### Rational approximations of irrational numbers

Dimitris Koukoulopoulos

Université de Montréal

(joint work with James Maynard (Oxford))

Number Theory Down Under 28 September 2021

#### Fundamental Question

Let  $x \in \mathbb{R} \setminus \mathbb{Q}$ . Find fractions a/q that approximate it "well".

- q must be small (fractions of "low complexity")
- the error |x a/q| must be small
- possible additional constraint: q must lie in a restricted set of denominators (e.g. primes, squares etc.)

- Decimal expansion:  $x \approx a/10^n$  with error  $\approx 1/10^n$  (typically).
- ▶ Dirichlet: for every irrational x, the inequality  $|x a/q| < 1/q^2$  has infinitely many solutions  $(a, q) \in \mathbb{Z} \times \mathbb{N}$ .
- Continue fractions: algorithm for constructing best possible rational approximations.

Definition (Irrationality measure)

 $\mu(x) := \sup\{\nu \ge 0 : |x - a/q| \leqslant q^{-\nu} \text{ infinitely often}\}$ 

• If 
$$x \in \mathbb{Q}$$
, then  $\mu(x) = 1$ .

- Dirichlet: if  $x \in \mathbb{R} \setminus \mathbb{Q}$ , then  $\mu(x) \ge 2$ .
- **•** Roth: if x is an algebraic irrational, then  $\mu(x) = 2$ .
- ► Zeilberger–Zudilin (2020):  $\mu(\pi) \leq 7.10320533...$

### Theorem (Zaharescu (1995))

Fix  $\varepsilon > 0$ . For every irrational x, there are infinitely many pairs  $(a, q) \in \mathbb{Z} \times \mathbb{N}$  such that  $|x - \frac{a}{q^2}| \leq \frac{1}{q^{8/3-\varepsilon}}$ .

#### Theorem (Matomäki (2009))

Fix  $\varepsilon > 0$ . For every irrational x, there are infinitely many primes p and integers a such that  $\left| x - \frac{a}{p} \right| \leq \frac{1}{p^{4/3-\varepsilon}}$ .

#### Remark

Hard open problem: improve the exponents to 3 and 2, respectively.

These would be best possible (we'll see a justification shortly).

### Basic principles

- Approximating specific numbers leads to hard open problems.
- Focus on proving results about almost all numbers.
- ► Exclusion of small pathological sets ~→ simple, general results

# Khinchin's theorem

#### Definition

Given "admissible margins of error"  $\Delta_1,\Delta_2,\ldots\geqslant 0,$  let

$$\mathcal{A}:=\left\{x\in [0,1]: \left|x-rac{a}{q}
ight|<\Delta_{q} ext{ for $\infty$-many } (a,q)\in\mathbb{Z} imes\mathbb{N}
ight\}$$

#### Remark

We may focus on [0,1] WLOG by periodicity.

Theorem (Khinchin (1924))

1. If 
$$\sum_{q \ge 1} q \Delta_q < \infty$$
, then meas $(\mathcal{A}) = 0$ .

2. If  $\sum_{q \ge 1} q \Delta_q = \infty$  and  $q^2 \Delta_q \searrow$ , then meas( $\mathcal{A}$ ) = 1.

#### Corollary

Let  $\varepsilon > 0$ . For a.a.  $x \in \mathbb{R}$ , there are  $\infty$ -many (a,q) such that  $|x - \frac{a}{q}| < \frac{1}{q^2 \log^{1-\varepsilon} q}$ , but only finitely many s.t.  $|x - \frac{a}{q}| < \frac{1}{q^2 \log^{1+\varepsilon} q}$ .

### Theorem (Borel–Cantelli)

Let  $E_1, E_2, \ldots$  be events in the probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , and let  $E = \limsup_{j \to \infty} E_j$  be the event that  $\infty$ -many occur.

- 1. If  $\sum \mathbb{P}(E_j) < \infty$ , then  $\mathbb{P}(E) = 0$ .
- 2. If  $\sum \mathbb{P}(E_j) = \infty$  and the  $E_j$ 's are independent, then  $\mathbb{P}(E) = 1$ .

$$lacksim$$
We may write  $\mathcal{A} = \mathsf{lim}\,\mathsf{sup}_{q
ightarrow\infty}\,\mathcal{A}_q$ , where

$$\mathcal{A}_q := [0,1] \cap igcup_{0\leqslant a\leqslant q} \Big(rac{a}{q} - \Delta_q, rac{a}{q} + \Delta_q \Big).$$

• meas
$$(\mathcal{A}_q) = 2q\Delta_q$$

 $\blacktriangleright$  Khinchin: the  $\mathcal{A}_q$  's are sufficiently "quasi-independent" when  $q^2 \Delta_q \searrow$ 

# Generalizing Khinchin

#### Remark

If 
$$q^2 \Delta_q \searrow$$
, then either  $\Delta_q = 0$  for all large  $q$ , or  $\mathrm{supp}(\Delta) = \mathbb{N}$ .

