ is primitive, we have that

$$
M(\chi)=\max _{\alpha \in[0,1]}\left|\sum_{n \leq \alpha q} \chi(n)\right|=\frac{\sqrt{q}}{2 \pi} \max _{\alpha \in[0,1]}\left|\sum_{1 \leq|n| \leq q} \frac{\chi(n)(1-e(n \alpha))}{n}\right| .
$$

Using a moments argument, we show that, for most χ,

$$
\sum_{1 \leq|n| \leq q} \frac{\chi(n)(1-e(n \alpha))}{n} \sim \sum_{1 \leq|n| \leq q, P^{+}(n) \leq y} \frac{\chi(n)(1-e(n \alpha))}{n}
$$

with $y \approx e^{\tau}$ (here $P^{+}(n)=\max \{p \mid n\}$ and $P^{-}(n)=\min \{p \mid n\}$). This is done by observing that their difference equals
$\sum_{\substack{1 \leq|n| \leq q \\ P^{+}(n)>y}} \frac{\chi(n)(1-e(n \alpha))}{n}=\sum_{\substack{1 \leq|g| \leq q \\ P^{+}(g) \leq y}} \frac{\chi(g)}{g} \sum_{\substack{y<h \leq q / g \\ P^{-}(h)>y}} \frac{\chi(h)(1-e(g h \alpha))}{h}$

$$
\ll \sum_{P+(g) \leq y} \frac{1}{g} \max _{\alpha \in[0,1]}\left|\sum_{y<h \leq q / g, P^{-}(h)>y} \frac{\chi(h) e(h \alpha)}{h}\right|
$$

Truncating Pólya's expansion, continued

$\sum_{1 \leq|n| \leq q} \frac{\chi(n)(1-e(n \alpha))}{n} \ll \sum_{P+(g) \leq y} \frac{1}{g} \max _{\alpha \in[0,1]}\left|\sum_{y<h \leq q / g, P-(h)>y} \frac{\chi(h) e(h \alpha)}{h}\right|$. $P^{+}(n)>y$

We raise both sides to $2 k$. Then $\max _{\alpha \in[0,1]}$ is removed by noticing that $|\alpha-r / R|$ for some $r \in\{1, \ldots, R\}$. It remains to estimate

$$
\left.\sum_{\chi(\bmod q)} \sum_{y<h \leq q / g, P^{-}(h)>y} \frac{\chi(h) e(h r / R)}{h}\right|^{2 k}
$$

Then we find that this is $\lesssim \sum_{P^{-}(n)>y, n>y^{k}} \tau_{k}(n)^{2} / n^{2}=o(1)$ if $k \leq y /(\log y)^{100}$. (If $y>k$, the primes $p \approx k$ that give most of the contribution to the sum $\sum_{n \geq 1} \tau_{k}(n)^{2} / n^{2}$ are not present.)
$y \approx e^{\tau} \Rightarrow P_{q}(\tau) \sim \operatorname{Prob}\left(\max _{\alpha \in[0,1]}\left|\sum_{P^{+}(|n|) \leq e^{\tau}} \frac{\chi(n)(1-e(n \alpha))}{n}\right|>2 e^{\gamma} \tau\right)$.

Locating the maximum

$$
P_{q}(\tau) \sim \operatorname{Prob}\left(\max _{\alpha \in[0,1]}\left|\sum_{P^{+}(|n|) \leq e^{\tau}} \frac{\chi(n)(1-e(n \alpha))}{n}\right|>2 e^{\gamma} \tau\right) .
$$

Write $N(\chi)$ for the above maximum, and let α_{χ} be its location.
Let $\left|\alpha_{\chi}-a / b\right|<1 /(b B), b \leq B:=e^{\sqrt{\tau}}$. Also, let ξ be the primitive character of conductor $\leq \tau$ that lies the 'closest' to χ, i.e.
$\mathbb{D}\left(\chi, \xi ; e^{\tau}\right)=\min _{\substack{\psi \bmod d \leq \tau \\ \psi \text { prim. }}} \mathbb{D}\left(\chi, \psi ; e^{\tau}\right), \quad \mathbb{D}^{2}(f, g ; y)=\sum_{p \leq y} \frac{1-\Re(f(p) \bar{g}(p))}{p}$.
Claim: If $N(\chi)>2 e^{\gamma} \tau$, then $\xi=1$ and χ is odd.
Assume not. Then

$$
\sum_{P^{+}(|n|) \leq e^{\tau}} \frac{\chi(n)}{n}=(1-\chi(-1)) \sum_{P^{+}(n) \leq e^{\tau}} \frac{\chi(n)}{n}=o(\tau) .
$$

Also, $b \leq \tau^{1 / 10}$; else, $N(\chi) \sim \sum_{P^{+}(|n|) \leq e^{\tau}} \chi(n) e(n \alpha) / n=o(\tau)$, by Montgomery-Vaughan, a contradiction to " $N(\chi)>2 e^{\gamma} \tau$ ".

