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Centre International de Rencontres Mathématiques
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Background & motivation
Let χ be a Dirichlet character modulo q and define

M(χ) = max
1≤z≤q

∣∣∣∣∣∣
∑
n≤z

χ(n)

∣∣∣∣∣∣ .
If χ is non-principal, then Pólya and Vinogradov showed in 1918 that

M(χ)� √q log q.

Assuming GRH, Montgomery and Vaughan improved this in 1977 to

M(χ)� √q log log q.

This is best possible: Paley had already shown in 1932 that

there is a sequence qn →∞ such that M
((qn
·
))
� √qn log log qn.

However, such extremal examples should be rather rare. Our goal is to
study how rare they are.



The distribution of M(χ): random models
We shall study

Pq(τ) :=
#
{
χ (mod q) : M(χ) > eγ

π τ
√
q
}

φ(q)
= Prob

(
M(χ) >

eγ

π
τ
√
q

)
.

We always assume for simplicity that q is prime.

Two questions:

1 Is there a random model that describes Pq(τ) accurately?

2 How big is Pq(τ)?

Let (Xp)p-q be a sequence of independent random variables, uniformly
distributed on {z ∈ C : |z | = 1}, and Xp = 0 if p|q.
(They should model χ(p) as χ runs through characters modulo q.)

Then we define Xn =
∏

pr‖n X
r
p , which serves a model for χ(n).

First attempt: model
∑

n≤z χ(n) by
∑

n≤z Xn.

For z large compared to q, this will fail: periodicity is not taken into
account.



The distribution of M(χ): random models, continued

Pq(τ) = Prob

(
M(χ) >

eγ

π
τ
√
q

)
.

(Xp)p-q sequence of independent random variables, uniformly distributed
on {z ∈ C : |z | = 1}, Xp = 0 if p|q, Xn =

∏
pr‖n X

r
p .

Second attempt: use Pólya’s expansion (χ primitive, e(x) = e2πix):∑
n≤z

χ(n) =
τ(χ)

2πi

∑
1≤|n|≤w

χ(n)(1− e(−nz/q))

n
+O

(
q log q

w

)
(1 ≤ w ≤ q).

Our model for
∑

n≤z χ(n) then becomes

S(z) :=
τ(χ)

2πi

∑
1≤|n|≤q

Xn · (1− e(−nz/q))

n
.

This model captures the periodicity of χ.

Remark. The standard deviation of S(z)/
√
q is � 1. (Compare this to 1st

model: the SD of T (z) =
∑

n≤z Xn is
√
z , and one might expect T (z)/

√
z

to get large relatively often.) As a result, Pq(τ) will be rather small.



Known results on Pq(τ)
In 1979, Montgomery and Vaughan showed that

1

φ(q)

∑
χ (mod q)

M(χ)2k �k qk .

An immediate corollary is that

Pq(τ) = Prob

(
M(χ) >

eγ

π
τ
√
q

)
�A

1

τA
.

In 2011, Bober-Goldmakher proved that, for fixed τ and q →∞ over
primes,

exp

{
−Ceτ

τ
(1 + oτ→∞(1))

}
≤ Pq(τ) ≤ exp

{
−eB

√
τ/(log τ)1/4

}
,

where C = 1.09258 . . . This supports the claim that Pq(τ) is very small.

Question: why do the tails of the distribution of M(χ) have this double
exponential decay?



The distribution of M(χ) vs the distribution of L(1, χ)

∑
n≤αq

χ(n) =
τ(χ)

2πi

∑
1≤|n|≤q

χ(n)(1− e(−nα))

n
+ O(log q).

In view of Pólya’s expansion, one might conjecture that

Pq(τ) := Prob

(
M(χ) >

eγ

π
τ
√
q

)
≈ Prob (|L(1, χ)| > cτ) .

Granville-Soundararjan: for q prime and eτ = o(log q),

Prob (|L(1, χ)| > eγτ) = exp

{
−Ceτ

τ
(1 + oτ→∞(1))

}
.

