Towards a high-dimensional theory of divisors of integers

Dimitris Koukoulopoulos

Université de Montréal

Number Theory Web Seminar 28 October 2021

Anatomical investigations

- Choose an integer $n \in[1, x]$ uniformly at random. What can we say about its "multiplicative structure"?
- Distribution of its prime factors $p_{1}<p_{2}<\cdots$?
- Distribution of its divisors $d_{1}<d_{2}<\cdots$?

$p_{1}(n)<\cdots<p_{k}(n)$ prime factors of n, with $k=\omega(n)=\#\{p \mid n\}$

- Hardy-Ramanujan: $\omega(n) \sim \log \log x$ for a "typical" $n \leqslant x$.
- Landau-Selberg-Delange: $\omega(n)$ has a perturbed Poisson distribution with parameter $\lambda=\log \log x$.
- If I_{1}, \ldots, I_{m} are disjoint (+technical conditions), then the RVs $\#\left\{p \mid n: p \in I_{j}\right\}$ are approximately independent and Poisson with $\lambda_{j}=\sum_{p \in I_{j}} 1 / p$.
- If $\ell \rightarrow \infty$, the vector $\left(\frac{\log \log p_{i}(n)}{\log \log x}\right)_{i=\ell}^{k-\ell}$ is approximately distributed like $\left(\xi_{i}\right)_{i=\ell}^{k-\ell}$, where $0 \leqslant \xi_{1} \leqslant \cdots \leqslant \xi_{k} \leqslant 1$ are uniform order statistics. In particular, $\log \log p_{j}(n) \sim j$ typically.
- Billingsley: The vector $\left(\frac{\log p_{k-i}(n)}{\log n}\right)_{i=0}^{\ell-1}$ is approximately distributed like $\left(V_{i}\right)_{i=1}^{\ell}$, where $\left(V_{1}, V_{2}, \ldots\right)$ has Poisson-Dirichlet distribution.

Two problems by Erdős about divisors

Problem A (1948)

Is it true that almost all integers have two divisors $d<d^{\prime} \leqslant 2 d$?

- Motivation: understand local properties of the sequence of divisors $d_{1}(n)<d_{2}(n)<\cdots$ of a "random" integer n.
- We typically have $\log \log d_{j}(n) \sim \frac{\log j}{\log 2}$.
- Naively, one might then guess $\log \frac{d_{j+1}(n)}{d_{j}(n)} \approx j^{1 / \log 2-1} \rightarrow \infty$.

Problem B (1955)

How many integers are there in the $N \times N$ multiplication table?

- Generalization: how many integers $\leqslant x$ have a divisor in $[y, z]$?
- When $x=N^{2}, y=N / 2, z=N$, this is \approx Problem B.

Two generalizations

Problem A*

How big can $k=k(x)$ be so that almost all integers $n \leqslant x$ have k divisors $d_{1}<d_{2}<\cdots<d_{k} \leqslant 2 d_{1}$?

- Reformulation: $\Delta(n):=\max _{y} \#\{d \mid n: y \leqslant d \leqslant 2 y\}$.
- How big is $\Delta(n)$ for a typical n ?
- Hooley's original motivation: study $\sum_{n \leqslant x} \Delta(n)$ and apply results to various Diophantine problems.

Problem B*

How many integers are there in the $N_{1} \times \cdots \times N_{k}$ multiplication table?

- Reformulation: how many integers $\leqslant x$ have a factorization $n=d_{1} \cdots d_{k}$ with $d_{j} \in\left[y_{j}, z_{j}\right]$ for $j=1, \ldots, k$?

Integers with two divisors close together

$$
\mathcal{R}(n)=\bigcup\left[\log \frac{d^{\prime}}{d}-\log 2, \log \frac{d^{\prime}}{d}+\log 2\right]
$$

- $\exists d, d^{\prime} \mid n$ s.t. $d<d^{\prime} \leqslant 2 d \quad \Longleftrightarrow \quad 0 \in \mathcal{R}(n)$
- We have two competing constraints on measure of $\mathcal{R}(n)$:
- Geometric: $\mathcal{R}(n) \subset[-\log (2 n), \log (2 n)]$;
- Combinatorial: $\#\left\{d^{\prime} / d: d, d^{\prime} \mid n\right\} \approx 3^{\omega(n)} \approx(\log n)^{\log 3} \quad$ (typically).
- Thus, unless there is too much overlap between different intervals, $\operatorname{meas}(\mathcal{R}(n)) \gg \log n$.
- For most n with meas $(\mathcal{R}(n)) \gg \log n$, we may locate a ratio d^{\prime} / d close to 1 w.h.p. (uses that $\left.\mathcal{R}\left(m p p^{\prime}\right) \supset \mathcal{R}(m)+\log \left(p^{\prime} / p\right)\right)$