Conclusion: must remove this condition to restrict denominators.

### Proposition (Duffin–Schaeffer (1941))

Khinchin's theorem fails in full generality, i.e. we may find  $\Delta_1, \Delta_2, \ldots$  s.t.  $\sum q \Delta_q = \infty$  and yet meas $(\mathcal{A}) = 0$ .

(Recall: A=set of "approximable numbers" with errors  $< \Delta_q$ )



# The Duffin–Schaeffer conjecture

$$\blacktriangleright \ \mathcal{A}^* := \big\{ x \in [0,1] : \big| x - \frac{a}{q} \big| < \Delta_q \text{ for } \infty \text{-many reduced } \frac{a}{q} \big\}$$

This is the limsup of the sets

 $\mathcal{A}_q^* := \left\{ x \in [0,1] : \left| x - rac{a}{q} 
ight| < \Delta_q ext{ for some } a \in \mathbb{Z} ext{ co-prime to } q 
ight\}$ 

that have measure  $2 arphi(q) \Delta_q$ , where  $arphi(q) = \#(\mathbb{Z}/q\mathbb{Z})^{ imes}.$ 

#### Conjecture (Duffin-Schaeffer (1941))

1. If 
$$\sum \varphi(q)\Delta_q < \infty$$
, then meas $(\mathcal{A}^*) = 0$ .

2. If 
$$\sum \varphi(q) \Delta_q = \infty$$
, then  $\operatorname{meas}(\mathcal{A}^*) = 1$ .

### Theorem (K.–Maynard (2019 $\rightarrow$ 2020))

The Duffin-Schaeffer Conjecture (DSC) is true.

### The history of the conjecture

Duffin–Schaeffer (1941): DSC is true if the errors Δ<sub>q</sub> are supported on "not-too-abnormal integers", i.e. if

$$\limsup_{Q \to \infty} \frac{\sum_{q \leqslant Q} w_q \cdot \frac{\varphi(q)}{q}}{\sum_{q \leqslant Q} w_q} > 0 \qquad \text{with weights } w_q = q \Delta_q$$

**Corollary.**  $|x - \frac{a}{p}| < \frac{1}{p^2}$  and  $|x - \frac{a}{q^2}| < \frac{1}{q^3}$  i.o., for a.a. x.

- ▶ Gallagher (1961): there is a 0–1 law, i.e.  $meas(\mathcal{A}^*) \in \{0, 1\}$ .
- ► Erdős (1970) Vaaler (1978): DSC is true if  $\Delta_q = O(1/q^2)$ . (Note:  $\sum \varphi(q) \Delta_q = \infty$  implies then  $\sum_{q \in \text{supp}(\Delta)} 1/q = \infty$ .)
- ▶ Pollington–Vaughan (1990): DSC true in all dimensions > 1.
- Many authors: DSC is true when there is "extra divergence".
- Beresnevich–Velani (2006): DSC implies a generalized DSC for Hausdorff measures (via their general *Mass Transference Principle*).

# Some corollaries of DSC

- Recall: A is the set of approximable numbers without constraints on GCDs. What is the correct 0−1 law for A?
  - When  $x \in \mathbb{R} \setminus \mathbb{Q}$  and  $\Delta_q \to 0$ , it is easy to check that

 $|x - \frac{a}{q}| < \Delta_q \text{ i.o.} \qquad \Longleftrightarrow \quad |x - \frac{a}{q}| < \Delta_q' \text{ with } \gcd(a,q) = 1 \text{ i.o.},$ 

where  $\Delta'_q := \sup_{m \geqslant 1} \Delta_{mq}$ .

