Metric Diophantine Approximation Lecture 1: Khinchin's theorem and its limitations

Dimitris Koukoulopoulos

Université de Montréal
Alpbach workshop 2024

Approximating reals by rationals

Fundamental Question

Given an irrational number x, find fractions a / q that approximate it "well".

- the error $|x-a / q|$ must be small
- q must be small (fractions of "low complexity")

Remark

In various application, we might need q to lie in a restricted set of denominators (e.g. primes, squares etc.)

Dirichlet's theorem

Dirichlet (c.1840):

$\forall x$ irrational, we have i.o.

$$
\left|x-\frac{a}{q}\right|<\frac{1}{q^{2}}
$$

Improving Dirichlet's theorem:

1. Can we replace $1 / q^{2}$ by something smaller?
2. Can we restrict q to lie in some special set of denominators?

Irrationality measure

Irrationality measure:

$\mu(x):=\sup \left\{E \geqslant 0: 0<\left|x-\frac{a}{q}\right| \leqslant \frac{1}{q^{E}}\right.$ i.o. $\}$

Results:

- Roth (1955): $\mu(x)=2$ for every algebraic irrational x.
- Zeilberger-Zudilin (2020): $\mu(\pi) \leqslant 7.10320533 \ldots$

Using special denominators

Zaharescu (1995):

$\operatorname{Fix} \varepsilon>0$ and $x \in \mathbb{R} \backslash \mathbb{Q}$. Then

$$
\left|x-\frac{a}{q^{2}}\right| \leqslant \frac{1}{q^{8 / 3-2 \varepsilon}}=\frac{1}{\left(q^{2}\right)^{4 / 3-\varepsilon}} \quad \text { i.o. }
$$

Matomäki (2009):

$\operatorname{Fix} \varepsilon>0$ and $x \in \mathbb{R} \backslash \mathbb{Q}$. Then

$$
\left|x-\frac{a}{p}\right| \leqslant \frac{1}{p^{4 / 3-\varepsilon}} \quad \text { i.o. with } p \text { prime. }
$$

Hard open problems:

Improve " $4 / 3$ " to " $3 / 2$ " in Zaharescu's theorem and " $4 / 3$ " to " 2 " in Matomäki's theorem.

Metric Diophantine approximation

Diophantine approximation:

Approximate a fixed irrational number x
\rightsquigarrow hard open problems

Metric Diophantine approximation:

- Prove results about almost all numbers.
- Exclusion of small pathological sets \rightsquigarrow simple-to-state, general results

The basic set-up:

Given "permissible errors" $\Delta_{1}, \Delta_{2}, \ldots \geqslant 0$, let

$$
\mathcal{A}:=\left\{x \in[0,1]:\left|x-\frac{a}{q}\right|<\Delta_{q} \quad \text { i.o. }\right\}
$$

Khinchin's theorem

Khinchin (1924):

Let $\mathcal{A}=\left\{x \in[0,1]:|x-a / q|<\Delta_{q} \quad\right.$ i.o. $\}$.

1. If $\sum q \Delta_{q}<\infty$, then $\mathrm{m}(\mathcal{A})=0$.
2. If $\sum q \Delta_{q}=\infty$ and $q^{2} \Delta_{q} \searrow$, then $\mathrm{m}(\mathcal{A})=1$.

The Borel-Cantelli lemmas:

E_{1}, E_{2}, \ldots events; E event that ∞-many E_{j} occur.

1. If $\sum \mathbb{P}\left(E_{j}\right)<\infty$, then $\mathbb{P}(E)=0$.
2. If $\sum \mathbb{P}\left(E_{j}\right)=\infty$ and the E_{j} 's are independent, then $\mathbb{P}(E)=1$.

Proof of 1: consider the events $\mathcal{A}_{q}:=\left\{x \in[0,1]:|x-a / q|<\Delta_{q}\right\}$.