Theorem (Maier-Tenenbaum (1984))

For almost all n, there are divisors $d<d^{\prime}<d \cdot\left(1+(\log n)^{1-\log 3+o(1)}\right)$

Integers with many divisors close together

$$
\mathcal{R}(n)=\bigcup_{d, d^{\prime} \mid n, d \neq d^{\prime}}\left[\log \frac{d^{\prime}}{2 d}, \log \frac{2 d^{\prime}}{d}\right], \quad n_{y, z}=\prod_{p \mid n, y<p \leqslant z} p .
$$

- For typical n, we have the following competing constraints:
- Geometric: $\mathcal{R}\left(n_{y, z}\right) \subset[-C \log z, C \log z]$;
- Combinatorial: $\#\left\{d^{\prime} / d: d, d^{\prime} \mid n_{y, z}\right\}=3^{\omega\left(n_{y, z}\right)} \approx 3^{\log \frac{\log z}{\log y}}$.
- If $\log z>(\log y)^{\frac{\log 3}{\log 3-1}}$, we have more than $\log z$ ratios d^{\prime} / d with $d, d^{\prime} \mid n_{y, z}$, so we can find a ratio ≈ 1 w.h.p.
- Use J disjoint intervals $\left[y_{j}, z_{j}\right]$ to get 2^{J} divisors of n close together.

Theorem (Maier-Tenenbaum (1984))

$\Delta(n) \geqslant(\log \log n)^{H_{1}-o(1)}$ for a.a. n, where $H_{1}=\frac{\log 2}{\log \log 3} \log 3-1.28754$

Integers with a divisor in a given interval

- $\exists d \mid n, d \in\left[x^{\theta}, 2 x^{\theta}\right] \quad \Longleftrightarrow \quad \theta \log x \in \mathcal{L}(n):=\bigcup_{d}\left[\log \frac{d}{2}, \log d\right]$
$-\mathbb{P}_{n \leqslant x}(\theta \log x \in \mathcal{L}(n)) \stackrel{?}{\approx} \mathbb{E}_{n \leqslant x}\left[\frac{\operatorname{meas}(\mathcal{L}(n))}{\log x}\right] \stackrel{? ?}{\approx} \mathbb{E}_{n \leqslant x}\left[\min \left\{1, \frac{\tau(n)}{\log x}\right\}\right]$
- Erdős-Tenenbaum: need $\omega(n)=\frac{\log \log x}{\log 2}+O(1)$, i.e. $\tau(n) \asymp \log x$.

$$
\begin{aligned}
\rightsquigarrow \quad & \mathbb{P}_{n \leqslant x}\left(\exists d \mid n, d \in\left[x^{\theta}, 2 x^{\theta}\right]\right) \approx(\log x)^{-\delta}(\log \log x)^{-1 / 2} \\
& \text { with } \delta=1-\frac{1+\log \log 2}{\log 2}=0.08607 \ldots
\end{aligned}
$$

- Ford: we also need $\#\{p \mid n, p \leqslant t\} \leqslant \frac{\log \log t}{\log 2}+O(1)$ for all $t \leqslant x$.

Theorem (Ford (2004))

$\mathbb{P}_{n \leqslant x}(\exists d \mid n, d \in[y, 2 y]) \asymp(\log y)^{-\delta}(\log \log y)^{-3 / 2} \quad(3 \leqslant y \leqslant \sqrt{x})$.

The k-dimensional multiplication table

$$
h(x, \vec{y}):=\mathbb{P}_{n \leqslant x}\left(\exists d_{1} \cdots d_{k-1} \mid n, d_{i} \in\left[y_{i} / 2, y_{i}\right] \forall i\right)=? \quad\left(y_{1} \leqslant y_{2} \leqslant \cdots\right)
$$

- $\mathcal{L}_{k}(n ; \vec{y}):=\bigcup\left[\log \frac{d_{1}}{2}, \log d_{1}\right] \times \cdots \times\left[\log \frac{d_{k-1}}{2}, \log d_{k-1}\right]$

$$
\begin{gathered}
d_{1} \ldots d_{k-1} \mid n \\
p \mid d_{i} \Rightarrow p \leqslant p \leqslant y_{i}
\end{gathered}
$$

