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ABSTRACT. Let µ be a probability measure on Z that is not a Dirac mass and that has finite support.
We prove that if the coefficients of a monic polynomial f(x) ∈ Z[x] of degree n are chosen inde-
pendently at random according to µ while ensuring that f(0) 6= 0, then there is a positive constant
θ = θ(µ) such that f(x) has no divisors of degree 6 θn with probability that tends to 1 as n→∞.

Furthermore, in certain cases, we show that a random polynomial f(x) with f(0) 6= 0 is irre-
ducible with probability tending to 1 as n → ∞. In particular, this is the case if µ is the uniform
measure on a set of at least 35 consecutive integers, or on a subset of [−H,H] ∩ Z of cardinality
> H4/5(logH)2 with H sufficiently large. In addition, in all of these settings, we show that the
Galois group of f(x) is either An or Sn with high probability.

Finally, when µ is the uniform measure on a finite arithmetic progression of at least two elements,
we prove a random polynomial f(x) as above is irreducible with probability > δ for some constant
δ = δ(µ) > 0. In fact, if the arithmetic progression has step 1, we prove the stronger result that the
Galois group of f(x) is An or Sn with probability > δ.
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PART I. MAIN RESULTS AND OUTLINE OF THEIR PROOF

1. INTRODUCTION

Is a random polynomial with integer coefficients irreducible over the rationals with high prob-
ability? This captivating problem, a forerunner in the effort to understand high-dimensional alge-
braic phenomena, has a long history. In 1936, van der Waerden [38] was the first to prove that if
we choose a polynomial f(x) ∈ Z[x] of degree n uniformly at random with coefficients in a box of
size H , say in {1, . . . , H}, then f is irreducible and has Galois group equal to the full symmetric
group Sn with probability that tends to 1 as H →∞. Van der Waerden’s estimate on this probabil-
ity has been steadily improved over the years, most notably in 1976 by Gallagher [16], who used
the large sieve inequality, and in 2012 by Dietmann [7], who used bounds on the number of inte-
gral points on certain varieties. In a recent preprint [2], Bhargava established van der Waerden’s
conjecture that the probablity that f has Galois group different than Sn is On(1/H). This estimate
was previously known in the cases n ∈ {3, 4} by work of Chow and Dietmann [4].

When the size of the box is fixed and the degree grows, progress has been slower. The first
important breakthrough was achieved in Konyagin’s highly influential work [20], where he showed
that, with high probability, a polynomial whose smallest and largest coefficients are 1 and all others
are chosen uniformly at random from {0, 1} has no divisors of small degree with high probability.
Recently, the first and third author showed that if the coefficients are selected from special sets
that satisfy appropriate arithmetic restrictions, then the polynomial is irreducible almost surely
[1]. Breuillard and Varjú extended this result to very general distributions for the coefficients of
the random polynomial, but relying on the validity of the Riemann Hypothesis for a family of
Dedekind zeta functions [3].

Our purpose in this paper is to replace the arithmetic restrictions of [1] with weaker restrictions,
more analytic in nature. In general, given a set of integers N , we let ΥN (n) denote the set of
monic polynomials of degree n all of whose coefficients lie inN and whose constant coefficient is
non-zero. An example of our results is the following:

Theorem 1. Let H > 1 and let N be a set of N consecutive integers contained in [−H,H]. Then
there are absolute constants c, δ > 0 and n0 > 1 such that if we choose a polynomial A ∈ ΥN (n)
uniformly at random with n > max{n0, (logH)3}, then the following hold:

(a) If N > 35, then A is irreducible with probability > 1− n−c.
(b) If 2 6 N 6 34, then A is irreducible with probability > δ.

For comparison, assuming the validity of the Riemann Hypothesis for Dedekind zeta functions,
the above mentioned result of Breuillard and Varjú [3] is a stronger version of Theorem 1, as they
establish for all N > 2 a precise asymptotic formula for the probability that an element of ΥN (n)
is reducible. They deduce their theorem as a special case of a more general result.

Similarly, our method produces naturally a more general result than Theorem 1: instead of
sampling the j th coefficient of A uniformly at random from [1, N ], we may work with a general
sequence of probability measures (µj)

∞
j=0 on the integers Z. Then by a “random monic polynomial”

A(T ) of degree n we mean a polynomial

A(T ) = T n + an−1T
n−1 + an−2T

n−2 + · · ·+ a0,

where the coefficients of the powers of T are independent random variables with aj sampled ac-
cording to the measure µj . More concretely, we equip the set of polynomials

M(n) := {A(T ) ∈ Z[T ] monic : deg(A) = n}
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with the measure

PM(n)(A) :=
n−1∏
j=0

µj(aj).

Choosing A ∈ Υ[1,N ](n) uniformly at random corresponds to the above law when

(1.1) µj(a) = 1[1,N ](a)/N for all j.

Our more general results take their cleanest form when the measures µj are all the same measure
µ that satisfies certain hypotheses. To state them, we adopt the notation

‖µ‖p :=

{
(
∑

a∈Z µ(a)p)1/p if 1 6 p <∞,
supa∈Z µ(a) if p =∞.

We prove that there are no divisors of degree < θn asymptotically almost surely.

Theorem 2. Let H > 3 and n > 3 be integers, and let µj = µ for all j, where µ is a probability
measure on Z such that:

(a) (support not too large) supp(µ) ⊆ [−H,H];
(b) (measure not too concentrated) ‖µ‖∞ 6 1− ε.

There are absolute constants c, C > 0 and a constant θ > 0 depending at most on H, ε such that

(1.2) PM(n)

(
all divisors of A(T ) have degree > θn

∣∣∣ a0 6= 0
)
> 1− n−c

for all n > Cε−20000(logH)106 . As a matter of fact, we can take θ = c′ε/(logH)5 for some
absolute constant c′ > 0.

Theorem 2 strengthens Konyagin’s result [20, Theorem 2] which states that (1.2) holds with
cn/ log n replacing θn in the special case where µ taking the values 0, 1 uniformly.

To get irreducibility one needs to pass the barrier θ = 1/2, and we achieve it under some
restrictions on µ.

Theorem 3. Let H > 3 and n > 3 be integers, and let µj = µ for all j, where µ is a probability
measure on Z such that:

(a) (support not too large) supp(µ) ⊆ [−H,H];
(b) (support not too sparse) ‖µ‖2

2 6 min{H−4/5, n1/16/H}/(logH)2.
There are absolute constants c > 0 and H0 > 3 such that if H > H0, then

(1.3) PM(n)

(
A(T ) is irreducible

∣∣∣ a0 6= 0
)
> 1− n−c.

Remark 1.1. For fixed µ and generic values of n, we expect that P(A(−1) = 0) � 1/
√
n because

the event A(−1) = 0 is equivalent to the sum of the random variables a0 − a1 + a2 ∓ · · · +
(−1)n−1an−1 being exactly equal to (−1)n−1. Thus, (1.3) is optimal up to the value of the constant
c. Breuillard and Varjú [3] prove a more precise version of (1.3) that specifies the secondary main
terms coming from cyclotomic factors of A(T ), and with condition (b) replaced by the weaker
assumption that ‖µ‖2 < 1 (which is equivalent to having ‖µ‖∞ < 1, since ‖µ‖∞ 6 ‖µ‖2 6
(‖µ‖∞)1/2).

Specializing Theorems 2 and 3 to measures that are uniform on some set of integers, we get:
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Corollary 1. Let H > 3 and n > 3 be integers, and let N ⊂ [−H,H] be a set of N integers.
There are absolute constants c > 0 and n0, H0 > 3 and a constant θ = θ(H) > 0 such that if we
choose a polynomial A from ΥN (n) uniformly at random, then the following hold:

(a) If N > 2 and n > max{n0, (logH)3}, then all divisors of A have degree > θn with
probability > 1− n−c.

(b) If H > H0, N > H4/5(logH)2, and n > (H/N)16(logH)32, then A is irreducible with
probability > 1− n−c.

As it is clear from Corollary 1, we cannot prove that a random polynomial is irreducible almost
surely when the coefficients are sampled according to the measure

(1.4) µ(a) =
1[1,H](a) · 1a=�

b
√
Hc

.

This is not a mere technicality: our method allows us to take θ = 1/2 in Theorem 2 only if we can
find some primes p modulo which the measure µ is sufficiently “close” to the uniform distribution
on Z/pZ in the sense that the L1 norm of its Fourier transform mod p has “better than square-root
cancellation”. (The precise condition that we need is stated in Theorem 7 in §2.) However, the
squares fail to satisfy such a condition, since∣∣∣∣ ∑

a (mod p)

e(a2k/p)

∣∣∣∣ =
√
p for all p > 2 and all k 6≡ 0 (mod p).

As a result, we cannot take θ = 1/2 in Theorem 2 for the measure of (1.4).
On the other hand, odd powers become completely equidistributed modulo certain primes. For

instance, if p ≡ 2 (mod 3) and k 6≡ 0 (mod p), then∑
a (mod p)

e(a3k/p) = 0.

This allows us to work with the set of cubes and, more generally, with the set of odd powers as it
were all of Z and obtain the following result:

Theorem 4. Given H > 1 and an odd integer d, let N = {kd : k ∈ Z ∩ [1, H]}. There are
constants c > 0 and H0, n0 > 3, with c being absolute and H0, n0 depending only on d, such
that if H > H0, n > max{n0, (logH)3} and we choose a polynomial from ΥN (n) uniformly at
random, then it is irreducible with probability > 1− n−c.

In general, the chances of picking a set that fails to have the needed “better than square-root-
cancellation” property for some primes are slim. Thus, we can show that Corollary 1(b) holds for
a generic set N that is sufficiently large. This is the content of the following theorem.

Theorem 5. Let H > 1 and N ∈ Z>2, and letN denote a random set chosen uniformly at random
among all subsets of Z ∩ [−H,H] of N elements. Then there are absolute constants c > 0 and
n0 > 1 such that the set N has the following property with probability 1−O

(
1/
√
N):

If n > max{n0, (logH)3} and we choose a polynomial from ΥN (n) uniformly at random, then
it is irreducible with probability > 1− n−c.

Let us conclude this introductory section by discussing the Galois group of random polynomials.
Recall that a polynomial is irreducible if and only if its Galois group is transitive. Thus it is
tempting to try to generalize the above results by characterizing more precisely the Galois group,
viewing it as a random subgroup of the symmetric group Sn. Indeed, this was accomplished in [1]
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and [3]. As in these cases, we show that the Galois group contains the alternating group An with
high probability, though we obtain a worse estimate for the probability of this event than in [3].

Theorem 6. In the setting of Theorems 1(a) and 3-5, we have in addition that the Galois group of
the random polynomial (given that a0 6= 0) is either Sn orAn with probability bigger than 1−n−c
for some absolute positive constant c. In the setting of Theorem 1(b), the same conclusion holds
but with probability that is > δ − n−c.

Large Galois group have many applications, and are closely related to large images of Galois
representations – for example, see [40]. We do not elaborate on that, and instead we give an
application to irreducibility.

A large Galois group implies a high-level irreducibility: Let A ∈ Q[T ] be a polynomial of
degree n with roots t1, . . . , tn ∈ C. We say that A is k-fold irreducible if A is irreducible over Q
and, for all j = 1, . . . , k − 1 the polynomial

A(T )/

j∏
i=1

(T − ti) =
n∏

i=j+1

(T − ti)

is irreducible in Q(t1, . . . , tj)[T ]. Note that this definition is independent of the ordering of the
roots and that 1-fold irreducibility is the same as irreducibility. For example T 10 +T 9 + · · ·+T +1
is 1-fold irreducible but not 2-fold irreducible, while T 10 +T 9 + · · ·+T − 1 is 10-fold irreducible.
Indeed a polynomial is k-fold irreducible if and only if its Galois group is k-transitive, and in
the first case the Galois group is C10 which is not doubly transitive and in the second case the
Galois group is S10 which is 10-transitive. Since An and Sn are both (n − 2)-transitive we get an
immediate corollary.

Corollary 2. A random polynomial in the setting of Theorems 1-5 is (n − 2)-fold irreducible
with probability > 1 − n−c, with the exception of part (b) of Theorem 1, where the probability is
> δ − n−c.

The proof of Theorem 6 will be discussed in Part IV of the paper. Our approach is to apply
finite group theory (a Łuczak-Pyber style theorem – see §12) to get from irreducibility to a large
Galois group, and then to deduce (n − 2)-fold irreducibility. In contrast, in [3], Breuillard and
Varjú prove directly that a random polynomial is k-fold irreducible for some k > (log n)2, and
then they deduce it has a large Galois group.
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Notation. We adopt the usual asymptotic notation of Vinogradov: given two functions f, g : X →
R and a set Y ⊆ X , we write “f(x)� g(x) for all x ∈ Y ” if there is a constant c = c(f, g, Y ) > 0
such that |f(x)| 6 cg(x) for all x ∈ Y . The constant is absolute unless otherwise noted by the
presence of a subscript. If h : X → R is a third function, we use Landau’s notation f = g + O(h)
to mean that |f − g| � h.

Finally, below is an index of various symbols we will be using throughout the paper for easy
reference.

α(s, γ;P ) max
QR=P
Q>1

max
`∈Z

1

Q1−γ

∑
k∈Z/QZ

|µ̂(k/Q+ `/R)|s where µ is a probability measure on Z.

α(P ) max
QR=P,Q>1

max
`∈Z/RZ

1√
Q

∑
k∈Z/QZ

|µ̂(k/Q+ `/R)| with µ a probability measure on Z.

α δ/4− θ/2 in §12.

δP(n; `)
1∏

p∈P p
`p

∑
H∈MP (`)
T -Hp ∀p∈P

∑
G (modH)

(Gp,Hp)=1 ∀p∈P

σP(n;G/H) for ` = (`p)p∈P .

∆P(n;m)
∑
· · ·
∑

D : deg(Dp)6m,
T -Dp, ∀p∈P

max
C (modD)

∣∣∣∣PA∈MP (n)(A ≡ C (modD))− 1

‖D‖P

∣∣∣∣.
λ0 The constant 1/(4− 4 log 2) = 0.8147228 . . . .
µj The distribution of the j th coefficient; see PM(n).
µ̂(ξ) The Fourier transform

∑
a∈Z µ(a)e(aξ) of the measure µ.

σP(n;X)
∏n−1

j=0 |µ̂j(ψP(T jX))|, when X ∈ FP((1/T )).
τ(A) #{D ∈ Fp[T ] : D monic, D|A}, when A ∈ Fp[T ] r {0}.
ΥN (n) The set of monic polynomials of degree n all of whose coefficients lie inN , and whose

constant coefficient is non-zero.
ψp(X) res(Xp)/p (mod 1) with X ∈ Fp((1/T )).
ψP(X)

∑
p∈P res(Xp)/p (mod 1) with X ∈ FP((1/T )).

ω(A) #{I ∈ Fp[T ] : I monic and irreducible, I|A}, when A ∈ Fp[T ] r {0}.
A,B, . . . Bold letters denote sets indexed by primes, e.g. A = (Ap)p∈P . In addition, A|B

means that Ap|Bp for all p ∈ P , A ≡ B (modD) means that Ap ≡ Bp (modDp) for
all p ∈ P , etc.

e(x) e2πix with x ∈ R.
FP [T ]

∏
p∈P Fp[T ].

FP((1/T ))
∏

p∈P Fp((1/T )).
GA The Galois group of the polynomial A(T ) ∈ Z[T ], viewed as a subgroup of the sym-

metric group Sdeg(A).
Ip A set of monic irreducible polynomials in Fp[T ]. See (Ap, Ip) and Ap|Ip below.
M(n) {A(T ) ∈ Z[T ] monic : deg(A) = n}.
Mp(n) {f(T ) ∈ Fp[T ] monic : deg(f) = n}.
MP(n)

∏
p∈PMp(np).

MP(n)
∏

p∈PMp(n).
Merge(ρ; y) The set of permutations in Sn whose cycle structure is a y-merging of ρ, with ρ a

partition of n. (See Definition 11.2 for the notion of “y-merging”.)
N {1, 2, 3, . . . }
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P A set of r (usually 4) primes, often indexed as p1 < · · · < pr.
PM(n) The measure onM(n) given by PM(n)

(∑n−1
j=0 ajT

j + T n
)

=
∏n−1

j=0 µj(aj).
PMp(n) The projection of PM(n) toMp(n), ditto for PMP (n) and PMP (n).
PA∈M(n) The same measure, where we write “A ∈ M(n)” to stress that A is the variable of

integration. Ditto for PA∈Mp(n), PA∈MP (n) and PA∈MP (n).
r The number of primes in P , usually 4.
res(X) For X =

∑∞
j=−∞ cjT

j , res(X) = c−1.
s A parameter in N ∩ [1, n1/100].
Tn In part IV, the set of permutations lying in a transitive subgroup of Sn that is different

from Sn and An.
Tp

{
X ∈ Fp((1/T )) : X =

∑
j6−1

cjT
j
}

.
TP

∏
p∈P Tp.

‖D‖p pdeg(D) when D is a polynomial.
‖D‖P

∏
p∈P p

deg(Dp) when D = (Dp)p∈P is a list of polynomials.
‖x‖ The distance of x to the nearest integer, when x ∈ R.
(Ap, Ip)

∏
Ip∈Ip,Ip|Ap Ip when Ip is a family of polynomials.

(A,B) The greatest common divisor ofA andB, when they are both polynomials or numbers.
[A,B] The least common multiple of A and B, when they are both polynomials or numbers.
Ap|Ip means that Ap|

∏
Ip∈Ip Ip when Ip is a family of polynomials.

[n] the set {1, 2, . . . , n}.
∼ x ∼ y is the same as x = (1 + o(1))y.
. x . y is the same as x 6 (1 + o(1))y.
� x � y is the same as x = O(y) and y = O(x).
� x� y is the same as x = O(y).
` ρ ` n means that ρ is a partition of n, namely, ρ = (ρ1, . . . , ρr) with ρi ∈ N, ρ1 6

· · · 6 ρr, and
∑r

i=1 ρi = n.

2. OUTLINE OF THE PROOFS

We present now the main steps of the proof of our theorems. Unlike in the introduction, the
results here allow different distributions for different coefficients of our random polynomial (the
coefficients would still need to be independent). More formally, given a sequence of probability
measures on the integers µ0, µ1, . . . , µn−1, we write PM(n) for the probability measure onM(n)
given by

PM(n)(T
n + an−1T

n−1 + · · ·+ a1T + a0) =
n−1∏
j=0

µj(aj).

We first explain how to prove that

(2.1) PM(n)

(
A(T ) is reducible

∣∣∣a0 6= 0
)
6 n−c

under appropriate assumptions on the measures µj . Our results on the Galois group will be ex-
plained later, in § 2.6.

Proving (2.1) requires bounding from above the probability thatA has a divisor of degree6 n/2.
For certain measures, we will not be able to prove such a strong result. We will show instead that
there are no divisors of degree 6 θn, for some suitable θ ∈ (0, 1/2).
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2.1. Ruling out factors of small degree. The first thing we do is to rule out factors of small
degree, say 6 ξ(n) for some ξ(n) → ∞. There are many proofs of this fact in the literature,
most notably in Konyagin’s work [20] that allows taking ξ(n) � n/ log n. Konyagin’s result
is formulated for coefficients {0, 1} and our coefficients are more general, so we adapt it to our
setting. We shall only prove a weak version of his results (what we prove is the analog of the
first page in Konyagin’s argument, where he works with the function ξ(n) = n1/2−o(1)). The large
factors will be dealt with later. Here is the exact statement:

Proposition 2.1. Let n ∈ N and µ0, µ1, . . . , µn−1 be a sequence of probability measures on the
integers all of which satisfy the following conditions:

(a) (support not too large) supp(µj) ⊆ [− exp(n1/3), exp(n1/3)] for j > 0;
(b) (measures not too concentrated) ‖µj‖∞ 6 1− n−1/10 for j > 1.

Assume further that supp(µ0) 6= {0}. We then have that

PM(n)

(
A(T ) has an irreducible factor of degree 6 n1/10

∣∣∣ a0 6= 0
)
� n−7/20.

We present the proof of this result in § 7.

2.2. Ruling out factors of large degree. Given Proposition 2.1, we must rule out factors of A of
degree ∈ [n1/10, θn], with θ = 1/2 for Theorems 1, 3–5. In the predecessor paper [1], this was
done by using Galois theory and then applying a result of Pemantle, Peres and Rivin [30] about the
structure of “random permutations”. Here, instead of passing to the permutation world, we adapt
the idea of Pemantle, Peres and Rivin to the polynomial setting.

The argument is simpler to describe in the model case of Theorem 1(a), which is realized when
all measures µj are the uniform counting measure on N consecutive integers, say Z ∩ [1, N ].
Assume we know that A has a factorisation

A = BC where B ∈M(k).

We may then reduce this equation modulo any prime p and obtain the equation

Ap = BpCp,

where Ap denotes the reduction of A mod p, and Bp and Cp are defined analogously. In addition,

Bp ∈Mp(k) := {f(T ) ∈ Fp[T ] monic : deg(f) = k}.
Hence, if A has a degree k divisor, so does Ap for any prime p. To continue, we make two crucial
observations:
• if p|N , then the induced distribution of Ap inMp(n) is the uniform distribution;
• if P = {p1, . . . , pr} is any set of distinct prime factors of N , the Chinese Remainder

Theorem implies that the induced random variables Ap1 , . . . , Apr are independent from
each other.

Hence, for any set P of prime divisors of N , we have that

(2.2) PM(n)(A has a factor of degree k) 6
∏
p∈P

PMp(n)(Ap has a factor of degree k),

where PMp(n) is the uniform counting measure on Fp[T ] here.
The advantage of working in the setMp(n) instead of the setM(n) is that the former has a very

well understood arithmetic. In particular, there is a famous analogy that allows us to go back and
forth between results for the ring Z and for the ring Fp[T ]. Briefly, integers and polynomials over
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Fp share many similar statistical properties, after appropriate normalization. Dividing by units, we
restrict our attention to positive integers and to monic polynomials, respectively. With this in mind,
note that there are about x positive integers of size 6 x. The “size” of a polynomial Ap ∈ Fp[T ] is
measured by its norm

‖Ap‖p := pdeg(f).

And, indeed, we find that #{Ap ∈ Fp[T ] : Ap monic, ‖Ap‖p 6 pn} � pn for each integer n. In
addition, we note that there are about x/ log x primes 6 x, whereas there are about pn/n monic
irreducible polynomials f ∈ Fp[T ] of norm 6 pn. Hence, for our purposes, the role of the natural
logarithm in Z is played by the degree in Fp[T ]. Both functions are additive.

Now, Ford [14] proved that

(2.3) #{n 6 x : ∃d|n, y 6 d 6 2y} � x

(log y)η(log log y)3/2
(3 6 y 6

√
x)

where

η = 1− 1 + log log 2

log 2
= 0.08607 . . .

The analogous result1 in Fp[T ] was proven recently by Meisner [27]:

(2.4) #{Ap ∈Mp(n) : ∃Bp|Ap, deg(Bp) = k} � pn

kη(log k)3/2
(2 6 k 6 n/2).

Inserting this bound into (2.2), we conclude that

PM(n)(A has a factor of degree k)� k−rη+o(1) as k →∞,
where r = #P . If N is divisible by 12 distinct prime factors, we may take r = 12 in the above
estimate. Since 12η > 1, we conclude that

PM(n)

(
A has a factor of degree > n1/10

)
�

∑
k>n1/10

k−12η+o(1) � n−(12η−1)/10+o(1).

This completes the proof of Theorem 1(a) when N has at least 12 distinct prime factors.

It turns out that the above argument is too crude. In comparison, the first and third authors
proved in [1] that having 4 distinct prime factors is also sufficient. The reason of the deficiency
of the above argument is that different k are dependent. Indeed, even though the estimate (2.4)
for a single k is sharp, most of the polynomials counted by it, i.e., polynomials with a degree k
divisor mod p, have more than their fair share of irreducible divisors mod p. We may then use
other combinations of these irreducible divisors to obtain other values of k as degrees of divisors.
Let us make this discussion more quantitative.