Sketch of proof of Khinchin's theorem

Step 1: Cassels' $0-1$ law about $m(\mathcal{A})$

- Let $\psi: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be the multiplication by 2 , i.e. $\psi(\alpha)=2 \alpha(\bmod 1)$.
- This is an ergodic map; in particular, if $\psi(A) \subseteq A$, then $\mathrm{m}(A) \in\{0,1\}$.
$\triangleright \mathcal{A}=\lim \sup _{q \rightarrow \infty} \mathcal{A}_{q}=\left\{\alpha \in[0,1]: \exists \infty-\operatorname{many}(a, q)\right.$ s.t. $\left.|\alpha-a / q|<\Delta_{q}\right\}$.
- Corollary of Lebesgue's density theorem: for any $r>0$, we have $\mathrm{m}(r \mathcal{A} \triangle \mathcal{A})=0$ with

$$
r \mathcal{A}:=\left\{\alpha \in[0,1]: \exists \infty-\operatorname{many}(a, q) \text { s.t. }|\alpha-a / q|<r \Delta_{q}\right\} .
$$

- Consider $\tilde{\mathcal{A}}:=\bigcup_{j \in \mathbb{Z}} 2^{j} \mathcal{A}$, for which $\mathrm{m}(\tilde{\mathcal{A}})=\mathrm{m}(\mathcal{A})$ and $\psi(\tilde{\mathcal{A}}) \subseteq \tilde{\mathcal{A}}$.
- Conclusion: $\mathrm{m}(\mathcal{A}) \in\{0,1\}$.

Step 2: weakening the independence assumption in Borel-Cantelli

- Fix $R>Q$ and let $N(\alpha)=\#\left\{(a, q): q \in[Q, R],|\alpha-a / q|<\Delta_{q}\right\}$.
$-\operatorname{supp}(N)=\bigcup_{q \in[Q, R]} \mathcal{A}_{q}$
- $N=N \cdot \mathbb{1}_{N>0}$

Cauchy-Schwarz

$$
\mathrm{m}(\operatorname{supp}(N)) \geqslant \frac{\left(\int_{0}^{1} N(\alpha) \mathrm{d} \alpha\right)^{2}}{\int_{0}^{1} N(\alpha)^{2} \mathrm{~d} \alpha}
$$

- $\int_{0}^{1} N(\alpha) \mathrm{d} \alpha=\sum_{q \in[Q, R]} 2 q \Delta_{q}=\sum_{q \in[Q, R]} \mathrm{m}\left(\mathcal{A}_{q}\right)$.
$>\int_{0}^{1} N(\alpha)^{2} \mathrm{~d} \alpha=\sum_{q, r \in[Q, R]} \mathrm{m}\left(\mathcal{A}_{q} \cap \mathcal{A}_{r}\right) \stackrel{?}{\leqslant} 10^{10^{10}} \cdot\left(\sum_{q \in[Q, R]} \mathrm{m}\left(\mathcal{A}_{q}\right)\right)^{2}$

Sketch of proof of Khinchin's theorem

Step 3: controlling pairwise intersections

$-\mathcal{A}_{q}=[0,1] \cap \bigcup_{a=0}^{q}\left[\frac{a}{q}-\Delta_{q}, \frac{a}{q}+\Delta_{q}\right], \quad \mathcal{A}_{r}=[0,1] \cap \bigcup_{b=0}^{r}\left[\frac{b}{r}-\Delta_{r}, \frac{b}{r}+\Delta_{r}\right]$
$\triangleright \delta=\min \left\{\Delta_{q}, \Delta_{r}\right\} \quad \Delta=\max \left\{\Delta_{q}, \Delta_{r}\right\}$
$-\mathcal{A}_{q} \cap \mathcal{A}_{r} \approx[0,1] \cap(\bigcup_{\left|\frac{a}{q}-\frac{b}{r}\right|<2 \Delta}^{\bigcup} \underbrace{\text { Interval }(a / q, b / r)}_{\text {length } \leqslant 2 \delta})=\underbrace{\text { Diagonal }}_{\frac{a}{q}=\frac{b}{r}} \bigcup \underbrace{\text { Off-diagonal }}_{\frac{a}{q} \neq \frac{b}{r}}$