Locating the maximum, continued
If $\xi(\bmod D)$ is the 'closest' character to χ, and either $\xi \neq 1$ or χ is even:
$2 e^{\gamma} \tau<N(\chi) \sim\left|\sum_{P+(|n|) \leq e^{\top}} \frac{\chi(n) e(n \alpha)}{n}\right|, \quad\left|\alpha_{\chi}-a / b\right| \leq \frac{1}{b e^{\sqrt{\tau}}}, \quad b \leq \tau^{1 / 10}$.
Assume that $\alpha_{\chi}=a / b$, and expand $e(n a / b)$ using characters, to get sums

$$
\sum_{P+(|n|) \leq e^{\tau}} \frac{\chi(n) \bar{\psi}(n)}{n}=(1-\chi(-1) \psi(-1)) \sum_{P+(n) \leq \mathrm{e}^{\tau}} \frac{\chi(n) \bar{\psi}(n)}{n} .
$$

Small unless $\chi \bar{\psi}$ odd and $\chi \approx \psi$. So ψ induced by ξ and $\chi \bar{\xi}$ odd. Then

$$
\begin{gathered}
\left|\sum_{P+(|n|) \leq e^{\tau}} \frac{\chi(n) e\left(\frac{n a}{b}\right)}{n}\right| \sim \frac{2 D^{\frac{1}{2}}}{b}\left|\sum_{D|d| b} \frac{\chi\left(\frac{b}{d}\right) \mu\left(\frac{d}{D}\right) \bar{\xi}\left(\frac{d}{D}\right)}{\phi(d) / d} \sum_{P+(n) \leq e^{\tau}}^{(n, d)=1} \frac{\chi(n) \bar{\xi}(n)}{n}\right| . \\
\Longrightarrow 2 e^{\gamma} \tau \lesssim \frac{2 \sqrt{D}}{b} \sum_{D|d| b} \frac{d}{\phi(d)} \cdot \frac{\phi(d)}{d} e^{\gamma} \tau=\frac{2 e^{\gamma} \tau(b / D)}{\sqrt{D} b / D} \leq \frac{2 e^{\gamma} \tau}{\sqrt{D}} .
\end{gathered}
$$

If $D>1$, this is a contradiction. So $\xi=1$ and χ is odd.

Locating the maximum, continued

To summarize,
$N(\chi):=\max _{\alpha \in[0,1]}\left|\sum_{P^{+}(|n|) \leq e^{\tau}} \frac{\chi(n)(1-e(n \alpha))}{n}\right|>2 e^{\gamma} \tau \Rightarrow \quad \chi \approx 1$ and χ odd.
Also, recall that α_{χ} location of max, $\left|\alpha_{\chi}-a / b\right|<1 /\left(b e^{\sqrt{\tau}}\right)$.
Claim. $\exists c \leq \tau$ with $\left|\sum_{P^{+}(n) \leq e^{\tau},(n, c)=1} \chi(n) / n\right| \gtrsim e^{\gamma} \tau \phi(b) / b$.
If $b>\tau$, we take $c=1$ (by Mont-Vaughan: $N(\chi) \sim 2\left|\sum_{P^{+}(n) \leq e^{\tau}} \frac{\chi(n)}{n}\right|$).
If $b \leq \tau$, then we use a result of Fouvry-Tenenbaum on smooth numbers in APs to get asymptotics for the sum $\sum_{n \leq N, P^{+}(n) \leq e^{\tau}} \chi(n) / n$.
We then find that $\exists N \in\left(e^{\sqrt{\tau}}, e^{\tau \log \tau}\right]$ (related to $\left.\left|\alpha_{\chi}-a / b\right|\right)$ such that

$$
\left|\sum_{\substack{n \leq N,(n, b)=1 \\ P^{+}(n) \leq e^{\tau}}} \frac{\chi(n)}{n}\right|+\left|\sum_{\substack{n>N,(n, b)=1 \\ P^{+}(n) \leq e^{\tau}}} \frac{\chi(n)}{n}\right| \gtrsim \frac{\phi(b)}{b} e^{\gamma} \tau .
$$

Lipschitz bounds for averages of χ

$$
S_{1}=\sum_{\substack{n \leq N,(n, b)=1 \\ P^{+}(n) \leq e^{\tau}}} \frac{\chi(n)}{n}, \quad S_{2}=\sum_{\substack{n>N,(n, b)=1 \\ P^{+}(n) \leq e^{\tau}}} \frac{\chi(n)}{n}
$$

We have $\left|S_{1}\right|+\left|S_{2}\right| \gtrsim e^{\gamma} \tau \frac{\phi(b)}{b}$, we want to show that $\left|S_{1}+S_{2}\right| \gtrsim e^{\gamma} \tau \frac{\phi(b)}{b}$.
Note that $\left|S_{1}\right|+\left|S_{2}\right| \lesssim e^{\gamma} \tau \phi(b) / b$.
So, if $S_{j}=\lambda_{j}\left|S_{j}\right|$ with $\left|\lambda_{j}\right|=1, j \in\{1,2\}$, then

$$
0 \leq \sum_{\substack{n \leq N,(n, b)=1 \\ P^{+}(n) \leq e^{\tau}}} \frac{\chi(n) \overline{\lambda_{1}}}{n}+\sum_{\substack{n>N,(n, b)=1 \\ P^{+}(n) \leq e^{\tau}}} \frac{\chi(n) \overline{\lambda_{2}}}{n}=o(\tau \phi(b) / b) .
$$

So $\chi(n) \sim \lambda_{1}$ for most $n \leq N$ and $\chi(n) \sim \lambda_{2}$ for most $n>N$.
Averages of mult. fncs vary slowly. Ideas from Halász's theorem $+\chi \approx 1$:

$$
\frac{\sum_{n \leq x^{1+\delta}} \chi(n)}{x^{1+\delta}}-\frac{\sum_{n \leq x} \chi(n)}{x} \lesssim \delta \log (1 / \delta) \quad(\delta \geq 1 / \log x)
$$

So $\lambda_{1} \sim \lambda_{2}$, which implies that $\left|S_{1}\right|+\left|S_{2}\right| \sim\left|S_{1}+S_{2}\right|$.

Thank you!

