Rational approximations of irrational numbers

Dimitris Koukoulopoulos

Université de Montréal
(joint work with James Maynard (Oxford))

Number Theory Down Under
28 September 2021

Rational approximations I

Fundamental Question

Let $x \in \mathbb{R} \backslash \mathbb{Q}$. Find fractions a/q that approximate it "well".

- q must be small (fractions of "low complexity")
- the error $|x-a / q|$ must be small
- possible additional constraint: q must lie in a restricted set of denominators (e.g. primes, squares etc.)

Rational approximations II

- Decimal expansion: $x \approx a / 10^{n}$ with error $\approx 1 / 10^{n}$ (typically).
- Dirichlet: for every irrational x, the inequality $|x-a / q|<1 / q^{2}$ has infinitely many solutions $(a, q) \in \mathbb{Z} \times \mathbb{N}$.
- Continue fractions: algorithm for constructing best possible rational approximations.

Improving Dirichlet's theorem I

Definition (Irrationality measure)

 $\mu(x):=\sup \left\{\nu \geqslant 0:|x-a / q| \leqslant q^{-\nu}\right.$ infinitely often $\}$- If $x \in \mathbb{Q}$, then $\mu(x)=1$.
- Dirichlet: if $x \in \mathbb{R} \backslash \mathbb{Q}$, then $\mu(x) \geqslant 2$.
- Roth: if x is an algebraic irrational, then $\mu(x)=2$.
- Zeilberger-Zudilin (2020): $\mu(\pi) \leqslant 7.10320533 \ldots$

Improving Dirichlet's theorem II

Theorem (Zaharescu (1995))

Fix $\varepsilon>0$. For every irrational x, there are infinitely many pairs $(a, q) \in \mathbb{Z} \times \mathbb{N}$ such that $\left|x-\frac{a}{q^{2}}\right| \leqslant \frac{1}{q^{8 / 3-\varepsilon}}$.

Theorem (Matomäki (2009))

Fix $\varepsilon>0$. For every irrational x, there are infinitely many primes p and integers a such that $\left|x-\frac{a}{p}\right| \leqslant \frac{1}{p^{4 / 3-\varepsilon}}$.

Remark

Hard open problem: improve the exponents to 3 and 2, respectively.
These would be best possible (we'll see a justification shortly).

Metric Diophantine approximation

Basic principles

- Approximating specific numbers leads to hard open problems.
- Focus on proving results about almost all numbers.
- Exclusion of small pathological sets \rightsquigarrow simple, general results

Khinchin's theorem

Definition

Given "admissible margins of error" $\Delta_{1}, \Delta_{2}, \ldots \geqslant 0$, let

$$
\mathcal{A}:=\left\{x \in[0,1]:\left|x-\frac{a}{q}\right|<\Delta_{q} \text { for } \infty \text {-many }(a, q) \in \mathbb{Z} \times \mathbb{N}\right\}
$$

Remark

We may focus on $[0,1]$ WLOG by periodicity.

Theorem (Khinchin (1924))

1. If $\sum_{q \geqslant 1} q \Delta_{q}<\infty$, then $\operatorname{meas}(\mathcal{A})=0$.
2. If $\sum_{q \geqslant 1} q \Delta_{q}=\infty$ and $q^{2} \Delta_{q} \searrow$, then meas $(\mathcal{A})=1$.

Corollary

Let $\varepsilon>0$. For a.a. $x \in \mathbb{R}$, there are ∞-many (a, q) such that $\left|x-\frac{a}{q}\right|<\frac{1}{q^{2} \log ^{1-\varepsilon} q}$, but only finitely many s.t. $\left|x-\frac{a}{q}\right|<\frac{1}{q^{2} \log ^{1+\varepsilon} q}$.

Theorem (Borel-Cantelli)

Let E_{1}, E_{2}, \ldots be events in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $E=\lim \sup _{j \rightarrow \infty} E_{j}$ be the event that ∞-many occur.