- Problem: the diagonal part could have Lebesgue measure that is too large and forces 2nd moment to explode!
- Fix: consider instead $\mathcal{A}_{q}^{*}=[0,1] \cap \bigcup_{\substack{0 \leqslant a \leqslant q \\ \operatorname{gcd}(a, q)=1}}\left[\frac{a}{q}-\Delta_{q}, \frac{a}{q}+\Delta_{q}\right]$.

Revised step 3: controlling pairwise intersections for reduced fractions

$$
\triangleright \mathcal{A}_{q}^{*}=[0,1] \cap \bigcup_{\substack{0 \leq a \leq q \\ \operatorname{gcd}(a, q)=1}}\left[\frac{a}{q}-\Delta_{q}, \frac{a}{q}+\Delta_{q}\right] ; \quad \mathcal{A}^{*}=\limsup _{q \rightarrow \infty} \mathcal{A}_{q}^{*}
$$

- New goal: show that $\mathrm{m}\left(\mathcal{A}^{*}\right)>0$ if $\sum_{q} q \Delta_{q}=\infty$ and $q \Delta_{q} \searrow$.
- Pollington-Vaughan: if $D(q, r):=\max \left\{\Delta_{q}, \Delta_{r}\right\} \cdot \operatorname{lcm}[q, r]$, then

$$
m\left(\mathcal{A}_{q}^{*} \cap \mathcal{A}_{r}^{*}\right) \ll \underbrace{m\left(\mathcal{A}_{q}^{*}\right) m\left(\mathcal{A}_{r}^{*}\right) \cdot \mathbb{1}_{D(q, r) \geqslant 1} \cdot \underbrace{\prod_{\substack{p|q r| \text { gcd }(q, r)^{2} \\ p>D(q, r)}}\left(1+\frac{1}{p}\right)}_{\text {loss of factor }<\frac{q}{\phi(q) \cdot \frac{r}{\phi(r)}}},}_{=\Delta_{q} \phi(q) \Delta r \phi(r)}
$$

- When $q \Delta_{q} \searrow$, it's easy to show that $\sum_{q} q \Delta_{q} \asymp \sum_{j} 4^{j} \Delta_{2 j} \asymp \sum_{q} \phi(q) \Delta_{q}$.

The Duffin-Schaeffer counterexample

Duffin-Schaeffer (1941):

Khinchin's theorem fails in full generality: $\exists \Delta_{1}, \Delta_{2}, \ldots \geqslant 0$ such that

$$
\sum q \Delta_{q}=\infty \quad \text { and yet } \quad \mathrm{m}(\mathcal{A})=0 .
$$

Strategy: Construct q_{1}, q_{2}, \ldots s.t. $\sum_{j} q_{j} \Delta_{q_{j}}<\infty$ but $\sum_{j} \sum_{q \mid q_{j}} q \Delta_{q_{j}}=\infty$.

The Duffin-Schaeffer conjecture

Removing repetitions:

$$
\mathcal{A}^{*}:=\left\{x \in[0,1]:\left|x-\frac{a}{q}\right|<\Delta_{q} \quad \text { i.o. with } \operatorname{gcd}(a, q)=1\right\}
$$

The Duffin-Schaeffer conjecture (1941):

1. If $\sum \phi(q) \Delta_{q}<\infty$, then $\mathrm{m}\left(\mathcal{A}^{*}\right)=0$.
2. If $\sum \phi(q) \Delta_{q}=\infty$, then $\mathrm{m}\left(\mathcal{A}^{*}\right)=1$.

