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The multiplicative structure of random integers

Question
Choose n ∈ [1, x ] uniformly at random. What is the distribution of its divisors?

Problem
The events {d1|n} and {d2|n} could have strong dependencies due to common prime
factors of d1 and d2.

Examples:
I If 4|n, then we automatically have 2|n
I If we know that 2|n, then the probability that 6|n is 1/3 and not 1/6 (but the

probability that 5|n remains 1/5).

Easier question
What is the distribution of the set of prime factors {p|n} of a randomly chosen n?



Warm-up: scale calibration

Prime factors

En6x

 ∑
p|n, p∈[y ,z]

1

 =
∑

p∈[y ,z]

Pn6x
(
p|n
)
∼
∑

p∈[y ,z]

1
p
∼ log log z − log log y

Divisors

En6x

 ∑
d |n, d∈[y ,z]

1

 ∼ ∑
d∈[y ,z]

1
d
∼ log z − log y



Early days of probabilistic number theory

Theorem (Hardy-Ramanujan (1917))
Most integers n 6 x have about log log x prime factors

Theorem (Erdős–Kac (1940))
If ω(n) = #{p|n} and we fix a < b, then

Pn6x

(
ω(n)− log log x√

log log x
∈ [a,b]

)
∼ 1√

2π

∫ b

a
e−t2/2dt .

I For n 6 x , we have ω(n) =
∑

p6x 1p|n
I Kubilius: model the RVs (1p|n)p6x by independent Bernoulli’s (Bp)p6x with

P(Bp = 1) = 1
p .



The distribution of intermediate prime factors

Prime factors form a Poisson Process
Let I1, . . . , Ik be disjoint subintervals of [1, x ]. Then

Pn6x

(
#{p|n, p ∈ Ij} = mj ∀j

)
≈

k∏
j=1

e−λj
λ

mj
j

mj !

with λj =
∑
p∈Ij

1
p
∼ log log bj − log log aj if Ij = [aj ,bj ].

Prime factors form a Brownian motion when normalized (Billingsley)

ρN : [0,1]→ R, ρN(t) :=
#
{

p|n : log log p 6 t log log x
}
− t log log x

√
t log log x

Then ρN converges in distribution to the Brownian motion in [0,1].



Just one piece of a puzzle. . .

I Every integer n can be written uniquely as a product of primes. We then have

En6x

 ∑
p|n, p∈[y ,z]

1

 =
∑

p∈[y ,z]

Pn6x
(
p|n
)
∼
∑

p∈[y ,z]

1
p
∼ log log z − log log y

I Every monic polynomial A ∈ Fq[T ] can be written uniquely as a product of monic
irreducibles. We then have

Edeg(A)=m

 ∑
P|A, deg(P)∈[k ,`]

1

 =
∑

P: deg(P)∈[k ,`]

1
qdeg(P)

∼ log k − log `

I Every permutation σ ∈ SN can be written uniquely as a product of disjoint cycles. We
then have

Eσ∈SN

 ∑
ρ|σ, length(ρ)∈[k ,`]

1

 ∼ log k − log `



Could these seemingly unrelated anatomies be connected?



Meta-applications to probabilistic Galois theory

Theorem (Bary-Soroker, K., Kozma (2023))
Fix H > 35. If we select f uniformly at random among all monic polynomials of degree n
with coefficients in {1,2, . . . ,H}, then Gal(f ) ∈ {An,Sn} with probability ∼ 1 as n→∞.

In addition, if we select f uniformly at random among all polynomials of degree n with
0,1-coefficients, then Gal(f ) ∈ {An,Sn} with probability bounded away from 0.

I Breuillard–Varjú (2019) can take H = 2 under GRH.
I In 2020, Bary-Soroker and Kozma proved the first statement for any H with at least

four distinct prime factors

Rough strategy: reduce f modulo 2,3,5,7. The reductions should behave approximately
like four independent polynomials A2,A3,A5,A7, with Ap uniformly distributed over monic
polynomials of degree n over Fp.