Most polynomials f ∈Mp(n) that have a divisor of degree k have about log k/ log 2 irreducible
factors of degree k or less2. On the other hand, it is known that most polynomials f ∈Mp(n) have
about log k irreducible factors of degree at most k, for all sufficiently large k. More precisely, let
us fix some ε ∈ (0, 1/10], and let us write Ep(n; ε) for the event that, for each k ∈ [n1/10, n], the

1There is also a famous analogy between statistical properties of integers and those of permutations. The articles
[30] and [1] are set in the world of permutations. The corresponding result to Ford’s estimate (2.3) was established by
Eberhard, Ford and Green [9].

2Even though this assertion is well-known to experts, going back to Erdős’s work on the multiplication table prob-
lem [11, 12], its proof does not appear explicitly in the literature. It can be proven by a careful adaptation of [27,
Lemma 4.2] followed by an application of [27, Lemma 4.3].
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induced polynomialAp has6 (1+ε) log k irreducible factors of degree6 k. Then it can be proven
that

PMp(n)(Ep(n; ε) does not occur)�ε n
−cε

for some cε > 0. Using the above estimate, we have a relative version of (2.2):

PM(n)(A has a factor of degree ∈ [n1/10, n/2])

= PM(n)

(
A has a factor of degree ∈ [n1/10, n/2]

∣∣∣Ap ∈ Ep(n; ε) ∀p ∈ P
)

+Oε,r(n
−cε)

6
∑

n1/106k6n/2

∏
p∈P

PMp(n)

(
Ap has a factor of degree k

∣∣∣Ep(n; ε)
)

+Oε,r(n
−cε),

where to go from the second to the third line we used the union bound and the independence of the
random variables Ap with p ∈ P . Now, if PMp(n) is the uniform measure onMp(n), then standard
techniques about divisors of integers can be adapted to demonstrate that

PMp(n)

(
Ap has a factor of degree k

∣∣∣Ep(n; ε)
)
�ε k

log 2−1+ε for k ∈ [n1/10, n/2] ∩ Z.

Taking ε = 1/100, we have that 1− log 2− ε > 1/4. We thus find that if N is divisible by at least
4 distinct prime factors, then

PM(n)

(
A has a factor of degree ∈ [n1/10, n/2]

)
�ε

∑
k>n1/10

k−4(1−log 2−ε) + n−cε

�ε n
−c′ε

with c′ε = min{cε, 4(1− log 2− ε)− 1} > 0.

This is the rough outline of the proof of Theorem 1a in the special case when N has at least four
distinct prime factors. To adapt this proof to a general value of N and to the even more general
set-up of Theorems 3-5, we must circumvent two obstacles:
• for general measures µ, we cannot always find primes p such that the random variable Ap

is uniformly distributed inMp(n);
• for general measures µ, we cannot always find four primes p1, . . . , p4 for which the random

variables Ap1 , . . . , Ap4 are mutually independent.
It turns out, however, that we can find approximate versions of uniformity and independence for
rather general measures µj , as we explain below.

2.3. From approximate equidistribution to irreducibility. We will prove a general result that
allows us to go from an equidistribution statement about the tuple (Ap)p∈P to showing that A with
a0 6= 0 is irreducible with high probability. To state our result, we must introduce some notation.

Given a finite set of primes P , we use boldface letters to mean a vector indexed by the primes in
P . Thus, A denotes the vector of polynomials (Ap)p∈P . We further set

FP [T ] :=
∏
p∈P

Fp[T ] = {A : Ap ∈ Fp[T ] for each p ∈ P}

for the set of all such vectors. Recall thatMp(n) denotes the set of monic polynomials over Fp of
degree n. We then also set

MP(n) = {A : Ap ∈Mp(np) for each p ∈ P}.



IRREDUCIBILITY OF RANDOM POLYNOMIALS: GENERAL MEASURES 11

In the special case when np = n for each p, we simplify the notation by letting

MP(n) = {A : Ap ∈Mp(n) for each p ∈ P}.

If the polynomial A(T ) = a0 + a1T + · · · + an−1T
n−1 + T n ∈ M(n) is distributed according

to the measure PM(n), that is to say, it occurs with probability

PM(n)(A) =
n−1∏
j=0

µj(aj),

then the vector A is distributed inMP(n) according to the measure

PMP (n)(A) :=
n−1∏
j=0

( ∑
a∈Z

a≡aj,p (mod p) ∀p∈P

µj(a)

)
,

where aj,p denotes the coefficient of T j of Ap.
In order to carry out the argument outlined in § 2.2, we will show that for certain choices of

measures µj , the multiplicative structure of A has approximately the same distribution as if we
had selected each Ap independently and uniformly at random with respect to the uniform measure
inMp(n).

More precisely, writing D|A to mean that Dp|Ap for all p ∈ P , what we need to show is that

PA∈MP (n)(D|A) ∼
∏
p∈P

#{Ap ∈Mp(n) : Dp|Ap}
#Mp(n)

as n → ∞, for all D ∈ FP [T ] all of whose components Dp have degree 6 θn, with θ = 1/2
for irreducibility (in fact, we need to go a bit further than θn for technical reasons that will be
explained later). Indeed, if we have at our disposal such an estimate, then the methods of § 2.2 can
be adapted to the more general measure PMP (n).

Note that
#{A ∈Mp(n) : Dp|Ap}

#Mp(n)
=

1

pdeg(Dp)
=:

1

‖Dp‖p
.

Hence, our task becomes to show that

(2.5) PA∈MP (n)

(
D|A

)
∼ 1

‖D‖P
:=
∏
p∈P

1

‖Dp‖p

for D ∈ FP [T ] all of whose components have degree 6 θn or a bit larger.
It turns out that we do not actually need (2.5) to hold for all D of sufficiently large degree but

only on average. For technical reasons3, we exclude Dp’s that are divisible by T . To state our
results, we adopt the notational convention

A ≡ C (modD) ⇔ Ap ≡ Cp (modDp) ∀p ∈ P

3Notice that Ap ≡ a0 (modT ) for all p, and in particular Ap (modT ) is distributed according to the projection of
the measure µ0 onto Z/pZ, which could be rather arbitrary. This creates a lot of technical complications that we avoid
by only considering congruence classes that are coprime to T .
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and we define

(2.6) ∆P(n;m) :=
∑
· · ·
∑

D=(Dp)p∈P
Dp monic,deg(Dp)6m,

T -Dp ∀p∈P

max
C (modD)

∣∣∣∣PA∈MP (n)(A ≡ C (modD))− 1

‖D‖P

∣∣∣∣.
We also introduce the constant

λ0 :=
1

4− 4 log 2
= 0.8147228 . . .

that plays a special role in our results.

Proposition 2.2. Let ε ∈ (0, 1/100], θ ∈ (0, 1/2], n ∈ N and µ0, µ1, . . . , µn−1 be a sequence of
probability measures on the integers satisfying the following conditions:

(a) (support not too large) supp(µj) ⊆ [− exp(n1/3), exp(n1/3)] for all j.
(b) (joint equidistribution modulo four primes) There is a set of four primes P such that

(2.7) ∆P(n; θn+ nλ0+ε) 6 n−30.

(c) (measure not too concentrated) for all j > 1, we have ‖µj‖∞ 6 1 − n−1/10, and for all
p ∈ P , we further have

∑
a≡0 (mod p) µj(a) 6 1− n−ε/200.

Then there are constants c = c(ε) > 0 and C = C(ε) > 1 such that

PM(n)

(
A(T ) has a divisor in Z[T ] of degree 6 θn, a0 6= 0

)
6 Cn−c.

The above result, that will be proved in Part III, reduces Theorems 1-5 to establishing condition
(b) in each setting, except for Theorem 1(b) that requires one additional argument that allows us to
go from having only divisors of degree > θn to having irreducibility for a positive proportion of
polynomials. This argument originates in Konyagin’s work [20] and we present it in §3.2.

2.4. Controlling the joint distribution of (Ap)p∈P . Let us now explain how to establish condition
(b) of Proposition 2.2. Consider the case when

µ(n) = 1[1,211](n)/211.

The induced measure mod 2 is given by

µ∗2(` (mod 2)) :=
∑

a≡` (mod 2)

µ(a).

We have µ2(0 (mod 2)) = 105/211 and µ2(1 (mod 2)) = 106/211. So, even though we do not
have perfect equidistribution mod 2, we have a distribution that resembles very closely the uniform
distribution. Similar observations are true for the primes 3,5,7, as well for the divisors of 210.

The above set-up is reminiscent of the literature on the set of integers whose g-ary expansion
contains only digits from some prescribed set D. Call Wg,D the set of such integers. If we want
to count primes in Wg,D or study other multiplicative properties of it, we need to control its dis-
tribution in arithmetic progressions. It is known that when the set D has “nice” Fourier-analytic
properties, thenWg,D is well-distributed among the different congruence classes of very large mod-
uli. Results of this form has a long history, starting with the work of Erdős, Mauduit and Sárközy
[13], and continuing with the work of Dartyge and Mauduit [5], and Konyagin [21]. An important
breakthrough was accomplished by Dartyge and Mauduit [6], who demonstrated that for appropri-
ate choices of g and D, the set Wg,D ∩ [1, x] is well-distributed modulo most numbers q 6 xθ with
θ > 1/2. Breaking this “square-root barrier” is crucial for us, as condition (b) of Proposition 2.2
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indicates. Their results were further improved recently by Maynard [25, 26], who showed that
W10,D contains infinitely many primes as long as #D = 9.

Our situation is very similar, so the arguments of Dartyge-Mauduit and Maynard should transfer
to our setting. As a matter of fact, Moses [29] and Porritt [31] have already carried out, indepen-
dently, Maynard’s argument [25] in the finite field setting: they counted irreducible polynomials
over Fq, q being a prime power, all of whose coefficients lie is some restricted subset of Fq (their
argument allows for the omission of up to

√
q/2 coefficients). By adapting their ideas, we can

control the quantity ∆P(n;m) for rather general measures µj , as long as their Fourier transform is
“tame”. To state the exact type of condition we must impose, we need to introduce some notation.

Given a probability measure µ on Z, we define its Fourier transform by

µ̂(θ) :=
∑
a∈Z

µ(a)e(θa)

with the usual convention e(x) = e2πix. Our main result on ∆P(n;m) is the following one.

Proposition 2.3. Let P = {p1, . . . , pr} be a set of distinct primes and set P = p1 · · · pr. In
addition, consider an integer n > P 4 and a sequence µ0, µ1, . . . , µn−1 of probability measures on
the integers for which there are numbers γ > 1/2 and s ∈ N ∩ [1, n1/100] such that∑

k∈Z/QZ

|µ̂j(k/Q+ `/R)|s 6
(
1− n−1/10

)
·Q1−γ

for all j = 1, . . . , n− 1 and all integers Q,R, ` such that QR = P and Q > 1. Then, we have

∆P
(
n; γn/s+ n0.88

)
= Or(e

−n1/10

).

Remark 2.1. (a) In the proof we use in a crucial way γ > 1/2 (see the last lines of the proof of
Lemma 6.3 below). On the other hand, if γ satisfies the conditions of Proposition 2.3, it must be
strictly less than 1 because µ̂(0) = 1.

(b) When the measures µj are all the same, the conclusion of Proposition 2.3 holds when∑Q−1
k=0 |µ̂(k/Q+ `/R)|s < Q1−γ for all Q,R, ` as above and n sufficiently large.

Proposition 2.3 will be proved in Part II of the paper.

2.5. A master theorem. Combining Propositions 2.2 and 2.3, we establish the following general
result, from which we will deduce Theorems 1-5 in §3.

Theorem 7. Let µ0, µ1, . . . , µn−1 be a sequence of probability measures on the integers satisfying
the following conditions:

(a) (support not too large) supp(µj) ⊆ [− exp(n1/3), exp(n1/3)] for all j > 0;
(b) (controlled Fourier transform modulo four primes) there is an integer P 6 n1/4 that is the

product of four distinct primes, and numbers γ > 1/2 and s ∈ N∩ [1, n1/20000/4] such that∑
k∈Z/QZ

|µ̂j(k/Q+ `/R)|s 6
(
1− n−1/10

)
·Q1−γ

for all j = 1, 2, . . . , n− 1 and all integers Q,R, ` with QR = P and Q > 1.
Assume further that supp(µ0) 6= {0} and let θ = γ/s. Then, there are absolute constants c, C1 > 0
such that

PM(n)

(
A(T ) has no divisors of degree 6 θn

∣∣∣a0 6= 0
)
6 C1n

−c.
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Proof. Without loss of generality, we may replace µ0 by the conditional measure µ0( · |a0 6= 0). In
particular, we have that a0 6= 0 with probability 1. In addition, we may assume that n is sufficiently
large; otherwise, the result is trivial by adjusting the constant C1.

Condition (a) of Proposition 2.2 holds by condition (a) above. By condition (b), we may apply
Proposition 2.3 which then implies that condition (b) of Proposition 2.2 holds true (with ε = 1/100
and θProposition 2.3 = min{θ, 1

2
}). Next, we show a strong form of condition (c) of Proposition 2.2.

For any j, any Q|P with Q > 1, and any a ∈ Z/QZ, we use Fourier inversion to deduce that∑
n≡a (modQ)

µj(n) =
∑
n∈Z

µj(n) · 1

Q

∑
k (modQ)

e(k(n− a)/Q) =
1

Q

∑
k (modQ)

e(−ka/Q)µ̂j(k/Q).

Taking absolute values, applying the triangle inequality, and then Hölder’s inequality, we find that

(2.8)

∑
n≡a (modQ)

µj(n) 6
1

Q

∑
k (modQ)

|µ̂j(k/Q)| 6
(

1

Q

∑
k (modQ)

|µ̂j(k/Q)|s
) 1

s

6 Q−γ/s 6 2−
1
2s 6 1− 1

4s

since γ > 1/2, Q > 2, and e−x 6 1 − x/ log 4 for 0 6 x 6 (log 2)/2. Recalling that s 6
n1/20000/4, we deduce condition (c) of Proposition 2.2 with ε = 1/100.

In conclusion, we may apply Proposition 2.2 to find that

PM(n)

(
A(T ) has a divisor of degree 6 min{θ, 1

2
}n
)
6 Cn−c

for some absolute constants c, C > 0, where we used that the condition a0 6= 0 holds with prob-
ability 1. But if θ > 1

2
, then any polynomial with no divisor of degree 6 n/2 is irreducible, and

thus it has no divisors of degree smaller than θn. This completes the proof. �

Remark 2.2. (a) As per Remark 2.1, we have 1/2 6 γ < 1. Hence, θ > 1/2 if s = 1, and
θ < 1/2 otherwise. Thus we can only obtain irreducibility with high probability when the Fourier
transform of the measures µj at some Farey fractions a/q is bit smaller than 1/

√
q, thus excluding

the measure given by (1.4). We will return to this point in §3.3 (see Remark 3.2 in the end of that
section).

(b) We can say more things about how the optimal value of θ varies with s. Given a real number
s > 1, let us define γ(s) to be the largest number γ ∈ [0, 1] such that

max
06j<n

max
QR=P,Q>1

max
`∈Z

1

Q1−γ

∑
k∈Z/QZ

|µ̂j(k/Q+ `/R)|s = 1.

Such a number always exists since the left-hand side is> 1 when γ = 1, and it is6 1 when γ = 0.
If 1/u+ 1/v = 1 with u, v > 1, then Hölder’s inequality implies that∑

k∈Z/QZ

|µ̂j(k/Q+ `/R)|s 6
( ∑
k∈Z/QZ

|µ̂j(k/Q+ `/R)|us
) 1

u
( ∑
k∈Z/QZ

|µ̂j(k/Q+ `/R)|vs
) 1

v

6 Q1−γ(us)/u−γ(vs)/v

for all integersQ,R, `, j withQR = P ,Q > 1 and 0 6 j < n. Hence, γ(s) > γ(us)/u+γ(vs)/v.
If we then set θ(s) := γ(s)/s, then we deduce that

θ(s) > θ(us) + θ(us/(u− 1))

for all s > 1 and all u > 1. In particular, θ is a decreasing function such that θ(s) > 2θ(2s).
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2.6. From irreducibility to Galois groups. Once we establish that our random polynomial A(T )
is irreducible almost surely, we may apply finite group theory to prove that its Galois group must
be large in the sense that it contains the alternating group An. The main technical result we need
is stated below. In its statement and throughout the paper, we write GA for the Galois group of the
polynomial A(T ), which we view as a subgroup of Sn.

Proposition 2.4. Let µ0, µ1, . . . , µn−1 be a sequence of probability measures on the integers for
which there is a prime p and a real number ε > 0 such that

∆p(n;n/2 + nλ0+ε) 6 n−10 and sup
16j<n

∑
a≡0 (mod p)

µj(a) 6 1− 1/(log n)2.

Then there exist some constants c = c(ε) > 0 and C = C(ε) > 0 such that

PM(n)

(
A(T ) is irreducible and GA /∈ {An,Sn}

)
6 Cn−c.

Remark. Notice that, unlike Proposition 2.2, where we need to control the joint distribution of our
random polynomial modulo four distinct primes, Proposition 2.4 requires input from the reduction
of our polynomial modulo a single prime. We formulated Proposition 2.4 for θ = 1

2
for simplicity.

It is also possible to prove a result for smaller θ, but the list of possibilities for the Galois group
would become larger.

The proof of Proposition 2.4 goes roughly as follows:
• Let p be a prime as in the statement of Proposition 2.4, so that if we choose a polynomial A

randomly according to the measure PM(n), then its reductionAp is approximately uniformly
distributed inMp(n).
• Each polynomial f ∈ Mp(n) induces a partition τf ` n, obtained simply by gathering the

degrees of the irreducible factors of f .
• The set of partitions of n, denoted by Πn, is in one-to-one correspondence with the set of

conjugacy classes of Sn. Thus, the uniform measure on Sn induces a measure on Πn. Let
us denote it by µunif.
• If f is uniformly distributed inMp(n), then τf is distributed in Πn according to µunif, except

for factors of small degrees that have slightly distorted distribution.
• If A is randomly chosen according to PM(n) satisfying the hypotheses of Proposition 2.4,

then f = Ap is approximately uniformly distributed, so the distribution of τf in Πn should
approximate µunif.
• Given a polynomial f ∈ Mp(n), the action of the Frobenius automorphism α 7→ αp on its

roots induces a permutation whose cycle type is “close” to τf (in a precise technical sense
that we will specify later). Thus, if f = Ap is as above and we lift the Frobenius to an
automorphism of the splitting field of A over Q, then we get a conjugacy class [σf ] in the
Galois group of A that is “close” to a partition sampled according to the measure µunif, with
a small distortion in the distribution of [σf ] due to ramification.
• Let E be the event that A is irreducible and its Galois group is different from An and Sn.

We want to show that E occurs with small probability. Recall that the irreducibility of A is
equivalent to its Galois group being transitive. On the other hand, Łuczak and Pyber [23]
showed that, with high probability as n → ∞, a uniform random permutation of Sn does
not lie in a transitive group other than An or Sn. We will show a generalization of this
result: if τ is a random partition of n whose distribution is approximately µunif, then with
high probability there is no permutation σ ∈ Sn that lies in a transitive subgroup of Sn other
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than An or Sn itself, and whose cycle type is “close” to τ . We may thus conclude that the
event E occurs with small probability.

In order to turn the above sketch into an actual proof, we must address two points. First, we
must quantify the statement that if A is sampled randomly, then the partition τAp has a distribution
that approximates µunif. It turns out that we need a very weak statement of this sort, which we can
then insert into the argument of Łuczak-Pyber and establish an appropriate generalization of their
result that allows us to complete the proof of Proposition 2.4. The details will be given in Part IV
of the paper.

We conclude this subsection by using Proposition 2.4 to establish a general theorem for the
Galois group of a random polynomial, from which we will deduce Theorem 6 in §3.7.

Theorem 8. Let µ0, µ1, . . . , µn−1 be a sequence of probability measures on the integers satisfying
the following conditions:

(a) (support not too large) supp(µj) ⊆ [− exp(n1/3), exp(n1/3)] for all j;
(b) (controlled Fourier transform modulo four primes) there is an integer P 6 n1/4 such that

(2.9)
∑

k∈Z/QZ

|µ̂j(k/Q+ `/R)| 6
(
1− n−1/10

)
·Q1/2

for all j = 0, 1, . . . , n− 1 and all integers Q,R, ` with QR = P and Q > 1.

Then there exists an absolute constant c > 0 such that

PA∈M(n)

(
GA ∈ {An,Sn}

∣∣∣ a0 6= 0
)

= 1−O(n−c).

Proof. We may assume that n is sufficiently large. As in the proof of Theorem 7 when s = 1 and
γ = 1/2, we note that the assumption that (2.9) holds implies that ∆p(n;n/2 +nλ0+1/100) 6 n−10,
PA∈M(n)(a0 6= 0) > 1/4 and

∑
a≡0 (mod p) µj(a) 6 3/4 for 0 6 j < n. Hence, Theorem 7

implies that a random polynomial A ∈ M(n) with a0 6= 0 has no divisors of degree 6 n/2 (and
thus is irreducible) with probability 1 − O(n−c1), for some c1 > 0. Combining this result with
Proposition 2.4 completes the proof of Theorem 8. �

2.7. Summary. The following diagram sums up the discussion of § 2.

Theorem 7 Theorems 1-5

Proposition 2.2

Proposition 2.3

Proposition 2.1

Proposition 2.4 Theorem 8 Theorem 6

We have already explained how to deduce Theorem 7 from Propositions 2.2 and 2.3, as well as
Theorem 8 from Proposition 2.4. We will show how to go from Theorems 7 and 8 to Theorems 1-6
in the next section. Finally, we will prove Proposition 2.1 in Section 7, Proposition 2.2 in Section 9,
Proposition 2.3 in Part II, and Proposition 2.4 in Part IV.
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3. DEDUCTION OF THEOREMS 1-6 FROM THEOREMS 7 AND 8

Let us now explain how to use Theorems 7 and 8 to deduce Theorems 1-6. Note that in all these
theorems the measures µj are the same measure µ.

Let
α(s, γ;P ) := max

QR=P
Q>1

max
`∈Z

1

Q1−γ

∑
k∈Z/QZ

|µ̂(k/Q+ `/R)|s.

In most cases, we shall apply Theorems 7 and 8 with s = 1 and γ = 1/2. We thus adopt the
notation

α(P ) := α(1, 1/2;P ) = max
QR=P
Q>1

max
`∈Z/RZ

1

Q1/2

∑
k∈Z/QZ

|µ̂(k/Q+ `/R)|.

It is useful to note the simple bound

(3.1) α(P ) 6
1√

min{p|P}

∑
k (modP )

|µ̂(k/P )|

for square-free integers P , as it can be easily seen using the Chinese Remainder Theorem.

3.1. Proof of Theorem 1(a). Our assumption that N ⊂ [−H,H] and that n > (logH)3 implies
that condition (a) of Theorem 7 is satisfied. We will now check that α(210) < 1 for all N > 35
(210 being the smallest number which is the product of 4 distinct primes; it turns out that the
freedom to choose the primes is not useful for Theorem 1, though it certainly is useful for our
other results). We will give a standard proof that works for N > 33,730, and a computer-assisted
proof for N ∈ [35, 33729].

We start with a bound on µ̂. Any probability measure satisfies µ̂(0) = 1, and for µ the uniform
measure on a set of N consecutive integers, and for any k ∈ {1, 2, . . . , P − 1} we may calculate

|µ̂(k/P )| = 1

N

∣∣∣∣ N∑
j=1

e
(jk
P

)∣∣∣∣ =

∣∣∣∣ e(Nk/P )− 1

N(1− e(k/P ))

∣∣∣∣ .
The term |1− e(k/P )| is minimised at k = 1 and at k = P − 1. Since |1− e(1/P )| = 2 sin(π/P ),
we get that |µ̂(k/P )| 6 1/[sin(π/P )N ] when 1 6 k 6 P − 1, and thus∑

k (modP )

|µ̂(k/P )| 6 1 +
P − 1

N sin(π/P )
.