1. If $\sum \mathbb{P}\left(E_{j}\right)<\infty$, then $\mathbb{P}(E)=0$.
2. If $\sum \mathbb{P}\left(E_{j}\right)=\infty$ and the E_{j} 's are independent, then $\mathbb{P}(E)=1$.

- We may write $\mathcal{A}=\lim \sup _{q \rightarrow \infty} \mathcal{A}_{q}$, where

$$
\mathcal{A}_{q}:=[0,1] \cap \bigcup_{0 \leqslant a \leqslant q}\left(\frac{a}{q}-\Delta_{q}, \frac{a}{q}+\Delta_{q}\right) .
$$

$-\operatorname{meas}\left(\mathcal{A}_{q}\right)=2 q \Delta_{q}$

- Khinchin: the \mathcal{A}_{q} 's are sufficiently "quasi-independent" when $q^{2} \Delta_{q} \searrow$

Generalizing Khinchin

Remark

If $q^{2} \Delta_{q} \searrow$, then either $\Delta_{q}=0$ for all large q, or $\operatorname{supp}(\Delta)=\mathbb{N}$.
Conclusion: must remove this condition to restrict denominators.

Proposition (Duffin-Schaeffer (1941))

Khinchin's theorem fails in full generality, i.e. we may find
$\Delta_{1}, \Delta_{2}, \ldots$ s.t. $\sum q \Delta_{q}=\infty$ and yet meas $(\mathcal{A})=0$.
(Recall: $\mathcal{A}=$ set of "approximable numbers" with errors $<\Delta_{q}$)

0					$\stackrel{1}{3}$					$\xrightarrow{\frac{2}{3}}$					1
0			$\frac{1}{5}$			$\stackrel{2}{5}$			$\frac{3}{5}$			$\frac{4}{5}$			1
0	$\frac{1}{15}$	$\stackrel{2}{15}$	$\frac{1}{5}$	$\stackrel{4}{15}$	$\stackrel{1}{3}$	$\frac{2}{5}$	$\xrightarrow{\frac{7}{15}}$	$\stackrel{8}{15}$	$\frac{3}{5}$	$\xrightarrow{\frac{2}{3}}$	$\xrightarrow{11}$	$\xrightarrow{4}$	$\xrightarrow{13}$	$\xrightarrow{14}$	1

Example with $\mathcal{A}_{3}, \mathcal{A}_{5} \subset \mathcal{A}_{15}$

The Duffin-Schaeffer conjecture

- $\mathcal{A}^{*}:=\left\{x \in[0,1]:\left|x-\frac{a}{q}\right|<\Delta_{q}\right.$ for ∞-many reduced $\left.\frac{a}{q}\right\}$
- This is the limsup of the sets

$$
\mathcal{A}_{q}^{*}:=\left\{x \in[0,1]:\left|x-\frac{a}{q}\right|<\Delta_{q} \text { for some } a \in \mathbb{Z} \text { co-prime to } q\right\}
$$ that have measure $2 \varphi(q) \Delta_{q}$, where $\varphi(q)=\#(\mathbb{Z} / q \mathbb{Z})^{\times}$.

Conjecture (Duffin-Schaeffer (1941))

1. If $\sum \varphi(q) \Delta_{q}<\infty$, then meas $\left(\mathcal{A}^{*}\right)=0$.
2. If $\sum \varphi(q) \Delta_{q}=\infty$, then meas $\left(\mathcal{A}^{*}\right)=1$.

Theorem (K.-Maynard (2019 \rightarrow 2020))

The Duffin-Schaeffer Conjecture (DSC) is true.

The history of the conjecture

- Duffin-Schaeffer (1941): DSC is true if the errors Δ_{q} are supported on "not-too-abnormal integers", i.e. if

$$
\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} w_{q} \cdot \frac{\varphi(q)}{q}}{\sum_{q \leqslant Q} w_{q}}>0 \quad \text { with weights } w_{q}=q \Delta_{q}
$$

Corollary. $\left|x-\frac{a}{p}\right|<\frac{1}{p^{2}}$ and $\left|x-\frac{a}{q^{2}}\right|<\frac{1}{q^{3}}$ i.o., for a.a. x.

