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Abstract
The Erdős–Hooley Delta function is defined for 𝑛 ∈
ℕ as Δ(𝑛) = sup𝑢∈ℝ #{𝑑|𝑛 ∶ 𝑒𝑢 < 𝑑 ⩽ 𝑒𝑢+1}. We prove
that

∑
𝑛⩽𝑥 Δ(𝑛) ≪ 𝑥(log log 𝑥)

11∕4 for all 𝑥 ⩾ 100. This
improves on earlier work of Hooley, Hall–Tenenbaum,
and La Bretèche–Tenenbaum.

MSC 2020
11N25 (primary), 11N37, 11N64 (secondary)

1 INTRODUCTION

The Erdős–Hooley Delta function (oeis.org/A226898) is defined for a natural number 𝑛 as

Δ(𝑛) ∶= sup
𝑢∈ℝ

#{𝑑|𝑛 ∶ 𝑒𝑢 < 𝑑 ⩽ 𝑒𝑢+1}.
Erdős introduced this function in the 1970s [2, 3] and studied certain aspects of its distribution in
joint work with Nicolas [4, 5]. However, it was not until the work of Hooley in 1979 that Δ was
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2 KOUKOULOPOULOS and TAO

studied in more detail [13]. Specifically, Hooley proved that∑
𝑛⩽𝑥

Δ(𝑛) ≪ 𝑥(Log 𝑥)
4
𝜋
−1 (1.1)

for any 𝑥 ⩾ 1. Here and in the sequel, we use the notation

Log 𝑥 ∶= max{1, log 𝑥} for 𝑥 > 0,

and also define

Log2 𝑥 ∶= Log(Log 𝑥) and Log3 𝑥 ∶= Log(Log2 𝑥);

see also Section 2 below for our asymptotic notation conventions.
To put Hooley’s estimate (1.1) into context, let us note that 1 ⩽ Δ ⩽ 𝜏 with 𝜏(𝑛) = #{𝑑|𝑛} the

divisor function. Thus, we have the trivial bounds

𝑥 ≪
∑
𝑛⩽𝑥

Δ(𝑛) ≪ 𝑥 Log 𝑥 (1.2)

for 𝑥 ⩾ 1. Comparing (1.1) with (1.2), we see that Δ is on average of genuinely smaller order
than 𝜏. This savings is crucial: as Hooley demonstrated (see [13, 19], and Remarks 2 and 4
below), it can be exploited to count solutions to certain Diophantine equations that are not
amenable to more “standard” techniques, as well as to improve bounds on certain Diophantine
approximation results.
In a series of papers, Hall and Tenenbaum improved significantly Hooley’s estimate for Δ and

for various generalizations of it; see [9–11], and also [12]. Their work culminated in the following
estimates [12, Theorems 60 and 70]: for every fixed 𝜀 > 0 and for every 𝑥 ⩾ 1, we have

𝑥 Log2 𝑥 ≪
∑
𝑛⩽𝑥

Δ(𝑛) ≪𝜀 𝑥 exp
((√

2 + 𝜀
)√
Log2 𝑥 Log3 𝑥

)
. (1.3)

The upper bound was improved recently by La Bretèche and Tenenbaum [1] to

∑
𝑛⩽𝑥

Δ(𝑛) ≪𝜀 𝑥 exp
((√

2 log 2 + 𝜀
)√
Log2 𝑥

)
for every fixed 𝜀 > 0 and for every 𝑥 ⩾ 1.
The main result of this note is the following further sharpening of the upper bound.

Theorem 1 (Mean value bound). For 𝑥 ⩾ 1, we have∑
𝑛⩽𝑥

Δ(𝑛) ≪ 𝑥(Log2 𝑥)
11∕4.

Remark 1. The average value of Δ is dominated by “atypical” integers. Indeed, we know from
results in [1] and in [7] that, for every fixed 𝜀 > 0, we have

(Log2 𝑥)
𝜂−𝜀 ⩽ Δ(𝑛) ⩽ (Log2 𝑥)

𝜃+𝜀
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for all but 𝑜(𝑥) integers 𝑛 ∈ [1, 𝑥], where 𝜃 ∶= log 2

log 2+1∕ log 2−1
= 0.6102… and 𝜂 = 0.3533… is

another constant.† However, the leftmost inequality in (1.3) implies that the mean value of Δ(𝑛)
over 𝑛 ∈ [1, 𝑥] is of larger order. As a matter of fact, it appears that the average value has signif-
icant contributions from integers for which Δ(𝑛) is as large as (log 𝑥)log 4−1. Indeed, in a recent
preprint of Kevin Ford and the two authors of the present paper [8], it was shown that∑

𝑛⩽𝑥

Δ(𝑛) ≫ 𝑥(Log2 𝑥)
1+𝜂,

with 𝜂 as above. Ignoring factors of (Log2 𝑥)𝑂(1), this paper shows roughly that for any choice
of Log2 𝑦 ∈ [𝜀 Log2 𝑥, (1 − 𝜀) Log2 𝑥], we have Δ(𝑛) ⪆ (Log 𝑦)log 4−1 for ⪆ 𝑥∕(Log 𝑦)log 4−1 integers
𝑛 ⩽ 𝑥 with 𝜔(𝑛) = Log2 𝑦 + Log2 𝑥 + 𝑂(1) (those that have about 2 Log2 𝑦 prime factors ⩽ 𝑦, and
about Log2 𝑥 − Log2 𝑦 prime factors in (𝑦, 𝑥]).

Remark 2. As indicated before, estimates on the partial sums of theΔ-functionhave applications to
counting solutions to certain Diophantine equations. In [18], Olivier Robert studied the following
question: given integers 𝑘 ⩾ 2, 𝓁𝑘 ⩾ ⋯ ⩾ 𝓁1 ⩾ 2 and 𝑐0, 𝑐1, … , 𝑐𝑘 ⩾ 1 such that

∑𝑘
𝑗=1 1∕𝓁𝑗 = 1∕2,

let 𝑆≠(𝑥) denote the number of tuples (𝑚0,𝑚1, … ,𝑚𝑘, 𝑛0, 𝑛1, … , 𝑛𝑘) ∈ ℕ2𝑘+2 such that

𝑐0𝑚
2
0 +

𝑘∑
𝑗=1

𝑐𝑗𝑚
𝓁𝑗
𝑗
= 𝑐0𝑛

2
0 +

𝑘∑
𝑗=1

𝑐𝑗𝑛
𝓁𝑗
𝑗
⩽ 𝑥. (1.4)

A straightforward adaptation of [18] leads to the estimate

𝑆≠(𝑥) ≪ 𝑥(Log2 𝑥)2
4𝐿+15∕4 (1.5)

with 𝐿 = max{𝓁1, … ,𝓁𝑘} and the implied constant depending at most on parameters 𝑘, 𝑐1, … , 𝑐𝑘
and 𝓁1, … ,𝓁𝑘, which improves Theorem 1.1 of [18]. In turn, this leads to a similar improvement of
Theorem 1.2 of [18]. We will outline the proof of (1.5) in Section 8.

