Permutations contained in transitive groups

Dimitris Koukoulopoulos¹

Joint work with Sean Eberhard² and Kevin Ford³

¹Université de Montréal ² University of Oxford ³ University of Illinois at Urbana-Champaign

15th Panhellenic Conference of Mathematical Analysis, University of Crete, 28 May 2016

 S_n = set of permutations of $\{1, \ldots, n\}$.

Motivation : understand the subgroup structure of S_n .

 S_n = set of permutations of $\{1, \ldots, n\}$.

Motivation : understand the subgroup structure of S_n .

If $G \leq S_n$, then G acts on $[n] = \{1, \ldots, n\}$.

- *G* is called transitive if all orbits are the full set [*n*];
- G is called imprimitive if it permutes a non-trivial partition (B₁,..., B_ν) of [n];
- if *G* is transitive and imprimitive, then $|B_i| = |B_j|$ for all *i*, *j*.

 S_n = set of permutations of $\{1, \ldots, n\}$.

Motivation : understand the subgroup structure of S_n .

If $G \leq S_n$, then G acts on $[n] = \{1, \ldots, n\}$.

- *G* is called transitive if all orbits are the full set [*n*];
- G is called imprimitive if it permutes a non-trivial partition (B₁,..., B_ν) of [n];
- if *G* is transitive and imprimitive, then $|B_i| = |B_j|$ for all *i*, *j*.

Question

If σ is chosen uniformly at random from S_n , what is the probability that it lies inside a transitive group $G \neq A_n, S_n$?

 S_n = set of permutations of $\{1, \ldots, n\}$.

Motivation : understand the subgroup structure of S_n .

If $G \leq S_n$, then G acts on $[n] = \{1, \ldots, n\}$.

- *G* is called transitive if all orbits are the full set [*n*];
- G is called imprimitive if it permutes a non-trivial partition (B₁,..., B_ν) of [n];
- if *G* is transitive and imprimitive, then $|B_i| = |B_j|$ for all *i*, *j*.

Question

If σ is chosen uniformly at random from S_n , what is the probability that it lies inside a transitive group $G \neq A_n, S_n$?

Question (special case)

If σ is chosen uniformly at random from S_{2n} , what is the probability that it has a fixed subset of size n?

 S_n = set of permutations of $\{1, \ldots, n\}$.

Motivation : understand the subgroup structure of S_n .

If $G \leq S_n$, then G acts on $[n] = \{1, \ldots, n\}$.

- *G* is called transitive if all orbits are the full set [*n*];
- G is called imprimitive if it permutes a non-trivial partition (B₁,..., B_ν) of [n];
- if *G* is transitive and imprimitive, then $|B_i| = |B_j|$ for all *i*, *j*.

Question

If σ is chosen uniformly at random from S_n , what is the probability that it lies inside a transitive group $G \neq A_n, S_n$?

Question (special case)

If σ is chosen uniformly at random from S_{2n} , what is the probability that it has a fixed subset of size n?

Luczak-Pyber (1993): probability is $O(n^{-c})$ for both questions.

Imprimitive transitive subgroups

G is imprimitive transitive if-f it permutes a partition (*B*₁,..., *B*_ν) of [*n*] into blocks of equal size *n*/ν. Here, 1 < ν < *n* and ν|*n*.

Imprimitive transitive subgroups

- G is imprimitive transitive if-f it permutes a partition (B₁,..., B_ν) of [n] into blocks of equal size n/ν. Here, 1 < ν < n and ν|n.
- If *σ* ∈ *S_n* permutes a partition (*B*₁,..., *B_ν*) as above, then let *σ̃* ∈ *S_ν* be the induced permutation of the blocks *B*₁,..., *B_ν*, and write (*d*₁,..., *d_ν*) for the cycle lengths of *σ̃*.

Imprimitive transitive subgroups

- *G* is imprimitive transitive if-f it permutes a partition (*B*₁,..., *B*_ν) of [*n*] into blocks of equal size *n*/ν. Here, 1 < ν < *n* and ν|*n*.
- If *σ* ∈ *S_n* permutes a partition (*B*₁,..., *B_ν*) as above, then let *σ̃* ∈ *S_ν* be the induced permutation of the blocks *B*₁,..., *B_ν*, and write (*d*₁,..., *d_ν*) for the cycle lengths of *σ̃*.
- Then σ fixes each set of a partition (C_1, \ldots, C_r) of [n] with $|C_i| = d_i n/\nu$ and all cycles lengths of $\sigma|_{C_i}$ divisible by d_i .

