Permutations contained in transitive groups

Dimitris Koukoulopoulos ${ }^{1}$
Joint work with Sean Eberhard ${ }^{2}$ and Kevin Ford ${ }^{3}$

${ }^{1}$ Université de Montréal
${ }^{2}$ University of Oxford
${ }^{3}$ University of Illinois at Urbana-Champaign
15th Panhellenic Conference of Mathematical Analysis, University of Crete, 28 May 2016

Basic set-up

$S_{n}=$ set of permutations of $\{1, \ldots, n\}$.
Motivation : understand the subgroup structure of S_{n}.

Basic set-up

$S_{n}=$ set of permutations of $\{1, \ldots, n\}$.
Motivation : understand the subgroup structure of S_{n}.
If $G \leq S_{n}$, then G acts on $[n]=\{1, \ldots, n\}$.

- G is called transitive if all orbits are the full set [n];
- G is called imprimitive if it permutes a non-trivial partition $\left(B_{1}, \ldots, B_{\nu}\right)$ of $[n]$;
- if G is transitive and imprimitive, then $\left|B_{i}\right|=\left|B_{j}\right|$ for all i, j.

Basic set-up

$S_{n}=$ set of permutations of $\{1, \ldots, n\}$.
Motivation : understand the subgroup structure of S_{n}.
If $G \leq S_{n}$, then G acts on $[n]=\{1, \ldots, n\}$.

- G is called transitive if all orbits are the full set [n];
- G is called imprimitive if it permutes a non-trivial partition $\left(B_{1}, \ldots, B_{\nu}\right)$ of $[n]$;
- if G is transitive and imprimitive, then $\left|B_{i}\right|=\left|B_{j}\right|$ for all i, j.

Question

If σ is chosen uniformly at random from S_{n}, what is the probability that it lies inside a transitive group $G \neq A_{n}, S_{n}$?

Basic set-up

$S_{n}=$ set of permutations of $\{1, \ldots, n\}$.
Motivation : understand the subgroup structure of S_{n}.
If $G \leq S_{n}$, then G acts on $[n]=\{1, \ldots, n\}$.

- G is called transitive if all orbits are the full set [n];
- G is called imprimitive if it permutes a non-trivial partition $\left(B_{1}, \ldots, B_{\nu}\right)$ of $[n]$;
- if G is transitive and imprimitive, then $\left|B_{i}\right|=\left|B_{j}\right|$ for all i, j.

Question

If σ is chosen uniformly at random from S_{n}, what is the probability that it lies inside a transitive group $G \neq A_{n}, S_{n}$?

Question (special case)

If σ is chosen uniformly at random from $S_{2 n}$, what is the probability that it has a fixed subset of size n ?

Basic set-up

$S_{n}=$ set of permutations of $\{1, \ldots, n\}$.
Motivation : understand the subgroup structure of S_{n}.
If $G \leq S_{n}$, then G acts on $[n]=\{1, \ldots, n\}$.

- G is called transitive if all orbits are the full set [n];
- G is called imprimitive if it permutes a non-trivial partition $\left(B_{1}, \ldots, B_{\nu}\right)$ of $[n]$;
- if G is transitive and imprimitive, then $\left|B_{i}\right|=\left|B_{j}\right|$ for all i, j.

Question

If σ is chosen uniformly at random from S_{n}, what is the probability that it lies inside a transitive group $G \neq A_{n}, S_{n}$?

Question (special case)

If σ is chosen uniformly at random from $S_{2 n}$, what is the probability that it has a fixed subset of size n ?

Luczak-Pyber (1993): probability is $O\left(n^{-c}\right)$ for both questions.

Imprimitive transitive subgroups

- G is imprimitive transitive if-f it permutes a partition $\left(B_{1}, \ldots, B_{\nu}\right)$ of [n] into blocks of equal size n / ν. Here, $1<\nu<n$ and $\nu \mid n$.

Imprimitive transitive subgroups

- G is imprimitive transitive if-f it permutes a partition $\left(B_{1}, \ldots, B_{\nu}\right)$ of [n] into blocks of equal size n / ν. Here, $1<\nu<n$ and $\nu \mid n$.
- If $\sigma \in S_{n}$ permutes a partition $\left(B_{1}, \ldots, B_{\nu}\right)$ as above, then let $\tilde{\sigma} \in S_{\nu}$ be the induced permutation of the blocks B_{1}, \ldots, B_{ν}, and write $\left(d_{1}, \ldots, d_{\nu}\right)$ for the cycle lengths of $\tilde{\sigma}$.