Remark 3. Theorem 1 has applications to a problem of Erdős on sets whose subset sums are not
squares. Specifically, assume that 𝑐 is a constant such that∑

𝑛⩽𝑥

Δ(𝑛) ≪ 𝑥(Log2 𝑥)
𝑐 for all 𝑥 ⩾ 1. (1.6)

In an upcoming paper, David Conlon, Jacob Fox, and Huy Pham developed a new combinatorial
argument that deduces from (1.6) that any subset 𝐴 of {1, 2, … ,𝑁} with |𝐴| ⩾ 𝑁1∕3(Log2 𝑁)𝑐′ for
some appropriate 𝑐′ = 𝑐′(𝑐) has the property that its set of subset sums {

∑
𝑏∈𝐵 𝑏 ∶ 𝐵 ⊆ 𝐴} contains

a square. This improves the earlier bound of 𝑁1∕3(Log𝑁)𝐶 with 𝐶 > 0 of Nguyen and Vu [16].

Remark 4. In [13], Hooley used the bound (1.1) to show that for any irrational 𝜃 and real 𝛾, and
any 𝜀 > 0, the inequality ‖𝑛2𝜃 − 𝛾‖ ⩽ 𝑛−1∕2(log 𝑛) 2𝜋− 12+𝜀 holds for infinitely many 𝑛 where ‖𝑥‖
† The precise definition is 𝜂 = (log 2)∕ log(2∕𝜚), where 𝜚 is the unique number in [0, 1∕3] satisfying the equation 1 − 𝜚∕2 =
lim𝑗→∞ 2

𝑗−2∕ log 𝑎𝑗 with 𝑎1 = 2, 𝑎2 = 2 + 2𝜚 and 𝑎𝑗 = 𝑎2𝑗−1 + 𝑎
𝜚
𝑗−1
− 𝑎

2𝜚
𝑗−2

for 𝑗 ∈ ℤ⩾3.
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denotes the distance of the real number 𝑥 from the nearest integer. Tenenbaum [19] improved the
logarithmic factor in this bound using (1.3). Similarly, it should be possible to use Theorem 1 to
improve further the logarithmic factor, but we will not pursue this matter here. In the homoge-
neous case 𝛾 = 0, the more significant improvement ‖𝑛2𝜃‖ ⩽ 𝑛−2∕3+𝜀 was achieved (for arbitrary
real 𝜃) by Zaharescu [20].

2 NOTATION

We use 𝑋 ≪ 𝑌, 𝑌 ≫ 𝑋, or 𝑋 = 𝑂(𝑌) to denote a bound of the form |𝑋| ⩽ 𝐶𝑌 for a constant 𝐶.
If we need this constant to depend on parameters, we indicate this by subscripts, for instance,
𝑋 ≪𝑘 𝑌 denotes a bound of the form |𝑋| ⩽ 𝐶𝑘𝑌 where 𝐶𝑘 can depend on 𝑘. We also write 𝑋 ≍ 𝑌
for 𝑋 ≪ 𝑌 ≪ 𝑋. All sums will be over natural numbers unless the variable is 𝑝, in which case
the sum will be over primes. We use 1𝐸 to denote the indicator of a statement 𝐸; thus, 1𝐸 equals 1
when 𝐸 is true and 0 otherwise.
Given an integer 𝑛, we write 𝜏(𝑛) ∶=

∑
𝑑|𝑛 1 for its divisor-function and 𝜔(𝑛) ∶= ∑

𝑝|𝑛 1 for the
number of its distinct prime factors.
It will be convenient, for each 𝑥 ⩾ 1, to work with the set <𝑥 which denotes the set of square-

free numbers, all of whose prime factors 𝑝 are such that 𝑝 < 𝑥. Observe that if 1 ⩽ 𝑦 ⩽ 𝑥, then
every 𝑛 ∈ <𝑥 has a unique factorization 𝑛 = 𝑛<𝑦𝑛⩾𝑦 , where 𝑛<𝑦 ∈ <𝑦 and 𝑛⩾𝑦 lies in the set[𝑦,𝑥) of square-free numbers, all of whose prime factors 𝑝 are in the interval [𝑦, 𝑥).

3 METHODS OF PROOF

Similarly to other authors, we shall work with logarithmic weights. Specifically, for all 𝑥 ⩾ 1, we
have [12, Theorem 61] ∑

𝑛⩽𝑥

Δ(𝑛) ≪
𝑥

Log 𝑥

∑
𝑛∈<𝑥

Δ(𝑛)

𝑛
. (3.1)

Now, for each 𝑢 ∈ ℝ, let us define

Δ(𝑛; 𝑢) ∶= #{𝑑|𝑛 ∶ 𝑒𝑢 < 𝑑 ⩽ 𝑒𝑢+1}, (3.2)

so that

Δ(𝑛) = sup
𝑢∈ℝ

Δ(𝑛; 𝑢).

As with previous work, we introduce the moments

𝑀𝑞(𝑛) ∶= ∫ℝ Δ(𝑛; 𝑢)
𝑞 d𝑢 (3.3)

for 𝑞 ⩾ 1. Thus, for instance,

𝑀1(𝑛) = 𝜏(𝑛)
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and

Δ(𝑛) = lim
𝑞→∞

𝑀𝑞(𝑛)
1∕𝑞. (3.4)

In view of (3.4), it is then natural to try to control 𝑀𝑞(𝑛) for large 𝑞, keeping track of the
dependence of constants on 𝑞. In order to exploit the multiplicative nature of Δ, we employ the
identity

Δ(𝑛𝑝; 𝑢) = Δ(𝑛; 𝑢) + Δ(𝑛; 𝑢 − log 𝑝)

whenever 𝑛 is a natural number, 𝑝 is a prime not dividing 𝑛, and 𝑢 is a real. Taking the 𝑞th
moments of both sides of this identity, we obtain

𝑀𝑞(𝑝𝑛) =
∑
𝑎+𝑏=𝑞
0⩽𝑏⩽𝑞

(
𝑞
𝑎

)
∫ℝ Δ(𝑛; 𝑢)

𝑎Δ(𝑛; 𝑢 − log 𝑝)𝑏 d𝑢.

