Rational approximations of irrational numbers

Dimitris Koukoulopoulos

Université de Montréal

(Joint work with James Maynard (Oxford))

ICBS Beijing 2023

Fundamental Question

Given an irrational number x, find fractions a/q that approximate it "well".

- the error |x a/q| must be small
- q must be small (fractions of "low complexity")

Remark

Often, q must lie in a restricted set of denominators (e.g. primes, squares etc.)

Dirichlet's theorem

Dirichlet (c.1840): $\forall x$ irrational, we have i.o.

$$\left|x-\frac{a}{q}\right|<\frac{1}{q^2}.$$

Improving Dirichlet's theorem:

- 1. Can we replace $1/q^2$ by something smaller?
- 2. Can we restrict q to lie in some special set of denominators?

Improving the precision of rational approximations

Irrationality measure:

$$\mu(x) := \sup \left\{ E \ge 0 : 0 < \left| x - \frac{a}{q} \right| \le \frac{1}{q^E} \quad \text{i.o.} \right\}$$

Results:

- ▶ Roth (1955): $\mu(x) = 2$ for every algebraic irrational *x*.
- ► Zeilberger–Zudilin (2020): $\mu(\pi) \leq 7.10320533...$

Restricting the denominators

Zaharescu (1995):

Fix $\varepsilon > 0$ and $x \in \mathbb{R} \setminus \mathbb{Q}$. Then

$$\left|x-rac{a}{q^2}
ight|\leqslantrac{1}{q^{8/3-2arepsilon}}=rac{1}{(q^2)^{4/3-arepsilon}}$$
 i.o.

Matomäki (2009):

Fix $\varepsilon > 0$ and $x \in \mathbb{R} \setminus \mathbb{Q}$. Then

$$\left|x-\frac{a}{p}\right|\leqslant \frac{1}{p^{4/3-\varepsilon}}$$
 i.o. with *p* prime.

Hard open problems:

Improve "4/3" to "3/2" in Zaharescu's theorem and "4/3" to "2" in Matomäki's theorem.

Metric Diophantine approximation

Diophantine approximation:

Approximate a fixed irrational number $x \rightarrow$ hard open problems

Metric Diophantine approximation:

- Prove results about almost all numbers.
- Exclusion of small pathological sets ~>> simple-to-state, general results

The basic set-up:

Given "permissible errors" $\Delta_1, \Delta_2, \ldots \geqslant 0,$ let

$$\mathcal{A} := \left\{ x \in [0,1] : \left| x - rac{a}{q} \right| < \Delta_q \quad ext{i.o.}
ight\}$$

Khinchin (1924):

Let
$$\mathcal{A} = ig\{ x \in [0,1] : ig| x - a/q ig| < \Delta_q \quad \text{i.o.} ig\}.$$

1. If
$$\sum q \Delta_q < \infty$$
, then $m(\mathcal{A}) = 0$.
2. If $\sum q \Delta_q = \infty$ and $q^2 \Delta_q \searrow$, then $m(\mathcal{A}) = 1$.

The Borel–Cantelli lemmas:

 E_1, E_2, \ldots events; *E* event that ∞ -many E_j occur.

1. If
$$\sum \mathbb{P}(E_j) < \infty$$
, then $\mathbb{P}(E) = 0$.

2. If
$$\sum \mathbb{P}(E_j) = \infty$$
 and the E_j 's are independent, then $\mathbb{P}(E) = 1$.

Proof of 1: consider the events $\mathcal{A}_q := \{x \in [0,1] : |x - a/q| < \Delta_q\}.$

Duffin-Schaeffer (1941):

Khinchin's theorem fails in full generality: $\exists \Delta_1, \Delta_2, \ldots \ge 0$ such that:

- 1. $\sum q\Delta_q = \infty;$
- $\textbf{2.} \ \mathsf{m}(\mathcal{A})=\textbf{0}.$