- Gallagher (1961): there is a $0-1$ law, i.e. $\operatorname{meas}\left(\mathcal{A}^{*}\right) \in\{0,1\}$.
- Erdős (1970) - Vaaler (1978): DSC is true if $\Delta_{q}=O\left(1 / q^{2}\right)$. (Note: $\sum \varphi(q) \Delta_{q}=\infty$ implies then $\sum_{q \in \operatorname{supp}(\Delta)} 1 / q=\infty$.)
- Pollington-Vaughan (1990): DSC true in all dimensions >1.
- Many authors: DSC is true when there is "extra divergence".
- Beresnevich-Velani (2006): DSC implies a generalized DSC for Hausdorff measures (via their general Mass Transference Principle).

Some corollaries of DSC

1. Recall: \mathcal{A} is the set of approximable numbers without constraints on GCDs. What is the correct $0-1$ law for \mathcal{A} ?

- When $x \in \mathbb{R} \backslash \mathbb{Q}$ and $\Delta_{q} \rightarrow 0$, it is easy to check that
$\left|x-\frac{a}{q}\right|<\Delta_{q}$ i.o. $\Longleftrightarrow\left|x-\frac{a}{q}\right|<\Delta_{q}^{\prime}$ with $\operatorname{gcd}(a, q)=1$ i.o.,
where $\Delta_{q}^{\prime}:=\sup _{m \geqslant 1} \Delta_{m q}$.
- This observation led Catlin to conjecture:

$$
\operatorname{meas}(\mathcal{A})=1 \quad \Longleftrightarrow \quad \sum \varphi(q) \Delta_{q}^{\prime}=\infty
$$

- DSC readily implies Catlin's conjecture (which is the correct generalization to Khinchin)

2. Beresnevich-Velani: if $\sum_{q} \varphi(q) \Delta_{q}<\infty$, then

$$
\operatorname{dim}\left(\mathcal{A}^{*}\right)=\inf \left\{s>0: \sum \varphi(q) \Delta_{q}^{s}<\infty\right\}
$$

Reduction to a pair-correlation estimate

Theorem (Borel-Cantelli)

Let E_{1}, E_{2}, \ldots be events in the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $E=\lim \sup _{j \rightarrow \infty} E_{j}$ be the event that ∞-many occur.

1. If $\sum \mathbb{P}\left(E_{j}\right)<\infty$, then $\mathbb{P}(E)=0$.
2. If $\sum \mathbb{P}\left(E_{j}\right)=\infty$ and the E_{j} 's are independent, then $\mathbb{P}(E)=1$.

- Turan used Cauchy-Schwarz to prove Borel-Cantelli when

$$
\mathbb{P}\left(E_{i} \cap E_{j}\right) \leqslant(1+\varepsilon) \mathbb{P}\left(E_{i}\right) \mathbb{P}\left(E_{j}\right) \quad \text { on average over } i \neq j
$$

- For DSC, we know the limsup satisfies a 0-1 law, so we only need to show that

$$
\mathbb{P}\left(E_{i} \cap E_{j}\right) \leqslant 10^{10^{10}} \mathbb{P}\left(E_{i}\right) \mathbb{P}\left(E_{j}\right) \quad \text { on average over } i \neq j
$$

A special but crucial case

- $\mathcal{S} \subset[Q, 2 Q]$ set of denominators
- $\sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q}=: Q / D$, so that $D \gg 1$. (Think $\# \mathcal{S} \approx Q / D$.)
- $\Delta_{q}:=\frac{D}{Q} \cdot \frac{1_{q \in \mathcal{S}}}{q}$, so that $\sum_{q \in \mathcal{S}}$ meas $\left(\mathcal{A}_{q}^{*}\right)=1$.
- Can we prove meas $\left(\bigcup_{q \in \mathcal{S}} \mathcal{A}_{q}^{*}\right) \gg 1$?