Together with (3.1), and our choice of P = 210, this implies

α(210) 6
1√
2

(
1 +

209

N sin(π/210)

)
< 1

forN > 33,730. Finally, whenN ∈ [35, 33729], we may check using a computer that α(210) < 1.4

The calculation of α(210) involves maximising over finite sets and there are no issues of numerical
stability.

4We used Mathematica®for this computation. For each H ∈ N, consider the function

FT[H_] := Table[If[k == 0 || k == 210, 1, N[Abs[Sin[H*Pi*k/210]/(H*Sin[Pi*k/210])]]], {k, 0, 210 + 209}].

This creates a table of all values of the µ̂(k/210) with µ the uniform measure on {1, 2, . . . ,H}. Given such a table F
and an integer Q dividing 210, we further define

L1[F_, Q_] := Max[ Table [ Sum[ F[[1 + k*210/Q + m*Q]], {k, 0, Q - 1}], {m, 0, 210/Q - 1} ] ] / Sqrt[Q] .
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In conclusion, we may apply Theorem 7 with γ = 1/2 and s = 1. This completes the proof of
Theorem 1(a), since a polynomial of degree nwith no divisors of degree6 n/2 must be irreducible.

We conclude this section by giving a complementary argument in the case when n 6 (logH)3

that builds on a classical method (see [32, Exer. 266, p. 156, 365]). This lemma is not used
anywhere in the paper, but we think it complements Theorem 1 somewhat, leaving only the case
that N is small and H is very large.

Lemma 3.1. LetN be a set of N consecutive integers contained in [−N log log(100N), N log log(100N)].
If n 6 N1/200 and µj is the uniform measure on N for each j, then we have

PA∈M(n)

(
A is reducible

∣∣ a0 6= 0
)
� N−0.3.

Proof. Let N0 = N \ {0} and N0 = #N0. The number of monic polynomials of degree n with
integer coefficients in N whose constant coefficient is non-zero is N0N

n−1. If A = BC with B
and C monic polynomials over Z of degree < n, then the constant coefficients of A,B and C,
which we denote by a0, b0 and c0, respectively, must satisfy a0 = b0c0. The number of possibilities
for b0 and c0 is no more than

2
∑
a0∈N0

τ(a0) 6 2N0T, where T := max
a0∈N0

τ(a0).

We know that τ(a) 6 exp((log 2+o(1)) log a/ log log a) as a→∞ (e.g., see [18, §18.1, Theorem
317]), so that T � N0.695 if N ⊂ [−N log log(3N), N log log(3N)].

Let us now fix a choice of b0 and c0 and reduce the equation A = BC modulo N . The number
of possibilities for B mod N given b0 and degB = k is Nk−1, and ditto for C. Thus, given b0 and
c0, we get that the number of possibilities for the couple (B,C) mod N is at most

n−1∑
k=1

Nk−1Nn−k−1 = (n− 1)Nn−2.

In addition, if we are given B and C mod N , then there is a unique polynomial A that equals BC
modulo N and whose coefficients lie in N . In conclusion, for each given choice of b0 and c0, the
number of possibilities for A is 6 (n − 1)Nn−2. Since the number of choices for b0 and c0 is
6 2N0T , the proof is complete. �

3.2. Proof of Theorem 1(b). Let us first remark that α(s, γ;P ) does not depend on which N
consecutive integers are chosen. Different choices correspond to multiplying µ̂ by a unimodular
value and preserve the value of α. When 2 6 N 6 34, a numerical calculation reveals that
α(210) > 1 (and larger values of P are even worse). Hence, we cannot apply Theorem 7 with
s = 1 and γ = 1/2 in order to deduce that a polynomial A ∈ ΥN (n) is irreducible with high
probability. However, we may easily check that α(s, γ; 210) < 1 for appropriate choices of s > 2
and γ > 1/2 as listed in the following table:

This will calculate maxm (modR)

∑
k (modQ) |µ̂(k/Q+m/R)| with QR = 210 by taking F=FT[N]. It is important to

define L1 this way, as this forces F to be precalculated when evaluating L1. Lastly, we define

alpha[F_] := Max[ Table [ L1[F, Divisors[210][[n]]], {n, 2, 16} ] ]

and we run
Do[Print[ {N, alpha[FT[N]] } ], {N, 35, 33729} ]

to verify that α(210) < 1 when N ∈ [35, 33729].
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N s γ γ/s
2 134 0.50057 0.003736
3 50 0.50045 0.010009
4 27 0.502094 0.018596
5 17 0.503402 0.029612
6 12 0.50681 0.042234
7 9 0.51024 0.056693
8 7 0.51308 0.073297
9 5 0.505506 0.101101

10 4 0.50552 0.12638
11 4 0.52351 0.13088
12 3 0.51283 0.17094

N s γ γ/s
13 3 0.52792 0.17597
14 3 0.54188 0.18063
15 2 0.50645 0.25322
16 2 0.51852 0.25926
17 2 0.52986 0.26493
18 2 0.54055 0.27027
19 2 0.55066 0.27533
20 2 0.56025 0.28013
21 2 0.56938 0.28469
22 2 0.57808 0.28904
23 2 0.58639 0.2932

N s γ γ/s
24 2 0.59435 0.29718
25 2 0.60198 0.30099
26 2 0.60932 0.30466
27 2 0.61638 0.30819
28 2 0.62318 0.31159
29 2 0.62974 0.31487
30 2 0.63608 0.31804
31 2 0.64221 0.321107
32 2 0.64815 0.32408
33 2 0.65391 0.32695
34 2 0.65949 0.32975

Hence, Theorem 7 implies that, with probability > 1 − n−c, a polynomial A chosen from ΥN (n)
uniformly at random has only irreducible factors of degree > θn with θ = γ/s. In order to pass
from this result to a proof of Theorem 1(b), we use an argument due to Konyagin.

Lemma 3.2. Let n ∈ N, θ ∈ [0, 1/2], N ∈ Z>2 and d ∈ N such that there is at least one prime p
that divides N but not d. If N is an arithmetic progression of step d and #N = N , then

#{A ∈ ΥN (n) : A has no divisors of degree in [θn, n/2]}
#ΥN (n)

> − log(1− θ) +O(1/n).

Proof. Without loss of generality, we may assume that θ > 3/n; otherwise, the result is trivial
since the error term is bigger than the main term.

Let p be as above. If A is uniformly distributed in the set of degree n monic polynomials with
coefficients in N , then its reduction Ap mod p is uniformly distributed in Mp(n). Since we are
actually sampling A from ΥN (n), there is a small complication regarding the distribution of its
constant coefficient mod p. Indeed, if P denotes the uniform probability measure on ΥN (n), then

P(a0 ≡ b (mod p)) = δb :=


1/p if 0 /∈ N ,
(N/p− 1)/(N − 1) if 0 ∈ N and b ≡ 0 (mod p),

N/(pN − p) otherwise.

Hence, if B ∈Mp(n) has constant coefficient b, then PA∈ΥN (n)(Ap = B) = δb/p
n−1.

Now, note that if Ap does not have a divisor of degree in [θn, n/2], then neither does A. Hence,
it suffices to show that

(3.2) PA∈ΥN (n)

(
Ap has no divisors of degree in [θn, n/2]

)
> − log(1− θ) +O(1/n).

Given a0 ∈ Fp and i0 ∈ Fp \ {0}, let Aa0,i0 denote the set of polynomials Ap ∈ Fp[T ] that can be
written as DpIp, where:

• Dp is a monic element of Fp[T ] of constant coefficient a0i
−1
0 and degree < θn;

• Ip is a monic irreducible element of Fp[T ] of constant coefficient i0 and degree n−deg(Dp).

Since deg(Ip) > n(1− θ) > n/2, such a representation of Ap, if it exists, is unique. Moreover, no
Ap of the above form has divisors of degree in [θn, n/2].
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Now, we may easily calculate that

PMp(n)(Aa0,i0) =
δa0
pn−1

∑
06m<θn

∑
Dp∈Mp(m)

Dp(0)=a0i
−1
0

∑
Ip∈Mp(n−m)
Ip irreducible
Ip(0)=i0

1.

The number of Dp equals pm−1, and the number of Ip equals pn−m

(p−1)(n−m)
(1 + O(p1−(n−m)/2)) by

[35, Theorem 4.8]. Since m < θn and we assumed that θ > 3/n, the error term is O(1/n).
Consequently,

PMp(n)(Aa0,i0) =
δa0
p− 1

∑
06m<θn

(
1

n−m
+O(1/n2)

)
=

δa0
p− 1

(
− log(1− θ) +O(1/n)

)
,

where we used [22, Theorem 1.11]. Since the sets Aa0,i0 are disjoint, and we also have that∑
a0∈Fp δa0 = 1, relation (3.2) follows. This completes the proof of the lemma, and hence also

of Theorem 1(b). �

Remark 3.1. When θ 6 1/3 (as is the case when applying Lemma 3.2 to prove Theorem 1(b)), it
is possible to show that Ap has no divisors of degree in [θn, n/2] if, and only if, Ap = DpIp with
deg(Dp) < θn and Ip irreducible.

The proof of Lemma 3.2 has some limitations. For example, it cannot be used when the co-
efficients are drawn from {−1,+1}, because this set has two elements that both have the same
reduction mod 2. The same problem occurs more generally when N is an arithmetic progression
of step d that contains N elements, and all prime divisors of N also divide d. In these cases,
however, we have an alternative argument that follows more closely Konyagin’s original idea.

Lemma 3.3. Let n ∈ N, N ∈ Z>2 and θ ∈ [0, 1/2]. If N ⊆ [−H,H] is an arithmetic progression
such that #N = N , then

#{A ∈ ΥN (n) : A has no divisors of degree in [θn, n/2]}
#ΥN (n)

> − log(1− θ)−O
(

log(nH)

n1/2 logN

)
.

We need an auxiliary result:

Lemma 3.4. Let A(T ) be polynomial of degree n all of whose coefficients are in [−H,H] ∩ Z. If
N > 2 and I(T ) is an irreducible polynomial over Z of degree m that divides A(T ), then

|I(N)| 6 Nme4(1+
√
m) log(14

√
nH).

Proof. Given a polynomial f with integer coefficients, let ‖f‖2 denote the `2-norm of its coeffi-
cients. Using a result of Mignotte (see Theorem 1′ in [28] and the remarks below it), we have

‖I‖2 6 e
√
m(m+ 2

√
m+ 2)1+

√
m‖A‖1+

√
m

2 .

Since ‖A‖2 6 H
√
n and |I(N)| 6 (N2m +N2m−2 + · · · )1/2‖I‖2 6 Nm

√
N2/(N2 − 1) ‖I‖2 by

the Cauchy-Schwarz inequality, the lemma follows. �

Proof of Lemma 3.3. Let us writeN = {a, a+d, . . . , a+(N−1)d}, and note that d,N 6 2H+1.
We recall that ΥN (n) is defined as a set of polynomials whose free coefficient is nonzero. We split
it according to the free coefficient, namely, given j ∈ N \ {0}, we set ΥN ,j(n) = {A(T ) ∈
ΥN (n) : A(0) = j}. It suffices to prove that the conclusion of Lemma 3.3 holds with ΥN ,j(n) in
place of ΥN (n), for each j ∈ N \ {0}.
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The proof revolves around examining the values of {A(N) : A ∈ ΥN ,j(n)}. These values form
an arithmetic progression of step dN , taking each value exactly once. Denote by xj := j + Nn +
a(Nn−N)/(N − 1) the first element in this arithmetic progression and by yj := xj + d(Nn−N)
the last one.

Let now A = I1 · · · Ik denote the decomposition of A into irreducible factors over Z. Assume
A(N) has a prime divisor p with

p > p0 := N (1−θ)n exp
(
4(1 +

√
n) log(14

√
nH)

)
Then the prime p divides I`(N) for some `, and thus |I`(N)| > p > p0. Together with Lemma 3.4,
this implies that deg(I`) > n(1 − θ). But then, A = BI` for some B of degree < θn, and thus
A does not have divisors of degree in [θn, n/2], which is the property we are interested in. Since
#YN ,j(n) = Nn−1, we conclude that

#{A ∈ ΥN ,j(n) : A has no divisors of degree in [θn, n/2]}
#ΥN ,j(n)

>
#Xj
Nn−1

,

where
Xj := {xj 6 kp 6 yj : k ∈ Z, p > p0 prime, kp ≡ xj (mod dN)}.

To calculate the cardinality of Xj , we write

#Xj =
∑
p>p0

#{k ∈ [xj/p, yj/p] ∩ Z : kp ≡ xj (mod dN)}

(since p0 >
√

max{|yj|, |xj|}, any x ∈ Xj is divisible by at most one prime p > p0). Since
p0 > dN (in fact, much bigger), we find that p - dN whenever p > p0, and thus the count over k’s
inside the sum equals (yj − xj)/(pdN) + O(1). Let us therefore restrict our attention to p such
that (yj − xj)/(pdN) > n, which will make the O(1) error of smaller order than the main term.
Noticing that (yj − xj)/(dN) = Nn−1 − 1 and summing over such p gives

#Xj >
∑

p0<p<(Nn−1−1)/n

Nn−1 − 1

p
−O

(
Nn−1

n

)
.

(The big-Oh term not being part of the sum, of course). Using Mertens’ theorem [22, Theorem
3.4(b)] and the fact that N 6 2H + 1, we find that∑

p0<p6(Nn−1−1)/n

1

p
= − log(1− θ) +O

(
log(nH)√
n logN

)
.

Combining the two above estimates using once more that N 6 2H + 1, we complete the proof of
the lemma. �

As a corollary, we can generalise Theorem 1 from distribution uniform on N consecutive points
to distributions uniform on arithmetic progressions. Here is the precise formulation.

Theorem 3.5. Let H > 1, N ∈ Z>2 and d ∈ N. In addition, let P be the product of the four
smallest primes that do not divide d. Then there are constants δ > 0 and n0 > 1 that depend only
on P such that the following holds:

If N is an arithmetic progression of step d of N elements all contained in [−H,H], and if
n > max{n0, (logH)3}, then

#{A ∈ ΥN (n) : A is irreducible} > δ#ΥN (n).

When N = {−1, 1}, we can take δ = 0.00068053.
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Proof. Let us write N = {a, a + d, . . . , a + (N − 1)d}, and let µ denote the uniform measure on
N . As in the proof of Theorem 1(a), we have

|µ̂(k/P )| = 1

N

∣∣∣∣N−1∑
j=0

e

(
(a+ dj)k

P

)∣∣∣∣ =

∣∣∣∣ e(dNk/P )− 1

N(1− e(dk/P ))

∣∣∣∣ .
Since (d, P ) = 1 by assumption, the right-hand side is 6 1/[N sin(π/P )]] 6 P/(2N) when
P - k. Hence, if N > P , then |µ̂(k/P )| 6 1/2 for all k 6≡ 0 (modP ). On the other hand, when
2 6 N 6 P , there is some constant β = β(P ) < 1 such that |µ̂(k/P )| 6 β for all k 6≡ 0 (modP ).
Taking β > 1/2, as we may, we conclude that |µ̂(k/P )| 6 β for all k 6≡ 0 (modP ) and all N > 2.
In conclusion, ∑

k∈Z/PZ

|µ̂(k/P )|s 6 1 + Pβs 6 21/4

as long as s is large enough in terms of P . Clearly, this implies that condition (b) of Theorem 7
holds with γ = 2/3 and n sufficient large. Condition (a) also holds by our assumptions on N and
n. Thus, the conclusion of Theorem 7 holds. Combining it with Lemma 3.3 completes the proof
of the theorem for general N .

Finally, when N = {−1,+1}, note that condition (b) of Theorem 7 is satisfied with P =
3 · 5 · 7 · 11 = 1155, s = 735 and γ = 0.500019700732702471 . . . We then obtain θ = γ/s =
0.000680298912561 . . . . An application of Lemma 3.3 completes the proof in this case too. �

3.3. Proof of Theorem 4. If p is a prime such that (p− 1, d) = 1, then the only d-th root of unity
mod p is 1 since (Z/pZ)∗ is cyclic of order p − 1 (see e.g. Theorem 1110, §7.5 in [18]). As a
consequence, the range of the polynomial f(x) = xd mod p is Z/pZ.

It is easy to see that there are infinitely many primes such that (p − 1, d) = 1. For instance,
we can pick primes in the progression 2 (mod d), which contains infinitely many primes by our
assumption that d is odd, using Dirichlet’s theorem.

Now, let P = p1p2p3p4, where p1 < p2 < p3 < p4 are the first four primes such that (p−1, d) =
1. In particular, p1 = 2. Since the polynomial f(x) = xd has full range mod each pj , by the
Chinese Remainder Theorem it also has full range mod P .

Writing µ for the uniform measure on {kd : 1 6 k 6 H}, we find that

µ̂(`/P ) =
1

H

H∑
k=1

e(kd`/P ) =
1

H

∑
a∈Z/PZ

e(ad`/P ) ·#{k 6 H : k ≡ a (modP )}.

Since H/P − 1 < #{k 6 H : k ≡ a (modP )} < H/P + 1, we infer that

|µ̂(`/P )| < 1

P

∣∣∣∣ ∑
a∈Z/PZ

e(ad`/P )

∣∣∣∣+
P

H
.

By construction, the residue classes ad (modP ) with a ∈ Z/PZ cover all of Z/PZ exactly once.
Consequently, the exponential sum on the right hand side of the above inequality vanishes when
P - `. We thus conclude that

|µ̂(`/P )| < P/H when P - `.
As a consequence, ∑

k (modP )

|µ̂(k/P )| 6 1 + P (P − 1)/H 6 4/3
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as long as H > P 2/3. In particular, α(P ) 6 4/(3
√

2) < 1 by (3.1) for such H . Assuming, as we
may, that n0 > P 4 guarantees that n > P 4. Since we also supposed that n > (logH)3, we may
apply Theorem 7 with s = 1 and γ = 1/2 and complete the proof of Theorem 4. �

Remark 3.2. Let f(x) ∈ Z[x] have degree d > 1, and let µ be the uniform measure on N :=
{f(n) : n ∈ {1, 2, . . . , N} ∩ Z}. For all integers Q,R, ` > 1, Parseval’s identity implies that∑

k∈Z/QZ

|µ̂(k/Q+ `/R)|2 6 Q
∑∑

a1≡a2 (modQ)

µ(a1)µ(a2).

Now, for any fixed b ∈ Z, we have∑
a≡b (modQ)

µ(a) =
∑

k∈Z/QZ
f(k)≡b (modQ)

#{1 6 n 6 N : n ≡ k (modQ)}
N

6
∑

k∈Z/QZ
f(k)≡b (modQ)

(1/Q+ 1/N).

If Q is square-free, then the Chinese Remainder Theorem implies that #{k ∈ Z/QZ : f(k) ≡
b (modQ)} 6 dω(Q), where ω(Q) is the number of prime divisors of Q. Hence∑

k∈Z/QZ

|µ̂(k/Q+ `/R)|2 6 Q
∑
a1

µ(a1)
∑

k∈Z/QZ
f(k)≡a1 (modQ)

(1/Q+ 1/N)

6 dω(Q)(1 +Q/N)
∑
a1

µ(a1) = dω(Q)(1 +Q/N).

If, in addition, we assume that N > Q and that all prime factors of Q are > d4/ε, then the right-
hand side is 6 Qε/2.

In conclusion, if we let P be the product of the four smallest primes > d4/ε and we assume that
N > P , then we may apply Theorem 7 with s = 2 and γ = 1− ε. Consequently, with probability
> 1 − n−c, an element of ΥN (n) chosen uniformly at random is either irreducible, or it has a
divisor of degree in [n(1− ε)/2, n/2]. The latter is a very restrictive condition, and it should only
occur for a proportion of polynomials that tends to 0 when ε→ 0+. It is possible to prove the last
claim rigorously in some cases.

For instance, when f(x) = x2, we have |µ̂(0)| + |µ̂(1/2)| 6 1 + 12-N/N <
√

2 for all N > 2.
Hence, Proposition 2.3 applied with P = {2} implies that ∆2(n;n/2 + n0.88) � exp(−n1/10).
We may combine this fact with Ford’s work [14] to show that the probability that A (mod 2) has a
divisor of degree in [n(1− ε)/2, n/2] is� n−c + εc for some absolute constant c > 0. (The case
when ε = O(1/n) follows from Meisner’s work [27].) The end result is that if N = {n2 : 1 6
n 6 N} and we chooseA uniformly at random from ΥN (n), thenA is irreducible with probability
> 1− oN,n→∞(1).

3.4. Proof of Theorem 5. Recall that N is a set chosen uniformly at random among all subsets
of [−H,H] ∩ Z with N elements. Without loss of generality, we assume throughout that H ∈ N.
We then let µN denote the uniform measure on N and write αN for the quantity α(210) when
µ = µN . We claim that αN 6 3/4 with probability 1 − O(1/

√
N). In view of (3.1) and the

fact that µ̂N (0) = 1, it suffices to show that
∑209

k=1 |µ̂N (k/210)| 6 3/
√

8 − 1 with probability
1−O(1/

√
N). Markov’s inequality reduces this claim to proving that

E
[ 209∑
k=1

|µ̂N (k/210)|
]
� 1√

N
.
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The Cauchy-Schwarz inequality reduces the above inequality to proving that

(3.3) E
[∣∣∣∣∑

a∈N

e(ak/210)

∣∣∣∣2]� N for all k = 1, 2, . . . , 209.

Let us fix some k ∈ {1, 2, . . . , 209}. Opening the square, we find that

E
[∣∣∣∣∑

a∈N

e(ak/210)

∣∣∣∣2] =
∑

|a1|,|a2|6H

e((a1 − a2)k/210)P(a1, a2 ∈ N ).

If a1 = a2, then P(a1, a2 ∈ N ) = P(a1 ∈ N ) =
(

2H
N−1

)/(
2H+1
N

)
= N

2H+1
=: δ1; otherwise,

P(a1, a2 ∈ N ) =
(

2H−1
N−2

)/(
2H+1
N

)
= N(N−1)

2H(2H+1)
=: δ2. We conclude that

E
[∣∣∣∣∑

a∈N

e(ak/210)

∣∣∣∣2] = δ2

∑
|a1|,|a2|6H

e((a1 − a2)k/210) + (δ1 − δ2) · (2H + 1)

= δ2

∣∣∣∣ ∑
|a|6H

e(ak/210)

∣∣∣∣2 + (δ1 − δ2) · (2H + 1)

� δ2 + (δ1 − δ2)H � N

for k = 1, 2, . . . , 209. This concludes the proof of (3.3), and hence of Theorem 5.

3.5. Proof of Theorem 2. If we can locate an integer P that is the product of four primes and
for which there exists β < 1 such that |µ̂(k/P )| 6 β for all k ∈ {1, . . . , P − 1}, then we argue
as in the proof of Theorem 3.5 to locate s = s(β, P ) such that

∑
k∈Z/PZ |µ̂(k/P )| 6 21/4, which

will allow us to apply Theorem 7 with γ = 2/3. In order to locate the necessary P , we use the
following lemma.

Lemma 3.6. Let η > 0 and P ∈ Z>2. Assume that µ is a probability measure on Z such that∑
a≡b (mod p)

µ(a) 6 1− η

for all primes p|P and all b ∈ Z. Then, we have that

max
k∈{1,...,P−1}

|µ̂(k/P )| 6 1− 4η/P 2.

Proof. Note that

|µ̂(θ)|2 = Re
(
µ̂(θ)µ̂(θ)

)
= Re

∑
a,b∈Z

µ(a)µ(b)e((a− b)θ) =
∑
a,b∈Z

µ(a)µ(b) cos(2π(a− b)θ).