Extracting out the extreme terms with 𝑏 ∈ {0, 𝑞}, we can write this as

𝑀𝑞(𝑝𝑛) = 2𝑀𝑞(𝑛) +
∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞−1

(
𝑞
𝑎

)
∫ℝ Δ(𝑛; 𝑢)

𝑎Δ(𝑛; 𝑢 − log 𝑝)𝑏 d𝑢. (3.5)

By the use of Hölder’s inequality and other tools, one can use this identity to recursively control
expressions such as

∑
𝑛⩾1
𝜔(𝑛)⩾𝑘

𝑀𝑞(𝑛)
1∕𝑞

𝑛𝜎

for various 𝜎 > 1 and 𝑘 ⩾ 1, where 𝜔(𝑛) denotes the number of distinct prime factors of 𝑛. See,
for instance, [1] for an example of this approach.
In our work, we use a variation of the above ideas. Our main guiding heuristic is that Δ(𝑛)

behaves roughly as

max
𝑦∈[1,𝑥]

𝜏(𝑛<𝑦)

Log 𝑦
(3.6)

for integers 𝑛 ∈ [1, 𝑥]. To give some support to this heuristic, let us note that

𝜏(𝑎) = 𝑀1(𝑎) = ∫
log 𝑎

−1
Δ(𝑎; 𝑢) d𝑢 ⩽ (1 + log 𝑎)Δ(𝑎)

for any 𝑎 ∈ ℕ. Applying this with 𝑎 = 𝑛<𝑦 and noticing thatΔ(𝑛<𝑦) ⩽ Δ(𝑛) and that log 𝑛<𝑦 is typ-
ically of size Log 𝑦, we find that the expression in (3.6) is morally a lower bound (up to constants)
for Δ(𝑛).
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Motivated by the discussion of the above paragraph, we introduce certain sets that are meant
to act roughly as level sets of the Δ-function. Precisely, given a parameter 𝐴 ⩾ 1, we define ̃𝐴<𝑥 to
be the set of integers 𝑛 ∈ <𝑥 such that

𝜏(𝑛<𝑦) ⩽ 𝐴Log 𝑦 for all 𝑦 ∈ [1, 𝑥].

Using a simple Markov inequality, we may show that a proportion of 1 − 𝑂(1∕𝐴) integers in <𝑥
lies also in ̃𝐴<𝑥. As a matter of fact, using a more careful analysis, the same statement holds if we
replace ̃𝐴<𝑥 by the set 𝐴<𝑥 of integers 𝑛 ∈ <𝑥 such that

𝜏(𝑛<𝑦) ⩽ 𝐴𝑒
−𝑓𝐴(𝑦) Log 𝑦 for all 𝑦 ∈ [1, 𝑥], (3.7)

where 𝑒−𝑓𝐴(𝑦) is a Gaussian-type weight concentrated around the region

Log2 𝑦 =
Log𝐴 + 𝑂

(√
log𝐴

)
log 4 − 1

(cf. Proposition 5.1).
Our goal would then be to also show that Δ(𝑛) ⪅ 𝐴 for most 𝑛 ∈ 𝐴<𝑥. (In fact, we will only be

able to show a weaker version of this, which is why the exponent in Theorem 1 is larger than in
the lower bound of (1.3).) In order to achieve this goal, we use (3.5) and a recursive argument that
allows us to control averages of𝑀𝑞(𝑛)when 𝑛 ranges over 𝑞−1,𝐴<𝑥 , defined to be the set of 𝑛 ∈ 𝐴<𝑥
such that

𝑀𝑗(𝑛) ⩽ 𝜏(𝑛) ⋅𝑚𝑗,𝐴 for 𝑗 = 2, 3, … , 𝑞 − 1, (3.8)

where the𝑚𝑗,𝐴’s are certain suitable quantities growing roughly like (𝑗𝐴)𝑗(log𝐴)3𝑗∕4.
It is important to note that our recursive argumentmakes use of the following simple but crucial

observation: the integral (
𝑞
𝑎

)
∫ℝ Δ(𝑛; 𝑢)

𝑎Δ(𝑛; 𝑢 − log 𝑝)𝑏 d𝑢 (3.9)

is symmetric in 𝑎, 𝑏. Indeed, we have Δ(𝑛; 𝑣) = Δ(𝑛; log 𝑛 − 𝑣 − 1) for all but finitely many values
of 𝑣 ∈ ℝ, because 𝑑 ∈ (𝑒𝑣, 𝑒𝑣+1] if and only if 𝑛∕𝑑 ∈ [𝑒log 𝑛−𝑣−1, 𝑒log 𝑛−𝑣). Thus,

∫ℝ Δ(𝑛; 𝑢)
𝑎Δ(𝑛; 𝑢 − log 𝑝)𝑏 d𝑢 = ∫ℝ Δ(𝑛; log 𝑛 − 𝑢 − 1)

𝑎Δ(𝑛; log 𝑛 − 𝑢 − 1 + log 𝑝)𝑏 d𝑢

= ∫ℝ Δ(𝑛; 𝑣 − log 𝑝)
𝑎Δ(𝑛; 𝑣)𝑏 d𝑣.

This proves our claim that the integral in (3.9) is symmetric in 𝑎, 𝑏.
Now, combining (3.5) with the symmetry of (3.9), we have the inequality

𝑀𝑞(𝑝𝑛) ⩽ 2𝑀𝑞(𝑛) + 2
∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

)
∫ℝ Δ(𝑛; 𝑢)

𝑎Δ(𝑛; 𝑢 − log 𝑝)𝑏 𝑑𝑢. (3.10)
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To eliminate the factors of 2, we observe that 𝜏(𝑝𝑛) = 2𝜏(𝑛) (recall that 𝑝 ∤ 𝑛 here), and hence,

𝑀𝑞(𝑝𝑛)

𝜏(𝑝𝑛)
⩽
𝑀𝑞(𝑛)

𝜏(𝑛)
+

1
𝜏(𝑛)

∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

)
∫ℝ Δ(𝑛; 𝑢)

𝑎Δ(𝑛; 𝑢 − log 𝑝)𝑏 𝑑𝑢. (3.11)

We then can apply Hölder’s inequality (treating the Δ(𝑛; 𝑢)𝑎 and Δ(𝑛; 𝑢 − log 𝑝)𝑏 terms differ-
ently) to (3.11), and use our pointwise bounds (3.7) and (3.8), which will allow us to inductively
obtain efficient estimates for the sum

∑
𝑛∈𝑞−1,𝐴<𝑥

𝑀𝑞(𝑛)∕𝜏(𝑛)

𝑛
,

where 𝑞 ⩾ 1, 𝐴 ⩾ 1, 𝑥 ⩾ 1 are parameters.