The Duffin–Schaeffer conjecture

Removing repetitions:

$$\mathcal{A}^* := \left\{ x \in [0,1] : \left| x - rac{a}{q}
ight| < \Delta_q \quad ext{i.o. with } \gcd(a,q) = 1
ight\}$$

The Duffin–Schaeffer conjecture (1941):

1. If
$$\sum \phi(q)\Delta_q < \infty$$
, then $m(\mathcal{A}^*) = 0$.

2. If
$$\sum \phi(q)\Delta_q = \infty$$
, then $m(\mathcal{A}^*) = 1$.

DSC proven by K.-Maynard in 2019.

Earlier results: Duffin–Schaeffer, Gallagher, Erdős, Vaaler, Pollington – Vaughan, Beresnevich – Velani, Aistleitner, Harman, Haynes, Lachman, Munsch, Technau, Zafeiropoulos, . . .

Consequences of the DSC

Application 1: Catlin's conjecture (1976): Let $\Delta'_q := \sup{\{\Delta_q, \Delta_{2q}, \dots\}}$. Then

$$\mathsf{m}(\mathcal{A}) = \mathsf{1} \quad \Longleftrightarrow \quad \sum \phi(q) \Delta'_q = \infty.$$

Application 2: Hausdorff dimensions

Assume $\sum \phi(q)\Delta_q < \infty$ so that $m(\mathcal{A}^*) = 0$. Using a mass-transference principle of Beresnevich–Velani (2006), we have

$$\dim(\mathcal{A}^*) = \inf \bigg\{ \boldsymbol{s} > \boldsymbol{0} : \sum \phi(\boldsymbol{q}) \Delta_{\boldsymbol{q}}^{\boldsymbol{s}} < \infty \bigg\}.$$

Same result for \mathcal{A} by replacing Δ_q with Δ'_q .

Aistleitner–Borda–Hauke (2023): quantitative DSC Assume that $\sum \phi(q)\Delta_q = \infty$. Given $x \in \mathbb{R}$ and $Q \ge 1$, let

$$N_{\mathcal{Q}}(x) = \ \#ig\{rac{a}{q} ext{ reduced}: q \leqslant \mathcal{Q}, \ ig|x-rac{a}{q}ig| < \Delta_qig\},$$

and note that

$$\int_0^1 N_Q(x) \mathrm{d}x = \sum_{q \leqslant Q} 2\phi(q) \Delta_q =: S_Q.$$

Let *C* be arbitrarily large but fixed. Then, for a.a. $x \in \mathbb{R}$, we have

$$N_Q(x) = S_Q + O_C ig(S_Q / (\log S_Q)^C ig)$$
 as $Q o \infty.$

Conjecture

Presumably the error term can be improved to $S_Q^{1/2+\varepsilon}$ for any fixed $\varepsilon > 0$.

Borel-Cantelli without independence

$$\mathcal{A}_q^* \coloneqq \left\{ x \in [0,1] : \exists a \in \mathbb{Z} ext{ co-prime to } q ext{ s.t. } \left| x - rac{a}{q}
ight| < \Delta_q
ight\}$$

Gallagher's ergodic theorem (1961): $m(\mathcal{A}^*) \in \{0, 1\}$.

Revised goal: prove $\mathbb{P}(\mathcal{A}_q^* \cap \mathcal{A}_r^*) \leq 10^{10^{10}} \cdot \mathbb{P}(\mathcal{A}_q^*) \cdot \mathbb{P}(\mathcal{A}_r^*)$ on average.