Imprimitive transitive subgroups

- G is imprimitive transitive if-f it permutes a partition $\left(B_{1}, \ldots, B_{\nu}\right)$ of [n] into blocks of equal size n / ν. Here, $1<\nu<n$ and $\nu \mid n$.
- If $\sigma \in S_{n}$ permutes a partition $\left(B_{1}, \ldots, B_{\nu}\right)$ as above, then let $\tilde{\sigma} \in S_{\nu}$ be the induced permutation of the blocks B_{1}, \ldots, B_{ν}, and write $\left(d_{1}, \ldots, d_{\nu}\right)$ for the cycle lengths of $\tilde{\sigma}$.
- Then σ fixes each set of a partition $\left(C_{1}, \ldots, C_{r}\right)$ of $[n]$ with $\left|C_{i}\right|=d_{i} n / \nu$ and all cycles lengths of $\left.\sigma\right|_{c_{i}}$ divisible by d_{i}.

Permutations with fixed subsets of a given size

$$
i(n, k):=\mathbb{P}_{\sigma \in S_{n}}(\sigma \text { fixes some set of size } k) .
$$

Permutations with fixed subsets of a given size

$$
i(n, k):=\mathbb{P}_{\sigma \in S_{n}}(\sigma \text { fixes some set of size } k) .
$$

$$
\sigma=\pi_{1} \cdots \pi_{r} \text { cycle decomposition, } c_{j}(\sigma)=\#\left\{i:\left|\pi_{i}\right|=j\right\}
$$

Permutations with fixed subsets of a given size

$$
i(n, k):=\mathbb{P}_{\sigma \in S_{n}}(\sigma \text { fixes some set of size } k)
$$

$\sigma=\pi_{1} \cdots \pi_{r}$ cycle decomposition, $c_{j}(\sigma)=\#\left\{i:\left|\pi_{i}\right|=j\right\}$

$$
\begin{aligned}
\mathcal{L}(\sigma):=\{\text { lengths of fixed sets of } \sigma\} & =\left\{\sum_{i \in I}\left|\pi_{i}\right|: I \subset[r]\right\} \\
& =\left\{\sum_{j=1}^{n} j b_{j}: 0 \leq b_{j} \leq c_{j}(\sigma) \forall j\right\}
\end{aligned}
$$

Permutations with fixed subsets of a given size

$$
i(n, k):=\mathbb{P}_{\sigma \in S_{n}}(\sigma \text { fixes some set of size } k)
$$

$\sigma=\pi_{1} \cdots \pi_{r}$ cycle decomposition, $c_{j}(\sigma)=\#\left\{i:\left|\pi_{i}\right|=j\right\}$

$$
\begin{aligned}
\mathcal{L}(\sigma):=\{\text { lengths of fixed sets of } \sigma\} & =\left\{\sum_{i \in I}\left|\pi_{i}\right|: I \subset[r]\right\} \\
& =\left\{\sum_{j=1}^{n} j b_{j}: 0 \leq b_{j} \leq c_{j}(\sigma) \forall j\right\}
\end{aligned}
$$

$$
\mathbb{P}_{\sigma \in S_{n}}\left(c_{j}(\sigma)=m_{j}(1 \leq j \leq J)\right) \sim \prod_{j=1}^{J} \frac{e^{-1 / j}}{j m_{j} m_{j}!}
$$

i.e. the functions $c_{j}(\sigma), j \leq J$, are approximately independent and Poisson of parameters $1 / j, j \leq J$.

Random integers vs. random permutations
$\omega(n ; y, z):=\#\{p \mid n: y<p \leq z\}, y_{0}=e<y_{1}<y_{2}<\cdots<y_{J} \leq x$

Random integers vs. random permutations

$$
\begin{aligned}
& \omega(n ; y, z):=\#\{p \mid n: y<p \leq z\}, y_{0}=e<y_{1}<y_{2}<\cdots<y_{J} \leq x \\
& \frac{\#\left\{n \leq x: \omega\left(n ; y_{j-1}, y_{j}\right)=m_{j}(j \leq J)\right\}}{x} \approx \prod_{j=1}^{J} \frac{\log y_{j-1}}{\log y_{j}} \frac{\left(\log \frac{\log y_{j}}{\log y_{j-1}}\right)^{m_{j-1}}}{\left(m_{j}-1\right)!}
\end{aligned}
$$