A special but crucial case, ctd.

Recall: $\mathcal{S} \subset[Q, 2 Q], \quad \sum_{q \in \mathcal{S}} \frac{\varphi(q)}{q}=Q / D, \quad \Delta_{q}=\frac{D}{Q} \cdot \frac{1_{q \in \mathcal{S}}}{q}$

- Pollington-Vaughan: $\operatorname{meas}\left(\bigcup_{q \in \mathcal{S}} \mathcal{A}_{q}^{*}\right) \gg 1$, unless $\exists t \geqslant 10^{10^{10}}$ s.t. there are $\geqslant t^{-1} \# \mathcal{S}^{2}$ pairs $(q, r) \in \mathcal{S} \times \mathcal{S}$ with:

1. the number $q r / \operatorname{gcd}(q, r)^{2}$ has too many prime factors $>t$;
2. $\operatorname{gcd}(q, r)>D / t$.

- Condition 1 occurs for $\ll e^{-t} Q^{2}$ pairs $(q, r) \in[Q, 2 Q]^{2}$. This is sufficient if $D \asymp 1$ (Erdős-Vaaler argument).
- If D is large, we must exploit Condition 2. We show it induces "structure" on \mathcal{S}.
- If $d>D / t$ and $\mathcal{S} \subset\{q \in[Q, 2 Q]: d \mid q\}$, then Condition 2 is satisfied for all pairs (q, r). Is some converse statement also true?

A combinatorial problem

The guiding model problem

Let $\mathcal{S} \subset[Q, 2 Q]$ a set of Q / D integers. Suppose there are $\geqslant \# \mathcal{S}^{2} / t$ pairs $(q, r) \in \mathcal{S} \times \mathcal{S}$ such that $\operatorname{gcd}(q, r)>D / t$. Must there exist some integers $d>D / t$ that divides $>t^{-100} \# \mathcal{S}$ elements of \mathcal{S} ?

- If such a d exists, replace \mathcal{S} with $\mathcal{S}^{\prime}=\{m: d m \in \mathcal{S}\}$.
- $\# \mathcal{S}^{\prime} \gg(Q / D) t^{-100}$ and $\mathcal{S} \subset[1,2 t Q / D]$, so \mathcal{S}^{\prime} is "dense".
- In addition, $q r / \operatorname{gcd}(q, r)^{2}=m n / \operatorname{gcd}(m, n)^{2}$ when $(q, r)=(d m, d n)$
- Hence, Condition 2 carries through to the "dense" set \mathcal{S}^{\prime}, and the Erdős-Vaaler argument completes the proof.

The graph of dependencies
Consider the graph $G=(\mathcal{S}, \mathcal{E})$, where:

- $\mathcal{S} \subset[Q, 2 Q]$ is a set of $\approx Q / D$ integers;
- $\mathcal{E}=\{(q, r) \in \mathcal{S} \times \mathcal{S}: \operatorname{gcd}(q, r)>D\}$.

(graph by J. Maynard)

An iterative compression algorithm

- Simplify: \mathcal{S} contains only square-free integers.
- Technical manoeuvre: necessary to view G as a bipartite $\operatorname{graph}(\mathcal{S}, \mathcal{S}, \mathcal{E})$.
- Divise an algorithm that produces a nested sequence bipartite graphs $G^{(j)}=\left(\mathcal{V}^{(j)}, \mathcal{W}^{(j)}, \mathcal{E}^{(j)}\right)$

$$
G=G^{\text {start }}=: G^{(0)} \supset G^{(1)} \supset \cdots \supset G^{(J)}=: G^{\text {end }}
$$

and distinct primes $p_{1}, p_{2}, \ldots, p_{J}$ such that:

1. For each $i \leqslant j$, the prime p_{i} either divides all elements of $V^{(j)}$ or none of them (and similarly with $W^{(j)}$).
2. $G^{\text {end }}$ has all large GCDs due to a universal divisor. Hence, we can analyze it using the Erdős-Vaaler argument.
3. the graph $G^{(j)}$ has better "quality" than $G^{(j-1)}$ (i.e. more edges than naively expected). This ensures that the EV argument on $G^{\text {end }}$ gives us non-trivial bounds on $G^{\text {start }}$.