Back to integers: the distribution of large prime factors

The Poisson–Dirichlet distribution
Consider U1,U2, . . . uniform in [0,1] and independent. Then take

L1 = U1, L2 = (1− U1)U2, . . . , Lj = (1− U1) · · · (1− Uj−1)Uj , . . .

Let V1,V2, . . . is the sequence L1,L2, . . . ordered decreasingly. Then V = (V1,V2, . . . )
has the Poisson–Dirichlet distribution (of parameter 1).

Large prime factors follow the Poisson–Dirichlet distribution (Billingsley)
Let n = P1(n)P2(n) · · · , where P1(n) > P2(n) > · · · are primes or ones. Then

Pn6x

(
P1(n) 6 xu1 , . . . ,Pk (n) 6 xuk

)
∼ P

(
V1 6 u1, . . . ,Vk 6 uk

)
.

Example: #{n 6 x : P1(n) 6 xu} ∼ x · ρ(1/u), where ρ is the Dickman–de Bruijn function.



Arratia’s coupling

Theorem (Haddad-K. (2024))
Let Nx ∼ Uniform(Z ∩ [1, x ]) and let V = (V1,V2, . . . ) follow the Poisson–Dirichlet distr.

There exists a coupling of V and Nx such that

E
∑
i>1

∣∣∣∣ log Pi

log x
− Vi

∣∣∣∣ = O
(

1
log x

)
,

where Nx = P1P2 · · · with P1 > P2 > · · · all primes or ones.

I Arratia proved this in 1998 with O( log log x
log x ) and conjectured the above (which is

optimal).



The DDT theorem

The DDT theorem (Deshouillers–Dress–Tenenbaum (1979))
1
x

∑
n6x

#{d |n : d 6 nu}
τ(n)

=
2
π

arcsin
√

u + O
(

1√
log x

)
.

A more probabilistic formulation
Recall Nx ∼ Uniform(Z ∩ [1, x ]). Fix parameters αj ∈ (0,1) with α1 + · · ·+ αk = 1.
Define the random k -factorization Dx = (Dx ,1, . . . ,Dx ,k ) such that

P
[
Dx ,j = dj ∀j

∣∣∣ Nx = n
]

=
∏

16j6k

ταj (dj) whenever d1 · · · dk = n.

I DDT: k = 2 and α1 = α2 = 1/2.

I Sun-Kai Leung (2023): P
[
Dx ,j 6 Nuj

x ∀j 6 k − 1
]

= Dirichlet(α; u) + O
(
(log x)−

1
k
)
.



The Dirichlet law via Arratia’s coupling

Theorem (Donnelly–Tavaré (1987))
I Let V = (V1,V2, . . . ) be a Poisson-Dirichlet distribution of parameter 1.
I Let αj ∈ (0,1) with α1 + · · ·+ αk = 1.
I Let C1,C2, . . . be independent RVs s.t. P[Cj = `] = α` for all ` = 1, . . . , k .

Then (
∑

i>1 Vi1Ci=1, . . . ,
∑

i>1 Vi1Ci=k ) follows Dirichlet(α).

Theorem (Haddad–K. (2024))

For x > 2 and u ∈ [0,1]k−1, we have

P
[
Dx 6 Nuj

x ∀j 6 k − 1
]

= Dirichlet(α; u)

+ O
( k−1∑

i=1

1
(1 + ui log x)1−αi (1 + (1− ui) log x)αi

)
.



A cautionary tale about divisors

Theorem (Tenenbaum 1980)
If N is any positive density set of integers, then there is no weak limit for the distributions

Fn(u) :=
#
{

d |n : log d
log n 6 u

}
#{d |n}

as n→∞ over elements of N

Rough reason: n typically has ≈ (log n)log 2 divisors; these points are neither nearly
constant to get a singular measure, nor are there enough of them to cover nicely [0, log n].

Question
Is the set of log d ’s with d |n well-spaced or does it form large clusters?