Random integers vs. random permutations

$$
\begin{aligned}
& \omega(n ; y, z):=\#\{p \mid n: y<p \leq z\}, y_{0}=e<y_{1}<y_{2}<\cdots<y_{J} \leq x \\
& \frac{\#\left\{n \leq x: \omega\left(n ; y_{j-1}, y_{j}\right)=m_{j}(j \leq J)\right\}}{x} \approx \prod_{j=1}^{J} \frac{\log y_{j-1}}{\log y_{j}} \frac{\left(\log \frac{\log y_{j}}{\log y_{j-1}}\right)^{m_{j-1}}}{\left(m_{j}-1\right)!}
\end{aligned}
$$

Also, if $n=p_{1} \cdots p_{r}$ square-free and $\omega_{j}(n):=\omega\left(n ; e^{j-1}, e^{j}\right)$, then

$$
\{\log d: d \mid n\}=\left\{\sum_{i \in I} \log p_{i}: I \subset[r]\right\}^{\prime}='\left\{\sum_{j} j \omega_{j}(n)\right\}
$$

Random integers vs. random permutations

$$
\omega(n ; y, z):=\#\{p \mid n: y<p \leq z\}, y_{0}=e<y_{1}<y_{2}<\cdots<y_{J} \leq x
$$

$$
\frac{\#\left\{n \leq x: \omega\left(n ; y_{j-1}, y_{j}\right)=m_{j}(j \leq J)\right\}}{x} \approx \prod_{j=1}^{J} \frac{\log y_{j-1}}{\log y_{j}} \frac{\left(\log \frac{\log y_{j}}{\log y_{j-1}}\right)^{m_{j}-1}}{\left(m_{j}-1\right)!}
$$

Also, if $n=p_{1} \cdots p_{r}$ square-free and $\omega_{j}(n):=\omega\left(n ; e^{j-1}, e^{j}\right)$, then

$$
\{\log d: d \mid n\}=\left\{\sum_{i \in I} \log p_{i}: I \subset[r]\right\}^{\prime}='\left\{\sum_{j} j \omega_{j}(n)\right\}
$$

Theorem (Ford (2008, $m=2$) and K. (2010, $m \geq 3$))

Fix $m \geq 2$. For $z_{m} \geq \cdots \geq z_{1} \geq 2$ and $z_{m-1} \leq z_{1}^{O(1)}$,

$$
\frac{\#\left\{n=d_{1} \cdots d_{m}: z_{i}<d_{i} \leq 2 z_{i} \forall i\right\}}{z_{1} \cdots z_{m}} \asymp \frac{1}{\left(\log z_{1}\right)^{\delta_{m}\left(\log \log z_{1}\right)^{3 / 2}}}
$$

with $\delta_{m}=\lambda_{m} \log \lambda_{m}-\lambda_{m}+1, \lambda_{m}=(m-1) / \log m$.

Transference to the permutation setting

Theorem (Eberhard, Ford, Green (2015))
 $i(n, k)=\mathbb{P}_{\sigma \in S_{n}}(\sigma$ fixes some set of size $k) \asymp \frac{k^{-\delta_{1}}}{(\log k)^{3 / 2}}(2 \leq k \leq n / 2)$.

Heuristics : take n even, $k=n / 2$.

Transference to the permutation setting

Theorem (Eberhard, Ford, Green (2015))

$i(n, k)=\mathbb{P}_{\sigma \in S_{n}}(\sigma$ fixes some set of size $k) \asymp \frac{k^{-\delta_{1}}}{(\log k)^{3 / 2}}(2 \leq k \leq n / 2)$.
Heuristics : take n even, $k=n / 2$.

- $\sigma=\pi_{1} \cdots \pi_{r} ; \quad \#\left\{I \subset[r]: \sum_{i \in I}\left|\pi_{i}\right|=k\right\} \approx 2^{r} / n$;

Transference to the permutation setting

Theorem (Eberhard, Ford, Green (2015))

$i(n, k)=\mathbb{P}_{\sigma \in S_{n}}(\sigma$ fixes some set of size $k) \asymp \frac{k^{-\delta_{1}}}{(\log k)^{3 / 2}}(2 \leq k \leq n / 2)$.
Heuristics : take n even, $k=n / 2$.