Consequently,

1− |µ̂(θ)|2 =
∑
a,b∈Z

µ(a)µ(b)(1− cos(2π(a− b)θ)) > 8
∑
a,b∈Z

µ(a)µ(b) · ‖(a− b)θ‖2,

where we used the fact that 1− cos(2πy) = 2 sin2(πy) > 8y2 when |y| 6 1/2.
Now, let β = max{|µ̂(k/P )| : k 6≡ 0 (modP )} and let θ = k0/P with k0 6≡ 0 (modP ) be such

that |µ̂(k0/P )| = β. If k0/P equals m/Q in reduced form, we find that ‖(a− b)θ‖ > 1/Q for all
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a 6≡ b (modQ). As a consequence,

1− β2 >
8

Q2

∑
a,b∈Z

a6≡b (modQ)

µ(a)µ(b) =
8

Q2

∑
16j6Q

tj(1− tj)

with
tj =

∑
a≡j (modQ)

µ(a).

If p is any prime dividingQ, then tj 6
∑

a≡j (mod p) µ(a) 6 1−η by assumption. As a consequence,∑
16j6Q

tj(1− tj) > η
∑

16j6Q

tj = η.

We conclude that

1− β > 1− β2

2
>

4

Q2

∑
16j6Q

tj(1− tj) >
4η

P 2
,

thus completing the proof of the lemma. �

Let us now see how to use the above lemma to complete the proof of Theorem 2. Recall that µ is
a probability measure on Z such that supp(µ) ⊂ [−H,H] and ‖µ‖∞ 6 1− ε. We may assume H
is sufficiently large, since after increasing H the condition suppµ ⊂ [−H,H] certainly continues
to hold, and we then need only adjust the constants C and c′ accordingly.

Now, set x = log(2H + 1) and let P be the set of primes in (x, 3x], so that 4 + x/ log x 6
#P 6 3x/ log x for x large enough, by the Prime Number Theorem. We claim that there are four
primes p1, . . . , p4 in P such P = p1 · · · p4 satisfies the hypothesis of Lemma 3.6 with η = ε · log x

3x
.

To this end, let Q be the set of primes p ∈P for which there is some congruence class bp (mod p)
such that

∑
a≡bp (mod p) µ(a) > 1− η. It suffices to prove that #Q < x/ log x.

Assume, on the contrary, that #Q > x/ log x and consider the integerm =
∏

p∈Q p. Notice that
m > x#Q > ex = 2H + 1 by our assumption on Q. On the other hand, the Chinese Remainder
Theorem implies that there is some b ∈ Z such that b (modm) is the intersection of the residue
classes bp (mod p) with p ∈ Q. Since

∑
a≡bp (mod p) µ(a) > 1− η for each p ∈ Q, the union bound

implies that
∑

a≡b (modm) µ(a) > 1−#Q ·η > 1−ε, where we used that #Q 6 #P 6 3x/ log x.
However, since m > 2H + 1, there is at most one a that lies in the intersection of the support of µ
with the congruence class b (modm). We have thus arrived at a contradiction. This concludes our
proof that #Q 6 x/ log x, and thus that there are four primes p1, . . . , p4 in P such P = p1 · · · p4

satisfies the hypothesis of Lemma 3.6 with η = ε · log x
3x

.
Now, Lemma 3.6 implies that |µ̂(k/P )| 6 1− 4ε · (log x)/(3xP 2) 6 1− ε · (log x)/(38x5) for

all k ∈ Z that are not divisible by P , where we used that P 6 (3x)4. Consequently,∑
k∈Z/PZ

|µ̂(k/P )|s 6 1 + (P − 1) ·
(
1− ε · (log x)/(38x5)

)s
6 21/4

by taking s = d310ε−1x5e � ε−1(logH)5, and assuming that H (and thus x and P ) is large
enough. We may now apply Theorem 7 with γ = 2/3 and the above value of s. The condition
s 6 n1/20000/4 of Theorem 7 is satisified since n1/20000 > C1/20000ε−1(logH)5 > s, if C is taken
sufficiently large (C from the statement of Theorem 2). The condition n > P 4 holds similarly.
This completes the proof of Theorem 2. �
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3.6. Proof of Theorem 3. Throughout, we fix a measure µ on the integers and recall that

α(P ) = max
QR=P
Q>1

max
`∈Z/RZ

(
1√
Q

∑
k∈Z/QZ

|µ̂(k/Q+ `/R)|
)
,

as well as that ‖µ‖2
2 =

∑
a∈Z µ(a)2. We will use the large sieve inequality to locate an integer P

satisfying α(P ) 6 1/2, so that we may apply Theorem 7. To this end, given a real number x > 2
and an integerm > 0, letNm(x) denote the set of integers that are the product ofm distinct primes
from [x/2, x]. For future reference, note that

(3.4) Nm(x) ⊂ [(x/2)m, xm] and #Nm(x) ∼ (x/ log x)m

m!2m

as x→∞, by a simple application of the Prime Number Theorem [22, Theorem 8.1].
With the above notation, we have the following key estimate.

Lemma 3.7. Let x > 2 and H > 1. If µ is supported on [−H,H], then∑
P∈N4(x)

α(P )� (x/ log x)4

(
(x log x)2 +

(H log x

x

)1/2
)
‖µ‖2.

Proof. By the large sieve inequality (see [22, Theorem 25.14]), we have

(3.5)
∑
q6y

∑
a∈(Z/qZ)∗

|µ̂(a/q)|2 � (y2 +H)‖µ‖2
2

uniformly for all y > 1, where, as usual, (Z/qZ)∗ = {a ∈ Z/qZ : gcd(a, q) = 1}.
Let us now see how to use this bound to prove the lemma. We will be assuming throughout

that x is sufficiently large; otherwise, the conclusion of the lemma is trivially true by adjusting the
implied constant.

For brevity, let us write S for the sum in the statement of the lemma. We then have

S �
∑
i+j=4
16i64

x−i/2
∑∑

Q∈Ni(x), R∈Nj(x)
gcd(Q,R)=1

max
`∈Z/RZ

∑
k∈Z/QZ

|µ̂(k/Q+ `/R)|,

where we used that Q � xi when Q ∈ Ni(x). Next, let k1/Q1 and `1/R1 be the fractions k/Q and
`/R, respectively, in reduced form. We then find that

max
`∈Z/RZ

∑
k∈Z/QZ

|µ̂(k/Q+ `/R)| 6
∑
R1|R

∑
Q1|Q

max
`1∈(Z/R1Z)∗

∑
k1∈(Z/Q1Z)∗

|µ̂(k1/Q1 + `1/R1)|.

Given Q1 ∈ Ni1(x) and R1 ∈ Nj1(x) with i1 6 i and j1 6 j, there are� (x/ log x)i−i1 choices
of Q and� (x/ log x)j−j1 choices for R. We thus conclude that

S �
∑
i+j=4
16i64

∑
06i16i

∑
06j16j

(x/ log x)4−i1−j1

xi/2

×
∑∑

Q1∈Ni1 (x), R1∈Nj1 (x)

gcd(Q1,R1)=1

max
`1∈(Z/R1Z)∗

∑
k1∈(Z/Q1Z)∗

|µ̂(k1/Q1 + `1/R1)|.(3.6)
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Using the Cauchy-Schwarz inequality, we find that the sum over Q1 and R1 in (3.6) is

� (x/ log x)(i1+j1)/2

( ∑∑
Q16xi1 , R16xj1
gcd(Q1,R1)=1

max
`1∈(Z/R1Z)∗

( ∑
k1∈(Z/Q1Z)∗

|µ̂(k1/Q1 + `1/R1)|
)2)1/2

We majorize max`1∈(Z/R1Z)∗ by
∑

`1∈(Z/R1Z)∗ , and apply again the Cauchy-Schwarz inequality, this
time to the sum over k1. We conclude that

S �
∑
i+j=4
16i64

∑
06i16i

∑
06j16j

(x/ log x)4−i1−j1

xi/2
· (x/ log x)(i1+j1)/2 · xi1/2

×
( ∑∑
Q16xi1 , R16xj1

(Q1,R1)=1

∑
`1∈(Z/R1Z)∗

∑
k1∈(Z/Q1Z)∗

|µ̂(k1/Q1 + `1/R1)|2
)1/2

.

Making the change of variables q = Q1R1 and using the Chinese Remainder Theorem, we deduce
that

S �
∑
i+j=4
16i64

∑
06i16i

∑
06j16j

x4−(i+j1)/2

(log x)4−(i1+j1)/2

( ∑
q6xi1+j1

∑
a∈(Z/qZ)∗

|µ̂(a/q)|2
)1/2

.

Employing (3.5) with y = xi1+j1 , we arrive at the estimate

S �
∑
i+j=4
16i64

∑
06i16i

∑
06j16j

x4−(i+j1)/2

(log x)4−(i1+j1)/2
· (xi1+j1 +H1/2) · ‖µ‖2.

If x is sufficiently large, then the expression xi1+j1 · x4−(i+j1)/2/(log x)4−(i1+j1)/2 is maximized
when i1 = i, j1 = j, in which case it equals x4 · (x/ log x)2 because we are only considering
pairs (i, j) with i + j = 4. On the other hand, since we are ranging over indices i > 1, i1 ∈ [0, i]
and j > j1 > 0, the expression x4−(i+j1)/2/(log x)4−(i1+j1)/2 is maximized when i1 = i = 1 and
j1 = 0, in which case it equals (x/ log x)7/2. This completes the proof of the lemma. �

We now explain how to complete the proof of Theorem 3. Since #N4(x) � (x/ log x)4,
Lemma 3.7 implies, assuming x is sufficiently large to guarantee that N4(x) is non-empty, that
there is some P ∈ N4(x) with

(3.7) α(P ) 6 c0

(
(x log x)2 + ((H log x)/x)1/2

)
‖µ‖2,

where c0 is an absolute constant (independent of x and µ). We will show that under the hypotheses
of Theorem 3 we can choose x that makes the right-hand side of (3.7) 6 1/2.

First of all, note that

(3.8) 1 =

( ∑
a∈supp(µ)

µ(a)

)2

6 # supp(µ)‖µ‖2
2 6 (2H + 1)‖µ‖2

2 6 3H‖µ‖2
2

by the Cauchy-Schwarz inequality and our assumption that supp(µ) ⊂ [−H,H]. Next, if we write

‖µ‖2 = N−1/2,

then we have N ∈ [1, 3H]. (To motivate this change of variables, note that if µ is the uniform
measure on N , then N = #N .) In addition, condition (b) of Theorem 3 is equivalent to N >
H4/5(logH)2 and n > (H/N)16(logH)32.
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We now see that the right-hand side of (3.7) is 6 1/2 when

x 6
c1N

1/4

logN
and x >

c2H logH

N
,

where c1 and c2 are appropriate absolute constants. There is such a choice of x precisely when
N > c3H

4/5(logH)8/5 for some c3 > 0. This condition holds under the hypotheses of Theorem 3
if H is sufficiently large (in fact, the (logH)2 in Theorem 3 can be improved to c3(logH)8/5). We
then pick the smallest available x, that is to say x = c2(H logH)/N . If H is sufficiently large then
this ensures also that x > 2 and that N4(x) is non-empty, as they should be. We then see that the
number P we constructed is 6 x4 6 c4

2(H/N)4(logH)4. Since n > (H/N)16(logH)32, we find
that n > max{P 4, (logH)3}. As a consequence, an application of Theorem 7 completes the proof
of Theorem 3.

3.7. Proof of Theorem 6. In each of the set-ups of Theorems 1(a) and 3-5, we showed that we
may find an integer P 6 n4 that is the product of four primes and which satisfies α(P ) 6 1 − c
for some fixed c > 0. Hence, Theorem 6 follows readily from Theorem 8.

Finally, in the set-up of Theorem 1(b), we know that our random polynomial is irreducible with
probability > δ. In order to show Theorem 6 in this case, we fix some prime p|N . Thus ∆p = 0
and we appeal to Proposition 2.4 with pProposition 2.4 = p.

Remark 3.3. More generally, assume that all non-leading coefficients of our polynomial are sam-
pled uniformly at random from a step-d arithmetic progression of N elements. From Theorem 3.5,
we know that our random polynomial is irreducible with probability > δ. If there exists at least
one prime p|N and p - d, then we may apply Proposition 2.4 and deduce that the Galois group
contains An with probability > δ − n−c.

Note, however, that the above argument cannot be applied to the set {−1,+1} without some
modification.

PART II. APPROXIMATE EQUIDISTRIBUTION

In this part of the paper, we establish Proposition 2.3. Throughout, P = {p1, . . . , pr} is a set of
primes and P = p1 · · · pr. We also assume that p1 < · · · < pr.

4. THE FOURIER TRANSFORM ON FP [T ]

In order to capture the condition A ≡ C (modD) in the definition of ∆P(n;m), we will use
Fourier inversion over Fp[T ]. We begin by recalling a few basic facts about it.

We let Fp((1/T )) denote the field of Laurent series X(T ) =
∑
−∞<j6n cjT

j , where n ∈ Z and
cj ∈ Fp. We set

res(X) := c−1

and note that res is an additive function from Fp((1/T )) to Fp.
Moving from a single prime to a set of primes, we let

FP((1/T )) =
∏
p∈P

Fp((1/T )) and res(X) = (res(Xp))p∈P .

We then define the additive function ψP : FP((1/T ))→ R/Z by

ψP(X) :=
∑
p∈P

res(Xp)

p
(mod 1).
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(Occasionally we will also use a single prime version, ψp := ψ{p}.) It is well-known and not hard to
check that the functions A 7→ e(res(AB/D)/p) form a complete set of characters for the additive
group of Fp[T ]/DFp[T ]. We used here the customary notation

e(x) := e2πix.

Hence the same holds replacing a single prime p with a set of primes P . In other words, the
functions A 7→ e(ψP(AB/D)) form a complete set of characters, where AB/D denotes the
tuple (ApBp/Dp)p∈P , which is an element of FP((1/T )). The orthogonality of characters then
gives the inversion formula

(4.1)
1

‖D‖P

∑
B (modD)

e
(
ψP(AB/D)

)
= 1A≡0 (modD),

Applying (4.1) to A−C with A random, and then taking expectations gives

PA∈MP (n)

(
A ≡ C (modD)

)
=

1

‖D‖P

∑
B (modD)

e(ψP(−CB/D))EA∈MP (n)

[
e(ψP(AB/D))

]
.(4.2)

The last term above has a concrete formula, as follows:

Lemma 4.1. For every X ∈ FP((1/T )), we have

(4.3) EA∈MP (n)

[
e(ψP(AX))

]
= e(ψP(T nX))

n−1∏
j=0

µ̂j(ψP(T jX)).

Proof. Recall that the measure PMP (n) denotes the induced measure by the tuple A = (Ap)p∈P =

(A (mod p))p∈P when A(T ) = T n +
∑n−1

j=0 ajT
j is sampled according to the measure PM(n). In

particular, the coefficient of T j of Ap equals the reduction of aj modulo p. We thus find that

e(ψP(AX)) = e

(∑
p∈P

res(ApXp)

p

)
= e

(∑
p∈P

n∑
j=0

aj res(T jXp)

p

)

= e

( n∑
j=0

aj
∑
p∈P

res(T jXp)

p

)
=

n∏
j=0

e(ajψP(T jX)).

We now apply expectation to both sides. The nth term is constant and may be taken out, and we get

EA∈MP (n)[e(ψP(AX))] = e(ψP(T nX))
n−1∏
j=0

EA∈M(n)(e(ajψP(T jX)))

= e(ψP(T nX))
n−1∏
j=0

µ̂j(ψP(T jX)),

where the first equality is due to the independence of the coefficients of A. �

It will be convenient to have a notation for the absolute value of the right hand side of (4.3), so
let us define

(4.4) σP(n;X) =
n−1∏
j=0

|µ̂j(ψP(T jX))|.
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With this notation (4.2) and (4.3) give

(4.5)
∣∣∣∣PA∈MP (n)

(
A ≡ C (modD)

)
− 1

‖D‖P

∣∣∣∣ 6 1

‖D‖P

∑
B (modD)

B 6≡0 (modD)

σP(n;B/D).

Selecting C that maximizes the left-hand side of (4.5), and then summing the resulting inequality
over D gives

∆P(n;m) 6
∑
· · ·
∑

deg(Dp)6m,T -Dp
∀p∈P

1

‖D‖P

∑
B (modD)

B 6≡0 (modD)

σP(n;B/D).

(here and below we omit the condition of monicity from the sums for brevity).
Our last reduction before starting the bulk of the proof of Proposition 2.3 is to replace the sum

over B and D with a sum over coprime polynomials. Denote, therefore, Kp = (Bp, Dp), and write
Bp = KpGp andDp = KpHp, whereKp andHp are monic polynomials with deg(Kp)+deg(Hp) 6
m, and (Gp, Hp) = 1. The condition B 6≡ 0 (modD) is equivalent to the existence of p ∈ P with
deg(Hp) > 1, which we may abbreviate as H 6= 1. Moreover, since T - Dp for all p ∈ P , we have
that T - Hp for all p ∈ P . As a consequence,

∆P(n;m) 6
∑
· · ·
∑

deg(Kp)6m
∀p∈P

1

‖K‖P

∑
· · ·
∑

deg(Hp)6m,T -Hp
∀p∈P,H 6=1

1

‖H‖P

∑
G (modH)

(Gp,Hp)=1 ∀p∈P

σP(n;G/H).

Since
∑

deg(Kp)6m 1/‖Kp‖p = m+ 1, we conclude that

(4.6) ∆P(n;m) 6 (m+ 1)r
∑

06`p6m ∀p∈P
maxp∈P `p>1

δP(n; `)

(recall that #P = r), where

(4.7) δP(n; `) :=
1∏

p∈P p
`p

∑
H∈MP (`)
T -Hp ∀p∈P

∑
G (modH)

(Gp,Hp)=1 ∀p∈P

σP(n;G/H).

From (4.6) and (4.7) it follows that the proof of Proposition 2.3 is reduced to proving that

(4.8) δP(n; `)�r n
−2re−n

1/10

uniformly on 0 6 `p 6 γn/s+ n0.88, p ∈ P , with maxp∈P `p > 1.

5. L∞ BOUNDS

We begin our course towards proving (4.8) by establishing a pointwise estimate on σP(n;X).

Lemma 5.1. Let µ0, µ1, . . . , µn−1 be measures on Z, let P be a set of primes whose product is P ,
and let β ∈ [0, 1] be such that

|µ̂j(k/P )| 6 β for all k ∈ Z with P - k, and for all j = 1, 2, . . . , n− 1.

For each p ∈ P , let Gp, Hp ∈ Fp[T ] with T - Hp and (Gp, Hp) = 1. Assume further there is q ∈ P
such that `q := deg(Hq) > 1. Then

σP(n;G/H) 6 βb(n−1)/`qc.
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Proof. Let J ∈ Z>0. If res(T jGq/Hq) = 0 for each j ∈ {J, J + 1, . . . , J + `q − 1}, then we
have res(T JAqGq/Hq) = 0 for any polynomial Aq. So T JGq/Hq must be a polynomial, which
implies that Hq|T JGq. Since T - Hq, we infer that Hq|Gq. But this is impossible if `q > 1 and
(Gq, Hq) = 1.

We have thus proven that any subinterval of Z>0 of length `q contains at least one j such that
res(T jGq/Hq) 6= 0. Hence, any subinterval of {1, . . . , n− 1} of length > `q contains at least one
j such that res(T jG/H) 6= 0. For such a j, we have that

|µ̂j(ψP(T jG/H))| 6 β.

Otherwise, we use the trivial bound

|µ̂j(ψP(T jG/H))| 6 1.

The lemma then follows by the definition of σP(n;G/H) from relation (4.4). �

Clearly, for the above lemma to be useful, we need β to be a bit smaller than 1. We will prove
this by appealing to Lemma 3.6. Indeed, recall that P = {p1, . . . , pr} and P = p1 · · · pr are such
that

∑
k∈Z/pZ |µ̂j(k/p)|s 6

√
p for all p ∈ P and all j = 1, 2, . . . , n − 1. Together with relation

(2.8), this implies that
∑

a≡b (mod p) µ(a) 6 1 − 1/(4s) for all p ∈ P and for all b ∈ Z. Hence,
Lemma 3.6 implies that

|µ̂j(k/P )| 6 1− 1/(sP 2) 6 e−1/(sP 2)

for all k ∈ Z that are not divisible by P , and for all j = 1, 2, . . . , n− 1. We then set

L = max{`p : p ∈ P}
and plug in the above bound into Lemma 5.1 to conclude that

δP(n; `)
(4.7)
6
(∏
p∈P

p`p
)

max
G,H

σP(n;G/H) 6
(∏
p∈P

p`p
)
e−b(n−1)/Lc/(sP 2)

� exp
(
L logP − n/(LsP 2)

)
.

According to the hypotheses of Proposition 2.3, we have P 6 n1/4 and s 6 n1/100. If it so happens
that we also have L 6 (n/ log n)1/2/(s1/2P ), then taking n sufficiently large yields the bound

(5.1) δP(n; `)� exp
( n1/2 logP

s1/2P · (log n)1/2
− (n log n)1/2

s1/2P

)
6 exp

(
− 3(n log n)1/2

4s1/2P

)
� e−n

1/9

.

This establishes a stronger version of (4.8) for these tuples `.
It remains to bound δP(n; `) for those tuples ` with L > (n/ log n)1/2/(s1/2P ). This requires

different arguments that we develop in the next section.

6. L1 BOUNDS

Here, we prove bounds for various averages of σP(n;X) that will allow us to complete the proof
of Proposition 2.3. We begin by discussing a continuous analogue of (4.1).

Let Tp denote the subring of Fp((1/T )) composed of those Laurent seriesX(T ) =
∑

j6−1 cjT
j .

Given any Y ∈ Fp((1/T )), there is a unique way to write it as X + A, where X ∈ Tp and
A ∈ Fp[T ]. If the coefficients of X are c−1, c−2, . . . , we then set

‖Y ‖Tp := psup{j∈Z6−1:cj 6=0}

with the understanding that ‖Y ‖Tp = 0 when X = 0.
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Remark 6.1. Let A,B ∈ Fp[T ] \ {0} such that B - A. We may then uniquely write A = QB + R
with 0 6 deg(R) < deg(B), whence A/B = Q + R/B. In addition, we have R = T deg(R)(r0 +
r1/T + r2/T

2 · · · ) and B = T deg(B)(b0 + b1/T + b2/T
2 + · · · ) for some coefficients bj, rj ∈ Fp

with b0, r0 6= 0. Using the formula 1/(1 − x) = 1 + x + x2 + · · · to invert B in Fp((1/T )), we
conclude that ‖A/B‖Tp = pdeg(R)−deg(B).

Let dXp be the Haar measure on Tp (normalised to have volume 1). We further define TP =∏
p∈P Tp and write dX =

∏
p∈P dXp for the product measure on TP . The continuous analogue

of (4.1) is that ∫
TP
e(ψP(AX)) dX = 1A=0

for A ∈ FP [T ], which follows by the orthogonality of characters.
Next, we show the following simple generalization of [31, Lemma 2].

Lemma 6.1. Consider m functions f0, f1, . . . , fm−1 : R/Z→ C. For any prime p, we have∫
Tp

m−1∏
j=0

fj
(
ψp(T

jX)
)

dX =
1

pm

m−1∏
j=0

( ∑
ξ∈Z/pZ

fj(ξ/p)

)
.

Proof. If we write X =
∑

j6−1 cjT
j , then the function F (X) :=

∏m−1
j=0 fj

(
ψp(T

jX)
)

depends
only on the coefficients c−1, . . . , c−m. In particular, for any B ∈ Fp[T ] of degree < m and any
R ∈ Tp such that ‖R‖Tp < 1/pm, we have

(6.1) F (R +B/Tm) = F (B/Tm).

Since the Haar measure of the set {R ∈ Tp : ‖R‖Tp < 1/pm} is 1/pm, and each X ∈ Tp has a
unique representation of the form R +B/Tm with B and R as above, we infer that∫

Tp
F (X) dX =

1

pm

∑
deg(B)<m

F (B/Tm) =
1

pm

∑
deg(B)<m

m−1∏
j=0

fj(ψp(T
j−mB)).