4 BASIC ESTIMATES

We record here a couple of simple lemmas for easy reference, starting with the following standard
consequence of Mertens’ theorem.

Lemma 4.1 (Mertens’ theorem estimate). Fix 𝑘 ⩾ 0. For 𝑥 ⩾ 𝑦 ⩾ 1, we have

∑
𝑛∈[𝑦,𝑥)

𝜏𝑘(𝑛)

𝑛
=

∏
𝑦⩽𝑝<𝑥

(
1 +

2𝑘

𝑝

)
≍𝑘

(
Log 𝑥

Log 𝑦

)2𝑘
.

Proof. We have

log
∏
𝑦⩽𝑝<𝑥

(
1 +

2𝑘

𝑝

)
=

∑
𝑦⩽𝑝<𝑥

2𝑘

𝑝
+ 𝑂𝑘(1),

so the lemma follows by a classical estimate of Mertens [14, Theorem 3.4(b)]. □

We also note the following estimate.

Lemma 4.2 (Brun–Titchmarsh inequality). For 𝑧 ⩾ 𝑦 ⩾ 𝑧∕100 ⩾ 1, we have

∑
𝑦⩽𝑝⩽𝑧

1
𝑝
≪
log(𝑧∕𝑦)

log 𝑦
+

1

𝑦1∕2
.

Proof. Note that log(𝑧∕𝑦) ≍ (𝑧 − 𝑦)∕𝑦 and that 1∕𝑝 ≍ 1∕𝑦 for all primes 𝑝 ∈ [𝑦, 𝑧] ⊆ [𝑦, 100𝑦].
Hence, it suffices to show that

#{𝑦 ⩽ 𝑝 ⩽ 𝑧} ≪
𝑧 − 𝑦

log 𝑦
+ 𝑦1∕2. (4.1)
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If 𝑧 ⩽ 𝑦 + 𝑦1∕2, there are at most 𝑦1∕2 primes in [𝑦, 𝑧]. On the other hand, if 100𝑦 ⩾ 𝑧 > 𝑦 + 𝑦1∕2,
then (4.1) follows from the Brun–Titchmarsh inequality (see, e.g., [14, Theorem 20.1]) □

5 CONTROL ON THE DIVISOR FUNCTION

Let 𝑥 > 1. Let us recall our heuristic argument that Δ(𝑛) behaves like max𝑦∈[1,𝑥](𝜏(𝑛<𝑦)∕Log 𝑦)
for integers 𝑛 ∈ <𝑥. Our ultimate goal is to understand the probability that Δ(𝑛) > 𝐴. Motivated
by our heuristic, we first study the probability of the event that max𝑦∈[1,𝑥](𝜏(𝑛<𝑦)∕Log 𝑦) > 𝐴.
Equivalently, this is the event that there exists some 𝑦 ∈ [1, 𝑥] such that 𝜏(𝑛<𝑦) > 𝐴 log 𝑦. From
Mertens’ theorem, we have

∑
𝑛∈<𝑥

𝜏(𝑛<𝑦)

𝑛
=

∏
𝑝<𝑦

(
1 +

2
𝑝

) ∏
𝑦⩽𝑝<𝑥

(
1 +

1
𝑝

)
≍ (Log 𝑥)(Log 𝑦),

and hence, by Markov’s inequality, we see that 𝜏(𝑛<𝑦) ⩽ 𝐴Log 𝑦 for all 𝑛 ∈ <𝑥 outside of an
exceptional set 𝐴,𝑦 with

∑
𝑛∈𝐴,𝑦

1
𝑛
≪
Log 𝑥

𝐴
. (5.1)

We now give a refinement of this simple analysis, in which we have a single exceptional set that
covers all 𝑦 ∈ [1, 𝑥], and furthermore, there is an additional Gaussian-type decay outside of the
critical regime Log2 𝑦 =

Log𝐴+𝑂(
√
Log𝐴)

log 4−1
.

Proposition 5.1. Let 𝐴 ⩾ 1. For any 𝑥 > 1, let 𝐴<𝑥 denote the collection of all 𝑛 ∈ <𝑥 such that
𝜏(𝑛<𝑦) ⩽ 𝐴𝑒

−𝑓𝐴(𝑦) Log 𝑦 for all 𝑦 ∈ [1, 𝑥], (5.2)

where

𝑓𝐴(𝑦) ∶= 𝛿min

{(
Log2 𝑦 −

Log𝐴

log 4−1

)2
Log𝐴

, Log𝐴 + Log2 𝑦

}
, (5.3)

and 𝛿 > 0 is a sufficiently small absolute constant. Then

∑
𝑛∈<𝑥∖𝐴<𝑥

1
𝑛
≪
Log 𝑥

𝐴
. (5.4)

Remark. The upper bound (5.4) is sharp. When Log2 𝑦 =
Log𝐴

log 4−1
, relation (5.2) becomes 𝜏(𝑛<𝑦) ⩽

(log 𝑦)log 4 or, equivalently, 𝜔(𝑛<𝑦) ⩽ 2 Log2 𝑦. This event occurs with probability roughly equal to
1 − (log 𝑦)−(log 4−1) = 1 − 1∕𝐴. A more refined analysis that uses appropriately adapted results of
Ford [6] can show that the left-hand side of (5.4) is ≍ Log𝑥

𝐴
. Hence, the naive Markov bound (5.1)

is actually close to the truth in the critical range of 𝑦.



AN UPPER BOUND ON THEMEAN VALUE OF THE ERDŐS–HOOLEY DELTA FUNCTION 9

Proof. We may assume that 𝐴 is large, as the claim is immediate from Mertens’ inequality other-
wise.
Suppose 𝑛 ∈ <𝑥∖𝐴<𝑥. Then there exists 𝑦0 ∈ [1, 𝑥] such that

𝜏(𝑛<𝑦0) > 𝐴𝑒
−𝑓𝐴(𝑦0) Log 𝑦0.