- If $\omega_{i}(n)=\#\left\{p \mid n: y_{i-1}<p \leqslant y_{i}\right\}$ for $i=1, \ldots, k-1$, then

$$
\operatorname{meas}\left(\mathcal{L}_{k}(n ; \vec{y})\right) \stackrel{?}{\approx} \min \left\{\prod_{i=1}^{k-1}(k-i+1)^{\omega_{i}(n)}, \prod_{i=1}^{k-1} \log y_{i}\right\} .
$$

- If $\lambda_{i}=\log \log y_{i}-\log \log y_{i-1}$, the above suggests that

$$
h(x, \vec{y}) \approx \max _{\substack{m \in \in \kappa-1 \\ \prod_{i=1}^{k-1}(k-i+1)^{m_{i}} \asymp \prod_{i=1}^{k-1} \log y_{i}}} \prod_{i=1}^{k-1} \frac{e^{-\lambda_{i}} \lambda_{i}^{m_{i}}}{m_{i}!} .
$$

Theorem (K. (2014))

1. If $k \leqslant 6$, then $h(x, \vec{y}) \approx$

$$
\prod_{i=1}^{k-1} \frac{e^{-\lambda_{i}} \lambda_{i}^{m_{i}}}{m_{i}!}(*)
$$

2. (*) is true if $k \geqslant 7$ and $\log y_{k-1} \leqslant\left(\log y_{1}\right)^{1+\varepsilon}$ with $\varepsilon=\varepsilon_{k}$ small.
3. Let $k=7, y_{1}=\cdots=y_{5} \leqslant y_{6}$ and $c=55.82474304950718986 \ldots$ If $\log y_{6} \leqslant\left(\log y_{1}\right)^{c-\varepsilon}$, then $(*)$ holds; but if $\log y_{6} \geqslant\left(\log y_{1}\right)^{c+\varepsilon}$, then $h(x, \vec{y})$ is smaller than the RHS of (*).

Key observation: there are low-dimensional constraints of geometro-combinatorial nature:

- $\mathcal{L}_{7}(n ; \vec{y})=\bigcup_{d_{1} \cdots d_{6} \mid n} \prod_{i \leqslant 5}\left[\log \frac{d_{i}}{2}, \log d_{i}\right] \times\left[\log \frac{d_{6}}{2}, \log d_{6}\right]$ $p \mid d_{i} \Rightarrow p \leqslant y_{i} \forall i \leqslant 6$
- meas $\left(\mathcal{L}_{7}(n ; \vec{y})\right) \leqslant$

$$
\sum_{\substack{d_{1} \cdots d_{5}|n \\ p| d_{i} \Rightarrow p \leqslant y_{i} \forall i \leqslant 5}}
$$

Improving the 1984 Maier-Tenenbaum result

- MT 1984: suppose we can find J disjoint intervals $\left[y_{j}, z_{j}\right.$] for which $\exists d_{j}, d_{j}^{\prime} \mid n$ distinct s.t.:
- d_{j}, d_{j}^{\prime} only consist of primes in $\left[y_{j}, z_{j}\right]$;
$-d_{j} \approx d_{j}^{\prime \prime}$.
Then n has 2^{J} prime factors close together.
- MT 2009: use primes in $\left[y_{1}, z_{1}\right]$ to find $d_{1}, d_{1}^{\prime \prime}$. Then, use primes in $\left[y_{2}, z_{2}\right]$ and remaining primes in $\left[y_{1}, z_{1}\right]$ to find d_{2}, d_{2}^{\prime}, etc.

$$
\Delta(n) \geqslant(\log \log n)^{H_{2}-o(1)} \text { a.s. with } H_{2}=\frac{\log 2}{\log \left(\frac{\log }{1-1 / \log 27}\right)}=0.33827 \text {. }
$$

- Ford-Green-K. (2019 \rightarrow 2022?): locate J disjoint intervals $\left[y_{j}, z_{j}\right]$ s.t. the primes from each $\left[y_{j}, z_{j}\right]$ yield k distinct divisors $d_{j, 1} \approx d_{j, 2} \approx \cdots \approx d_{j, k}$.
$\Delta(n) \geqslant(\log \log n)^{H_{3}-o(1)}$ a.s. with $H_{3}=0.3533227727$

The linear algebra of k divisors close together

- We want to understand when there are distinct d_{1}, \ldots, d_{k} that all divide $n_{y, z}=\prod_{p \mid n, y<p \leqslant z} p$ and satisfy the linear system

$$
\left(\sum_{p \mid d_{1}} \log p, \sum_{p \mid d_{2}} \log p, \ldots, \sum_{p \mid d_{k}} \log p\right)=O(1)(\bmod \overrightarrow{1})
$$

- For each $\vec{\omega}=\left(\omega_{1}, \ldots, \omega_{k}\right) \in\{0,1\}^{k}$, let

$$
D_{\vec{\omega}}:=\prod_{p \in \mathcal{P}_{\vec{\omega}}} p \quad \text { with } \quad \mathcal{P}_{\vec{\omega}}=\left\{p \mid n_{y, z} \quad \text { s.t } \quad p \mid d_{i} \Leftrightarrow \omega_{i}=1\right\}
$$

so that $\left(\log d_{1}, \ldots, \log d_{k}\right)=\sum_{\vec{\omega}} \vec{\omega} \log D_{\vec{\omega}}$.