Compare this to

exp

{
−Ceτ

τ
(1 + oτ→∞(1))

}
≤ Pq(τ) ≤ exp

{
−eB

√
τ/(log τ)1/4

}
.



The distribution of L(1, χ): main ideas
1 We shall take moments of L(1, χ), so we need to ‘shorten’ it. We

have that log L(1, χ) =
∑

p χ(p)/p + Cχ, where Cχ is a constant.

PNT ⇒ log L(1, χ) ∼
∑

p≤eqε χ(p)/p + Cχ,
GRH ⇒ log L(1, χ) ∼

∑
p≤(log q)2+ε χ(p)/p + Cχ.

But we study L(1, χ) statistically: for most χ (mod q),
Zero-density estimates ⇒ log L(1, χ) ∼

∑
p≤(log q)100 χ(p)/p + Cχ.

2 Take moments of

L(1, χ; y) :=
∏
p≤y

(
1− χ(p)

p

)−1

=
∑

p|n ⇒p≤y

χ(n)

n
(y = (log q)100) :

1

φ(q)

∑
χ (mod q)

|L(1, χ; y)|2k =
1

φ(q)

∑
χ (mod q)

∣∣∣∣∣∣
∑

p|n ⇒p≤y

τk(n)χ(n)

n

∣∣∣∣∣∣
2

=
∑

m≡n (mod q)
p|mn ⇒ p≤y , p-q

τk(m)τk(n)

mn
.



The distribution of L(1, χ), continued
Ignoring the off-diagonal terms (assumption that Xn is a good model for
χ(n)), and assuming that q is prime,

M2k :=
1

φ(q)

∑
χ (mod q)

|L(1, χ; y)|2k =
∑

m≡n (mod q)
p|mn ⇒ p≤y , p-q

τk(m)τk(n)

mn

≈
∑

p|n ⇒ p≤y

τk(n)2

n2
=
∏
p≤y

(
1 +

τk(p)2

p2
+
τk(p2)

p4
+ · · ·

)
.

Then Granville and Soundararajan proceed to show that
logM2k = 2eγk + C ′k/ log k + O(k/ log2 k), which allows them to
estimate Prob (|L(1, χ)| > eγτ) quite accurately.

Remark. In fact, they observe that

log

(
1 +

τk(p)2

p2
+
τk(p2)

p4
+ · · ·

)
= log I0(2k/p) + O(k/p2),

where I0(t) =
∑

n≥0

(
t/2
n!

)2
is the modified Bessel function of the 1st kind.

In particular, most of the contribution to M2k comes from primes p ≈ k.



New results on Pq(τ) = Prob
(
M(χ) > eγ

π τ
√
q
)

Recall Bober-Goldmakher’s result: for τ fixed and q →∞ over primes,

exp

{
−Ceτ

τ
(1 + oτ→∞(1))

}
≤ Pq(τ) ≤ exp

{
−eB

√
τ/(log τ)1/4

}
.

There are two issues to be addressed:

There is a discrepancy between upper and lower bounds.

The result is not uniform in τ and q.

Theorem (Bober, Goldmakher, Granville, K. (2013))

Let θ > 14/15, q be prime and 2 ≤ τ ≤ log log q − log log log q − 5. Then

exp

{
−Ceτ

τ
(1 + oτ→∞(1))

}
≤ Pq(τ) ≤ exp

{
−eτ+Oθ(τθ)

}
.

Remark. On GRH, the theorem holds when τ ≤ log2 q − log4 q + O(1). It
seems likely that it can be shown unconditieτ = o(log q) can be obtained
unconditionally.