We claim that this implies the existence of an absolute constant 𝑐 > 0 such that

𝜏(𝑛<𝑦) ⩾ 𝑐𝐴𝑒
−𝑓𝐴(𝑦) Log 𝑦 for all 𝑦 ∈ [𝑦0, 𝑦20]. (5.5)

Indeed, if Log2 𝑦0 ⩾ 10 Log𝐴, then 𝑓𝐴(𝑦) = 𝛿(Log𝐴 + Log2 𝑦) for all 𝑦 ∈ [𝑦0, 𝑦20], so (5.5) holds
for some appropriate choice of 𝑐 > 0; on the other hand, ifLog2 𝑦0 ⩽ 10 Log𝐴, then both functions
in the right-hand side of (5.3) change by atmost𝑂(1)when 𝑦 ranges in [𝑦0, 𝑦20], so (5.5) holds again
provided we choose 𝑐 > 0 to be small enough.
Now, using (5.5), we find that

∫
𝑥2

1
1𝜏(𝑛<𝑦)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

d𝑦

𝑦 Log 𝑦
≫ 1.

We conclude that

∑
𝑛∈<𝑥∖𝐴<𝑥

1
𝑛
≪ ∫

𝑥2

1

∑
𝑛∈<𝑥

1𝜏(𝑛<𝑦)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

𝑛
⋅

d𝑦

𝑦 Log 𝑦
.

Factoring 𝑛 = 𝑛<𝑦𝑛⩾𝑦 and using Mertens’ theorem, we have

∑
𝑛∈<𝑥

1𝜏(𝑛<𝑦)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

𝑛
≍
Log 𝑥

Log 𝑦

∑
𝑛∈<𝑦

1𝜏(𝑛)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

𝑛
,

so, it suffices to show that

∫
𝑥2

1

∑
𝑛∈<𝑦

1𝜏(𝑛)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

𝑛
⋅

d𝑦

𝑦 Log2 𝑦
≪
1
𝐴
. (5.6)

First, we dispose of some easy contributions. If Log 𝑦 ⩽ 𝐴0.01, then we bound

∑
𝑛∈<𝑦

1𝜏(𝑛)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

𝑛
⩽

1

(𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦)2

∑
𝑛∈<𝑦

𝜏(𝑛)2

𝑛
≪
Log2 𝑦

𝐴2
𝑒2𝑓𝐴(𝑦)

by Lemma 4.1, and the contribution of this case to the left-hand side of (5.6) is easily seen to be
acceptable for 𝛿 ⩽ 1∕3, which we may assume.
In the other extreme, if Log 𝑦 ⩾ 𝐴100, then we bound

∑
𝑛∈<𝑦

1𝜏(𝑛)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

𝑛
⩽

1

(𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦)1∕2

∑
𝑛∈<𝑦

𝜏(𝑛)1∕2

𝑛
≪
(Log 𝑦)

√
2−1∕2

𝐴1∕2
𝑒𝑓𝐴(𝑦)∕2
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using Lemma 4.1 again, and one can check here too that this contribution to the left-hand side of
(5.6) is acceptable if 𝛿 ⩽ 1∕20, which we may assume.
In conclusion, in order to prove (5.6), it will suffice to establish a bound of the form

∑
𝑛∈<𝑦

1𝜏(𝑛)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

𝑛
≪

𝑒−𝑓𝐴(𝑦)

𝐴(Log𝐴)1∕2
Log 𝑦 (5.7)

whenever 𝐴0.01 ⩽ Log 𝑦 ⩽ 𝐴100. This essentially follows by work of Norton [17] (see also [12,
Theorems 08 and 09]). We give the details below.
We have 𝜏(𝑛) = 2𝜔(𝑛), and thus, 𝜏(𝑛) ⩾ 𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦 if, and only if,

𝜔(𝑛) ⩾ 𝑘𝑦 ∶=

⌊
log 𝑐 + log𝐴 − 𝑓𝐴(𝑦) + log(Log 𝑦)

log 2

⌋
.

In addition, for each 𝑘 ∈ ℤ⩾0, we have

∑
𝑛∈<𝑦
𝜔(𝑛)=𝑘

1
𝑛
⩽
1
𝑘!

(∑
𝑝<𝑦

1
𝑝

)𝑘
⩽
(Log2 𝑦 + 𝐶)

𝑘

𝑘!

for some constant𝐶 > 0, byMertens’ theorem [14, Theorem 3.4(b)]. Notice that 𝑘𝑦 ⩾ 1.1(Log2 𝑦 +
𝐶), which implies that the quantities 1

𝑘!
(Log2 𝑦 + 𝐶)

𝑘 decay at least exponentially fast for 𝑘 ⩾ 𝑘𝑦 .
We thus conclude that

∑
𝑛∈<𝑦

1𝜏(𝑛)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

𝑛
⩽

∑
𝑘⩾𝑘𝑦

(Log2 𝑦 + 𝐶)
𝑘

𝑘!
≪
(Log2 𝑦 + 𝐶)

𝑘𝑦

𝑘𝑦!
.

By Stirling’s formula and the bounds 𝑘𝑦 ≍ Log2 𝑦 ≍ Log𝐴, we then have

∑
𝑛∈<𝑦

1𝜏(𝑛)⩾𝑐𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

𝑛
≪
(Log 𝑦)1−𝑄(𝑡𝑦)

(Log𝐴)1∕2
, (5.8)

where

𝑄(𝑡) = 𝑡 log 𝑡 − 𝑡 + 1 and 𝑡𝑦 =
𝑘𝑦

Log2 𝑦 + 𝐶
=
Log𝐴 − 𝑓𝐴(𝑦) + Log2 𝑦

(log 2) Log2 𝑦
+ 𝑂

(
1

Log2 𝑦

)
.