- Conditionally on $\Omega=\left\{\vec{\omega} \in\{0,1\}^{k} \backslash\{\overrightarrow{0}, \overrightarrow{1}\}: D_{\vec{\omega}}>1\right\}$, the distribution of $\left(\log d_{1}, \ldots, \log d_{k}\right) \bmod \overrightarrow{1}$ is controlled by:
- $V=\operatorname{Span}(\Omega) /\langle\overrightarrow{1}\rangle$ (geometric)
- the distribution of $\left\{p \mid D_{\vec{\omega}}\right\}$ with $\vec{\omega} \in \Omega$ (combinatorial)

Geometric constraints

- The "longest" dim of $\sum_{\vec{\omega} \in \Omega} \vec{\omega} \log D_{\vec{\omega}}$ is onto $\vec{\omega}^{1} \in \Omega$ s.t.

$$
P^{+}\left(D_{\vec{\omega}^{1}}\right) \geqslant P^{+}\left(D_{\vec{\omega}}\right) \quad \forall \vec{\omega} \in \Omega
$$

- The second longest dim is onto $\vec{\omega}^{2} \in \Omega \backslash \operatorname{Span}\left(\vec{\omega}^{1}\right)$ s.t.

$$
P^{+}\left(D_{\vec{\omega}^{2}}\right) \geqslant P^{+}\left(D_{\vec{\omega}}\right) \quad \forall \vec{\omega} \in \Omega \backslash \operatorname{Span}\left(\vec{\omega}^{1}\right)
$$

- Having defined $\vec{\omega}^{1}, \ldots, \vec{\omega}^{j}$ with span $V_{j} \leqslant V$, the $(j+1)$-th longest dimension is the projection onto $\vec{\omega}^{j+1} \in \Omega \backslash V_{j}$ s.t.

$$
P^{+}\left(D_{\vec{\omega}^{j+1}}\right) \geqslant P^{+}\left(D_{\vec{\omega}}\right) \quad \forall \vec{\omega} \in \Omega \backslash V_{j} .
$$

- This terminates after $r=\operatorname{dim}(V)$ steps. We then find that $\sum_{\vec{\omega} \in \Omega} \vec{\omega} \log D_{\vec{\omega}}$ are contained in an r-dim rectangle of r-volume

$$
\lesssim \prod_{1 \leqslant j \leqslant r} \log P^{+}\left(D_{\vec{\omega} j}\right)
$$

- Given $c \in(0,1)$ and $k \in \mathbb{Z}_{\geqslant 2}$, consider the following data:
- $\langle\overrightarrow{1}\rangle=V_{0} \leqslant V_{1} \leqslant \cdots \leqslant V_{r} \leqslant \mathbb{Q}^{k}$
- $1 \geqslant c_{1} \geqslant \cdots c_{r} \geqslant c$, where $\log y=(\log z)^{c}$
- μ_{i} probability measure supported on $V_{i} \cap\{0,1\}^{k}$
- To construct d_{1}, \ldots, d_{k} close together, we consider configurations s.t.
- $D_{\vec{\omega}}>1$ if-f $\vec{\omega} \in V_{r} \backslash\{\overrightarrow{0}, \overrightarrow{1}\}$;
- $P^{+}\left(D_{\vec{\omega}}\right) \leqslant \exp \left\{(\log z)^{c_{j}}\right\}$ for all $\omega \in V_{j} \cap\{0,1\}^{k}$;
- $\#\left\{p \mid D_{\vec{\omega}}: c_{j+1}<\frac{\log \log p}{\log \log z} \leqslant c_{j}\right\} \sim \mu_{j}(\vec{\omega})\left(c_{j}-c_{j+1}\right) \log \log z$.
- To avoid all geometro-combinatorial constraints, we need $\forall V_{j}^{\prime} \leqslant V_{j}$

$$
\sum_{1 \leqslant j \leqslant r}\left(c_{j}-c_{j+1}\right) \mathbb{H}_{\mu_{j}}\left(V_{j}^{\prime}\right)+\sum_{1 \leqslant j \leqslant r} c_{j} \operatorname{dim}\left(V_{j}^{\prime} / V_{j-1}^{\prime}\right) \geqslant \sum_{1 \leqslant j \leqslant r} c_{j} \operatorname{dim}\left(V_{j} / V_{j-1}\right),
$$

where $\mathbb{H}_{\mu}(W)$ is the μ-entropy of the partition of \mathbb{Q}^{k} into W-cosets.