- Duffin-Schaeffer (1941): DSC is true when $\limsup _{Q \rightarrow \infty} \frac{\sum_{q \leqslant Q} \Delta_{q} \phi(q)}{\sum_{q \leqslant Q} \Delta_{q} q}>0$.
- Gallagher (1961): There is a $0-1$ law, i.e. $m\left(\mathcal{A}^{*}\right) \in\{0,1\}$.
- Erdős (1970) \& Vaaler (1978): DSC is true when $\Delta_{q}=O\left(1 / q^{2}\right)$ for all q.
- Pollington-Vaughan (1990): DSC is true in all dimensions >1.
- Haynes-Pollington-Velani (2012), Beresnevich-Harman-Haynes-Velani (2013), Aistleitner, Harman, Haynes, Lachman, Munsch, Technau, Zafeiropoulos (2018), Aistleitner (2019): DSC is true "with extra divergence" (i.e. $\sum_{q} \Delta_{q} \phi(q) / L(q)=\infty$ with various functions $\left.L(q) \rightarrow \infty\right)$.
- K.-Maynard (2019): the Duffin-Schaeffer conjecture is true.

Catlin's conjecture (1976):

Let $\Delta_{q}^{\prime}:=\sup \left\{\Delta_{q}, \Delta_{2 q}, \ldots\right\}$. Then

$$
\mathrm{m}(\mathcal{A})=1 \quad \Longleftrightarrow \quad \sum \phi(q) \Delta_{q}^{\prime}=\infty
$$

Proof: If $\alpha \notin \mathbb{Q}$ and $\Delta_{q} \rightarrow 0$, then $\alpha \in \mathcal{A}$ if-f $\alpha \in \mathcal{A}^{\prime}:=\mathcal{A}^{*}\left(\Delta_{1}^{\prime}, \Delta_{2}^{\prime}, \ldots\right)$.

Hausdorff dimensions

Using a mass-transference principle of Beresnevich-Velani (2006), we have:

- If $\sum \phi(q) \Delta_{q}<\infty$ so that $\mathrm{m}\left(\mathcal{A}^{*}\right)=0$, then

$$
\operatorname{dim}\left(\mathcal{A}^{*}\right)=\inf \left\{s>0: \sum \phi(q) \Delta_{q}^{s}<\infty\right\}
$$

- If $\sum \phi(q) \Delta_{q}^{\prime}<\infty$ so that $\mathrm{m}(\mathcal{A})=0$, then

$$
\operatorname{dim}(\mathcal{A})=\inf \left\{s>0: \sum \phi(q)\left(\Delta_{q}^{\prime}\right)^{s}<\infty\right\}
$$

Proof strategy

How to prove that $\mathrm{m}\left(\mathcal{A}^{*}\right)$ when $\sum_{q} \phi(q) \Delta_{q}=\infty$:

- Gallagher's $0-1$ law: enough to show $m\left(\mathcal{A}^{*}\right)>0$
- Cauchy-Schwarz: enough to show $\mathrm{m}\left(\mathcal{A}_{q}^{*} \cap \mathcal{A}_{r}^{*}\right) \ll \mathrm{m}\left(\mathcal{A}_{q}^{*}\right) \mathrm{m}\left(\mathcal{A}_{r}^{*}\right)$ "on average".
- Pollington-Vaughan: enough to show
$\prod(1+1 / p) \ll 1$ "on average".

$$
\begin{aligned}
& p \mid q r / \operatorname{gcd}(q, r)^{2} \\
& p>D(q, r)
\end{aligned}
$$

- When $\mathcal{S}=\operatorname{supp}(\Delta)$ is "dense or regular enough", we may use facts about the "anatomy of integers" to prove this (theorems of Duffin-Schaeffer and Erdős-Vaaler).