 $i(n, k) := \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k).$

 $i(n, k) := \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k).$

 $\sigma = \pi_1 \cdots \pi_r$ cycle decomposition, $c_j(\sigma) = \#\{i : |\pi_i| = j\}$

$$i(n,k) := \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k).$$

$$\sigma = \pi_1 \cdots \pi_r \text{ cycle decomposition, } c_j(\sigma) = \#\{i : |\pi_i| = j\}$$

$$\mathcal{L}(\sigma) := \{\text{lengths of fixed sets of } \sigma\} = \left\{\sum_{i \in I} |\pi_i| : I \subset [r]\right\}$$

 $=\left\{\sum_{j=1}jb_j: 0\leq b_j\leq c_j(\sigma) \;\forall j\right\}.$

$$i(n,k) := \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k).$$

$$\sigma = \pi_1 \cdots \pi_r \text{ cycle decomposition, } c_j(\sigma) = \#\{i : |\pi_i| = j\}$$

$$\mathcal{L}(\sigma) := \{\text{lengths of fixed sets of } \sigma\} = \left\{\sum_{i \in I} |\pi_i| : I \subset [r]\right\}$$

$$= \left\{\sum_{j=1}^n jb_j : 0 \le b_j \le c_j(\sigma) \ \forall j\right\}$$

$$\mathbb{P}_{\sigma\in\mathcal{S}_n}(c_j(\sigma)=m_j\ (1\leq j\leq J))\sim\prod_{j=1}^Jrac{e^{-1/j}}{j^{m_j}m_j!}.$$

i.e. the functions $c_j(\sigma)$, $j \leq J$, are approximately independent and Poisson of parameters 1/j, $j \leq J$.

Random integers vs. random permutations $\omega(n; y, z) := \#\{p|n : y$

Random integers vs. random permutations $\omega(n; y, z) := \#\{p|n : y <math display="block">\frac{\#\{n \le x : \omega(n; y_{j-1}, y_j) = m_j (j \le J)\}}{x} \approx \prod_{j=1}^J \frac{\log y_{j-1}}{\log y_j} \frac{(\log \frac{\log y_j}{\log y_{j-1}})^{m_j - 1}}{(m_j - 1)!}$

Random integers vs. random permutations $\omega(n; y, z) := \#\{p|n : y <math display="block">\frac{\#\{n \le x : \omega(n; y_{j-1}, y_j) = m_j \ (j \le J)\}}{x} \approx \prod_{j=1}^J \frac{\log y_{j-1}}{\log y_j} \frac{(\log \frac{\log y_j}{\log y_{j-1}})^{m_j - 1}}{(m_j - 1)!}$

Also, if $n = p_1 \cdots p_r$ square-free and $\omega_j(n) := \omega(n; e^{j-1}, e^j)$, then

$$\{\log d: d|n\} = \left\{\sum_{i \in I} \log p_i : I \subset [r]\right\} = \left\{\sum_j j\omega_j(n)\right\}$$

Random integers vs. random permutations $\omega(n; y, z) := \#\{p|n : y <math display="block">\frac{\#\{n \le x : \omega(n; y_{j-1}, y_j) = m_j (j \le J)\}}{x} \approx \prod_{j=1}^J \frac{\log y_{j-1}}{\log y_j} \frac{(\log \frac{\log y_j}{\log y_{j-1}})^{m_j - 1}}{(m_j - 1)!}$

Also, if $n = p_1 \cdots p_r$ square-free and $\omega_j(n) := \omega(n; e^{j-1}, e^j)$, then

$$\{\log d: d|n\} = \left\{\sum_{i\in I} \log p_i: I \subset [r]\right\} = \left\{\sum_j j\omega_j(n)\right\}$$

Theorem (Ford (2008, m = 2) and K. (2010, $m \ge 3$))

Fix $m \ge 2$. For $z_m \ge \cdots \ge z_1 \ge 2$ and $z_{m-1} \le z_1^{O(1)}$,

$$\frac{\#\{n = d_1 \cdots d_m : z_i < d_i \le 2z_i \forall i\}}{z_1 \cdots z_m} \asymp \frac{1}{(\log z_1)^{\delta_m} (\log \log z_1)^{3/2}}$$

with $\delta_m = \lambda_m \log \lambda_m - \lambda_m + 1$, $\lambda_m = (m - 1) / \log m$.

