
Permutations contained in transitive groups

Dimitris Koukoulopoulos1

Joint work with Sean Eberhard2 and Kevin Ford3

1Université de Montréal
2 University of Oxford

3 University of Illinois at Urbana-Champaign

15th Panhellenic Conference of Mathematical Analysis,
University of Crete, 28 May 2016



Basic set-up
Sn = set of permutations of {1, . . . ,n}.

Motivation : understand the subgroup structure of Sn.

If G ≤ Sn, then G acts on [n] = {1, . . . ,n}.
G is called transitive if all orbits are the full set [n];
G is called imprimitive if it permutes a non-trivial partition
(B1, . . . ,Bν) of [n];
if G is transitive and imprimitive, then |Bi | = |Bj | for all i , j .

Question
If σ is chosen uniformly at random from Sn, what is the probability that
it lies inside a transitive group G 6= An,Sn?

Question (special case)
If σ is chosen uniformly at random from S2n, what is the probability that
it has a fixed subset of size n?

Luczak-Pyber (1993): probability is O(n−c) for both questions.
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Imprimitive transitive subgroups

G is imprimitive transitive if-f it permutes a partition (B1, . . . ,Bν) of
[n] into blocks of equal size n/ν. Here, 1 < ν < n and ν|n.

If σ ∈ Sn permutes a partition (B1, . . . ,Bν) as above, then let
σ̃ ∈ Sν be the induced permutation of the blocks B1, . . . ,Bν , and
write (d1, . . . ,dν) for the cycle lengths of σ̃.

Then σ fixes each set of a partition (C1, . . . ,Cr ) of [n] with
|Ci | = din/ν and all cycles lengths of σ

∣∣
Ci

divisible by di .
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Permutations with fixed subsets of a given size

i(n, k) := Pσ∈Sn(σ fixes some set of size k).

σ = π1 · · ·πr cycle decomposition, cj(σ) = #{i : |πi | = j}

L(σ) := {lengths of fixed sets of σ} =

{∑
i∈I

|πi | : I ⊂ [r ]

}

=


n∑

j=1

jbj : 0 ≤ bj ≤ cj(σ) ∀j

 .

Pσ∈Sn(cj(σ) = mj (1 ≤ j ≤ J)) ∼
J∏

j=1

e−1/j

jmj mj !
.

i.e. the functions cj(σ), j ≤ J, are approximately independent and
Poisson of parameters 1/j , j ≤ J.
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Random integers vs. random permutations
ω(n; y , z) := #{p|n : y < p ≤ z}, y0 = e < y1 < y2 < · · · < yJ ≤ x

#{n ≤ x : ω(n; yj−1, yj) = mj (j ≤ J)}
x

≈
J∏

j=1

log yj−1

log yj

(log log yj
log yj−1

)mj−1

(mj − 1)!

Also, if n = p1 · · · pr square-free and ωj(n) := ω(n;ej−1,ej), then

{log d : d |n} =
{∑

i∈I

log pi : I ⊂ [r ]
}
‘ = ‘

{∑
j

jωj(n)
}

Theorem (Ford (2008, m = 2) and K. (2010, m ≥ 3))

Fix m ≥ 2. For zm ≥ · · · ≥ z1 ≥ 2 and zm−1 ≤ zO(1)
1 ,

#{n = d1 · · · dm : zi < di ≤ 2zi ∀i}
z1 · · · zm

� 1
(log z1)δm(log log z1)3/2

with δm = λm logλm − λm + 1, λm = (m − 1)/ log m.
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Transference to the permutation setting

Theorem (Eberhard, Ford, Green (2015))

i(n, k) = Pσ∈Sn(σ fixes some set of size k) � k−δ1

(log k)3/2 (2 ≤ k ≤ n/2).

Heuristics : take n even, k = n/2.

σ = π1 · · ·πr ; #{I ⊂ [r ] :
∑

i∈I |πi | = k} ≈ 2r/n;
need 2r/n > 1 ⇔ r > log n/ log 2;
r Poisson of mean

∑
j≤n 1/j ∼ log n. So i(n, k) ≈ n−δ1/

√
log n.

Correction: cj(σ) = #{i : |πi | = j} Poisson of parameter 1/j .

conditioning to have r = log n + O(1) cycles,
E[
∑

j≤eu cj(σ)] = r
∑

j≤eu 1/j∑
j≤n 1/j ∼ u/ log 2.

Ford: actually, we must have that
∑

j≤eu cj(σ) ≤ u/ log 2 + O(1).
Leads to a random walk with a barrier. Odds are ≈ 1/ log n.
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Results for transitive subgroups

I(n, ν):= proportion of σ fixing a partition of [n] into ν equal blocks.
i(n,k ,d):= proportion of σ fixing each set of a partition
(C1, . . . ,Cr ) of [n], with |Ci | = ki and σ

∣∣
Ci

consisting of di -divisible
cycles.

An easy reduction: I(n, ν) �ν i(n, (n/ν, . . . ,n/ν︸ ︷︷ ︸
ν−d times

,dn/ν), (1, . . . ,1︸ ︷︷ ︸
ν−d times

,d))

for some d . Moreover, d = 1 if ν ≤ 4, and d = ν − 1 if ν ≥ 5.

Theorem (Eberhard, Ford, K. (2016))
Let ν|n, 1 < ν < n. Then

I(n, ν) �


n−δν (log n)−3/2 if 2 ≤ ν ≤ 4,
n−1+1/(ν−1) if 5 ≤ ν ≤ log n,
n−1 if log n ≤ ν ≤ n/ log n,
n−1+ν/n if n/ log n ≤ ν < n.
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Results for transitive subgroups, ctd.
T (n):= proportion of σ in some transitive G ≤ Sn, G 6= An,Sn;
P(n) as above, with G primitive transitive.

Theorem (Eberhard, Ford, K. (2016))

P(n) ≤ n−1+o(1)

(This improves on previous work of Bovey and
Diaconis-Fulman-Guralnik, who had P(n) ≤ n−2/3+o(1).)

Theorem (Eberhard, Ford, K. (2016))
If p is the smallest prime factor of n, then

T (n) �


n−δ2(log n)−3/2 if p = 2,
n−δ3(log n)−3/2 if p = 3,
n−1+1/(p−1) if 5 ≤ p � 1,
n−1+o(1) if p →∞.
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Thank you!