If we write B(T ) = b0 + b1T + · · ·+ bm−1T
m−1, then res(T j−mB) = bm−1−j . Hence,∫

Tp
F (X) dX =

1

pm

∑
· · ·
∑

b0,b1,...,bm−1∈Fp

m−1∏
j=0

fj(bm−1−j/p),

which completes the proof of the lemma. �

Next, we give an inequality of large sieve type in Fp[T ] that generalizes [31, Lemma 4].

Lemma 6.2. Consider m functions f0, f1, . . . , fm−1 : R/Z→ R>0. For all ` ∈ Z>m/2, we have

∑
H∈Mp(`)

∑
G (modH)
(G,H)=1

m−1∏
j=0

fj
(
ψp(T

jG/H)
)
6 p2`−m

m−1∏
j=0

( ∑
ξ∈Z/pZ

fj(ξ/p)

)
.

Proof. As in the proof of Lemma 6.1, let F (X) =
∏m−1

j=0 fj
(
ψp(T

jX)
)

for X ∈ Fp((1/T )). In
addition, consider the p-adic ball B(X) := {Y ∈ Tp : ‖Y −X‖Tp < 1/p2`}.
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Arguing as in (6.1) and using our assumption that ` > m/2, we find that F (Y ) = F (X) for all
Y ∈ B(X). Consequently,∑

H∈Mp(`)

∑
G (modH)
(G,H)=1

F (G/H) = p2`
∑

H∈Mp(`)

∑
G (modH)
(G,H)=1

∫
B(G/H)

F (Y ) dY.

The balls B(G/H) with deg(G) < deg(H) = ` are disjoint, because if G/H and G′/H ′ are two
distinct such Farey fractions, then ‖G/H − G′/H ′‖Tp = ‖(GH ′ − G′H)/HH ′‖Tp > 1/p2` by
Remark 6.1. Since F > 0 by our assumption that each fj takes values in R>0, we conclude that∑

H∈Mp(`)

∑
G (modH)
(G,H)=1

F (G/H) 6 p2`

∫
Tp
F (Y ) dY.

We evaluate the right-hand side using Lemma 6.1 to complete the proof. �

After applying Hölder’s inequality as per [5] to shorten the product in the definition of σP(n;X),
we shall employ Lemma 6.2 in an iterative fashion to bound δP(n; `) (recall its definition, (4.7)),
applying it to one prime of the set P at a time.

Lemma 6.3. Suppose there are parameters s ∈ N, α > 0, γ > 1/2, and a finite set of primes P
with P =

∏
p∈P p such that ∑

k∈Z/QZ

|µ̂j(k/Q+ `/R)|s 6 α ·Q1−γ

for all j = 1, 2, . . . , n − 1 and all Q,R, ` ∈ Z with QR = P and Q > 1. If `p ∈ Z>0 for each
p ∈ P , and we set L = max{`p : p ∈ P} and m = b(n− 1)/sc, then

δP(n; `) 6 Pmax{0,L−γm}αmin{2L,m}.

Proof. First, we use the trivial bound |µ̂j| 6 1 to reduce the product over µ̂ from 0, . . . , n − 1 to
1, . . . , sm (this, of course, removes very few terms, no more than s). Namely, we write

δP(n; `) 6
1∏

p∈P p
`p

∑
H∈MP (`)
T -Hp ∀p∈P

∑
G (modH)

(Gp,Hp)=1 ∀p∈P

∏
16j6sm

|µ̂j(ψP(T jG/H))|.

We then apply Hölder’s inequality to deduce that

δP(n; `) 6
1∏

p∈P p
`p

s−1∏
t=0

( ∑
H∈MP (`)
T -Hp ∀p∈P

∑
G (modH)

(Gp,Hp)=1 ∀p∈P

∏
tm<j6(t+1)m

|µ̂j(ψP(T jG/H))|s
)1/s

.

If we write j = tm+ 1 + j′ with 0 6 j′ < m, then T jGp/Hp = T j
′ · (T tm+1Gp/Hp). Moreover, if

T - Hp and Gp runs through all reduced residue classes mod Hp, then T tm+1Gp also runs through
all reduced residue classes mod Hp. We thus conclude that

(6.2) δP(n; `) 6
1∏

p∈P p
`p

s−1∏
t=0

( ∑
H∈MP (`)

∑
G (modH)

(Gp,Hp)=1 ∀p∈P

∏
06j<m

|µ̂tm+1+j(ψP(T jG/H))|s
)1/s

,

where we dropped the condition that T - Hp on the right-hand side because we no longer need it.
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Let us now set some notation. Given ϕ ∈ R, t ∈ {0, 1, . . . , s − 1}, j ∈ {0, 1, . . . ,m − 1} and
Q ⊆ P , we let

ft,j(ϕ;Q) :=
∑
· · ·
∑

ap∈Z/pZ ∀p∈Q

∣∣∣µ̂tm+1+j

(
ϕ+

∑
p∈Q

ap
p

)∣∣∣s.
Using the Chinese Remainder Theorem and our assumption on α and γ, we find that

(6.3) sup
ϕ:Pϕ∈Z

ft,j(ϕ;Q) 6 αQ1−γ whenever Q 6= ∅,

where Q =
∏

p∈Q p. In addition, we have that

(6.4)
∑

a∈Z/pZ

ft,j(ϕ+ a/p;Q) = ft,j(ϕ;Q∪ {p}) for all p ∈ P rQ.

Order P = {p1, . . . , pr} according to the size of the `p’s, i.e. assume that `p1 6 · · · 6 `pr , and set

Li = `pi and L′i =

{
0 if i = 0,

min{Li,m/2} if 1 6 i 6 r.

Finally, let Qi = {pi+1, . . . , pr},Ri = {p1, . . . , pi}, `i = (`p1 , . . . , `pi) and

Ft,i =
∑

H∈MRi (`i)

∑
G (modH)

(Gp,Hp)=1 ∀p∈Ri

2L′i−1∏
j=0

ft,j
(
ψRi(T

jG/H);Qi
)

and let Ft,0 = 1.
For all t = 0, 1, . . . , s− 1 and all i = 1, . . . , r, we claim that

(6.5) Ft,i 6 p
2Li−2L′i
i α2L′i−2L′i−1

(∏
j>i

p
2(1−γ)(L′i−L′i−1)

j

)
Ft,i−1.

Proof of (6.5). For brevity, we let q = pi and note that Qi−1 = Qi ∪ {q}, as well as that Ri−1 =
Rir {q}. We fix an arbitrary choice of ϕ1, ϕ2, · · · ∈ R and apply Lemma 6.2 with fLemma 6.2

j (x) =

ft,j(ϕj + x;Qi), pLemma 6.2 = q, mLemma 6.2 = 2L′i and `Lemma 6.2 = `q = Li. We get that∑
Hq∈Mq(`q)

∑
Gq (modHq)
(Gq ,Hq)=1

∏
06j<2L′i

ft,j
(
ϕj + ψq(T

jGq/Hq);Qi
)
6 q2Li−2L′i

∏
06j<2L′i

ft,j
(
ϕj;Qi−1

)
.

If Pϕj ∈ Z for all j, and we use the bound (6.3) for 2L′i−1 6 j < 2L′i, we conclude that∑
Hq∈Mq(`q)

∑
Gq (modHq)
(Gq ,Hq)=1

∏
06j<2L′i

ft,j
(
ϕj + ψq(T

jGq/Hq);Qi
)

6 q2Li−2L′iα2L′i−2L′i−1

(∏
j>i

p
2(1−γ)(L′i−L′i−1)

j

) ∏
06j<2L′i−1

ft,j
(
ϕj;Qi−1

)
.

(6.6)

We apply (6.6) with ϕj = ψRi−1
(T jG′/H ′), where H ′ = (Hp)p∈Ri−1

runs over all tuples in
MRi−1

(`i−1) and G′ = (Gp)p∈Ri−1
runs over all tuples in FRi−1

[T ] such that deg(Gp) < deg(Hp)
and (Gp, Hp) = 1 for each p ∈ Ri−1. Summing the resulting inequalities completes the proof of
(6.5). �
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Let us now see how to use (6.5) to complete the proof of the lemma. Note that when i = r, we
have Qr = ∅, and hence fj(ϕ;Qr) = |µ̂j(ϕ)|. Rewriting (6.2) in the language of Ft,i (again using
|µ̂j| 6 1) gives

δP(n; `) 6
(F0,r · · ·Fs−1,r)

1/s∏r
i=1 p

Li
i

.

Since we also have that Ft,0 = 1 for all t, applying (6.5) in an iterative fashion yields that

δP(n; `) 6

∏r
i=1

(
p

2Li−2L′i
i α2L′i−2L′i−1

)∏r
i=1 p

Li
i

r∏
i=1

r∏
j=i

p
2(1−γ)(L′i−L′i−1)

j = α2L′r

r∏
i=1

p
Li−2L′i+2(1−γ)L′i
i .

The exponent of pi is Li − 2γL′i = max{(1 − 2γ)Li, Li − γm} 6 max{0, Lr − γm} for all
i = 1, . . . , r, where we used our assumption that γ > 1/2. This completes the proof. �

6.1. Proof of Proposition 2.3. Recall that it suffices to prove (4.8). We have already proven this
in (5.1) when L := max{`p : p ∈ P} 6 (n/ log n)1/2/(s1/2P ). Next, we consider the case when

(n/ log n)1/2/(s1/2P ) 6 L 6 γ b(n− 1)/sc .

The hypotheses of Proposition 2.3 allow us to apply Lemma 6.3 with α = 1 − n−1/10. Denoting
m = b(n− 1)/sc we get

δP(n; `) 6 Pmax{0,L−γm}αmin{2L,m}.

Our restriction L 6 γm gives max{0, L − γm} = 0 and min{2L,m} > L (recall that γ < 1, by
Remark 2.1) so

δP(n; `) 6 (1− n−1/10)L 6 exp
(
− (n/ log n)1/2/(n1/10s1/2P )

)
Since P 6 n1/4 and s 6 n1/100, (4.8) follows in this case.

Finally, let us consider the case when γm 6 L 6 γn/s+n0.88. We then haveL−γm 6 2+n0.88.
Hence, Lemma 6.3 and our assumptions that P 6 n1/4 and s 6 n1/100 imply that

δP(n; `) 6 P 2+n0.88

(1− n−1/10)m 6 exp
(
n0.88 log n−m/n1/10

)
� exp

(
− n0.89/2

)
.

This completes the proof of (4.8) in this last case too. �

PART III. IRREDUCIBILITY

7. RULING OUT FACTORS OF SMALL DEGREE

In this section, we establish Proposition 2.1 by adapting an argument due to Konyagin [20].
Noticing that condition (b) is only assumed for the measures µ1, . . . µn−1, we may replace µ0 by
the conditional measure µ0( · |a0 6= 0) without loss of generality. Throughout, we set

H =
⌊
exp(n1/3)

⌋
and recall that supp(µj) ⊆ [−H,H] for all j. In particular, all the coefficients aj of A(T ) lie in
[−H,H], and we also have a0 6= 0. Under these conditions, we have:

Claim 7.1. Any root z of A must satisfy 1/(H + 1) < |z| < H + 1.

Proof. Indeed, if |z| > H+1, then the highest term zn dominates all the others and the sum cannot
be zero. On the other hand, if |z| 6 1

H+1
, then the lowest term a0 dominates all others. �
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A corollary of Claim 7.1 is that if

D|A, D irreducible, D(T ) = d0 + d1T + · · ·+ dm−1T
m−1 + Tm,

then D(T ) 6= T and

(7.1) |dj| 6
(
m

j

)
(H + 1)m−j 6 mj(H + 1)m−j 6 (H + 1)m,

since m 6 n 6 H (see also [17]). Let D(m0) denote the set of monic irreducible polynomials
D(T ) 6= T that have degree 6 m0 and all of whose coefficients satisfy (7.1). We infer that

(7.2) PM(n)

(
A(T ) has an irreducible factor
of degree 6 m0, a0 6= 0

)
6

∑
D∈D(m0)

PA∈M(n)(D|A).

Our next task is to estimate what is the probability that a given irreducible polynomial D ∈
D(m0) divides a random polynomial A. Since D is irreducible, this is equivalent to knowing that
A(z) = 0 for some z that is a root of D. The following lemma controls the probability of this
happening.

Lemma 7.2. Let µ0, µ1, . . . , µn−1 be probability measures such that ‖µj‖∞ 6 1 − ε for j =
1, 2, . . . , n− 1. For each given z ∈ Cr {0}, we have that

PA∈M(n)(A(z) = 0)� 1√
εn
,

where the implied constant is absolute.

Proof. Consider the independent random variables Xj = ajz
j , where aj is distributed according

to µj and note that the probability that A(z) = 0 equals the probability that

X0 +X1 + · · ·+Xn−1 = −zn.
Define the concentration function of a real-valued random variable X by

Q(X; δ) := sup
u∈R

P(|X − u| < δ).

The Kolmogorov-Rogozin inequality [19, 34, 33] implies that there is an absolute constant C such
that

Q(X0 +X1 + · · ·+Xn−1; δ) 6 C ·
( n−1∑

j=0

(1−Q(Xj; δ))

)−1/2

.

When δ = min{|z|, 1}n/2, we have that

Q(Xj; δ) = sup
u∈R

P
(
|aj − u| <

min{|z|, 1}n

2|z|j
)
6 sup

u∈R
P(|aj − u| < 1/2) = ‖µj‖∞ 6 1− ε

for all j ∈ {1, . . . , n− 1}. Hence, we conclude that

P(X0 +X1 + · · ·+Xn−1 = −zn) 6 Q(X0 +X1 + · · ·+Xn−1; δ) 6
C√

ε(n− 1)
,

as needed. �

The rate of decay we obtain for each fixed z in Lemma 7.2 is not strong enough to allow for
a proof of Proposition 2.1. We will use it to rule out cyclotomic divisors of A, and argue differ-
ently for non-cyclotomic divisors. We denote by Φd the dth cyclotomic polynomial. Recall that
deg(Φd) = ϕ(d), the Euler totient function.
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Lemma 7.3. Assume the set-up of Lemma 7.2. We then have that∑
ϕ(d)6m0

PA∈M(n)(Φd|A)� m0√
εn

∀m0 ∈ N.

Proof. Since Φd(x) =
∏

16j6d, (j,d)=1(x−e(j/d)) is irreducible, Φd|A if, and only if, A(e(1/d)) =

0. Hence, Lemma 7.2 implies that PA∈M(n)(Φd|A) � 1/
√
εn. The lemma is finished using the

fact that the number of d ∈ N with ϕ(d) 6 m0 is O(m0), see e.g. [37]. �

It remains to handle non-cyclotomic irreducible factors D of A of degree m 6 m0. Since A
is monic, D must also be monic. In general, given a polynomial f(T ) = c(T − w1) · · · (T −
wm) with c ∈ C \ {0} and w1, . . . , wm ∈ C, we define its Mahler measure to be M(f) :=
|c|
∏m

j=1 max{|wj|, 1}. If f ∈ Z[X], then |c| > 1, and thus

(7.3) M(f) >
m∏
j=1

max{|wj|, 1}.

Let z1, . . . , zm denote the roots of D, which are all distinct by its irreducibility. Since D|A and
we have conditioned on a0 6= 0, we must have that zj 6= 0 for all j. Since we have assumed that
D is not a cyclotomic polynomial, we know from a result of Dobrowolski [8] that there are some
absolute constants c, C > 1 such that

M(D) > exp(1/L(m)), where L(m) =
1

2

(
logm

log logm

)3

for all m > C,

and L(m) = c for all m ∈ [1, C].
In the same paper [8, Lemma 3], Dobrowolski also proved that, given an algebraic number α of

degree d, there are 6 log d/ log 2 prime numbers p such that the algebraic degree of αp is < d. We
apply this result with α = z1, whose degree is m. In particular, by the Prime Number Theorem, if
n is sufficiently large, then there is a prime number p such that

L(m) log(2Hn) < p 6 2L(m) log(2Hn)

and for which zp1 has algebraic degree m. We deduce that the numbers zp1 , . . . , z
p
m are distinct (this

is because the list zp1 , . . . , z
p
m contains all possible conjugates of zp1 , and the number of conjugates

of zp1 equals its degree, which is m here by our choice of p). We let p = pD be the smallest such
prime, which we consider fixed for the rest of this section.

Claim 7.4. Let D and p be as above. Given integer coefficients (cj)06j<n, p-j , there is at most one
polynomial A(T ) = a0 + a1T + · · · + an−1T

n−1 + T n such that D|A, |aj| 6 H for all j, and
aj = cj for all j 6≡ 0 (mod p).

Proof. Assume, on the contrary, that there were two such polynomials, say A and B. Their differ-
ence A−B is a non-zero polynomial of the form

A(T )−B(T ) =
∑

06j<n/p

gjT
pj, where |gj| 6 2H.

In addition, we know that D|A−B, whence zpi is a root of the polynomial

G(T ) =
∑

06j<n/p

gjT
j

for all i.
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Let λ ∈ Z \ {0} be the leading coefficient of G, and let us write G = λG̃ so that G̃ is monic.
Since the numbers zp1 , . . . , z

p
m are distinct by our choice of p, by (7.3), we infer that

M(G̃) >
m∏
i=1

max{1, |zpi |} = M(D)p > exp(p/L(m)) > 2Hn.

However, by [20, relation (1.1)], we have

M(G̃) 6
∑

06j<n/p

|gj/λ| 6 2Hn,

a contradiction. This proves Claim 7.4. �

We may now complete the proof of Proposition 2.1. Let D and p be as above, with m 6 m0 :=
bn1/10c. Claim 7.4 implies that

PA∈M(n)(D|A, aj = cj ∀j 6≡ 0 (mod p)) 6 max
16j<n

‖µj‖b(n−1)/pc
∞

∏
06j<n

j 6≡0 (mod p)

µj(cj),

since there is at most one possibility for the polynomial A. Summing over all possibilities for cj ,
we conclude that

PA∈M(n)(D|A) 6 max
16j<n

‖µj‖b(n−1)/pc
∞ 6 (1− 1/n1/10)b(n−1)/pc � e−n

0.55

,

where we used that p = pD is a prime 6 2L(m) log(2Hn)� n1/3 log3 n for m 6 n1/10. Together
with (7.2) and Lemma 7.3, this implies that

PM(n)

(
A(T ) has an irreducible factor
of degree 6 n1/10, a0 6= 0

)
� #D(n1/10) · e−n0.55

+ n−7/20.

The set D(n1/10) has 6 2(H + 2)n
1/5 elements. To see this, recall the notation m0 = bn1/10c.

We then have two choices for the coefficient of Tm0 (either 0 or 1), and 6 2(H + 1)m0 + 1 for
the coefficient of Tm for each m < m0 by (7.1). Since H 6 exp(n1/3) here, we deduce that
#D(n1/10)� exp(n0.54). This completes the proof of Proposition 2.1.

8. AN UPPER BOUND SIEVE

Our next task is to prove Proposition 2.2. But first we develop a bit of sieve theory for Fp[T ].
Given the direct analogy between Z and Fp[T ], it should not come as a surprise that the classical
sieve methods over Z can be carried over to Fp[T ]. For example, Selberg’s sieve has been ported
to the polynomial setting by Webb [39], though he only considers the case when the underlying
measure is the uniform counting measure on Fp[T ]. Here, we need a more general version of his
work, adapted to a general probability measure PMP (n). Developing the full strength of Selberg’s
sieve is a bit tedious and would actually cause some technical problems in the next section5, so we
opt for Brun’s pure sieve [15, Section 6.1], which has the added advantage of being simpler and
more intuitive.

5In the analogous result to Lemma 8.2 in the set-up of the Selberg sieve, the summands of the error term would be
weighed with

∏
p∈P 3ω(Gp). In turn, this would require a more general version of Proposition 2.3 that would introduce

various unpleasant technicalities.
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To state our results, we develop some notation. LetP denote a fixed finite set of primes. For each
p ∈ P , we consider a set of monic irreducible polynomials Ip ⊂ Fp[T ] and we let I = (Ip)p∈P . If
A ∈ FP [T ], we write

(Ap, Ip) :=
∏

Ip∈Ip, Ip|Ap

Ip and (A,I) := ((Ap, Ip))p∈P .

We also write AB := (ApBp)p∈P , A|B if Ap|Bp for all p, ‖A‖P =
∏
pdeg(Ap) and

A|I ⇐⇒ Ap|
∏
Ip∈Ip

Ip for all p ∈ P .

Remark. If A|I , then Ap must be square-free for every p ∈ P .

Throughout this and the next section, we will make numerous appeals to the following result,
which we record for easy reference.

Proposition 8.1 (Prime Polynomial Theorem [35, Proposition 2.1]). If k ∈ N and πp(k) denotes
the number irreducible elements ofMp(k), then we have

pk

k
− 2pk/2

k
6 πp(k) 6

pk

k
.

In particular,
∑

deg I=k
1
‖I‖ = 1

pk
πp(k) 6 1/k.

Let us now state and prove our main sieve estimate.

Lemma 8.2. Let P be a finite set of r primes, and let PMP (n) be a probability measure on the
set MP(n). For each p ∈ P , we consider a monic polynomial Dp ∈ Fp[T ] and a set of monic
irreducible polynomials Ip in Fp[T ] that have all degree 6 `p for some `p > 11. If 1 is the vector
all of whose coordinates are 1, then

PA∈MP (n)

(
D|A, (A/D,I) = 1

)
6

2r

‖D‖P

∏
p∈P

∏
Ip∈Ip

(
1− 1

‖Ip‖p

)

+
∑
· · ·
∑

ω(Gp)66 log `p
Gp|Ip ∀p∈P

∣∣∣∣PA∈MP (n)(DG|A)− 1

‖DG‖P

∣∣∣∣,
where ω(Gp) denotes the number of monic irreducible factors of Gp. In particular, we have
deg(Gp) 6 6`p log `p for all Gp in the last sum.

Proof. We will perform inclusion-exclusion to capture the condition that (Ap/Dp, Ip) = 1 for all
p ∈ P . Let B be a square-free polynomial. Then the inclusion-exclusion principle for the events
J |B, J irreducible, shows that

1B=1 = 1−
∑
J1

1J1|B +
∑
J1,J2

1J1J2|B − · · · ,

where all sums are over irreducible polynomials Ji. We write this more compactly as

(8.1) 1B=1 =
∑
G|B

(−1)ω(G).
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Stopping the inclusion-exclusion at even or odd steps leads to the following inequalities (some-
times known as Bonferroni inequalities):

(8.2)
∑

G|B,ω(G)62v−1

(−1)ω(G) 6 1B=1 6
∑

G|B,ω(G)62v

(−1)ω(G) ∀v ∈ N.

For each p ∈ P , we select a natural number vp (to be determined shortly), and we apply the right-
hand side of (8.2) with B = (Ap/Dp, I) and v = vp. We then multiply the resulting inequalities
for all p ∈ P (which we are allowed to do, as both sides are non-negative) to get

(8.3) 1(A/D,I)=1 6
∑
· · ·
∑

G|(A/D,I)
ω(Gp)62vp ∀p∈P

(−1)ω(G)

Consequently,

PA∈MP (n)

(
D|A, (A/D,I) = 1

) (8.3)
6 EA∈MP (n)

[
1D|A

∑
· · ·
∑

G|(A/D,I)
ω(Gp)62vp ∀p∈P

(−1)ω(G)

]

=
∑
· · ·
∑

ω(Gp)62vp ∀p∈P
G|I

(−1)ω(G) · PA∈MP (n)[DG|A]

6
∑
· · ·
∑

ω(Gp)62vp ∀p∈P
G|I

(−1)ω(G)

‖DG‖P
+
∑
· · ·
∑

ω(Gp)62vp ∀p∈P
G|I

∣∣∣∣PA∈MP (n)(DG|A)− 1

‖DG‖P

∣∣∣∣.(8.4)

Let us fix at this point vp = d3/2 + 2 log `pe. Note that vp 6 3 log `p, since we have assumed
that `p > 11 for all p ∈ P . With this choice of vp, the second term in (8.4) is bounded by the
corresponding term in the equation in the statement of the lemma.