Theorem (Ford-Green-K. (2019 \rightarrow 2022?))

A random integer has k divisors close together composed of primes in $\left[\exp \left\{(\log z)^{c}, z\right]\right.$ "iff" there are V_{j}, c_{j}, μ_{j} as above.

The binary system

Binary flag of order r

Let $k=2^{r}$, identify \mathbb{Q}^{k} with $\mathbb{Q}^{\mathcal{P}[r]}$, and for $i=1, \ldots, r$ let V_{i} be the subspace of all $\left(x_{S}\right)_{S \subseteq[r]}$ for which $x_{S}=x_{S \cap[j]}$ for all $S \subseteq[r]$.

Theorem (Ford-Green-K. (2019 \rightarrow 2022?))
A random integer has 2^{r} divisors close together composed of primes in $\left[\exp \left\{(\log z)^{c}, z\right]\right.$ w.h.p. if $c \geqslant(\rho / 2)^{r+o(1)}$, where $\rho=0.2812 \ldots$ is s.t.

$$
2 /(2-\rho)=\log 2+\sum_{j \geqslant 1} 2^{-j} \log \left(\frac{a_{j+1}+a_{j}^{\rho}}{a_{j+1}-a_{j}}\right),
$$

where $a_{1}=2, a_{2}=2+2^{\rho}, a_{j}=a_{j-1}^{2}+a_{j-1}^{\rho}-a_{j-2}^{2 \rho}$ for $j \geqslant 3$.

Corollary

$\Delta(n) \geqslant(\log \log n)^{\frac{\log 2}{\log (2 / p)}+o(1)}$ a.s. (conjectured to be optimal)

A unified point of view

Given a set of integers \mathcal{N} and a linear map $\psi: \mathbb{R}^{\ell} \rightarrow W$, where W is a real vector space, determine
$\mathbb{P}_{n \in \mathcal{N}}\left(\begin{array}{ll}\exists d_{1}, \ldots, d_{\ell} \mid n & \text { s.t. }\end{array} \quad \Psi\left(\log d_{1}, \ldots, \log d_{\ell}\right)=\vec{p}+O(1)\right.$,

- Problem A: $\mathcal{N}=\{$ typical integers in $[1, x]\}, \ell=2, W=\mathbb{R}$, $\Psi(t, s)=t-s, \vec{p}=\overrightarrow{0},\left(d_{1}, d_{2}\right)=1$.
- Problem $\mathrm{B}: \mathcal{N}=\mathbb{Z} \cap[1, x], \ell=1, W=\mathbb{R}, \Psi(t)=t, \vec{p}=\log y, d$ is y-smooth
- Problem $\mathrm{B}^{*}: \mathcal{N}=\mathbb{Z} \cap[1, x], \ell=k-1, W=\mathbb{R}^{k-1}, \Psi(\vec{x})=\vec{x}$, $\vec{p}=\left(\log y_{i}\right)_{i=1}^{k-1},\left(d_{i}, d_{j}\right)=1$ and d_{i} is y_{i}-smooth $\forall i \neq j$.
- Problem $\mathrm{A}^{*}: \mathcal{N}=\{$ typical integers in $[1, x]\}, \ell=k, W=\mathbb{R}^{k} /\langle\overrightarrow{1}\rangle$, $\Psi(\vec{t})=\vec{t}$, complicated constraints.

Some future directions

1. For each $k \geqslant 2$, calculate optimal α_{k} s.t. w.h.p. here are k divisors d_{1}, \ldots, d_{k} of n with $\left|\log \left(d_{i} / d_{j}\right)\right| \leqslant(\log n)^{-\alpha_{k}+o(1)} \forall i, j$

MT: $\alpha_{2}=\log 3-1 \approx 0.09861$;
FGK (work in progress): $\alpha_{3} \approx 0.026865, \alpha_{4} \approx 0.0131218$.
2. Determine order of magnitude of k-dim multiplication table for $k \geqslant 7$ for all possible side-lengths.
3. Upper bounds for $\Delta(n)$.

Thank you for your attention