A reduction to the distribution of L(1, χ): lower bounds

For lower bounds on Pq(τ), we follow Bober-Goldmakher and note that∑
n≤q/2

χ(n) ∼ τ(χ)

2πi

∑
1≤|n|≤q

χ(n)(1− e(−n/2))

n

=
τ(χ)

πi

∑
1≤|n|≤q
n odd

χ(n)

n
=

2τ(χ)

πi


∑

1≤n≤q
n odd

χ(n)

n
if χ(−1) = −1,

0 if χ(−1) = 1.

When χ is odd, the right hand side is essentially L(1, χ), divided by the
Euler factor at p = 2.

One can then obtain the claimed lower bound on Pq(τ) using the methods
of Granville-Soundararajan.

The upper bound is significantly harder. The main issue is to understand
where

∑
n≤z χ(n) is maximized (ideas about pretentious characters).



A detour: pretentious characters

Granville-Soundararajan (2006) and Goldmakher (2010) improved the
previously known bounds for M(χ) when χ has odd order g to

M(χ)�

{√
q(log q)1−δg+o(1) unconditionally,
√
q(log log q)1−δg+o(1) on GRH.

(
δg = 1− g

π
sin

π

g

)
Idea of the proof: g odd ⇒ χ(−1) = 1. So Pólya’s expansion becomes∑
n≤αq

χ(n) ∼ τ(χ)

2πi

∑
1≤|n|≤q

χ(n)(1− e(−nα))

n
= −τ(χ)

2πi

∑
1≤|n|≤q

χ(n)e(−nα)

n
.

Let |α− a/b| < 1/(bB), b ≤ B := e
√

log q. Montgomery-Vaughan showed

∑
n≤x

χ(n)e(nα)

n
� log log x + log b +

(log b)3/2

√
b

log x (x ≥ 2).

So, we may assume that b ≤ (log q)1/3. Also, let α = a/b for simplicity.



Pretentious characters, continued
ord(χ) = g = odd , χ(−1) = 1, α = a/b, b ≤ (log q)1/3. We need to
estimate ∑

n≤αq
χ(n) ∼ −τ(χ)

2πi

∑
1≤|n|≤q

χ(n)e(−na/b)

n
.

Expand e(−na/b) in terms of characters ψ (mod d), d |b, to replace∑
n≤αq χ(n) by sums of the form

S =
∑

1≤|n|≤z

χ(n)ψ(n)

n
= (1− χ(−1)ψ(−1))

∑
n≤z

χ(n)ψ(n)

n
.

For S to be big, χ must be ‘close’ to ψ (χ(p) ≈ ψ(p)). Indeed,∑
n≤z

χ(n)ψ(n)

n
� log z

exp{D(χ, ψ; z)/2}
, D2(χ, ψ; z) =

∑
p≤z

1−<(χ(p)ψ(p))

p
.

If D(χ, ψ; z) is small, we say that χ pretends to be ψ.

Also, ψ(−1) = −χ(−1) = −1 =⇒ ord(ψ) = even 6= g .

But then χ ≈ ψ =⇒ 1 = χg ≈ ψg 6= 1, a contradiction.



A reduction to the distribution of L(1, χ): upper bounds
In bounding Pq(τ) from above, the key step is the following:

Theorem (Bober, Goldmakher, Granville, K. (2013))

Let θ > 14/15, q be prime and 2 ≤ τ ≤ log log q − log log log q − 5. With
the exception of � q exp{−20τeτ} characters mod q, if M(χ) > eγ

π τ
√
q,

then χ is odd, and there is a b ≤ τ10 such that∣∣∣∣∣∣∣∣
∑

n∈N, (n,b)=1
p|n ⇒ p≤eτ

χ(n)

n

∣∣∣∣∣∣∣∣ ≥ eγτ + Oθ(τ θ).

Then Pq(τ) ≤ exp
{
−eτ+Oθ(τθ)

}
, by Granville-Soundararajan.

Main ideas involved in proving the above theorem:

1 A high moment bound to truncate Pólya’s expansion.

2 Use “pretentious characters” to locate the max of |
∑

n≤x χ(n)|.
3 Slow variance of

∑
n≤x χ(n) (Lipschitz bounds).