First attempt: ensure $\delta\left(G^{(j)}\right) \geqslant \delta\left(G^{(j-1)}\right)$ at each step, mimicking Roth's density increment strategy.
This fails because we lose control on edge set of $G^{\text {end }}$;

The quality increment argument II

Second attempt: consider the following notation:

- $(\mathcal{V}, \mathcal{W})=\left(\mathcal{V}^{(j-1)}, \mathcal{W}^{(j-1)}\right)$ and $p=p_{j}$;
- $\mathcal{V}_{p}=\{v \in \mathcal{V}: p \mid v\}, \mathcal{V}_{\hat{p}}=\mathcal{V} \backslash \mathcal{V}_{p}$

We then have four options for $\left(\mathcal{V}^{(j)}, \mathcal{W}^{(j)}\right)$:

1. $\left(\mathcal{V}_{p}, \mathcal{W}_{p}\right)$: gain factor of p left and right; but lose a factor of p in the GCDs (that affects both sides).
2. $\left(\mathcal{V}_{\hat{p}}, \mathcal{W}_{\hat{p}}\right)$: no gained factors of p, so balanced situation.
3. $\left(\mathcal{V}_{p}, \mathcal{W}_{\hat{p}}\right)$: we gain a factor of p on the left, and nothing on the right. BUT the GCDs are not affected, so we gain a factor of p overall. Hence, we can afford a large loss of edges.
4. $\left(\mathcal{V}_{\hat{p}}, \mathcal{W}_{p}\right)$: as in case 3 , we gain a factor of p.

The quality increment argument III

Second attempt continued: ensure that $p_{j}^{\sigma_{j}} \# \mathcal{E}^{(j)} \geqslant \# \mathcal{E}^{(j-1)}$ at each step, where $\sigma_{j}=0$ in the symmetric Cases 1,2 and $\sigma_{j}=1$ in the asymmetric Cases 3,4.

This would allow control of $\mathcal{E}^{\text {start }}$ in terms of $\mathcal{E}^{\text {end }}$, but we cannot show it can be made to increase.

Third attempt: ensure that
$\delta\left(G^{(j)}\right)^{10} p_{j}^{\sigma_{j}} \# \mathcal{E}^{(j)} \geqslant \delta\left(G^{(j-1)}\right)^{10} \# \mathcal{E}^{(j-1)}$.
This almost works. Stumbling block: the Model Problem as stated is false! We must take account the weights $\varphi(q) / q$.

Fourth attempt: ensure that $\delta\left(G^{(j)}\right)^{10} p_{j}^{\sigma_{j}}\left(1-1 / p_{j}\right)^{-\tau_{j}} \# \mathcal{E}^{(j)} \geqslant \delta\left(G^{(j-1)}\right)^{10} \# \mathcal{E}^{(j-1)}$ at each step, where $\tau_{j}=1$ in Case 1 where everything is divisible by p_{j}, and $\tau_{j}=0$ otherwise.

Sam Chow's counterexample

$$
\mathcal{S}=\{P / j: j \mid P, x / 2 \leqslant j \leqslant x\} \quad \text { with } \quad P=\prod_{p \leqslant x} p .
$$

- all pairwise GCDs here are $\geqslant P / x^{2}$
- no fixed integer of size $\gg P / x^{2}$ dividing a positive proportion of elements of \mathcal{S}
- notice that if $p \leqslant x / \log x$, then the proportion of \mathcal{S} divisible by p is $\sim 1-1 / p$.
- The case when $\# \mathcal{V}_{p} \sim(1-1 / p) \# \mathcal{V}$ turns out to be the critical case in our "quality increment argument", and where we need to make use of the weights $\varphi(q) / q$.

Thank you for your attention