The Erdős–Hooley function

∆(n) := max
u∈R

#
{

d |n : log d ∈ (u,u + 1]
}

Conjecture of Erdős (1948), proven by Maier–Tenenbaum (1985)
∆(n) > 1 for almost all integers n.

Rough reason: For a typical n, there are ≈ (log n)log 3 distinct fractions d1
d2

.

Theorem (Ford–Green–K. (2023))

For almost all n, we have ∆(n) > (log log n)η+o(1) with η ≈ 0.35332.

I Improves on Maier–Tenenbaum (1985, 2009) and La Bretèche–Tenenbaum (2023).
I La Bretèche–Tenenbaum (2023): ∆(n) 6 (log log n)c+o(1) with c ≈ 0.6102.



Hooley’s “new technique”

Theorem (Hooley (1979))
1
x

∑
n6x

∆(n)� (log x)4/π−1 (4/π − 1 < 1)

Remark: Hooley was motivated by many applications to problems in Diophantine
equations/inequalities, e.g. he deduced #{a2 + b4 + c4 6 x} > x(log x)1− 4

π
−o(1).

Theorem (K.-Tao (2024), Ford-K.-Tao (2024))

(log log x)1+η−o(1) � 1
x

∑
n6x

∆(n)� (log log x)11/4

I Improves 2023 u.b. by La Bretèche–Tenenbaum of rough shape exp(c
√

log log x)

I Improves 1982 l.b. by Hall–Tenebaum
I La Bretèche–Tenenbaum (2024+): (log log x)3/2 � 1

x
∑

n6x ∆(n)� (log log x)5/2



Ford’s work

Theorem (Ford (2008))

Pn6x

(
∃d |n, d ∈ [D,2D]

)
� (log D)−δ(log log D)−3/2 with δ =

∫ 1
log 2

1
log t dt ≈ 0.08

I If n has % log log x prime factors, then it has ≈ (log x)% log 2 divisors d all of whose
logarithms log d lie in [0, log x ].

I To have good chances to “hit” the region [log D, log D + log 2] we need % > 1/ log 2.
I Pn6x

(
n has 1

log 2 log log x prime factors
)
� (log x)−δ(log log x)−1/2 .

I If for some scale y , the number of prime factors 6 y exceeds

(1/ log 2) · log log y︸ ︷︷ ︸
expected amount

+ C︸︷︷︸
large constant

,

then the log d ’s get “trapped” inside a small region.



Sub-ballistic trajectories

Arguin–Bourgade–Radziwiłł (2023+) proof of Fyodorov–Hiary–Keating conj.

I Theorem (ABR): For a.a. τ ∈ [0,T ], max
|t−τ |61

|ζ(1/2 + it)| � log T
(log log T )3/4 .

I For fixed h, Pτ∈[0,T ]

(
|ζ(1/2 + i(τ + h)| > log T

(log log T )1/4

)
� 1

log T
.

I Reason for 3/4: If ∃y s.t.
∣∣∣ ∏

p6y

(
1− 1

p1/2+it

)−1∣∣∣ > C︸︷︷︸
large constant

· log y
(log log y)3/4︸ ︷︷ ︸
expected amount

,

then “there aren’t enough points t” so that for one of them |ζ(1/2 + it)| reaches the
value log T

(log log T )3/4 .



Zeta’s cousin

Conjecture (Arguin–Bourgade–K. (2024))

Let τ(n; ξ) =
∑

d |n d iξ. For almost all n 6 x with % log log x prime factors, we have

T (n) := max
ξ∈[1,2]

|τ(n; ξ)| � (log x)µ(%)

(log log x)
3

2α(%)

.

for certain constants µ(%) < log 2 and α(%) > 0.
I Hall proved T (n) 6 (log x)µ(1)+o(1) for almost all n 6 x , where µ(1) ≈ 0.65238
I Tenenbaum proved* T (n) > (log x)1/2+o(1)

I Proof*** of tight u.b. in conjecture, and of weak l.b. with correct exponent of log x .



Thank you for your attention