Observe that 𝑡𝑦 ∈ [1.1, 150] when 𝐴0.01 ⩽ Log 𝑦 ⩽ 𝐴100, 𝛿 ⩽ 1∕5 and 𝐴 is large enough.
Now, note that

𝑡𝑦 − 2 =
Log𝐴 − (log 4 − 1) Log2 𝑦 − 𝑓𝐴(𝑦)

(log 2) Log2 𝑦
+ 𝑂

(
1

Log2 𝑦

)
. (5.9)

In addition, we have 0 ⩽ 𝑓𝐴(𝑦) ⩽ 100𝛿|Log2 𝑦 − Log𝐴

log 4−1
|, and thus,

|Log2 𝑦 − Log𝐴

log 4−1
|

2 Log2 𝑦
⩽ |𝑡𝑦 − 2| ⩽ |Log2 𝑦 − Log𝐴

log 4−1
|

Log2 𝑦
, (5.10)
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if 𝛿 is small enough and 𝐴 is large enough. We shall now use Taylor’s theorem to approximate
𝑄(𝑡𝑦) by 𝑄(2). Since 𝑡𝑦 ∈ [1.1, 150], there must exist some 𝜉 ∈ [1.1, 150] such that

𝑄(𝑡𝑦) = 𝑄(2) + 𝑄
′(2)(𝑡𝑦 − 2) + 𝑄

′′(𝜉)
(𝑡𝑦 − 2)

2

2
.

We have 𝑄(2) = log 4 − 1, 𝑄′(2) = log 2 and 𝑄′′(𝜉) = 1∕𝜉 ⩾ 1∕150. We then use (5.10) to obtain a
lower bound on (𝑡𝑦 − 2)2, and subsequently (5.9) to estimate 𝑡𝑦 − 2. In conclusion, we have

𝑄(𝑡𝑦) Log2 𝑦 ⩾ (log 4 − 1) Log2 𝑦 + (𝑡𝑦 − 2)(log 2) Log2 𝑦 + 2𝑓𝐴(𝑦)

= Log𝐴 + 𝑓𝐴(𝑦) + 𝑂(1),

as long as 𝛿 is small enough. Inserting this estimate into (5.8) completes the proof of (5.7), and
thus of the proposition. □

6 THE KEYMOMENT ESTIMATE

For inductive purposes, we will need to introduce a quantity𝑚𝑞,𝐴 depending on several parame-
ters 𝐶0, 𝐴, 𝑞. According to these quantities, we shall then define 𝑞,𝐴<𝑥 to be the set of all integers
𝑛 ∈ 𝐴<𝑥 such that

𝑀𝑎(𝑛)∕𝜏(𝑛) ⩽ 𝑚𝑎,𝐴 for all 𝑎 = 1, 2, … , 𝑞. (6.1)

Observe that𝑀1(𝑛) = 𝜏(𝑛), and thus, the above inequality is trivially satisfied when 𝑎 = 1 as long
as we ensure that

𝑚1,𝐴 ⩾ 1.

In particular,

1,𝐴<𝑥 = 𝐴<𝑥. (6.2)

Clearly, we have the inclusions

<𝑥 ⊃ 1,𝐴<𝑥 ⊃ 2,𝐴<𝑥 ⊃ … .
In addition, from (3.5), we have

𝑀𝑎(𝑝𝑛)∕𝜏(𝑝𝑛) ⩾ 𝑀𝑎(𝑛)∕𝜏(𝑛)

whenever 𝑝 is a prime, 𝑛 is coprime to 𝑝, and 𝑎 ⩾ 1. In particular, 𝑀𝑎(𝑛<𝑦)∕𝜏(𝑛<𝑦) is a
nondecreasing function of 𝑦, and thus,

𝑀𝑎(𝑛<𝑦)∕𝜏(𝑛<𝑦) ⩽ 𝑚𝑎,𝐴 for 𝑎 = 1, 2, … , 𝑞 and 𝑦 ∈ [1, 𝑥].
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In other words, we have that

𝑛<𝑦 ∈ 𝑞,𝐴<𝑦 whenever 𝑛 ∈ 𝑞,𝐴<𝑥 and 𝑦 ∈ [1, 𝑥]. (6.3)

We shall choose

𝑚𝑞,𝐴 ∶=
𝑞!

𝑞2
(𝐶0𝐴)

𝑞−1(Log𝐴)
1
2
(𝑞−1+⌊𝑞∕2⌋), (6.4)

where 𝐶0 is a large enough constant to be determined. We now show that our choice satisfies
certain properties.

Lemma 6.1 (The recursive upper bound). The following properties hold, with all implied constants
independent of 𝑞, 𝐴, and 𝐶0:

(i) One has𝑚1,𝐴 ⩾ 1,𝑚2,𝐴 ≫ 𝐴Log𝐴, and𝑚𝑞,𝐴 ≫ (𝐶0𝐴∕3)𝑞−1𝑞𝑞 .
(ii) For any 𝑞 ⩾ 3, one has

∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

)
𝑚𝑏,𝐴𝑚𝑎,𝐴 ≪

1

𝐶0𝐴(Log𝐴)
1∕2

⋅𝑚𝑞,𝐴.

(iii) For any 𝑞 ⩾ 1, one has

(𝐴𝑚𝑞,𝐴)
1∕𝑞 ≪ 𝑞𝐶0𝐴(Log𝐴)

3∕4.

Proof. The claims (i) and (iii) are clear from (6.4) (bounding 𝑞! ⩽ 𝑞𝑞 and 𝑞 − 1 + ⌊𝑞∕2⌋ ⩽ 3𝑞∕2).
For (ii), we calculate(

𝑞
𝑎

)
𝑚𝑏,𝐴𝑚𝑎,𝐴 =

𝑞!

𝑎2𝑏2
(𝐶0𝐴)

𝑎+𝑏−2(Log𝐴)
1
2
(𝑎+𝑏−2+⌊𝑎∕2⌋+⌊𝑏∕2⌋).

Noticing that 𝑎 + 𝑏 = 𝑞, ⌊𝑎∕2⌋ + ⌊𝑏∕2⌋ ⩽ ⌊𝑞∕2⌋, and 𝑎2 ≍ 𝑞2, the claim follows from the
summability of

∑∞
𝑏=1

1
𝑏2
. □

We now prove the following key moment estimate. In its proof, we shall only use the three
properties of the parameters 𝑚𝑞,𝐴 given in Lemma 6.1. We may thus think of these properties as
the only axioms our parameters need to satisfy.

Proposition 6.2 (Key moment estimate). Suppose that 𝐶0 ⩾ 1 is a sufficiently large constant, and
𝐴 ⩾ 1. Then, for any 𝑞 ⩾ 2 and 𝑥 > 1, we have the bound

∑
𝑛∈𝑞−1,𝐴<𝑥

𝑀𝑞(𝑛)∕𝜏(𝑛)

𝑛
⩽
𝐶0
𝑞2𝐴

𝑚𝑞,𝐴 Log 𝑥. (6.5)
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Proof. We induct on 𝑞, assuming that the claim has already been proven for all smaller values of
𝑞 (this assumption is vacuous for 𝑞 = 2). We fix 𝐴 and introduce the notation

𝑇𝑞(𝑥) ∶=
∑

𝑛∈𝑞−1,𝐴<𝑥

𝑀𝑞(𝑛)∕𝜏(𝑛)

𝑛
.