Truncating Pólya’s expansion
When χ is primitive, we have that

M(χ) = max
α∈[0,1]

∣∣∣∣∣∣
∑
n≤αq

χ(n)

∣∣∣∣∣∣ =

√
q

2π
max
α∈[0,1]

∣∣∣∣∣∣
∑

1≤|n|≤q

χ(n)(1− e(nα))

n

∣∣∣∣∣∣ .
Using a moments argument, we show that, for most χ,∑

1≤|n|≤q

χ(n)(1− e(nα))

n
∼

∑
1≤|n|≤q,P+(n)≤y

χ(n)(1− e(nα))

n
,

with y ≈ eτ (here P+(n) = max{p|n} and P−(n) = min{p|n}). This is
done by observing that their difference equals∑
1≤|n|≤q
P+(n)>y

χ(n)(1− e(nα))

n
=

∑
1≤|g |≤q
P+(g)≤y

χ(g)

g

∑
y<h≤q/g
P−(h)>y

χ(h)(1− e(ghα))

h

�
∑

P+(g)≤y

1

g
max
α∈[0,1]

∣∣∣∣∣∣
∑

y<h≤q/g , P−(h)>y

χ(h)e(hα)

h

∣∣∣∣∣∣ .



Truncating Pólya’s expansion, continued

∑
1≤|n|≤q
P+(n)>y

χ(n)(1− e(nα))

n
�

∑
P+(g)≤y

1

g
max
α∈[0,1]

∣∣∣∣∣∣
∑

y<h≤q/g ,P−(h)>y

χ(h)e(hα)

h

∣∣∣∣∣∣ .
We raise both sides to 2k . Then maxα∈[0,1] is removed by noticing that
|α− r/R| for some r ∈ {1, . . . ,R}. It remains to estimate

∑
χ (mod q)

∣∣∣∣∣∣
∑

y<h≤q/g ,P−(h)>y

χ(h)e(hr/R)

h

∣∣∣∣∣∣
2k

.

Then we find that this is .
∑

P−(n)>y , n>yk τk(n)2/n2 = o(1) if

k ≤ y/(log y)100. (If y > k , the primes p ≈ k that give most of the
contribution to the sum

∑
n≥1 τk(n)2/n2 are not present.)

y ≈ eτ ⇒ Pq(τ) ∼ Prob

 max
α∈[0,1]

∣∣∣∣∣∣
∑

P+(|n|)≤eτ

χ(n)(1− e(nα))

n

∣∣∣∣∣∣ > 2eγτ

 .



Locating the maximum

Pq(τ) ∼ Prob

 max
α∈[0,1]

∣∣∣∣∣∣
∑

P+(|n|)≤eτ

χ(n)(1− e(nα))

n

∣∣∣∣∣∣ > 2eγτ

 .

Write N(χ) for the above maximum, and let αχ be its location.

Let |αχ − a/b| < 1/(bB), b ≤ B := e
√
τ . Also, let ξ be the primitive

character of conductor ≤ τ that lies the ‘closest’ to χ, i.e.

D(χ, ξ; eτ ) = min
ψmod d≤τ
ψ prim.

D(χ, ψ; eτ ), D2(f , g ; y) =
∑
p≤y

1−<(f (p)g(p))

p
.

Claim: If N(χ) > 2eγτ , then ξ = 1 and χ is odd.

Assume not. Then∑
P+(|n|)≤eτ

χ(n)

n
= (1− χ(−1))

∑
P+(n)≤eτ

χ(n)

n
= o(τ).

Also, b ≤ τ1/10; else, N(χ) ∼
∑

P+(|n|)≤eτ χ(n)e(nα)/n = o(τ), by
Montgomery-Vaughan, a contradiction to “N(χ) > 2eγτ”.