- $\sigma=\pi_{1} \cdots \pi_{r} ; \quad \#\left\{I \subset[r]: \sum_{i \in I}\left|\pi_{i}\right|=k\right\} \approx 2^{r} / n$;
- need $2^{r} / n>1 \Leftrightarrow r>\log n / \log 2$;

Transference to the permutation setting

Theorem (Eberhard, Ford, Green (2015))

$i(n, k)=\mathbb{P}_{\sigma \in S_{n}}(\sigma$ fixes some set of size $k) \asymp \frac{k^{-\delta_{1}}}{(\log k)^{3 / 2}}(2 \leq k \leq n / 2)$.
Heuristics : take n even, $k=n / 2$.

- $\sigma=\pi_{1} \cdots \pi_{r} ; \quad \#\left\{I \subset[r]: \sum_{i \in I}\left|\pi_{i}\right|=k\right\} \approx 2^{r} / n$;
- need $2^{r} / n>1 \Leftrightarrow r>\log n / \log 2$;
- r Poisson of mean $\sum_{j \leq n} 1 / j \sim \log n$. So $i(n, k) \approx n^{-\delta_{1}} / \sqrt{\log n}$.

Transference to the permutation setting

Theorem (Eberhard, Ford, Green (2015))

$i(n, k)=\mathbb{P}_{\sigma \in S_{n}}(\sigma$ fixes some set of size $k) \asymp \frac{k^{-\delta_{1}}}{(\log k)^{3 / 2}}(2 \leq k \leq n / 2)$.
Heuristics : take n even, $k=n / 2$.

- $\sigma=\pi_{1} \cdots \pi_{r} ; \quad \#\left\{I \subset[r]: \sum_{i \in I}\left|\pi_{i}\right|=k\right\} \approx 2^{r} / n$;
- need $2^{r} / n>1 \Leftrightarrow r>\log n / \log 2$;
- r Poisson of mean $\sum_{j \leq n} 1 / j \sim \log n$. So $i(n, k) \approx n^{-\delta_{1}} / \sqrt{\log n}$.

Correction: $c_{j}(\sigma)=\#\left\{i:\left|\pi_{i}\right|=j\right\}$ Poisson of parameter $1 / j$.

- conditioning to have $r=\log n+O(1)$ cycles,

$$
\mathbb{E}\left[\sum_{j \leq e^{u}} c_{j}(\sigma)\right]=r \frac{\sum_{j \leq e^{u}} \sum_{j \leq n}^{1 / j}}{1 / j} \sim u / \log 2 .
$$

Transference to the permutation setting

Theorem (Eberhard, Ford, Green (2015))

$i(n, k)=\mathbb{P}_{\sigma \in S_{n}}(\sigma$ fixes some set of size $k) \asymp \frac{k^{-\delta_{1}}}{(\log k)^{3 / 2}}(2 \leq k \leq n / 2)$.
Heuristics : take n even, $k=n / 2$.

- $\sigma=\pi_{1} \cdots \pi_{r} ; \quad \#\left\{I \subset[r]: \sum_{i \in I}\left|\pi_{i}\right|=k\right\} \approx 2^{r} / n$;
- need $2^{r} / n>1 \Leftrightarrow r>\log n / \log 2$;
- r Poisson of mean $\sum_{j \leq n} 1 / j \sim \log n$. So $i(n, k) \approx n^{-\delta_{1}} / \sqrt{\log n}$.

Correction: $c_{j}(\sigma)=\#\left\{i:\left|\pi_{i}\right|=j\right\}$ Poisson of parameter $1 / j$.

- conditioning to have $r=\log n+O(1)$ cycles, $\mathbb{E}\left[\sum_{j \leq e^{u}} c_{j}(\sigma)\right]=r \frac{\sum_{j \leq e^{u}} 1 / j}{\sum_{j \leq n^{1 / j}} 1 / j} \sim u / \log 2$.
- Ford: actually, we must have that $\sum_{j \leq e^{u}} c_{j}(\sigma) \leq u / \log 2+O(1)$. Leads to a random walk with a barrier. Odds are $\approx 1 / \log n$.

