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The general sieve problem
Given A ⊂ N and a set of primes P, what is the size of

S(A,P) := #{a ∈ A : p|a ⇒ p /∈ P} ?

Examples:

Taking A = N ∩ [1, x ], P = {p ≤
√

x} we count primes.
Taking A = {n(n + 2) : n ≤ x}, P = {p ≤

√
x} we count twin

primes.
Taking A = {n ≤ x : n ≡ 1 (mod 4)},
P = {p ≤

√
x : p ≡ 3 (mod 4)} we count (a dense subset of)

numbers that can be written as the sum of two squares (Iwaniec).
Taking A = N ∩ [1, x ], P = {p > y} we count y -smooth/friable
numbers.

Goal of classical sieve methods: Given A, estimate S(A,P) for
P ⊂ {p ≤ y} with y as large as possible (ideally, with
y2 ≈ max{p|

∏
a∈A a}).



A heuristic argument

We focus on the case when A = N ∩ [1, x ], P ⊂ {p ≤ x}. We let

S(x ,P) = #{n ≤ x : p|n ⇒ p /∈ P}.

Heuristically, for a prime p

Prob (n ≤ x : p|n) = ⌊x/p⌋
⌊x⌋

≈ 1
p
.

In general, for primes p1 < p2 < · · · < pr

Prob (n ≤ x : p1 · · · pr |n) =
⌊x/(p1 · · ·pr )⌋

⌊x⌋
≈ 1

p1
· · · 1

pr
.

So, we expect that

S(x ,P)

⌊x⌋
= Prob (n ≤ x : p ∤ n ∀p ∈ P) ≈

∏
p∈P

(
1 − 1

p

)
.



Expectations and reality
We know that #{p ≤ x} ∼ x/ log x . However, the heuristic predicts
that

#{p ≤ x}
x

∼ S(x , {p ≤
√

x})
x

∼
∏

p≤
√

x

(
1 − 1

p

)
∼ 2e−γ

log x
; 2e−γ > 1.

In general,

S(x ;P) ≪ x
∏
p∈P

(
1 − 1

p

)
.

Also, if max P ≤ x1/2−ϵ, then

S(x ;P) ≍ϵ x
∏
p∈P

(
1 − 1

p

)
.

But if P = {x1/u < p ≤ x}, then S(A,P) = x/u(1+o(1))u, whereas the
prediction is that S(A,P) ≈ x/u.



When does the sieve work?
.
Question..

......

When does the sieve work or, more precisely, when is it true that

S(x ,P) ≍ x
∏
p∈P

(
1 − 1

p

)
? (*)

Hildebrand showed that the smooth primes are the extreme example:
Let u ≥ 1 and P ⊂ {p ≤ x}.∑

p∈P

1
p
≲ log u =⇒ S(x ,P) ≳ S(x , {x1/u < p ≤ x}) = x

u(1+o(1))u .

It is generally expected that if Pc contains enough many big primes,
then (∗) should hold.

For this reason, we use the complementary notation

Q = {p ≤ x} \ P, Ψ(x ;Q) = S(x ,P) = #{n ≤ x : p|n ⇒ p ∈ Q}.



The effect of the big primes
.
Proposition
..

......

If Q ⊂ {p ≤ x1−ϵ}, u ∈ [1, log x ] and κ =
∑

q∈Q∩[x1/u ,x ] 1/q, then

Ψ(x ;Q)

x
≪ϵ

(
κ+ u−ϵu/2 + x−1/10

)
·
∏

p≤x , p/∈Q

(
1 − 1

p

)
.

.
Proposition
..

......

If ϵ > 0, Q ⊂ {p ≤ x} and u ∈ [1, log x ] are such that∑
q∈Q, x1/u<q≤x

1
q
> ϵ,

then ∃t ∈ [x1/u, x ] :
Ψ(t ;Q)

t
≫ ϵmin{1, ϵu}

log u

∏
p≤t , p/∈Q

(
1 − 1

p

)
.



A different extremal example

The key is how big
∑

q∈Q∩[x1/u ,x ] 1/q is. Consider

Q =
N−1∪
m=1

{
x

m
N+1 < p < x

m
N

}
,

If n ≤ x has all its prime factors in Q, then n ∈
∪N

m=1

(
x

m
N+1 , x

m
N

)
.

Ψ(x ;Q) = O(x1−1/N) +
∑

x
N

N+1 <n≤x
p|n⇒p∈Q

1 ≪N
x

log2 x
.

Note that ∑
q∈Q

1
q
= (N − 1) log

N + 1
N

∼ 1 − 3/2 + o(1)
N

< 1.



A problem in additive combinatorics

Estimating Ψ(x ;Q) is essentially equivalent to finding solutions to

log p1 + · · ·+ log pr = log x + O(1) (r ∈ N, p1, . . . , pr ∈ Q).

.
Theorem (Bleichenbacher)
..

......

Let T ⊂ (0,1) be open. If
∫

T dt/t > 1, then there are t1, · · · , tk ∈ T
such that t1 + · · ·+ tk = 1. This is optimal, as the example
T =

∪N
m=1

(
m

N+1 ,
m
N

)
shows.