Next, we examine the main term that factors as

1

‖D‖P

∏
p∈P

( ∑
ω(Gp)62vp
Gp|Ip

(−1)ω(Gp)

‖Gp‖p

)
.

If we remove the condition ω(Gp) 6 2vp, we have the factorization∑
Gp|Ip

(−1)ω(Gp)

‖Gp‖p
=
∏
Ip∈Ip

(
1− 1

‖Ip‖p

)
.

We now claim that

(8.5)
∑

ω(Gp)62vp+1
Gp|Ip

(−1)ω(Gp)

‖Gp‖p
6
∑
Gp|Ip

(−1)ω(Gp)

‖Gp‖p
6

∑
ω(Gp)62vp
Gp|Ip

(−1)ω(Gp)

‖Gp‖p
.

To see (8.5), let N be some number. Apply (8.1)-(8.2) to (Bp, Ip) for all Bp ∈ Mp(N) and sum
the resulting inequalities. We get (showing only the upper bound for clarity)∑

Bp∈Mp(N)

∑
Gp|(Bp,Ip)

(−1)ω(Gp) 6
∑

Bp∈Mp(N)

∑
Gp|(Bp,Ip)
ω(Gp)62vp

(−1)ω(Gp).



IRREDUCIBILITY OF RANDOM POLYNOMIALS: GENERAL MEASURES 41

If N >
∑

Ip∈Ip deg(Ip), the left hand side equals pN
∑

Gp|Ip(−1)ω(Gp)/‖Gp‖p and the right hand
side equals pN

∑
Gp|Ip, ω(Gp)62vp

(−1)ω(Gp)/‖Gp‖p. The lower bound of (8.5) follows similarly.
Now, using (8.5), we find that

(8.6) 0 <
∑

ω(Gp)62vp
Gp|Ip

(−1)ω(Gp)

‖Gp‖p
6
∏
Ip∈Ip

(
1− 1

‖Ip‖p

)
+

∑
ω(Gp)=2vp+1

Gp|Ip

1

‖Gp‖p
.

Finally, observe that

(8.7)
∑

ω(Gp)=2vp+1
Gp|Ip

1

‖Gp‖p
6

1

(2vp + 1)!

( ∑
Ip∈Ip

1

‖Ip‖p

)2vp+1

6

(
e

2vp + 1

∑
Ip∈Ip

1

‖Ip‖p

)2vp+1

,

where we used the inequality n! > (n/e)n. Since all polynomials of Ip have degree 6 `p, Propo-
sition 8.1 implies that

∑
Ip∈Ip

1

‖Ip‖p
6

`p∑
d=1

#{I ∈Mp(d) : I irreducible}
pd

6
`p∑
d=1

1

d
6 1 + log `p.

Recall that we defined vp = d3/2 + 2 log `pe. Thus we conclude that 2vp + 1 > 4
∑

Ip∈Ip 1/‖Ip‖p.
Plugging this inequality into (8.7) gives

∑
ω(Gp)=2vp+1

Gp|Ip

1

‖Gp‖p
6 (e/4)4

∑
Ip∈Ip 1/‖Ip‖p =

∏
Ip∈Ip

(e/4)4/‖Ip‖p 6
∏
Ip∈Ip

(
1− 1

‖Ip‖p

)
,

since (e/4)4x 6 1− x for all x ∈ [0, 1/2]. Inserting this last inequality into (8.6) gives

0 <
∑

ω(Gp)62vp
Gp|Ip

(−1)ω(Gp)

‖Gp‖p
6 2

∏
Ip∈Ip

(
1− 1

‖Ip‖p

)
.

Putting together the above inequalities completes the proof of the lemma. �

We conclude this section with a simple but useful estimate for the product of the statement of
Lemma 8.2.

Lemma 8.3. Let I ⊂ Fp[T ] denote the set of monic irreducible polynomials different from T and
of degree 6 m. Then ∏

I∈I

(
1− 1

‖I‖p

)
6

2

m+ 1
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Proof. With I denoting a generic monic irreducible element of Fp[T ], we have∏
I∈I

(
1− 1

‖I‖p

)−1

=

(
1− 1

p

) ∏
deg(I)6m

(
1− 1

‖I‖p

)−1

=
p− 1

p

∑
A monic

I|A ⇒ deg(I)6m

1

‖A‖p

>
p− 1

p

∑
06i6m

#{A ∈Mp(i)}
pi

>
1

2
· (m+ 1),

since #{A ∈Mp(i)} = pi for all i. This complete the proof. �

9. ANATOMY OF POLYNOMIALS

We conclude Part III of the paper with the proof of Proposition 2.2. Our argument relies on an
analysis of the multiplicative structure of the reductions of a “random” element ofMP(n). First,
we introduce some terminology.

We write Ip for a generic monic irreducible polynomial over Fp. Moreover, we let

τ(Ap) = #{Dp ∈ Fp[T ] monic : Dp|Ap}

for all Ap ∈ Fp[T ] r {0}. Note that

(9.1) τ(Ap) > 2ω(Ap),

with equality if Ap is square-free.
The functions log τ and ω are examples of additive functions. In general, a function f : Fp[T ] r
{0} → C is called additive if f(AB) = f(A) + f(B) whenever A and B are coprime elements of
Fp[T ] r {0}.

Finally, given an integer m > 0, note that there is a unique way to decompose a monic polyno-
mial Ap as

(9.2) Ap = AS(m)
p · AR(m)

p , where

{
Ip|AS(m)

p ⇒ deg(Ip) 6 m and Ip 6= T,

Ip|AR(m)
p ⇒ deg(Ip) > m or Ip = T,

and both polynomials AS(m)
p and AR(m)

p are monic. We call AS(m)
p the m-smooth part of Ap, and

we call AR(m)
p its m-rough part6.

The next lemma shows that the m-smooth part of most polynomials is not too large.

Lemma 9.1. Fix C > 1, and let p be a prime, n ∈ Z>3, m ∈ [4C, n] ∩ Z and u > 2. For any
choice of probability measures µ0, µ1, . . . , µn−1 on Z, we have that

PAp∈M(n)

(
deg(AS(m)

p ) > um
)
6 OC

(
m/eCu

)
+ ∆p(n;um).

Proof. If deg(A
S(m)
p ) > um, then Ap has an m-smooth divisor Dp such that

(9.3) (u− 1)m < deg(Dp) 6 um,

6Normally, we would allow the irreducible factor T in the AS(m)
p , while forbidding it from A

R(m)
p . Here, we

modify the usual notions to accommodate the fact that Proposition 2.3 involves moduli that are coprime to T .
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Indeed, among all divisors of AS(m)
p of degree 6 um, let Dp be one of maximal degree. Since

deg(A
S(m)
p ) > um, there must exist at least one irreducible Ip dividing AS(m)

p /Dp. By the max-
imality of the degree of Dp, we find that deg(IpDp) > um. On the other hand, deg(Ip) 6 m

because Ip|AS(m)
p . Hence, Dp satisfies (9.3) as needed.

By the above discussion and by the definition of ∆P(n;um) (see (2.6)), we have

PAp∈Mp(n)

(
deg(AS(m)

p ) > um
)
6

∑
Dp m-smooth

(u−1)m<deg(Dp)6um

PAp∈Mp(n)(Dp|Ap)

6
∑

Dp m-smooth
(u−1)m<deg(Dp)6um

1

‖Dp‖p
+ ∆P(n;um).(9.4)

To control the main term, we employ Rankin’s trick (Chernoff’s bound): we have that

∑
Dp m-smooth

deg(Dp)>(u−1)m

1

‖Dp‖p
=

∑
Dp m-smooth

deg(Dp)>(u−1)m

eC deg(Dp)/m · e−C deg(Dp)/m

‖Dp‖p

6
1

eC(u−1)

∑
Dp m-smooth

eC deg(Dp)/m

pdeg(Dp)

=
1

eC(u−1)

m∏
j=1

(
1− eCj/m

pj

)−πp(j)

,

where πp(j) is the number of monic irreducible polynomials of Fp[T ] of degree j. Since m > 4C,
we have eC/m 6 e1/4 < 21/2 6 p1/2. Together with Proposition 8.1, this implies that

∑
Dp m-smooth

deg(Dp)>(u−1)m

1

‖Dp‖p
6

1

eC(u−1)
exp

{ m∑
j=1

(
eCj/m

j
+O

(e2Cj/m

jpj

))}

� 1

eC(u−1)
exp

{ m∑
j=1

eCj/m

j

}
.

Using the fact that eCj/m = 1 + OC(j/m) for j 6 m, we conclude that the sum over j is logm+
OC(1). This proves that the first term of (9.4) is �C m/eCu, thus completing the proof of the
lemma. �

The next lemma shows that the distribution of certain additive functions is concentrated around
its mean value. In its statement, we write I for a generic monic irreducible polynomial over Fp.

Lemma 9.2. Fix θ ∈ (0, 1) and C1, C2 > 3. Consider a prime p and an additive function
f : Fp[T ] r {0} → R>0 such that:

(i) f(I) ∈ {0, 1} for all monic irreducible polynomials I ∈ Fp[T ];
(ii) 0 6 f(Iν) 6 C1 log ν for all monic irreducible polynomials I ∈ Fp[T ] and all ν ∈ Z>2.
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Let n ∈ N and m ∈ [1, 2θn/ log n] ∩ Z, and set

Lf (m) =
∑

deg(I)6m
f(I)=1

I irreducible

1

‖I‖p
.

Then, for any choice of probability measures µ0, . . . , µn−1 on Z, the following hold:
(a) Uniformly for 0 6 t 6 1, we have

PA∈M(n)

(
f(AS(m)

p ) 6 tLf (m)
)
� e−(t log t−t+1)Lf (m) + n8∆p(n; θn)

with the convention that 0 log 0 = 0.
(b) Uniformly for 1 6 t 6 C2, we have

PA∈M(n)

(
f(AS(m)

p ) > tLf (m)
)
�C1,C2 e

−(t log t−t+1)Lf (m) + nmax{7,t+5}∆p(n; θn).

Remark. For the purposes of Proposition 2.2, we only use the lemma for two additive functions:
ω and log τ

log 2
(the division by log 2 is in order to satisfy the condition f(I) ∈ {0, 1}). The proof of

Proposition 2.4 in Part IV will necessitate more general choices of f .

Proof. We first prove a special case of the lemma:

Proof of part (b) when f = ω and t > 2. We may assume that m is sufficiently large (depending
on C1 and C2) as for m small we also have Lω(m) small and the bounds for the probabilities may
be made larger than 1 by choosing the constants implicit in the� signs sufficiently large. Notice
that this also means that n is sufficiently large (depending on C1, C2 and θ), as otherwise there is
no m both sufficiently large and satisfying the requirement m 6 2θn/ log n.

For Lω(m) we have the estimate

(9.5) Lω(m) =
∑

deg(I)6m
I irreducible

1/‖I‖p = logm+O(1)

by Proposition 8.1. Hence we need to show

PA∈M(n)

(
ω(AS(m)

p ) > tLω(m)
)
�C2 m

−(t log t−t+1) + nmax{7,t+5}∆p(n; θn).

We apply Lemma 9.1 with uLemma 9.1 = (θn)/(2m) > 1
4

logm and CLemma 9.1 = 4C2 logC2 to find
that the probability that deg(A

S(m)
p ) > θn/2 is �C2 m

1−C2 logC2 + ∆p(n; θn/2). Thus, part (b)
with f = ω and t > 2 will follow if we can show that

(9.6) ρ := PA∈M(n)

(
deg(A

S(m)
p ) 6 θn/2

ω(A
S(m)
p ) > tLω(m)

)
6 OC2(m

−(t log t−t+1)) + nt+5∆p(n; θn).

Borrowing an idea of Shiu [36], we order the irreducible factors of AS(m)
p (recall that they must

be different from T ) by their degrees, say

AS(m)
p = Ip,1Ip,2 · · · Ip,k with deg(Ip,1) 6 · · · 6 deg(Ip,k).

Since ω(A
S(m)
p ) > tLω(m), there is a unique ` ∈ [k] such that

ω(Ip,1 · · · Ip,`) > tLω(m) > ω(Ip,1 · · · Ip,`−1).

Set
Bp = Ip,1 · · · Ip,`−1, Jp = Ip,`, and j = deg(Jp),
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so that Bp is j-smooth, Ap/(BpJp) is (j − 1)-rough, deg(BpJp) 6 θn/2, and tLω(m) > ω(Bp) >
tLω(m)− 1. Consequently,

ρ 6
m∑
j=1

∑∑
Bp j-smooth

deg(Jp)=j, deg(BpJp)6θn/2
tLω(m)−16ω(Bp)<tLω(m)

PAp∈Mp(n)

(
BpJp|Ap
Ap/(BpJp) (j − 1)-rough

)
.

It will be convenient to replace the “(j − 1)-rough” above with “((j − 1)/24)-rough”, which, of
course, only increases the probability further. Let therefore Ip(j) denote the set of monic irre-
ducible polynomials different from T and of degree 6 (j − 1)/24. We apply Lemma 8.2 with
`p = max{11, bj/24c} to each summand and get

ρ 6 2
m∑
j=1

∑∑
Bp j-smooth, deg(Jp)=j
ω(Bp)>tLω(m)−1

1

‖BpJp‖p

∏
Ip∈Ip(j)

(
1− 1

‖Ip‖p

)

+
m∑
j=1

∑∑∑
Bp, Jp, Gp

∣∣∣∣PAp∈Mp(n)(BpJpGp|Ap)−
1

‖BpJpGp‖p

∣∣∣∣
=: M +R,(9.7)

where the remainder term R runs over triplets (Bp, Jp, Gp), where Bp is j-smooth, Jp is ir-
reducible of degree j, Gp|Ip(j), deg(BpJp) 6 θn/2, ω(Gp) 6 6 log(max{bj/24c, 11}) and
ω(Bp) 6 tLω(m).

First, we deal with the remainder term R. Since Gp|Ip(j), the polynomial Gp must be square-
free. Hence, the product BpJpGp is a j-smooth polynomial Dp with

deg(Dp) = deg(BpJp) + deg(Gp) 6 θn/2 + 6 · (j/24) log(max{j/24, 11}) 6 θn

for j 6 m 6 2θn/ log n and m sufficiently large. Let us now estimate how many ways to write
Dp = BpJpGp exist, for a given Dp. For Jp we have no more than ω(Dp) possibilities because it
is irreducible. Once Jp is chosen, Dp/Jp can be written as BpGp in no more than 2ω(Dp/Jp) ways,
because Gp is square-free. Note that

ω(Dp/Jp) = ω(BpGp) 6 ω(Bp) + ω(Gp).

Hence, our assumptions on Bp and Gp imply that

ω(Dp/Jp) 6 tLω(m) + 6 log(max{bj/24c, 11})
6 t(logm+O(1)) + 6 logm 6 (t+ 6) logm+O(C2)

for m sufficiently large. We get that the number of possibilities to get Dp is no more than

ω(Dp)2
ω(Dp/Jp) 6 (1 +O(C2) + (t+ 6) logm)2O(C2)+(t+6) logm 6 mt+4

for m sufficiently large and t > 2 (note that we have here 2logm, but the log is to base e). Conse-
quently,

(9.8) R 6
∑

16j6m

mt+4
∑

deg(Dp)6θn

∣∣∣∣PAp∈Mp(n)(Dp|Ap)−
1

‖Dp‖p

∣∣∣∣ 6 nt+5∆p(n; θn).

This concludes the estimate of R.
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For the main term M of (9.7), we apply Lemma 8.3 to get∏
Ip∈Ip(j)

(
1− 1

‖Ip‖p

)
6

2

b(j − 1)/24c+ 1
6

100

j
.

As a consequence,

M 6
m∑
j=1

200

j

∑∑
Bp j-smooth, deg(Jp)=j
ω(Bp)>tLω(m)−1

1

‖BpJp‖p
.

For the sum over Jp, we note that ∑
deg(Jp)=j

1

‖Jp‖p
6

1

j
,

where we used Proposition 8.1 again. Therefore,

(9.9) M 6
m∑
j=1

200

j2

∑
Bp j-smooth

ω(Bp)>tLω(m)−1

1

‖Bp‖p
6 200

m∑
j=1

e−s(tLω(m)−1)

j2

∑
Bp j-smooth

esω(Bp)

‖Bp‖

for any choice of real number s > 0, by Rankin’s trick. Finally, note that∑
Bp j-smooth

esω(Bp)

‖Bp‖
6

∏
deg(I)6j

( ∞∑
ν=0

esω(Iν)

‖Iν‖p

)
=

j∏
i=1

(
1 +

es

pi − 1

)#{deg(Ip)=i}

.

Using Proposition 8.1 again, as well as the inequality 1 + x 6 ex, we conclude that∑
Bp j-smooth

esω(Bp)

‖Bp‖
6 exp

( j∑
i=1

es(1 +O(p−i))

i

)
= exp(es log j +O(es)).

Inserting the above estimates into (9.9), with Lω(m) = log(m) + O(1), (9.5), we arrive at the
bound

M 6 eO(es+C2s)

m∑
j=1

je
s−2m−st.

We take s = log t ∈ [log 2, logC2] to conclude that

M �C2 m
es−1m−st = m−(t log t−t+1).

Combining the above estimate with (9.7) and (9.8) completes the proof of (9.6), and hence of the
special case of part (b) of the lemma when f = ω and t > 2.

Let us now prove Lemma 9.2 for all f and all t. Note that we may assume that t > 0; the case
when t = 0 will then follow by letting t→ 0+.

In general, let X ⊂ R>0. We want to give a bound for PA∈M(n)(f(A
S(m)
p ) ∈ X). Fix some

t0 > 2 and apply Lemma 9.1 with uLemma 9.1 = (θn)/(2m) > 1
4

logm and CLemma 9.1 = 4t0 log t0

to find that the probability that deg(A
S(m)
p ) > θn/2 is�t0 m

1−t0 log t0 + ∆p(n; θn/2) (still for m
sufficiently large). In addition, the portion of Lemma 9.2 already proven implies that

PA∈M(n)

(
ω(AS(m)

p ) > t0 logm
)
�t0 m

−(t0 log t0−t0+1) + nt0+5∆p(n; θn).
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Consequently,

PA∈M(n)(f(AS(m)
p ) ∈ X) = PA∈M(n)

 deg(A
S(m)
p ) 6 θn/2

ω(A
S(m)
p ) 6 t0Lω(m)

f(A
S(m)
p ) ∈ X

+ η,

where η is the error (which is �t0 m
−t0 log t0+t0−1 + nt0+5∆p(n; θn), as above). Writing Bp =

A
S(m)
p , we infer that

PA∈M(n)(f(AS(m)
p ) ∈ X) =

∑
Bp m-smooth, f(Bp)∈X

deg(Bp)6
θn
2

ω(Bp)6t0Lω(m)

PA∈M(n)

(
Bp|Ap
Ap/Bp m-rough

)
+ η.

Note that if Ap/Bp is m-rough, then it is also (m/24)-rough. Hence, if we let I denote the
set of monic irreducible polynomials over Fp of degree 6 m/24 that are different from T , then
Lemma 8.2 implies that

PA∈M(n)

(
Bp|Ap, Ap/Bp m-rough

)
6

2

‖Bp‖p

∏
I∈I

(
1− 1

‖I‖p

)
+

∑
Gp|I

ω(Gp)66 log `

∣∣∣PA∈M(n)(BpGp|Ap)−
1

‖BpGp‖p

∣∣∣,
where ` := max{11, bm/24c}. In addition, the product over I ∈ I is 6 48/m by Lemma 8.3.
Consequently,

PA∈M(n)(f(AS(m)
p ) ∈ X) 6

100

m
S + E + η,

S :=
∑

Bp m-smooth
f(Bp)∈X

1

‖Bp‖p
and E :=

∑∑
Bp, Gp

∣∣∣PA∈M(n)(BpGp|Ap)−
1

‖BpGp‖p

∣∣∣,
with the second sum running over pairs (Bp, Gp) such that Bp is m-smooth, deg(Bp) 6 θn/2,
Gp|I, ω(Bp) 6 t0Lω(m) and ω(Gp) 6 6 log ` (we dropped the condition f(Bp) ∈ X which we do
not need to get a good estimate). Setting Dp = BpGp and adapting the argument leading to (9.8),
we find that

(9.10) E 6 nt0+5
∑

deg(Dp)6θn

∣∣∣∣PAp∈Mp(n)(Dp|Ap)−
1

‖Dp‖p

∣∣∣∣ 6 nt0+5∆p(n; θn).

In conclusion, we have proven that

PA∈M(n)(f(AS(m)
p ) ∈ X) 6

100

m
S + η + nt0+5∆(n; θn)

=
100

m
S +Ot0

(
m−t0 log t0+t0−1 + nt0+5∆p(n; θn)

)
.

(9.11)

The argument now deviates according to the exact definition of X .

(a) Here, X = [0, tLf (m)]. We take t0 = 3, so that t0 log t0− t0 + 1 > 1 > t log t− t+ 1. Since

(9.12) Lf (m) 6
∑

deg(I)6m

1

‖I‖p
= logm+O(1),
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the lemma will follow if we can show that S � m · e−(t log t−t+1)Lf (m). Indeed, by Rankin’s trick,
we find that

S 6 estLf (m)
∑

Bp m-smooth

e−sf(Bp)

‖Bp‖p
6 estLf (m)

∏
deg(I)6m

(
1 +

e−sf(I)

‖I‖p
+
∑
ν>2

1

‖Iν‖p

)
for any s > 0 (for ν > 1 we simply estimated e−sf(Iν) 6 1). Next, we use the inequality 1+x 6 ex

and the fact that
∑

I

∑
ν>2 1/‖Iν‖p = O(1) to conclude that

S � exp

(
stLf (m) +

∑
deg(I)6m

e−sf(I)

‖I‖p

)
.

Now, since we assumed that f(I) ∈ {0, 1}, we have e−sf(I) = (e−s− 1) · 1f(I)=1 + 1 and summing
over I gives∑

deg(I)6m

e−sf(I)

‖I‖p
= (e−s − 1)Lf (m) +

∑
deg(I)6m

1

‖I‖p
= (e−s − 1)Lf (m) + logm+O(1).

As a consequence,
S � m · exp

(
(st+ e−s − 1)Lf (m)

)
uniformly for all s > 0. Taking s = − log t > 0 to optimize the above inequality establishes the
desired inequality that S � m · e−(t log t−t+1)Lf (m). This completes the proof of part (a) of the
lemma.

(b) Here, X = [tLf (m),+∞). We take t0 = max{t, 2}, so that (9.11) reduces the proof to
showing that S � m · e−(t log t−t+1)Lf (m). This is proven in a similar way to part (a), starting this
time with the inequality

S 6 e−stLf (m)
∑

Bp m-smooth

esf(Bp)

‖Bp‖p

that is valid for all s > 0. We leave the details to the reader, and suffice in noting that it is at this
point that we use the condition f(Iν) 6 C1 log ν. �

In the next result m is allowed to vary, unlike in Lemmas 9.1 and 9.2, where m was fixed.

Lemma 9.3. Fix θ, ε ∈ (0, 1). Let P be a set of r primes, let n ∈ N, and let µ0, . . . , µn−1 be
probability measures on Z such that

∆p(n; θn) 6 n−8 for all p ∈ P .
Then there is a constant c = c(ε) > 0 such that

PA∈M(n)

(
deg(A

S(m)
p ) 6 εm logm

τ(A
S(m)
p ) 6 m(1+ε) log 2

∀m ∈ [m0, 2θn/ log n]
∀p ∈ P

)
> 1−Oε,r

(
m−c0

)
for all m0 ∈ [1, 2θn/ log n].