Results for transitive subgroups

- $I(n, \nu):=$ proportion of σ fixing a partition of $[n]$ into ν equal blocks.
- $i(n, \boldsymbol{k}, \boldsymbol{d})$:= proportion of σ fixing each set of a partition $\left(C_{1}, \ldots, C_{r}\right)$ of $[n]$, with $\left|C_{i}\right|=k_{i}$ and $\left.\sigma\right|_{C_{i}}$ consisting of d_{i}-divisible cycles.

Results for transitive subgroups

- $I(n, \nu):=$ proportion of σ fixing a partition of $[n]$ into ν equal blocks.
- $i(n, \boldsymbol{k}, \boldsymbol{d})$:= proportion of σ fixing each set of a partition $\left(C_{1}, \ldots, C_{r}\right)$ of $[n]$, with $\left|C_{i}\right|=k_{i}$ and $\left.\sigma\right|_{C_{i}}$ consisting of d_{i}-divisible cycles.
An easy reduction: $I(n, \nu) \asymp_{\nu} i(n,(\underbrace{n / \nu, \ldots, n / \nu}_{\nu-d \text { times }}, d n / \nu),(\underbrace{1, \ldots, 1}_{\nu-d \text { times }}, d))$
for some d. Moreover, $d=1$ if $\nu \leq 4$, and $d=\nu-1$ if $\nu \geq 5$.

Results for transitive subgroups

- $I(n, \nu):=$ proportion of σ fixing a partition of $[n]$ into ν equal blocks.
- $i(n, \boldsymbol{k}, \boldsymbol{d})$:= proportion of σ fixing each set of a partition $\left(C_{1}, \ldots, C_{r}\right)$ of $[n]$, with $\left|C_{i}\right|=k_{i}$ and $\left.\sigma\right|_{C_{i}}$ consisting of d_{i}-divisible cycles.
An easy reduction: $I(n, \nu) \asymp_{\nu} i(n,(\underbrace{n / \nu, \ldots, n / \nu}_{\nu-d \text { times }}, d n / \nu),(\underbrace{1, \ldots, 1}_{\nu-d \text { times }}, d))$ for some d. Moreover, $d=1$ if $\nu \leq 4$, and $d=\nu-1$ if $\nu \geq 5$.

Theorem (Eberhard, Ford, K. (2016))

Let $\nu \mid n, 1<\nu<n$. Then

$$
I(n, \nu) \asymp \begin{cases}n^{-\delta_{\nu}}(\log n)^{-3 / 2} & \text { if } 2 \leq \nu \leq 4 \\ n^{-1+1 /(\nu-1)} & \text { if } 5 \leq \nu \leq \log n \\ n^{-1} & \text { if } \log n \leq \nu \leq n / \log n \\ n^{-1+\nu / n} & \text { if } n / \log n \leq \nu<n .\end{cases}
$$

Results for transitive subgroups, ctd.

- $T(n):=$ proportion of σ in some transitive $G \leq S_{n}, G \neq A_{n}, S_{n}$;
- $P(n)$ as above, with G primitive transitive.

Results for transitive subgroups, ctd.

- $T(n):=$ proportion of σ in some transitive $G \leq S_{n}, G \neq A_{n}, S_{n}$;
- $P(n)$ as above, with G primitive transitive.

Theorem (Eberhard, Ford, K. (2016))

$P(n) \leq n^{-1+o(1)}$
(This improves on previous work of Bovey and
Diaconis-Fulman-Guralnik, who had $P(n) \leq n^{-2 / 3+o(1)}$.)

Results for transitive subgroups, ctd.

- $T(n):=$ proportion of σ in some transitive $G \leq S_{n}, G \neq A_{n}, S_{n}$;
- $P(n)$ as above, with G primitive transitive.

Theorem (Eberhard, Ford, K. (2016))

$P(n) \leq n^{-1+o(1)}$
(This improves on previous work of Bovey and
Diaconis-Fulman-Guralnik, who had $P(n) \leq n^{-2 / 3+o(1)}$.)

Theorem (Eberhard, Ford, K. (2016))

If p is the smallest prime factor of n, then

$$
T(n) \asymp \begin{cases}n^{-\delta_{2}}(\log n)^{-3 / 2} & \text { if } p=2 \\ n^{-\delta_{3}}(\log n)^{-3 / 2} & \text { if } p=3 \\ n^{-1+1 /(p-1)} & \text { if } 5 \leq p \ll 1 \\ n^{-1+o(1)} & \text { if } p \rightarrow \infty\end{cases}
$$

Thank you!