Gallagher's $0-1$ law

- Assume for contradiction $0<\mathrm{m}\left(\mathcal{A}^{*}\right)<1$ and let p be a prime.
- The maps $\psi_{0}(\alpha)=p \alpha(\bmod 1)$ and $\psi_{1}(\alpha)=p \alpha+1 / p(\bmod 1)$ are ergodic.
- We have $\psi_{j}\left(r \mathcal{A}_{j}^{*}\right) \subseteq \operatorname{pr} \mathcal{A}_{j}^{*}$ for $j=0,1$, where

$$
r \mathcal{A}_{j}^{*}:=\left\{\alpha \in[0,1]:|\alpha-a / q|<r \Delta_{q} \text { i.o. with } \operatorname{gcd}(a, q)=1, p^{j} \| q\right\}
$$

- Thus $\mathrm{m}\left(\mathcal{A}_{j}^{*}\right) \in\{0,1\}$ for $j=0,1$, whence $\mathrm{m}\left(\mathcal{A}_{j}^{*}\right)=0$ for $j=0,1$.
- Conclusion: $\mathrm{m}\left(\mathcal{A}^{*}\right)=\mathrm{m}\left(\mathcal{A}_{\geqslant 2}^{*}\right)$, where

$$
\mathcal{A}_{\geqslant 2}^{*}:=\left\{\alpha \in[0,1]:|\alpha-a / q|<\Delta_{q} \text { i.o. with } \operatorname{gcd}(a, q)=1, p^{2} \mid q\right\}
$$

- But $\mathcal{A}_{\geqslant 2}^{*}$ is $\frac{1}{p}$-periodic, and p is arbitrary. Violates Lebesgue's density theorem.

The Erdős-Vaaler theorem

- For simplicity, let $\Delta_{q} \in\left\{0, \frac{1}{q^{2}}\right\}$. We must show $\mathrm{m}\left(\mathcal{A}^{*}\right)>0$ when

$$
\sum_{q} \phi(q) \Delta_{q}=\infty \quad \Longleftrightarrow \quad \sum_{q \in \mathcal{S}} \frac{\phi(q)}{q^{2}}=\infty \quad \text { with } \quad \mathcal{S}=\operatorname{supp}(\Delta)
$$

- To simplify further, assume $\exists \infty$-many $x \in \mathbb{N}$ s.t. $\sum_{q \in \mathcal{S} \cap[x, 2 x]} \frac{\phi(q)}{q} \asymp x$.
- Pollington-Vaughan: $\mathrm{m}\left(\mathcal{A}_{q}^{*} \cap \mathcal{A}_{r}^{*}\right) \ll \underbrace{\mathrm{m}\left(\mathcal{A}_{q}^{*}\right) \mathrm{m}\left(\mathcal{A}_{r}^{*}\right)}_{=\frac{\phi(q) \phi(r)}{q r}} \prod_{p \mid q r / \mathrm{gcd}(q, r)^{2}}(1+1 / p)$.
$\left.\Rightarrow \# n \leqslant x: \prod_{p \mid n}(1+1 / p)>A\right\} \ll x / e^{e^{A}}$

Potential counterexamples to DSC

Strategy to prove that $\mathrm{m}\left(\mathcal{A}^{*}\right)$ when $\sum_{q} \phi(q) \Delta_{q}=\infty$:

- Gallagher's $0-1$ law: enough to show $m\left(\mathcal{A}^{*}\right)>0$
- Cauchy-Schwarz: enough to show $\mathrm{m}\left(\mathcal{A}_{q}^{*} \cap \mathcal{A}_{r}^{*}\right) \ll \mathrm{m}\left(\mathcal{A}_{q}^{*}\right) \mathrm{m}\left(\mathcal{A}_{r}^{*}\right)$ "on average".
- Pollington-Vaughan: enough to show
$\prod(1+1 / p) \ll 1$ "on average".

$$
\begin{aligned}
& p \mid q r / \operatorname{gcd}(q, r)^{2} \\
& p>D(q, r)
\end{aligned}
$$

- When $\mathcal{S}=\operatorname{supp}(\Delta)$ is "dense or regular enough", we may use facts about the "anatomy of integers" to prove this.

Question

What if \mathcal{S} is supported on a sparse set of integers with lots of small prime factors?

Thank you for your attention