Proof. We may assume that ε is sufficiently small and that m0 is sufficiently large in terms of ε.
Define the events

Ep,m =

{
Ap ∈Mp(n) :

deg(A
S(m)
p ) 6 (ε/3)m logm

τ(A
S(m)
p ) 6 m(1+ε/3) log 2

}
.
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The condition deg(A
S(m)
p ) 6 (ε/3)m logm is handled by Lemma 9.1. We apply Lemma 9.1 with

uLemma 9.1 = (ε/3) logm and CLemma 9.1 = 6/ε and get

PAp∈M(n)

(
deg(AS(m)

p ) > (ε/3)m logm
)
6 Oε(m

−1) + n−8,

where we used that (ε/3)m logm < θn for all m 6 2θn/ log n to bound the error by ∆p(n; θn).
As for the condition τ(A

S(m)
p ) 6 m(1+ε/3) log 2, it is handled by Lemma 9.2(b). Indeed, note that the

function log τ/ log 2 is an additive function satisfying the conditions of Lemma 9.2 with C1 = 3.
We wish to use Lemma 9.2(b) with

tLemma 9.2 =
(1 + ε/3) logm

Llog τ/ log 2(m)
.

SinceLlog τ/ log 2(m) =
∑

1/‖I‖p over all irreducible I with degree6 m, we haveLlog τ/ log 2(m) =
logm+O(1) and hence t = 1 + ε/3 +O(1/ logm). In particular, for m sufficiently large we have
tLemma 9.2 ∈ (1, 2). We may therefore take the C2 of Lemma 9.2 to be 2 and get

PAp∈M(n)(τ(AS(m)
p ) > m(1+ε/3) log 2)� e(−t log t−t+1)(logm+O(1)) + n−1.

Summing both estimates we find that

(9.13) PA∈M(n)(Ap ∈ Ep,m) > 1− Cm−c for all m ∈ [m0, 2θn/ log n], p ∈ P

where c = (1 + ε/3) log(1 + ε/3)− ε/3 ∈ (0, 1) and C is some constant depending at most on ε
and θ. We will use this bound for carefully selected values of m only. To this end, we define the
checkpoints

mj =
⌊
min{2jm0, 2θn/ log n}

⌋
,

and let J be the smallest index with mJ = b2θn/ log nc. Note that

(9.14)
{
A ∈M(n) : Ap ∈

J⋂
j=0

Ep,mj ∀p ∈ P
}
⊂

A ∈M(n) :

deg(A
S(m)
p ) 6 εm logm

τ(A
S(m)
p ) 6 m(1+ε) log 2

∀m ∈ [m0, 2θn/ log n]
∀p ∈ P

 .

Indeed, for each m ∈ [m0, 2θn/ log n], there is j ∈ [J ] such that mj−1 6 m 6 mj . Hence, if A
lies in the intersection of all Ep,mj , then

deg(AS(m)
p ) 6 deg(AS(mj)

p ) 6 (ε/3)mj logmj 6 εm logm

and
τ(AS(m)

p ) 6 τ(AS(mj)
p ) 6 m

(1+ε/3) log 2
j 6 m(1+ε) log 2

for all p ∈ P , provided that m0 is sufficiently large in terms of ε.
Now, to complete the proof note that (9.13) implies that

PA∈M(n)

(
Ap ∈

J⋂
j=0

Ep,mj ∀p
)
> 1− rC

2c − 1
·m−c0 .

Together with (9.14), this completes the proof with the implicit constant in the big-Oh term equal
to rC/(2c − 1). �

We are finally ready to establish the key estimate in our proof of Proposition 2.2.
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Lemma 9.4. Let θ ∈ (0, 1/2], δ ∈ (0, 1], λ ∈ (0, 1), P = {p1, . . . , pr} be a set of primes, n ∈ Z>2,
and µ0, . . . , µn−1 be probability measures on Z satisfying

(9.15) ∆P(n; θn+ nλ) 6 n−7r and sup
16j<n

∑
a≡0 (mod p)

µj(a) 6 1− δ ∀p ∈ P .

Fix, in addition, ε ∈ (0, 1) and k ∈ Z ∩ [1, θn], and let Ek,λ,ε,θ be the event of the statement of
Lemma 9.3 with m0 = kλ/2, namely, the event that deg(A

S(m)
p ) 6 εm logm and τ(A

S(m)
p ) 6

m(1+ε) log 2 for all m ∈ Z ∩ [kλ/2, 2θn/ log n] and all p ∈ P .
Then, we have that

(9.16) PA∈M(n)

(
Ek,λ,ε,θ ∩ {∀p ∈ P , ∃Dp|Ap with deg(Dp) = k}

)
�r,ε,λ

(
log2 n

δk(1−log 2−ε)λ

)r
.

Proof. All implicit constants in Vinogradov’s notation� may depend on r, ε and λ. Let us write
E instead of Ek,λ,ε,θ for simplicity.

We may assume without loss of generality that ε < 1 − log(2), that k is sufficiently large
(depending on r, ε and λ), because for small k the claim holds trivially by adjusting the implied
constant in (9.16). Similarly, we may assume kλ > 100(log n)2 and k > 100(1 + drδ−1 log ne).
This also means that n can be taken to be sufficiently large, as otherwise there might not be any
k ∈ [1, θn] for which the claim is nontrivial.

We first consider the power of T that divides Ap. By the right-hand side of (9.15), we infer that

PA∈M(n)(T
ν |Ap) = PA∈M(n)(p|a0, a1, . . . , aν−1) =

ν−1∏
j=0

( ∑
a≡0 (mod p)

µj(a)

)
6 (1− δ)ν−1 6 e−δ·(ν−1).(9.17)

Choosing
ν = 1 + drδ−1 log ne,

for which we have ν 6 k/100 by our assumptions on k, we find that

(9.18) PA∈M(n)(T
ν |Ap) 6 n−r.

This is negligible quantity compared to the right-hand side of (9.16). We therefore assume for the
rest of the proof that all our polynomials satisfy T ν - Ap. We deduce that Ap has a divisor Dp

coprime to T of degree kp ∈ (k − ν, k] (this is not the same Dp from the statement of the lemma,
hopefully no confusion will arise). Therefore, if we denote

ρ := PA∈M(n)

(
E ∩ {∀p ∈ P , ∃Dp|Ap with deg(Dp) = k} ∩ {T ν - Ap}

)
(essentially the left-hand side of (9.16)), then

(9.19) ρ 6
∑

k−ν<kp6k
p∈P

ρ(k)� (δ−1 log n)r max
k−ν<kp6k

p∈P

ρ(k),

where

ρ(k) := PA∈MP (n)

(
E ∩

{
∀p ∈ P , ∃Dp|Ap with T - Dp and deg(Dp) = kp

})
.

We fix for the rest of the proof a tuple k = (kp)p∈P ∈ (k − ν, k]r maximizing ρ(k). In addition,
we define

m = bkλ/8 log nc,
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for which we have kλ/2 6 m 6 2θn/ log n by our assumptions that kλ > 100(log n)2 and k 6 θn.
Hence for all polynomialsA ∈ E = Ek,λ,ε,θ and all primes p ∈ P , we have deg(A

S(m)
p ) 6 εm logm

and τ(A
S(m)
p ) 6 m(1+ε) log 2. If we let Bp = A

S(m)
p and we assume that Dp divides Ap, then DS(m)

p ,
the m-smooth part of Dp, must divide Bp. Consequently,

ρ(k) 6
∑∑

(B,D)∈Xk

PA∈MP (n)

(
[Bp, Dp] |Ap
Ap/[Bp, Dp] m-rough ∀p ∈ P

)
where Xk is the set of all couples (B,D) such that Bp is m-smooth, deg(Bp) 6 εm logm,
τ(Bp) 6 m(1+ε) log 2, DS(m)

p | Bp, deg(Dp) = kp and T - Dp, for all p ∈ P . We apply Lemma 8.2
with Ip the set of monic irreducible polynomials Ip 6= T with deg(Ip) 6 m to each couple (B,D)
and sum over them. This yields that

(9.20) ρ(k) 6M +R,

where M is the main term given by

M = 2r
∑∑

(B,D)∈Xk

∏
p∈P

∏
Ip∈Ip(1− 1/‖Ip‖p)
‖[B,D]‖P

and R is the remainder term given by

R =
∑∑∑

(B,D)∈Xk
Gp m-smooth, squarefree,
ω(Gp)66 logm ∀p∈P

∣∣∣PA∈MP (n)

(
A ≡ 0 (mod [B,D]G)

)
− 1

‖[B,D]G‖P

∣∣∣.
We first deal with the remainder term R. We make the change of variables Hp = [Bp, Dp]Gp

for each p ∈ P . Notice that T - Hp for all p (recall that the definition of the smooth part of a
polynomial precludes the factor T ), as well as that

deg(Hp) 6 deg(Bp) + deg(Dp) + deg(Gp) 6 εm logm+ θn+ 6m logm,

since deg(Dp) = kp 6 k 6 θn and we know that Gp is a square-free and m-smooth polynomial
with 6 6 logm irreducible factors. We have ε < 1 and m 6 nλ/8 log n, and thus

deg(Hp) 6 θn+ nλ for all p ∈ P
for n sufficiently large. This inequality will allow us to bound R in terms of ∆P(n; θn+ nλ). But
first we must also understand how many times each choice of Hp occurs.

Note that the m-rough part of Hp is always given by the m-rough part of Dp, so there is no
multiplicity created there. Adding to this the fact that DS(m)

p divides Bp gives that HS(m)
p = GpBp.

The number of ways to write HS(m)
p as a product of two polynomials is τ(H

S(m)
p ), and if there is

even one way to write HS(m)
p = GpBp with our restrictions on Gp and Bp then we would get that

τ(HS(m)
p ) = τ(BpGp) 6 τ(Bp)τ(Gp) 6 m(1+ε) log 2τ(Gp).

Since Gp is square-free, we have τ(Gp) = 2ω(Gp) 6 m6 log 2.
Once Gp and Bp are chosen, we must also choose DS(m)

p , and since it divides Bp, the number
of possibilities for that is at most τ(Bp) 6 m(1+ε) log 2. All in all, we get that the number of
appearances of each Hp is bounded by m(8+2ε) log 2. Since there are r different p ∈ P we get that
the total number of appearances of each H is bounded by

mr(8+2ε) log 2 6 m6r.
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Putting everything together, we arrive at the inequality

R 6 m6r
∑
· · ·
∑

deg(Hp)6θn+nλ

T -Hp ∀p∈P

∣∣∣PA∈MP (n)

(
A ≡ 0 (modH)

)
− 1

‖H‖P

∣∣∣
6 m6r∆P(n; θn+ nλ) 6 n−r,(9.21)

where the last relation follows from (9.15).
It remains to bound the main term M of (9.20). Appealing to Lemma 8.3, we have that

(9.22)
∏
Ip∈Ip

(
1− 1

‖Ip‖p

)
6

2

m

for all p ∈ P . Consequently,

M 6
4r

mr

∑∑
(B,D)∈Xk

1

‖[B,D]‖P
.

Writing D′p = D
S(m)
p and D′′p = D

R(m)
p , we find that [Bp, Dp] = BpD

′′
p . Fix for the moment Bp

and D′p|Bp. We then find that deg(D′′p) = kp − deg(D′p) is fixed and positive, say equal to j. Note
that j > k − ν − εm logm > 6m logm, because ν 6 k/100, m 6 kλ/8 log n, ε < 1 and k is
sufficiently large.

To find an upper bound for∑
deg(D′′p )=j

D′′p m-rough

1

‖D′′p‖p
=

#{D′′p ∈Mp(j) : D′′p m-rough}
#{D′′p ∈Mp(j)}

we apply Lemma 8.2 withPLemma 8.2 = {p}, nLemma 8.2 = j, PLemma 8.2 being the probability measure
coming from the uniform counting measure onMp(j), DLemma 8.2 = 1, and the Ip of Lemma 8.2
being as here, i.e., all irreducible polynomials of degree 6 m, except for T . Since j > 6m logm,
the error term vanishes identically, and we find that∑

deg(D′′p )=j

D′′p m-rough

1

‖D′′p‖p
6 2

∏
Ip∈Ip

(1− 1/‖Ip‖p).

The conclusion of the above discussion is that

M 6
8r

mr

∏
p∈P

∏
Ip∈Ip

(1− 1/‖Ip‖p)
∑∑

Bp m-smooth, D′p|Bp
τ(Bp)6m(1+ε) log 2 ∀p∈P

1

‖B‖P
.

Obviously, there are 6 τ(Bp) 6 m(1+ε) log 2 choices for D′p. As a consequence,

M 6
8rmr(1+ε) log 2

mr

∏
p∈P

∏
Ip∈Ip

(1− 1/‖Ip‖p)
∑

Bp m-smooth ∀p∈P

1

‖B‖P
.

Since ∑
Bp m-smooth ∀p∈P

1

‖B‖P
=
∏
p∈P

∏
Ip∈Ip

(
1− 1

‖Ip‖p

)−1
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the two terms in the estimate of M cancel perfectly. Using also m = dkλ/8 log ne, we arrive at the
bound

M 6
8r

mr(1−log(2)−ε log 2)
� (log n)r

krλ(1−log(2)−ε) .

Together with (9.20) and (9.21), this implies that

ρ(k)� (log n)r

krλ(1−log(2)−ε) .

With (9.19), the proof of the lemma is done. �

10. PROOF OF PROPOSITION 2.2

Without loss of generality, we may assume that n is sufficiently large. In addition, we may
assume that supp(µ0) 6= {0}; otherwise, the conclusion of Proposition 2.2 is trivial.

Let ε ∈ (0, 1/100], µ0, . . . , µn−1 and P be as in Proposition 2.2. Let A(T ) = a0 + a1T + · · ·+
an−1T

n−1 +T n be a random polynomial with a0 6= 0 sampled according to the measure PM(n). By
Proposition 2.1, all irreducible factors of A have degree > n1/10 with probability 1 − O(n−7/20),
so let us assume that this is the case.

We apply Lemma 9.3 with the parameters εLemma 9.3 = ε/10, m0 = n1/30, and θ and P being as
here. Letting c1 = cLemma 9.3/30 > 0, we get that, with probability 1−Oε(n

−c1), we have

(10.1) deg(AS(m)
p ) 6 1

10
εm logm and τ(AS(m)

p ) 6 m(1+ε/10) log 2

for all m ∈ Z ∩ [n1/30, 2θn/ log n] and all p ∈ P . Denote this event by E .
Next, we apply Lemma 9.4 for each integer k ∈ [n1/10, θn] with the parameters εLemma 9.4 =

ε/10, rLemma 9.4 = 4, δLemma 9.4 = n−ε/200, λLemma 9.4 = λ0 + ε, and θ and P as here. We get

(10.2) PA∈M(n)

(
{∀p ∈ P , ∃Dp|Ap with deg(Dp) = k} ∩ E∗

)
�ε

(
nε/200 log2 n

k(1−log 2−ε/10)(λ0+ε)

)4

where E∗ is from Lemma 9.4. But E∗ contains E since the only difference between them is the range
of m involved, [n1/30, 2θn/ log n] for E and [k(λ0+ε)/2, 2θn/ log n] for E∗ (recall that λ0 > 0.8 and
k > n0.1). Hence we may replace E∗ with E in (10.2). Since 4(1−log 2−ε/10)(λ0 +ε) > 1+0.8ε,
we find that ∑

n1/106k6θn

(
nε/200 log2 n

k(1−log 2−ε/10)(λ0+ε)

)4

�ε
nε/50 log8 n

(n1/10)0.8ε
�ε n

−ε/20.

We conclude that

PM(n)

(
∃D|A with degD 6 θn, a0 6= 0

)
6 PA∈M(n)

(
∃D|A with degD 6 n1/10

∣∣ a0 6= 0
)

+ PA∈M(n)

(
∃D|A : deg(D) ∈ (n1/10, θn]

)
6 O(n−2/5) + PM(n)(Ec)

+
∑

n1/106k6θn

PM(n)

(
E ∩ {A : ∃D|A with deg(D) = k}

)
�ε n

−2/5 + n−c1 + n−ε/20,

thus proving Proposition 2.2 with c = min{2/5, c1, ε/20}.
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PART IV. THE GALOIS GROUP

In this final part of the paper, we prove Proposition 2.4. We must show that if we sample a
polynomial A ∈M(n) according to the measure PM(n), then the odds that A is irreducible and, at
the same time, its Galois group GA is different from An and Sn are small.

11. GALOIS THEORY

Recall that A is irreducible if and only if GA is transitive. Thus, if we set

(11.1) Tn :=
⋃
G6Sn

G transitive
G 6=An,Sn

G,

then Proposition 2.4 is reduced to showing that

(11.2) PA∈M(n)

(
GA ⊂ Tn

)
� n−c

under its assumptions, where c is some appropriate absolute constant.
To prove (11.2), we will reduce our polynomial A modulo the prime p of the statement of

Proposition 2.4, for which we know that

(11.3) ∆p(n;n/2 + nλ) 6 n−10 and sup
16j<n

∑
a≡0 (mod p)

µj(a) 6 1− 1/(log n)2

for some λ ∈ (0, 1). In particular, Ap, which denotes the reduction of A mod p, is approximately
uniformly distributed inMp(n). We will then factor Ap in Fp[T ] and deduce (11.2) from a result
about the distribution of random partitions.

11.1. The factorization type of Ap. Recall that a partition of n is an increasing sequence ρ =
(ρ1, ρ2, . . . , ρr) of positive integers (for some r) such that

∑r
i=1 ρi = n, and that this is denoted by

ρ ` n.
The polynomial Ap can be factored as a product of irreducible elements of Fp[T ], say Ap =∏r
i=1 Ii with the factors arranged so that deg(I1) 6 · · · 6 deg(Ir). Hence, the tuple

τAp := (deg(I1), . . . , deg(Ir))

is a partition of n that we shall refer to as the factorization type of Ap.
The above observation implies that the probability measure PM(n) naturally induces a probability

measure ν on the set of partitions of n. This measure is defined by

(11.4) ν(E) := PA∈M(n)(τAp ∈ E)

for all sets E of partitions of n.
The following lemma records some of the key properties of ν (and, thus, of the distribution

of τAp). To state it, it will be convenient to use set notation for partitions (even though they are
multisets rather than sets). Thus, for example, k ∈ ρ will mean that for some i, ρi = k, while
{k, k} ⊆ ρ will mean that for some i 6= j, ρi = ρj = k. If U ⊂ ρ, then

∑
u∈U f(u) means that we

sum the elements of U according to their multiplicity, and so on and so forth.

Lemma 11.1. Let ν be the measure defined by (11.4), where n > 16 and p is a prime satisfying
(11.3) for some λ > 0. We write ρ for a partition of n sampled according to ν. Then
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(a) For all k, ` ∈ [2, n/4] ∩ Z, we have

ν({k, `} ⊆ ρ) 6
2

k`
.

(b) There is an absolute constant c > 0 such that

ν
(
∃U ⊆ ρ such that

∑
u∈U

u = k
)
�λ k

−cλ for all k ∈ [n1/10, n/2] ∩ Z.

(c) Let f : N→ {0, 1}, m ∈ [1, n/ log n] ∩ Z, t ∈ (0, 1), and set L =
∑m

k=1 f(k)/k. Then

ν

( ∑
k∈ρ∩[1,m]

f(k) 6 tL

)
� e−(t log t−t+1)L.

Proof. (a) Let Ik be the set of monic irreducible polynomials of degree k, and consider k, ` ∈
[2, n/4], so that k + ` 6 n/2 and the polynomial I(T ) = T is not contained in Ik ∪ I`. Thus

ν({k, `} ⊆ ρ) 6
∑∑
I∈Ik, J∈I`

PA∈M(n)(IJ |Ap) 6
∑∑
I∈Ik, J∈I`

1

‖IJ‖p
+ 2∆p(n; k + `).

Since
∑

I∈Ik 1/‖I‖p 6 1/k by Proposition 8.1 and ∆p(n; k + `) 6 n−10 6 1/(2k`) by (11.3), we
conclude that ν({k, `} ⊆ ρ) 6 2/(k`) as needed.

(b) Note that

ν
(
∃U ⊆ ρ such that

∑
u∈U

u = k
)

= PA∈M(n)

(
∃Dp|Ap such that degDp = k

)
.

Now, let E = Ek,λ,1/100,1/2 denote the event described in Lemma 9.4 with εLemma 9.4 = 1/100,
θLemma 9.4 = 1/2, PLemma 9.4 = {p} and δLemma 9.4 = 1/ log2 n. Assumption (11.3) ensures that the
conditions of Lemma 9.4 are met, so we infer that

PA∈M(n)

(
E ∩ {∃Dp|Ap with deg(Dp) = k}

)
�λ k

−0.2λ

for k ∈ [n1/10, n/2]. In addition, Lemma 9.3 implies that PM(n)(E) > 1 − Oλ(k
−c1λ) for an

absolute constant c1 > 0. Putting together the above estimates completes the proof of clause (b) of
the lemma with c = min{c1, 0.2}.

(c) We may assume that L > 1; otherwise, the result is trivially true. Note that

ν

( ∑
k∈ρ∩[1,m]

f(k) 6 tL

)
= PA∈M(n)

( ∑
Ir‖Ap,deg(I)6m

rf(deg(I)) 6 tL

)
,

where I denotes a generic monic irreducible polynomial over Fp and where, as usual, Ir‖Ap means
that Ir | Ap but Ir+1 - Ap. Let g denote the additive function over Fp[T ] defined by

g(Ir) = f(deg(I)).

Recall the notation AS(m)
p , which we introduce in relation (9.2). We then observe that g(A

S(m)
p ) 6∑

Ir‖Ap,deg(I)6m rf(deg(I)), and thus

(11.5) ν

( ∑
k∈ρ∩[1,m]

f(k) 6 tL

)
6 PA∈M(n)

(
g(AS(m)

p ) 6 tL
)
.
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Recall the notation Lg(m) from Lemma 9.2. We then have

Lg(m) =
∑

16k6m
f(k)=1

∑
deg(I)=k

1

pk
=
∑

16k6m
f(k)=1

(
1

k
+O

(
p−k/2

))
= L+O(1)

by Proposition 8.1. We then define t∗ by the relation t∗Lg(m) = tL, so that t∗ = t + O(1/L). If
t∗ < 1, then Lemma 9.2(a) with θ = 1/2 implies that

ν

( ∑
k∈ρ∩[1,m]

f(k) 6 tL

)
(11.5)
6 PA∈M(n)

(
g(AS(m)

p ) 6 t∗Lg(m)
)

by Lemma 9.2(a) � e−(t∗ log t∗−t∗+1)Lg(m) + n8∆p(n;n/2)

� e−(t log t−t+1)L,

where in the last step we used (11.3) to bound ∆ and the facts that L 6 log n + 1 and that
0 < t log t − t + 1 < 1 for t ∈ (0, 1). This completes the proof of the lemma in the case when
t∗ < 1. Lastly, when t∗ > 1, we must have that t = 1 + O(1/L), so that (t log−t + 1)L = O(1).
Hence, the lemma holds trivially in this case. �

11.2. Lifting the Frobenius automorphism. Now that we understand the basics about the distri-
bution of τAp , we use some standard Galois theory to relate τAp to a certain conjugacy class of the
Galois group GA of A, namely the class of the Frobenius automorphism at p.

Recall that conjugacy classes of Sn are in one-to-one correspondence with partitions of n. In-
deed, if g ∈ Sn, then it has a unique decomposition as a product of disjoint cycles. Its conjugacy
class is then completely determined by the partition (`1, `2, . . . , `r) whose parts `j are the lengths
of the cycles of g listed in increasing order. We call this partition the cycle type of g.

It turns out that the the cycle type of the Frobenius automorphism at p can be obtained by τAp
after merging certain equal parts of the latter. The following definition makes this notion precise.

Definition 11.2. Let ρ = (ρ1, . . . , ρr) and σ = (σ1, . . . , σs) be two partitions of n. In addition, let
y ∈ R>1. We say that σ is a y-merging of ρ if there are sets B1, . . . , Bs such that7

(a) B1 ∪· · · · ∪· Bs = [r];
(b) #Bi 6 y for all i ∈ [s];
(c) σi =

∑
j∈Bi ρj for all i ∈ [s];

(d) ρj = ρk for all j, k ∈ Bi and all i ∈ [s].