This observation led Catlin to conjecture:

$$\mathsf{meas}(\mathcal{A}) = 1 \quad \Longleftrightarrow \quad \sum arphi(q) \Delta_q' = \infty$$

 DSC readily implies Catlin's conjecture (which is the correct generalization to Khinchin)

2. Beresnevich–Velani: if  $\sum_{q} \varphi(q) \Delta_q < \infty$ , then

$$\dim(\mathcal{A}^*) = \inf \Big\{ s > 0 : \sum \varphi(q) \Delta_q^s < \infty \Big\}.$$

### Theorem (Borel–Cantelli)

Let  $E_1, E_2, \ldots$  be events in the probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , and let  $E = \limsup_{j \to \infty} E_j$  be the event that  $\infty$ -many occur.

- 1. If  $\sum \mathbb{P}(E_j) < \infty$ , then  $\mathbb{P}(E) = 0$ .
- 2. If  $\sum \mathbb{P}(E_j) = \infty$  and the  $E_j$ 's are independent, then  $\mathbb{P}(E) = 1$ .

Turan used Cauchy–Schwarz to prove Borel–Cantelli when

 $\mathbb{P}(E_i \cap E_j) \leqslant (1 + \varepsilon)\mathbb{P}(E_i)\mathbb{P}(E_j)$  on average over  $i \neq j$ .

For DSC, we know the limsup satisfies a 0–1 law, so we only need to show that

$$\mathbb{P}(E_i \cap E_j) \leqslant 10^{10^{10}} \mathbb{P}(E_i) \mathbb{P}(E_j)$$
 on average over  $i \neq j$ .

• 
$$\mathcal{S} \subset [Q, 2Q]$$
 set of denominators

• 
$$\sum_{q\in S} \frac{\varphi(q)}{q} =: Q/D$$
, so that  $D \gg 1$ . (Think  $\#S \approx Q/D$ .)

$$\blacktriangleright \ \Delta_q := \frac{D}{Q} \cdot \frac{1_{q \in S}}{q}, \text{ so that } \sum_{q \in S} \operatorname{meas}(\mathcal{A}_q^*) = 1.$$

• Can we prove meas( $\bigcup_{q\in \mathcal{S}} \mathcal{A}_q^*$ )  $\gg 1$ ?

### A special but crucial case, ctd.

Recall:  $\mathcal{S} \subset [Q, 2Q]$ ,  $\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q} = Q/D$ ,  $\Delta_q = \frac{D}{Q} \cdot \frac{1_{q \in \mathcal{S}}}{q}$ 

Pollington-Vaughan: meas(U<sub>q∈S</sub> A<sup>\*</sup><sub>q</sub>) ≫ 1, unless ∃t ≥ 10<sup>10<sup>10</sup></sup> s.t. there are ≥ t<sup>-1</sup>#S<sup>2</sup> pairs (q, r) ∈ S × S with:

- 1. the number  $qr/\gcd(q, r)^2$  has too many prime factors > t; 2.  $\gcd(q, r) > D/t$ .
- Condition 1 occurs for ≪ e<sup>-t</sup>Q<sup>2</sup> pairs (q, r) ∈ [Q, 2Q]<sup>2</sup>. This is sufficient if D ≈ 1 (Erdős–Vaaler argument).
- If D is large, we must exploit Condition 2. We show it induces "structure" on S.
- If d > D/t and S ⊂ {q ∈ [Q, 2Q] : d|q}, then Condition 2 is satisfied for all pairs (q, r). Is some converse statement also true?

#### The guiding model problem

Let  $S \subset [Q, 2Q]$  a set of Q/D integers. Suppose there are  $\geq \#S^2/t$  pairs  $(q, r) \in S \times S$  such that gcd(q, r) > D/t. Must there exist some integers d > D/t that divides  $\gg t^{-100}\#S$  elements of S?

- ▶ If such a *d* exists, replace S with  $S' = \{m : dm \in S\}$ .
- ▶  $\#S' \gg (Q/D)t^{-100}$  and  $S \subset [1, 2tQ/D]$ , so S' is "dense".
- ln addition,  $qr/ \operatorname{gcd}(q, r)^2 = mn/ \operatorname{gcd}(m, n)^2$  when (q, r) = (dm, dn)
- ► Hence, Condition 2 carries through to the "dense" set S', and the Erdős–Vaaler argument completes the proof.