.
Corollary (Lenstra-Pomerance)
..

......

Let Q ⊂ {p ≤ x}, u ≥ 1.

∑
q∈Q, x1/u<q≤x

1
q
> 1+ϵ ⇒ Ψ(x ;Q)

x
≫ϵ

e−O(u)

(log x)u−1

∏
p≤x , p/∈P

(
1 − 1

p

)
.



Quantitative Bleichenbacher

The main defect of Bleichenbacher’s theorem is that it does not say
anything about how many solutions there are to e1 + · · ·+ ek = 1 other
than that there is at least 1.

It is easier to look at the discrete analogue of this problem: Given
A ⊂ [1,N] ∩ N with

∑
a∈A 1/a > 1, how many solutions are there to

a1 + · · ·+ ak = N + O(1) with k ∈ N, a1, . . . , ak ∈ A?
.
Theorem (Granville-K-Matomäki)
..

......

∃λ > 1, c > 0 such that if 1 ≤ u ≤ c
√

N, A ⊂ [N/u,N] ∩ N satisfy∑
a∈A 1/a ≥ λ, then ∃k ∈ N,n ∈ [N − k ,N] such that

∑
(a1,...,ak )∈Ak

a1+···+ak=n

1
a1 · · ·ak

≫ u−O(u)

N

(∑
a∈A

1
a

)k

.



Application to the sieve

.
Corollary
..

......

∃λ′ > 1, c′ > 0 such that if Q ⊂ {p ≤ x}, 1 ≤ u ≤ c′√log x , then

∑
q∈Q, x1/u<q≤x

1
q
≥ λ′ ⇒ Ψ(x ;Q)

x
≫ 1

uO(u)

∏
p≤x , p/∈Q

(
1 − 1

p

)
.

Motivated by Bleichenbacher’s theorem, we conjecture that this result
holds for any λ′ > 1.



Sketch of the proof
For sets of integers C,D, let C + D = {c + d : c ∈ C, d ∈ D}.
∃v ∈ [1,u] such that the set B = A ∩ [1,N/v ] has ≥ λN

2v2 elements. We
will show that

∃k : #{(b1, . . . , bk ) ∈ Bk : b1 + · · ·+ bk ∈ [N − k ,N]} ≥ |B|k

uO(u)N
.

Varying Ruzsa-Chang: if |B + B| ≤ 4|B|, then B + B + B contains a
GAP P = {a0 + a1k1 + · · ·+ adkd : |kj | ≤ Kj} of size |P| ≫ |B| and rank
d ≪ 1. Also, rB+B+B(n) ≫ |B|2 ∀n ∈ P. So (*) follows.

If |B + B| > 4|B|, replace B with 2B = B + B and repeat.

2B ⊂ [1,2N/v ] = [1,N/(v/2)] and |2B| > 4 · λN
2v2 =

λN
2(v/2)2 .

Apply induction; this process terminates at some k with 2k ≤ 2v/λ.

Problem: We need to keep track of the representations!
Use instead restricted sumsets {n ∈ B + B : rB+B(n) ≥ η|B|} (ideas
from Balog-Szemeredi-Gowers theorem).



An application

Let f be a Hecke eigencuspform for SZ2(Z) of weight k . It has
k/12 + O(1) zeroes on the upper half plane H, which are
equidistributed by QUE (Rudnick).

Ghosh and Sarnak initiated the study of "real" zeroes of f , i.e. zeroes
on the geodesics

δ1 = {z ∈ H : ℜ(z) = 0}, δ2 = {z ∈ H : ℜ(z) = 1/2}
δ3 = {z ∈ H : |z| = 1, 0 ≤ ℜ(z) ≤ 1/2}.

They showed that

N(f ) := #{z ∈ δ1 ∪ δ2 : f (z) = 0} ≫ϵ k1/4−1/80−ϵ.

Matokäki, using methods described before, showed that
N(f ) ≫ϵ k1/4−ϵ.



How sieve methods enter the picture

f (z) =
∞∑

n=1

λ(n)n(k−1)/2e2nπiz .

Ghosh-Sarnak: If C ≤ m ≤ ϵ
√

k/ log k , α ∈ R, and ym = k−1
4πm , then( e

m

)(k−1)/2
f (α+ iym) = λ(m)e2mπiα + O(k−δ).

So if m1 is even, m2 is odd, and |λ(m1)|, |λ(m2)| ≥ k−δ/2, then f has a
zero in the line segment connecting α+ iym1 and α+ iym2 for α = 0 or
α = 1/2, i.e in δ1 ∪ δ2.

Since λ(p)2 = λ(p2) + 1, we have that max{|λ(p)|, |λ(p2)|} ≥ 1/2.

So we need to show that N1 ∪ N2 contains many integers, where

Nj = {n ∈ N : n square-free and odd, p|n ⇒ |λ(pj)| ≥ 1/2} (j = 1,2).

Even though we don’t have much control over the location of the
primes in Pj = {p > 2 : |λ(pj)| ≥ 1/2} for j = 1,2, the methods
described before are general enough that can handle this problem.



Thank you for your attention!