Every natural number 𝑛 ∈ 𝑞−1,𝐴<𝑥 other than 1 is expressible in the form 𝑛 = 𝑝𝑚 with 𝑝 < 𝑥 a
prime and𝑚 ∈ 𝑞−1,𝐴<𝑝 (here we use (6.3)). Thus,

𝑇𝑞(𝑥) ⩽ 1 +
∑
𝑝<𝑥

∑
𝑛∈𝑞−1,𝐴<𝑝

𝑀𝑞(𝑝𝑛)∕𝜏(𝑝𝑛)

𝑝𝑛
.

Applying (3.11), we conclude that

𝑇𝑞(𝑥) ⩽
∑
𝑝<𝑥

𝑇𝑞(𝑝)

𝑝
+ 𝑄𝑞(𝑥),

where

𝑄𝑞(𝑥) ∶= 1 +
∑
𝑝<𝑥

∑
𝑛∈𝑞−1,𝐴<𝑝

1
𝜏(𝑛)𝑝𝑛

∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

)
∫ℝ Δ(𝑛; 𝑢)

𝑎Δ(𝑛; 𝑢 − log 𝑝)𝑏 d𝑢. (6.6)

We can iterate this inequality in the obvious fashion to arrive at

𝑇𝑞(𝑥) ⩽ 𝑄𝑞(𝑥) +
∑
𝑛∈<𝑥
𝑛>1

𝑄𝑞(𝑃
−(𝑛))

𝑛
,

where 𝑃−(𝑛) is the least prime factor of 𝑛 with the convention that 𝑃−(1) = +∞. Note that

∑
𝑛∈<𝑥
𝑃−(𝑛)=𝑝0

1
𝑛
=
1
𝑝0

∏
𝑝0<𝑝<𝑥

(
1 +

1
𝑝

)
≍
1
𝑝0

⋅
Log 𝑥

Log 𝑝0

for any prime 𝑝0 < 𝑥, and thus,

𝑇𝑞(𝑥) ≪ 𝑄𝑞(𝑥) +
∑
𝑝<𝑥

𝑄𝑞(𝑝)

𝑝
⋅
Log 𝑥

Log 𝑝
. (6.7)

We now turn to the estimation of 𝑄𝑞(𝑥). Recall its definition in (6.6). Note that if 𝑛 ∈ 𝑞−1,𝐴<𝑝 ,
then 𝑛 ∈ 𝑞−1,𝐴<𝑦 for all 𝑦 ∈ [𝑝, 𝑝2] because 𝑛<𝑦 = 𝑛<𝑝 for all such values of 𝑦 and the function
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𝑤 → 𝑒−𝑓𝐴(𝑤) Log𝑤 is increasing. Since ∫ 𝑝2𝑝 d𝑦∕(𝑦 Log 𝑦) ≍ 1, we conclude that

𝑄𝑞(𝑥) ≪ 1 +
∑
𝑝<𝑥

∫
𝑝2

𝑝

∑
𝑛∈𝑞−1,𝐴<𝑦

1
𝜏(𝑛)𝑝𝑛

∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

)
∫ℝ Δ(𝑛; 𝑢)

𝑎Δ(𝑛; 𝑢 − log 𝑝)𝑏 d𝑢
d𝑦

𝑦 Log 𝑦

⩽ 1 + ∫
𝑥2

1 ∫ℝ
∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

) ∑
𝑛∈𝑞−1,𝐴<𝑦

∑
𝑝⩾𝑦1∕2

1
𝜏(𝑛)𝑝𝑛

Δ(𝑛; 𝑢)𝑎Δ(𝑛; 𝑢 − log 𝑝)𝑏 d𝑢
d𝑦

𝑦 Log 𝑦
.

From (3.2) followed by Lemma 4.2, we have

∑
𝑝⩾𝑦1∕2

1
𝑝
Δ(𝑛; 𝑢 − log 𝑝)𝑏 =

∑
𝑝⩾𝑦1∕2

1
𝑝

∑
𝑑1,…,𝑑𝑏|𝑛

𝑢−log 𝑝<log 𝑑1,…,log 𝑑𝑏⩽𝑢−log 𝑝+1

1

=
∑

𝑑1,…,𝑑𝑏|𝑛
log 𝑑max<log 𝑑min+1

∑
𝑝⩾𝑦1∕2

𝑢−log 𝑑min<log 𝑝⩽𝑢−log 𝑑max+1

1
𝑝

≪
∑

𝑑1,…,𝑑𝑏|𝑛
log 𝑑max<log 𝑑min+1

(
log 𝑑min + 1 − log 𝑑max

Log 𝑦
+

1

𝑦1∕4

)
,

where we adopt the shorthand 𝑑min ∶= min(𝑑1, … , 𝑑𝑏) and 𝑑max ∶= max(𝑑1, … , 𝑑𝑏). A similar
computation also gives

𝑀𝑏(𝑛) =
∑

𝑑1,…,𝑑𝑏|𝑛
log 𝑑max<log 𝑑min+1

∫𝑢<log 𝑑1,…,log 𝑑𝑏⩽𝑢+1 d𝑢 =
∑

𝑑1,…,𝑑𝑏|𝑛
log 𝑑max<log 𝑑min+1

(log 𝑑min + 1 − log 𝑑max),

while ∑
𝑑1,…,𝑑𝑏|𝑛

log 𝑑max<log 𝑑min+1

1 ⩽
∑

𝑑1,…,𝑑𝑏|𝑛
log 𝑑max<log 𝑑min+2

(log 𝑑min + 2 − log 𝑑max)

= ∫ℝ(Δ(𝑛; 𝑢) + Δ(𝑛; 𝑢 + 1))
𝑏 𝑑𝑢

⩽ 2𝑏𝑀𝑏(𝑛) (6.8)

thanks to the triangle inequality in 𝐿𝑏 (the proof of inequality (6.8) goes back to Maier and
Tenenbaum [15]). Combining all these estimates, we obtain the bound