### The graph of dependencies

Consider the graph  $G = (S, \mathcal{E})$ , where:

•  $S \subset [Q, 2Q]$  is a set of  $\approx Q/D$  integers;

▶  $\mathcal{E} = \{(q, r) \in \mathcal{S} \times \mathcal{S} : gcd(q, r) > D\}.$ 



(graph by J. Maynard)

# An iterative compression algorithm

- ► *Simplify*: S contains only square-free integers.
- Technical manoeuvre: necessary to view G as a bipartite graph (S, S, E).
- Divise an algorithm that produces a nested sequence bipartite graphs G<sup>(j)</sup> = (V<sup>(j)</sup>, W<sup>(j)</sup>, E<sup>(j)</sup>)

$$G = G^{\text{start}} =: G^{(0)} \supset G^{(1)} \supset \cdots \supset G^{(J)} =: G^{\text{end}}$$

and distinct primes  $p_1, p_2, \ldots, p_J$  such that:

- 1. For each  $i \leq j$ , the prime  $p_i$  either divides all elements of  $V^{(j)}$  or none of them (and similarly with  $W^{(j)}$ ).
- 2.  $G^{end}$  has all large GCDs due to a universal divisor. Hence, we can analyze it using the Erdős–Vaaler argument.
- 3. the graph  $G^{(j)}$  has better "quality" than  $G^{(j-1)}$  (i.e. more edges than naively expected). This ensures that the EV argument on  $G^{\text{end}}$  gives us non-trivial bounds on  $G^{\text{start}}$ .

**First attempt:** ensure  $\delta(G^{(j)}) \ge \delta(G^{(j-1)})$  at each step, mimicking Roth's density increment strategy.

This fails because we lose control on edge set of  $G^{end}$ ;

# The quality increment argument II

Second attempt: consider the following notation:

•  $(\mathcal{V}, \mathcal{W}) = (\mathcal{V}^{(j-1)}, \mathcal{W}^{(j-1)})$  and  $p = p_j$ ; •  $\mathcal{V}_p = \{ v \in \mathcal{V} : p | v \}, \ \mathcal{V}_{\hat{p}} = \mathcal{V} \setminus \mathcal{V}_p$ 



We then have four options for  $(\mathcal{V}^{(j)}, \mathcal{W}^{(j)})$ :

- 1.  $(\mathcal{V}_p, \mathcal{W}_p)$ : gain factor of *p* left and right; but lose a factor of *p* in the GCDs (that affects both sides).
- 2.  $(\mathcal{V}_{\hat{p}}, \mathcal{W}_{\hat{p}})$ : no gained factors of *p*, so balanced situation.
- (V<sub>p</sub>, W<sub>p</sub>): we gain a factor of p on the left, and nothing on the right. BUT the GCDs are not affected, so we gain a factor of p overall. Hence, we can afford a large loss of edges.
- 4.  $(\mathcal{V}_{\hat{p}}, \mathcal{W}_p)$ : as in case 3, we gain a factor of p.

### The quality increment argument III

**Second attempt continued:** ensure that  $p_j^{\sigma_j} \# \mathcal{E}^{(j)} \ge \# \mathcal{E}^{(j-1)}$  at each step, where  $\sigma_j = 0$  in the symmetric Cases 1,2 and  $\sigma_j = 1$  in the asymmetric Cases 3,4.

This would allow control of  $\mathcal{E}^{\text{start}}$  in terms of  $\mathcal{E}^{\text{end}}$ , but we cannot show it can be made to increase.

Third attempt: ensure that  $\delta(G^{(j)})^{10} p_j^{\sigma_j} \# \mathcal{E}^{(j)} \ge \delta(G^{(j-1)})^{10} \# \mathcal{E}^{(j-1)}.$ 

This almost works. Stumbling block: the Model Problem as stated is false! We must take account the weights  $\varphi(q)/q$ .

#### Fourth attempt: ensure that

 $\delta(G^{(j)})^{10} p_j^{\sigma_j} (1-1/p_j)^{-\tau_j} \# \mathcal{E}^{(j)} \ge \delta(G^{(j-1)})^{10} \# \mathcal{E}^{(j-1)}$  at each step, where  $\tau_j = 1$  in Case 1 where everything is divisible by  $p_j$ , and  $\tau_j = 0$  otherwise.

$$\mathcal{S} = \{P/j : j | P, x/2 \leq j \leq x\}$$
 with  $P = \prod_{p \leq x} p$ .

- all pairwise GCDs here are  $\ge P/x^2$
- ▶ no fixed integer of size  $\gg P/x^2$  dividing a positive proportion of elements of S
- Notice that if p ≤ x/log x, then the proportion of S divisible by p is ~ 1 − 1/p.
- ► The case when #V<sub>p</sub> ~ (1 − 1/p)#V turns out to be the critical case in our "quality increment argument", and where we need to make use of the weights φ(q)/q.

# Thank you for your attention