Theorem (Eberhard, Ford, Green (2015))

 $i(n,k) = \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k) \asymp \frac{k^{-\delta_1}}{(\log k)^{3/2}} \ (2 \le k \le n/2).$

Heuristics : take *n* even, k = n/2.

Theorem (Eberhard, Ford, Green (2015))

 $i(n,k) = \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k) \asymp \frac{k^{-\delta_1}}{(\log k)^{3/2}} \ (2 \le k \le n/2).$

Heuristics : take *n* even, k = n/2.

• $\sigma = \pi_1 \cdots \pi_r$; $\#\{I \subset [r] : \sum_{i \in I} |\pi_i| = k\} \approx 2^r/n;$

Theorem (Eberhard, Ford, Green (2015))

 $i(n,k) = \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k) \asymp \frac{k^{-\delta_1}}{(\log k)^{3/2}} \ (2 \le k \le n/2).$

Heuristics : take *n* even, k = n/2.

•
$$\sigma = \pi_1 \cdots \pi_r$$
; $\#\{I \subset [r] : \sum_{i \in I} |\pi_i| = k\} \approx 2^r / n;$

• need $2^r/n > 1 \Leftrightarrow r > \log n/\log 2;$

Theorem (Eberhard, Ford, Green (2015))

 $i(n,k) = \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k) \asymp \frac{k^{-\delta_1}}{(\log k)^{3/2}} \ (2 \le k \le n/2).$

Heuristics : take *n* even, k = n/2.

- $\sigma = \pi_1 \cdots \pi_r$; $\#\{I \subset [r] : \sum_{i \in I} |\pi_i| = k\} \approx 2^r/n;$
- need $2^r/n > 1 \Leftrightarrow r > \log n/\log 2$;
- *r* Poisson of mean $\sum_{j \le n} 1/j \sim \log n$. So $i(n, k) \approx n^{-\delta_1}/\sqrt{\log n}$.

Theorem (Eberhard, Ford, Green (2015))

 $i(n,k) = \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k) \asymp \frac{k^{-\delta_1}}{(\log k)^{3/2}} \ (2 \le k \le n/2).$

Heuristics : take *n* even, k = n/2.

- $\sigma = \pi_1 \cdots \pi_r$; $\#\{I \subset [r] : \sum_{i \in I} |\pi_i| = k\} \approx 2^r/n;$
- need $2^r/n > 1 \Leftrightarrow r > \log n/\log 2;$
- *r* Poisson of mean $\sum_{j \le n} 1/j \sim \log n$. So $i(n, k) \approx n^{-\delta_1}/\sqrt{\log n}$.

Correction: $c_j(\sigma) = \#\{i : |\pi_i| = j\}$ Poisson of parameter 1/j.

• conditioning to have $r = \log n + O(1)$ cycles, $\mathbb{E}[\sum_{j \le e^u} c_j(\sigma)] = r \frac{\sum_{j \le e^u} 1/j}{\sum_{j \le n} 1/j} \sim u/\log 2.$

Theorem (Eberhard, Ford, Green (2015))

 $i(n,k) = \mathbb{P}_{\sigma \in S_n}(\sigma \text{ fixes some set of size } k) \asymp \frac{k^{-\delta_1}}{(\log k)^{3/2}} \ (2 \le k \le n/2).$

Heuristics : take *n* even, k = n/2.

- $\sigma = \pi_1 \cdots \pi_r$; $\#\{I \subset [r] : \sum_{i \in I} |\pi_i| = k\} \approx 2^r/n;$
- need $2^r/n > 1 \Leftrightarrow r > \log n/\log 2$;
- *r* Poisson of mean $\sum_{j \le n} 1/j \sim \log n$. So $i(n, k) \approx n^{-\delta_1}/\sqrt{\log n}$.

Correction: $c_j(\sigma) = \#\{i : |\pi_i| = j\}$ Poisson of parameter 1/j.

- conditioning to have $r = \log n + O(1)$ cycles, $\mathbb{E}[\sum_{j \le e^u} c_j(\sigma)] = r \frac{\sum_{j \le e^u} 1/j}{\sum_{j \le n} 1/j} \sim u/\log 2.$
- Ford: actually, we must have that $\sum_{j \le e^u} c_j(\sigma) \le u/\log 2 + O(1)$. Leads to a random walk with a barrier. Odds are $\approx 1/\log n$.