Example. The partitions (1, 1, 2, 3, 4) and (2, 2, 3, 4) are 2-mergings of (1, 1, 2, 2, 2, 3). However,
the partition (2, 3, 6) is not a 2-merging of (1, 1, 2, 2, 2, 3).

Lemma 11.3. Let A ∈ Z[T ] be a monic square-free polynomial of degree n, let p be a prime
number, and let

M = max{m ∈ N : ∃ irreducible I ∈ Fp[T ] such that Im|Ap}.
Then the Galois group of A contains an element whose cycle type is an M -merging of τAp .

Proof. Write A =
∏n

i=1(T −xi) with Ω = {x1, . . . , xn} ⊆ C its set of roots. Let F be the splitting
field of A, that is to say, F = Q(x1, . . . , xn). In particular, F is a Galois extension of Q. Let us
also write OF for the ring of integers of F .

7As usual, ∪· is a union of disjoint sets.
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Now, consider a prime ideal P ofOF lying above p. Given x ∈ OF , we write x for its reduction
mod P. We then have

Ap ≡ A ≡
n∏
i=1

(T − xi) (modP).

Thus, the polynomial Ap splits completely in the field OF/P with roots x1, . . . , xn listed with
multiplicity. In particular, we may partition the elements of Ω according to their reduction mod P:
for each root x of Ap, we let

Ωx = {xi ∈ Ω : xi ≡ x (modP)}.

Thus, if we let Ω = {xi : i = 1, 2, . . . , n}, we have

(11.6) Ω =
⋃
·

x∈Ω

Ωx.

Now, let us consider the Frobenius automorphism ϕp : OF/P → OF/P, defined by ϕp(x) :=
xp. A classical result from algebraic number theory [24, Theorem 32, p. 77] states that ϕp can be
lifted to an element of GA, that is to say there is some ϕ ∈ GA such that

ϕ(x) ≡ xp (modP) ∀x ∈ OF .

In particular, ϕ(Ωx) = Ωxp . This will allow us to relate the factorization type of Ap to the cycle
type of ϕ.

Indeed, let I ∈ Fp[T ] be an irreducible polynomial of degree d that divides Ap exactly m > 0
times. In particular, we have #Ωx = m for all x ∈ Ω with I(x) = 0. The Frobenius automor-
phism ϕp acts transitively on the roots of I , so there is an ordering of them, say α1, . . . , αd with
α1, . . . , αd ∈ Ω, such that ϕ(αi) = αi+1 with the convention that αd+1 = α1. We will use this fact
to prove the following statement.

Claim 11.4. Let i ∈ [d] and yi ∈ Ωαi . The orbit of yi under ϕ has length equal to dm′, where
m′ = m′(yi) is an integer 6 m.

The above claim will clearly complete the proof, since it implies that the cycle type of ϕ is an
M -merging of the factorization type of Ap.

To prove Claim 11.4, fix some yi ∈ Ωαi , where i ∈ [d]. Since ϕ sends Ωαj to Ωαj+1
, we find

that ϕk(yi) ∈ Ωαi if, and only if, k ≡ 0 (mod d). So the length of the orbit of yi is ` = dm′ for
some m′ > 0. In addition, the numbers yi, ϕd(yi), . . . , ϕ(m′−1)d(yi) are distinct elements of Ωxi .
Since #Ωxi = m, we conclude that m′ 6 m. This completes the proof of Claim 11.4, and hence
of Lemma 11.3. �

11.3. Reduction of Proposition 2.4 to two lemmas. We may assume that A is irreducible, in
particular separable. In view of Lemma 11.3, we have two possibilities:

(i) either there is some irreducible polynomial I ∈ Fp[T ] that divides Ap to a power higher
than (log n)3;

(ii) or GA contains an element whose cycle type is a (log n)3-merging of τAp .
Since A is irreducible, GA is transitive, so option (ii) implies that:

(ii’) ∃g ∈ Tn whose cycle type is a (log n)3-merging of τAp (recall the definition of Tn, (11.1)).
The above discussion reduces the proof of (11.2) (and hence of Proposition 2.4) to showing that

conditions (i) and (ii’) occur with low probability. This is the context of the following two lemmas.
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Lemma 11.5. Let p be a prime and let µ0, µ1, . . . , µn−1 be a sequence of probability measures
such that

∆p(n;n/ log n) 6 1/n and sup
06j<n

∑
a≡0 (mod p)

µj(a) 6 1− 1/(log n)2.

Let E be the set of A ∈ M(n) for which there is an irreducible polynomial I ∈ Fp[T ] dividing Ap
to a power higher than (log n)3. Then

PM(n)(E)� 1/n.

Lemma 11.6. Let ν be the measure defined by (11.4), where n > 16 and p is a prime satisfying
(11.3) for some λ > 0. Then there is some absolute constant c > 0 such that

ν
(
{ρ ` n : ∃g ∈ Tn whose cycle type is a (log n)3-merging of ρ}

)
�λ n

−cλ.

Lemma 11.5 has a simple proof that we give below. On the other hand, Lemma 11.6 is signifi-
cantly more complicated, with its proof comprising the entirety of Section 12.

Proof of Lemma 11.5. The probability that Tm|Ap with m > (log n)3 is� 1/n by (9.17) applied
with δ = (log n)−2. Hence,

PM(n)(E) = PM(n)(E ′) +O(1/n),

where E ′ is the set of A ∈ M(n) for which there is an irreducible polynomial I ∈ Fp[T ] that is
different than T and that divides Ap to a power higher than (log n)3. Note that if there is such an I ,
it must satisfy that deg(I) 6 deg(A)/(log n)3 6 n/(log n)3 and I`2|Ap with ` := blog nc. Thus,
if we write Ik for the set of monic irreducible polynomials of Fp[T ] of degree k, we find that

PM(n)(E ′) 6
∑

k6n/(logn)3

∑
I∈Ik

PA∈M(n)

(
I`

2|Ap
)
6

∑
k6n/(logn)3

∑
I∈Ik

1

‖I‖`2p
+ ∆p(n;n/ log n).

Using Proposition 8.1 and our assumption that ∆p(n;n/ log n) 6 1/n, we conclude that

PM(n)(E ′) 6
∑

k6n/(logn)3

pk/k

pk`2
+

1

n
� 1

p`2−1
+

1

n
� 1

n
.

This completes the proof of the lemma. �

12. A ŁUCZAK-PYBER STYLE THEOREM

In 1993, Łuczak and Pyber [23] proved that

#Tn/#Sn � n−c

for some absolute constant c > 0. The order of magnitude of the ratio #Tn/#Sn was determined
in various cases by Eberhard, Ford and Koukoulopoulos [10] with the exact answer depending on
certain arithmetic properties of n. In [1], the first and third author of the present paper strengthened
the Łuczak-Pyber estimate in a different direction: they showed that if we choose a permutation
g ∈ Sn uniformly at random, then with high probability we have that h /∈ Tn for any permutation
h ∈ Sn that differs from g only in cycles of length 6 nθ, with θ < 1 − (1 + log log 2)/ log 2 =
0.08607 . . . . We will prove Lemma 11.6 by rehashing the argument from [1] in the broader setting
of our paper. As a matter of fact, we will establish the following even more general result which,
when combined with Lemma 11.1, implies Lemma 11.6 immediately.
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Proposition 12.1 (A generalized Łuczak-Pyber result). Let µ be a probability measure on the set
of partitions of n, and write ρ for a random partition of n sampled according to µ. Assume that
there are constants C > 1, t ∈ (0, 1), κ ∈ (0, 1] and δ ∈ (0, 1/10] such that the following hold:

(a) For any k, ` ∈ [2, n/4] ∩ Z, we have

µ({k, `} ⊆ ρ) 6 C/(k`).

(b) For all k ∈ [n1−δ/2, n/2] ∩ Z, we have

µ
(
∃U ⊆ ρ such that

∑
u∈U

u = k
)
6 Ck−δ.

(c) Let f : N→ {0, 1} and m ∈ [1, n/ log n] ∩ Z, and set L =
∑m

k=1 f(k)/k. We then have

µ

( ∑
k∈ρ∩[1,m]

f(k) 6 tL

)
6 C · e−κL,

where the parts of ρ are summed according to their multiplicity.
Then, for any fixed ε ∈ (0, δ/2), we have that

µ
(
∃g ∈ Tn whose cycle type is an nθ-merging of ρ

)
�C,t,κ,δ,ε (log n)2n−κ(δ/4−θ/2)

uniformly for θ ∈ [0, δ/2− ε].

Remark. Condition (c) is only necessary to get a polynomial estimate for the probability. It can be
replaced by a stronger version of (a), where C = 1+ε, but the the resulting estimate will be worse.
Condition (b), on the other hand, is necessary to preclude groups like S2

n/2 o (Z/2Z) (when n is
even, in this example).

Notation. As in § 11, we use multi-set notation for partitions. Throughout the proof, we use the
notation P(E) := µ(E) and E(X) :=

∫
X dµ. A random partition will be denoted by ρ. In

addition, we set

(12.1) α := δ/4− θ/2 ∈ [ε/2, 1/40].

All implied constants in the big-Oh notation might depend onC, t, κ, δ and εwithout further notice.
Finally, we will be assuming without loss of generality, that n > n0, where n0 is a constant that is
sufficiently large in terms of C, t, κ, δ and ε.

12.1. The anatomy of a typical partition. In this subsection, we collect various lemmas that
establish that a randomly sampled partition satisfies various properties with high probability.

Lemma 12.2. Let µ be a measure on partitions of n satisfying condition (a) of Proposition 12.1.
Let E1 be the set of ρ ` n satisfying that there are no integers k, ` 6 n/4 with gcd(k, `) > nκα

such that {k, `} ⊂ ρ. Then
P(E1) > 1−O((log n)2n−κα).

Remark. The case k = ` is included in the definition of E1. So, if ρ ∈ E1, then every integer
k ∈ [nκα, n/4] occurs with multiplicity 6 1 in ρ.

Proof. Note that Ec1 =
⋃
r>nκα Br, whereBr denotes the event that there exist integers i, j 6 n/(4r)

such that {ri, rj} ⊂ ρ. Then

P(Br) 6
∑

i,j6n/(4r)

P({ri, rj} ⊆ ρ) 6
∑

i,j6n/4

C

r2ij
6
C

r2
· (log n)2,
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where we used the fact that
∑

j6x 1/j 6 1 + log x for all x > 1. Summing the above estimate over
r > nκα completes the proof of the lemma. �

Lemma 12.3. Let µ be a measure on partitions of n satisfying condition (b) of Proposition 12.1.
Let E2 be the set of ρ ` n such that

∑
u∈U u 6= nj/r whenever U ⊆ ρ, r|n, 2 6 r 6 nδ/2 and

j ∈ {1, 2, . . . , r − 1}. Then
P(E2) > 1−O(n−δ/4).

Proof. Note that if there is U ⊂ ρ such that
∑

u∈U u = nj/r, then there is also V ⊂ ρ (consisting
of the parts of ρ that are not in U ) such that

∑
v∈V v = n(r − j)/r. Hence, we may assume that

j 6 r/2 in the definition of E2 so that nj/r 6 n/2. Since we also have that nj/r > n1−δ/2,
condition (b) of Proposition 12.1 implies that

P
(
∃U ⊂ ρ such that

∑
u∈U

u =
nj

r

)
� (nj/r)−δ.

Summing the above estimate over r|n with 2 6 r 6 nδ/2, and over j ∈ [1, r/2] ∩ Z, we find that

P(Ec2)� n−δ
∑
r6nδ/2
r|n

rδ
∑
j6r/2

j−δ � n−δ
∑
r6nδ/2
r|n

r 6 n−δ/2 ·#{r|n}.

Since n has� nδ/4 divisors, the lemma follows. �

Lemma 12.4. Let µ be a measure on partitions of n satisfying condition (c) of Proposition 12.1.
Let E3 denote the event that, counting with multiplicity, there are at least αt

2
log n parts of ρ that lie

in [n1−α, n/ log n]. Then
P(E3) > 1−O

(
(log n)κn−κα

)
.

Proof. We shall apply condition (c) of Proposition 12.1 with f(k) = 1k>n1−α and m = n/ log n.
We have that

m∑
k=1

f(k)

k
=

∑
n1−α6k6n/ logn

1

k
= α log n− log log n+O(1).

Hence the lemma follows by condition (c) of Proposition 12.1. �

Lemma 12.5. Let µ be a measure on partitions of n satisfying condition (c) of Proposition 12.1.
Let E4 denote the event that, counting with multiplicity, there are at least t

4
log n parts of ρ lying in

the set {k 6
√
n/3 : ∃p > n1/8 such that p|k}. Then

P(E4) > 1−O(n−κ/4).

Proof. We may assume n is sufficiently large. Given an integer k, let P+(k) denote its largest
prime factor with the convention that P+(1) = 1. We shall apply condition (c) of Proposition 12.1
with f(k) = 1P+(k)>n1/8 and m =

√
n/3. We have that

m∑
k=1

f(k)

k
=

∑
k6
√
n/3

P+(k)>n1/8

1

k
=

∑
k6
√
n/3

1

k
−

∑
P+(k)6n1/8

1

k

>
log n

2
+O(1)−

∏
p6n1/8

(
1− 1

p

)−1

= (1/2− eγ/8) log n+O(1)
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by Mertens’ estimate [22, Theorem 3.4(c)], where γ denotes the Euler constant. Since 1/2−eγ/8 >
1/4, we conclude that

∑m
k=1 f(k)/k > (log n)/4 for n sufficiently large. Hence the lemma follows

by condition (c) of Proposition 12.1. �

Lemma 12.6. Let µ be a measure satisfying conditions (a) and (c) of Proposition 12.1. Let E5 be
the event that for all r > 2 there exists a k ∈ ρ ∩ [n1−2α, n/ log n] such that r - k. Then

P(E5) > 1−O
(
(log n)2n−κα

)
.

Proof. Let B5 denote the complement of E5, so that our goal is to show that P(B5)� (log n)2n−κα.
Let E1 and E3 be the events of Lemma 12.2 and 12.4 for which we know that P(Ec1),P(Ec3) �
(log n)2n−κα. Hence, the lemma will follow if we prove that

(12.2) P(B5 ∩ E1 ∩ E3)� n−κα.

If a partition ρ lies in E1 ∩E3, then all parts in [n1−2α, n/ log n] are distinct, and there are at least
two such parts, say k and `. In addition, for each r > nκα, at most one of k and ` are divisible by
r, so ρ has at least one part in [n1−2α, n/ log n] not divisible by r. This implies that

(12.3) B5 ∩ E1 ∩ E3 ⊆
⋃

26r6nκα

B5(r),

where B5(r) denotes the event that ρ ∈ E1 ∩ E3 but there is no k ∈ ρ ∩ [n1−2α, n/ log n] such that
r - k. We bound the probability of occurrence of B5(r) using condition (c) of Proposition 12.1.

Consider the function fr(k) = 1k>n1−2α, r-k. We then have that∑
k6n/ logn

fr(k)

k
=

∑
n1−2α6k6n/ logn

r-k

1

k
=

∑
n1−2α6k6n/ logn

1

k
−

∑
max{1,n1−2α/r}6`6(n/ logn)/r

1

r`

= 2α(1− 1/r) log n− (1− 1/r) log log n+O(1)

uniformly for r > 2 and n > 3. Hence,

P(B5(r)) 6 P
( ∑
k∈ρ∩[1,n/ logn]

fr(k) 6 t
∑

k6n/ logn

fr(k)

k

)
� (log n)κn−2κα(1−1/r)

by condition (c) of Proposition 12.1. Using the union bound, we conclude that

P
( ⋃

26r6nκα

B5(r)
)
�

∑
26r6nκα

(log n)κn−2κα(1−1/r)

6 (log n)κ
(
n−κα +

∑
36r6logn

n−4κα/3 +
∑

logn<r6nκα

(e/n)2κα

)
� (log n)κn−κα.

Together with (12.3) this shows that (12.2) does hold, and so the proof is complete. �

12.2. Group theory. We now move to the group-theoretic part of the proof.

Notation. Given ρ ` n and y > 1, we let Merge(ρ; y) denote the set of all permutations g ∈ Sn
whose cycle type is a y-merging of ρ.

Given any permutation g ∈ Sn, we define deg g = #{i ∈ [n] : g(i) 6= i}. Then, for each
G 6 Sn, we let min degG = ming∈Gr{1} deg g.
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Lemma 12.7. If G is a primitive transitive subgroup of Sn that is different than An and Sn, then

min degG > (
√
n− 1)/2.

Proof. See [1, Claim 1]. �

Lemma 12.8. There exists n0 such that if g ∈ Merge(ρ;n1/8) with n > n0 and ρ ∈ E1 ∩ E4, then
g cannot belong to a transitive primitive group G 6 Sn that is different than An and Sn.

Remark. Here and below, n0 can depend on the parameters C, t, κ and δ of Proposition 12.1.

Proof. Let P be the set of primes > n1/8 that divide a part of ρ lying in (n/4, n]. Since there are
at most three such parts, and since an integer 6 n has 6 8 prime factors > n1/8, we have that
#P 6 24.

Our partition ρ lies in E1. Hence, for each p ∈ P , there is at most one part in ρ ∩ [1, n/4] that
is divisible by p (the condition in E1 holds for all p > nκα > n1/40, so it applies for p ∈ P). So,
all in all, there are 6 24 parts in ρ ∩ [1, n/4] that are divisible by some prime in P . On the other
hand, our assumption that ρ ∈ E4 implies that, counting with multiplicities, there are > t

4
log n

parts in ρ∩ [1,
√
n/3] whose largest prime factor is > n1/8. In fact, each such part is > n1/8, so its

multiplicity of occurrence in ρ must equal 1 because ρ ∈ E1. Hence, there are > t
4

log n distinct
parts in ρ ∩ (n1/8,

√
n/3]. Comparing cardinalities, and assuming that n is sufficiently large, we

conclude that there is at least one part k ∈ ρ ∩ [1,
√
n/3] that is coprime to all elements of P , and

that has largest prime factor > n1/8. Call p this prime. By construction, p | k and p - ` for each
` ∈ ρ ∩ (n/4, n]. In addition, since ρ ∈ E1, we must have that p - ` for each ` ∈ ρ ∩ [1, n/4] that is
different from k. We conclude that p divides k but no other part of ρ.

Let g ∈ Merge(ρ;n1/8) and write τ for its cycle type. Since k occurs with multiplicity 1 in ρ, it
must also be a part of τ . Any other part of τ must be of the form m` with m 6 n1/8 and ` 6= k.
In particular, p - m` because p > n1/8 and p - `. We conclude that g has exactly one cycle whose
length is divisible by p, and that this cycle has length k.

For each prime q, let aq denote the largest integer such that qaq divides a cycle length of g. In
particular, ap is the p-adic valuation of k. So, if we set m = pap−1

∏
q 6=p q

aq (which is a finite
integer), then gm is the product of exactly k/p cycles of length p. In particular, deg(gm) = k 6√
n/3 < (

√
n − 1)/2 and gm 6= 1. Consequently, any group G 6 Sn containing g must have

min degG < (
√
n − 1)/2. In view of Lemma 12.7, such a group cannot be a primitive transitive

subgroup of Sn that is different than An and Sn, and so the proof is complete. �

Lemma 12.9. There exists n0 such that if g ∈ Merge(ρ;nθ) with n > n0, θ ∈ [0, δ
2
− ε], and

ρ ∈ E1 ∩ · · · ∩ E5, then g cannot belong to a transitive imprimitive group G 6 Sn.

Proof. Let G be a transitive imprimitive subgroup of Sn. Hence, G preserves a block structure,
namely, there must exist some r|n, 1 < r < n, and a decomposition of [n] into disjoint sets
B1, . . . , Br of common size s = n/r such that for every i ∈ [r] and every g ∈ G, g(Bi) = Bj for
some j. (Such a collection of Bi’s is also called an imprimitivity block system.)

Throughout we use the following observation: if L is a cycle of length ` in a permutation that
preserves a block structure of r blocks, then L intersects r′ 6 r blocks, its intersection with each
block is of size s′ 6 s, and ` = r′s′. Further, the set of blocks intersecting L is an invariant set of
g, and any other cycle in this set has its length divisible by r′.

Now, assume for contradiction that there is some g ∈ G ∩Merge(ρ;nθ). We divide the proof
into cases according to the size of r.
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Case 1: 2 6 r 6 nδ/2. Since ρ ∈ E5, it has a part of length ` ∈ [n1−2α, n/4] such that r - `.
Since ρ ∈ E1, it has no other part of length `, and hence g must have a cycle of length `, denote it
by L. Assume L intersects r′ blocks of the imprimitivity system. We cannot have r′ = r because
then r would divide `, in contradiction to our choice of `. The union of the blocks intersecting L
is invariant under g and has size nr′/r. Thus there is some subset V of the lengths of the cycles
of g such that

∑
v∈V v = nr′/r. Since these lengths are merely mergings of parts of ρ, it follows

that ρ too must possess a subset U of its parts such that
∑

u∈U = nr′/r. But this contradicts our
assumption that ρ ∈ E2.

Case 2: nδ/2 < r < n1−α. Since ρ ∈ E3, there are at least two parts of ρ in [n1−α, n/ log n]
for n0 sufficiently large. Let us denote them by `1 and `2. Since ρ ∈ E1, these two parts must
be distinct, and ρ has no other parts of lengths either `1 or `2. We conclude that g has cycles L1

and L2 of lengths `1 and `2, respectively. Let r′i be the number of blocks that Li intersects, and let
s′i = `i/r

′
i. We divide the argument into two subcases, according to the size of s′1 and s′2.

Case 2a: s′1 = s′2 = s. We then have that s divides both `1 and `2, and since s = n/r > nα, this
contradicts our assumption that ρ ∈ E1.

Case 2b: s′i < s for some i ∈ {1, 2}. Then the set of blocks preserved by Li contains another
cycle, call it L3, whose length is also divisible by r′i. On the one hand, we have r′i = `i/s

′
i >

n1−α/s = r/nα > nδ/2−α. On the other hand, since g ∈ Merge(ρ;nθ), the length of L3 must equal
mk, where m 6 nθ and k ∈ ρ. Since r′i|mk, we conclude that gcd(r′i, k) > r′i/m > nδ/2−α−θ =
nα. This of course implies gcd(k, `i) > nα and contradicts our assumption that ρ ∈ E1.

Case 3: n1−α 6 r < n. Since r|n, we must have that r 6 n/2. Our assumption that ρ ∈ E5

implies that there is some ` ∈ ρ ∩ [n1−2α, n/ log n] such that s - `. Since ρ ∈ E1, there is no
other part of length `. Consequently, g must contain a cycle of length `, denote it by L. Assume
L intersects r′ blocks. Since s - `, we get that s′ = `/r′ < s, and hence there exists another cycle
L′ of g divisible by r′. Since we merge no more than nθ parts at a time, the length of L′ must
equal mk, where m 6 nθ and k ∈ ρ. Since r′|mk, we infer that gcd(k, `) > r′/m > r′/nθ. But
r′ = `/s′ > n1−2α/s = r/n2α > n1−3α and again we reach a contradiction to ρ ∈ E1 because
α 6 1/40.

We covered all possibilities for r, arriving each time at a contradiction. We conclude that G ∩
Merge(ρ;nθ) = ∅. Since G was chosen arbitrarily among all imprimitive transitive subgroups of
Sn, the lemma is proved. �

Proof of Proposition 12.1. Let µ be a measure satisfying all three conditions of the proposition.
According to Lemmas 12.2, 12.3, 12.4, 12.5 and 12.6, we have that

P(E1 ∩ · · · ∩ E5) > 1−O
(
(log n)2n−κα

)
.

Now, assume that n > n0 and apply Lemmas 12.8 and 12.9. We get that for any ρ ∈ E1 ∩ · · · ∩ E5,
any permutation g ∈ Merge(ρ;nθ) cannot belong to a transitive G 6 Sn, primitive or imprimitive,
unless G = An or G = Sn. The proposition is thus proved. �
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