Locating the maximum, continued
If ξ (modD) is the ‘closest’ character to χ, and either ξ 6= 1 or χ is even:

2eγτ < N(χ) ∼

∣∣∣∣∣∣
∑

P+(|n|)≤eτ

χ(n)e(nα)

n

∣∣∣∣∣∣ , |αχ−a/b| ≤
1

be
√
τ
, b ≤ τ1/10.

Assume that αχ = a/b, and expand e(na/b) using characters, to get sums∑
P+(|n|)≤eτ

χ(n)ψ(n)

n
= (1− χ(−1)ψ(−1))

∑
P+(n)≤eτ

χ(n)ψ(n)

n
.

Small unless χψ odd and χ ≈ ψ. So ψ induced by ξ and χξ odd. Then∣∣∣∣∣∣
∑

P+(|n|)≤eτ

χ(n)e(nab )

n

∣∣∣∣∣∣ ∼ 2D
1
2

b

∣∣∣∣∣∣
∑
D|d |b

χ( b
d )µ( d

D )ξ( d
D )

φ(d)/d

(n,d)=1∑
P+(n)≤eτ

χ(n)ξ(n)

n

∣∣∣∣∣∣ .
=⇒ 2eγτ .

2
√
D

b

∑
D|d |b

d

φ(d)
· φ(d)

d
eγτ =

2eγτ(b/D)√
Db/D

≤ 2eγτ√
D
.

If D > 1, this is a contradiction. So ξ = 1 and χ is odd.



Locating the maximum, continued
To summarize,

N(χ) := max
α∈[0,1]

∣∣∣∣∣∣
∑

P+(|n|)≤eτ

χ(n)(1− e(nα))

n

∣∣∣∣∣∣ > 2eγτ ⇒ χ ≈ 1 and χ odd.

Also, recall that αχ location of max, |αχ − a/b| < 1/(be
√
τ ).

Claim. ∃c ≤ τ with |
∑

P+(n)≤eτ , (n,c)=1 χ(n)/n| & eγτφ(b)/b.

If b > τ , we take c = 1 (by Mont-Vaughan: N(χ) ∼ 2|
∑

P+(n)≤eτ
χ(n)
n |).

If b ≤ τ , then we use a result of Fouvry-Tenenbaum on smooth numbers
in APs to get asymptotics for the sum

∑
n≤N,P+(n)≤eτ χ(n)/n.

We then find that ∃N ∈ (e
√
τ , eτ log τ ] (related to |αχ − a/b|) such that∣∣∣∣∣∣∣∣∣

∑
n≤N, (n,b)=1
P+(n)≤eτ

χ(n)

n

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
∑

n>N, (n,b)=1
P+(n)≤eτ

χ(n)

n

∣∣∣∣∣∣∣∣∣ &
φ(b)

b
eγτ.



Lipschitz bounds for averages of χ

S1 =
∑

n≤N, (n,b)=1
P+(n)≤eτ

χ(n)

n
, S2 =

∑
n>N, (n,b)=1
P+(n)≤eτ

χ(n)

n
.

We have |S1|+ |S2| & eγτ φ(b)
b , we want to show that |S1 + S2| & eγτ φ(b)

b .

Note that |S1|+ |S2| . eγτφ(b)/b.

So, if Sj = λj |Sj | with |λj | = 1, j ∈ {1, 2}, then

0 ≤
∑

n≤N, (n,b)=1
P+(n)≤eτ

χ(n)λ1

n
+

∑
n>N, (n,b)=1
P+(n)≤eτ

χ(n)λ2

n
= o(τφ(b)/b).

So χ(n) ∼ λ1 for most n ≤ N and χ(n) ∼ λ2 for most n > N.

Averages of mult. fncs vary slowly. Ideas from Halász’s theorem + χ ≈ 1:∑
n≤x1+δ χ(n)

x1+δ
−
∑

n≤x χ(n)

x
. δ log(1/δ) (δ ≥ 1/ log x).

So λ1 ∼ λ2, which implies that |S1|+ |S2| ∼ |S1 + S2|.



Thank you!