Erdős (1970), Vaaler (1978), Pollington–Vaughan (1990):

 $\frac{\mathbb{P}(\mathcal{A}_{q}^{*} \cap \mathcal{A}_{r}^{*})}{\mathbb{P}(\mathcal{A}_{q}^{*}) \cdot \mathbb{P}(\mathcal{A}_{r}^{*})} > 10^{10^{10}} \implies (1) \frac{qr}{\gcd(q, r)^{2}} \text{ has "too many" small prime factors}$ (2) $\gcd(q, r)$ is "large"

An important special case

$$S \subset [x, 2x] \cap \mathbb{Z} \quad \text{s.t.} \quad \sum_{q \in S} \frac{\phi(q)}{q} \asymp x^c \quad \text{``} \iff \text{''} \quad |S| \approx x^c$$
$$> \Delta_q = \frac{1}{q^{1+c}} \forall q \in S \quad \Longrightarrow \quad \sum_{q \in S} \phi(q) \Delta_q \asymp 1.$$

Goal: prove that $m(\bigcup_{q\in\mathcal{S}}\mathcal{A}_q^*)\gg 1$

Pollington–Vaughan: OK unless positive proportion of pairs (q, r) s.t.

(1) $qr/\gcd(q, r)^2$ has "too many" small prime factors (2) $\gcd(q, r) \ge x^{1-c}$

▶ c = 1 (Erdős–Vaaler): (2) trivial; use that (1) can't hold for too many pairs (q, r)

ightarrow c < 1: savings from (1) insufficient; must exploit structural condition (2)

The model problem

A guiding example

- Let $d = \lceil x^{1-c} \rceil$ and $S = \{ dm : \frac{x}{d} \leq m \leq \frac{2x}{d} \}.$
 - ► $\#S \sim \frac{x}{d} \sim x^c$
 - ▶ $gcd(q, r) \geqslant x^{1-c} \forall q, r \in S$

The model problem

- Let $S \subseteq [x, 2x]$ with #S = x/D
- ▶ Assume gcd(q, r) > D for $\ge 1\%$ of pairs $(q, r) \in S \times S$.
- ▶ Must there exist a single *d* > *D* diving 0.01% of elements of *S*?
- ▶ If YES, then re-calibrate and pass to $S' = \{m : dm \in S\}$:
 - ▶ $S' \subseteq [1, x/D]$ and $|S'| \ge 0.0001x/D$
 - S' dense, so condition (1) can now be exploited.

The graph of dependencies

 $G = \{(q, r) \in S \times S : gcd(q, r) > D\}$

An iterative compression algorithm

- ▶ $S \subseteq \{ \text{square-frees} \}, \qquad G_0 \coloneqq (S, S, E) \quad (\text{view as bipartite graph})$
- $\blacktriangleright \ G_0 \geqslant G_1 \geqslant \cdots \geqslant G_J = (\mathcal{S}', \mathcal{T}', \mathcal{E}') \text{ s.t.}$
 - \blacktriangleright at each step gain info about divisibility of vertices/edges w.r.t. a new prime p_i
 - while maintaining control of edge/vertex counts
- In the end, we have full divisibility info:
 - ▶ $\exists a \text{ dividing all of } S'$
 - ▶ $\exists b \text{ dividing all of } T'$
 - ▶ gcd(q, r) = gcd(a, b) > D for all $(q, r) \in \mathcal{E}'$
- ▶ In G_J , condition (1) can be exploited to control $|\mathcal{E}'|$
- ▶ Pigeonhole to find *G*_J. This uses a quality increment argument (inspired by Roth):

$$q(G_0) \leqslant q(G_1) \leqslant \cdots \leqslant q(G_J)$$

The inductive step

- ► Assume we have constructed $G_{j-1} = (V, W, E)$
- ▶ Consider a new prime $p = p_j$ and let $V_p = \{v \in V : p | v\}$ and $V_{\hat{p}} = V \setminus V_p$

Defining the quality of a graph

$$\frac{q(G_j)}{q(G_{j-1})} = \frac{|\mathcal{E}_j|}{|\mathcal{E}_{j-1}|} \cdot \left(\frac{\delta_j}{\delta_{j-1}}\right)^{10} \cdot \begin{cases} 1 & \text{in symmetric cases} \\ p & \text{in asymmetric cases} \end{cases}$$

Thank you for your attention