Results for transitive subgroups

- $I(n, \nu)$:= proportion of σ fixing a partition of [n] into ν equal blocks.
- *i*(*n*, *k*, *d*):= proportion of *σ* fixing each set of a partition
 (*C*₁,..., *C*_r) of [*n*], with |*C*_i| = *k*_i and *σ*|_{*C*_i} consisting of *d*_i-divisible
 cycles.

Results for transitive subgroups

- $I(n, \nu)$:= proportion of σ fixing a partition of [n] into ν equal blocks.
- *i*(*n*, *k*, *d*):= proportion of *σ* fixing each set of a partition
 (*C*₁,..., *C*_r) of [*n*], with |*C*_i| = *k*_i and *σ*|_{*C*_i} consisting of *d*_i-divisible cycles.

An easy reduction:
$$l(n, \nu) \simeq_{\nu} i(n, (\underbrace{n/\nu, \dots, n/\nu}_{\nu-d \text{ times}}, dn/\nu), (\underbrace{1, \dots, 1}_{\nu-d \text{ times}}, d))$$

for some *d*. Moreover, $d = 1$ if $\nu \leq 4$, and $d = \nu - 1$ if $\nu \geq 5$.

Results for transitive subgroups

- $I(n, \nu)$:= proportion of σ fixing a partition of [n] into ν equal blocks.
- *i*(*n*, *k*, *d*):= proportion of *σ* fixing each set of a partition
 (*C*₁,..., *C*_r) of [*n*], with |*C*_i| = *k*_i and *σ*|_{*C*_i} consisting of *d*_i-divisible cycles.

An easy reduction:
$$l(n, \nu) \simeq_{\nu} i(n, (\underbrace{n/\nu, \dots, n/\nu}_{\nu-d \text{ times}}, dn/\nu), (\underbrace{1, \dots, 1}_{\nu-d \text{ times}}, d))$$

for some *d*. Moreover, $d = 1$ if $\nu \leq 4$, and $d = \nu - 1$ if $\nu \geq 5$.

Theorem (Eberhard, Ford, K. (2016))

Let $\nu | n, 1 < \nu < n$. Then

$$I(n,\nu) \asymp \begin{cases} n^{-\delta_{\nu}} (\log n)^{-3/2} & \text{if } 2 \le \nu \le 4, \\ n^{-1+1/(\nu-1)} & \text{if } 5 \le \nu \le \log n, \\ n^{-1} & \text{if } \log n \le \nu \le n/\log n, \\ n^{-1+\nu/n} & \text{if } n/\log n \le \nu < n. \end{cases}$$

Results for transitive subgroups, ctd.

- T(n):= proportion of σ in some transitive $G \leq S_n$, $G \neq A_n$, S_n ;
- P(n) as above, with *G* primitive transitive.

Results for transitive subgroups, ctd.

- T(n):= proportion of σ in some transitive $G \leq S_n$, $G \neq A_n$, S_n ;
- P(n) as above, with *G* primitive transitive.

Theorem (Eberhard, Ford, K. (2016))

 $P(n) \leq n^{-1+o(1)}$

(This improves on previous work of Bovey and Diaconis-Fulman-Guralnik, who had $P(n) \le n^{-2/3+o(1)}$.)

Results for transitive subgroups, ctd.

- T(n):= proportion of σ in some transitive $G \leq S_n$, $G \neq A_n$, S_n ;
- P(n) as above, with G primitive transitive.

Theorem (Eberhard, Ford, K. (2016))

 $P(n) \leq n^{-1+o(1)}$

(This improves on previous work of Bovey and Diaconis-Fulman-Guralnik, who had $P(n) \le n^{-2/3+o(1)}$.)

Theorem (Eberhard, Ford, K. (2016))

If p is the smallest prime factor of n, then

$$T(n) \asymp \begin{cases} n^{-\delta_2} (\log n)^{-3/2} & \text{if } p = 2, \\ n^{-\delta_3} (\log n)^{-3/2} & \text{if } p = 3, \\ n^{-1+1/(p-1)} & \text{if } 5 \le p \ll 1, \\ n^{-1+o(1)} & \text{if } p \to \infty. \end{cases}$$

Thank you!