𝑄𝑞(𝑥) ≪ 1 + ∫
𝑥2

1

∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

) ∑
𝑛∈𝑞−1,𝐴<𝑦

(
1

Log 𝑦
+
2𝑏

𝑦1∕4

)
𝑀𝑎(𝑛)𝑀𝑏(𝑛)

𝜏(𝑛)𝑛
⋅

d𝑦

𝑦 Log 𝑦
. (6.9)
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At this point, we split our analysis into the base case 𝑞 = 2 and the inductive case 𝑞 > 2.
Base case 𝑞 = 2. We must then have 𝑎 = 𝑏 = 1. Since𝑀1(𝑛) = 𝜏(𝑛) and 1,𝐴<𝑥 = 𝐴<𝑥 (cf. (6.2)),

the bound (6.9) simplifies to

𝑄2(𝑥) ≪ 1 + ∫
𝑥2

1

∑
𝑛∈𝐴<𝑦

𝜏(𝑛)

𝑛
⋅

d𝑦

𝑦 Log2 𝑦
.

On the one hand, we have from Mertens’ theorem that

∑
𝑛∈𝐴<𝑦

𝜏(𝑛)

𝑛
⩽
∏
𝑝<𝑦

(
1 +

2
𝑝

)
≪ Log2 𝑦.

On the other hand, from (5.2) and Lemma 4.1, one has

∑
𝑛∈𝐴<𝑦

𝜏(𝑛)

𝑛
⩽
(
𝐴𝑒−𝑓𝐴(𝑦) Log 𝑦

)1∕2 ∑
𝑛∈<𝑦

𝜏(𝑛)1∕2

𝑛
≪ 𝐴1∕2(Log 𝑦)1∕2+

√
2.

Consequently,

𝑄2(𝑥) ≪ 1 + ∫
𝑥2

1
min

{
𝐴1∕2(Log 𝑦)−0.01, 1

} d𝑦
𝑦
≪ min

{
𝐴1∕2(Log 𝑥)0.99, Log 𝑥

}
,

and thus, by (6.7)

𝑇2(𝑥) ≪ min
{
𝐴1∕2(Log 𝑥)0.99, Log 𝑥

}
+

∑
𝑝<𝑥

min
{
𝐴1∕2(Log 𝑝)0.99, Log 𝑝

}
𝑝

⋅
Log 𝑥

Log 𝑝
.

Dividing the summation into the ranges Log𝑝 ⩽ 𝐴50 and Log𝑝 > 𝐴50, and using Mertens’
theorem, we conclude that

𝑇2(𝑥) ≪ (Log𝐴)(Log 𝑥) ≪
1
𝐴

⋅𝑚2,𝐴 Log 𝑥

thanks to Lemma 6.1(ii). Thus, the claim (6.5) follows for 𝐶0 large enough. This concludes the
treatment of the base case 𝑞 = 2.
Inductive case 𝑞 > 2. We first handle the lower order term

𝑅𝑞(𝑥) ∶= ∫
𝑥2

1

∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

) ∑
𝑛∈𝑞−1,𝐴<𝑦

2𝑏

𝑦1∕4
⋅
𝑀𝑎(𝑛)𝑀𝑏(𝑛)

𝜏(𝑛)𝑛
⋅

d𝑦

𝑦 Log 𝑦

appearing in (6.9). We crudely use Hölder’s inequality to bound

𝑀𝑎(𝑛)𝑀𝑏(𝑛) ⩽ 𝑀1(𝑛)𝑀𝑞−1(𝑛) ⩽ 𝜏(𝑛)
𝑞(1 + log 𝑛).
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Since we also have
∑
𝑎+𝑏=𝑞

(𝑞
𝑎

)
2𝑏 = 3𝑞, we conclude that

𝑅𝑞(𝑥) ⩽ 3
𝑞 ∫

𝑥2

1

∑
𝑛∈𝑞−1,𝐴<𝑦

𝜏(𝑛)𝑞−1(1 + log 𝑛)

𝑛
⋅

d𝑦

𝑦5∕4 Log 𝑦
.

From (5.2), we have

𝜏(𝑛)𝑞−1 ⩽ (𝐴 Log 𝑦)𝑞−2𝜏(𝑛),

while

∑
𝑛∈<𝑦

𝜏(𝑛)(1 + log 𝑛)

𝑛
⩽

(
1 + 2

∑
𝑝<𝑦

log 𝑝

𝑝

)∏
𝑝<𝑦

(
1 +

2
𝑝

)
≪ (Log 𝑦)3.

Thus,

𝑅𝑞(𝑥) ≪ 3
𝑞𝐴𝑞−2 ∫

∞

1

(Log 𝑦)𝑞 d𝑦

𝑦5∕4
= 3𝑞𝐴𝑞−2 ⋅ 4𝑞+1𝑞! ⩽ 12𝑞+1𝑞𝑞𝐴𝑞−2,

as can be seen by the change of variables 𝑦 = 𝑒4𝑢. Inserting this into (6.9), we conclude that

𝑄𝑞(𝑥) ≪ 12
𝑞𝑞𝑞𝐴𝑞−2 + 𝑄′𝑞(𝑥), (6.10)

where

𝑄′𝑞(𝑥) ∶= ∫
𝑥2

1

∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

) ∑
𝑛∈𝑞−1,𝐴<𝑦

𝑀𝑎(𝑛)𝑀𝑏(𝑛)

𝜏(𝑛)𝑛
⋅

d𝑦

𝑦 Log2 𝑦
.

Applying successively (6.1) and (5.2), we find that

𝑀𝑏(𝑛) ⩽ 𝑚𝑏,𝐴𝐴𝑒
−𝑓𝐴(𝑦) Log 𝑦,

and thus,

𝑄′𝑞(𝑥) ⩽ ∫
𝑥2

1

∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

)
𝑚𝑏,𝐴𝐴𝑒

−𝑓𝐴(𝑦)𝑇𝑎(𝑦)
d𝑦

𝑦 Log 𝑦
.

Since 𝑞 > 2, 𝑎 + 𝑏 = 𝑞, and 1 ⩽ 𝑏 ⩽ 𝑞∕2, we have 2 ⩽ 𝑎 < 𝑞, and hence by induction hypothesis

𝑇𝑎(𝑦) ⩽
𝐶0
𝑎2𝐴

𝑚𝑎,𝐴 Log 𝑦.

Since 𝑎 ⩾ 𝑞∕2, we have 𝑎2 ⩾ 𝑞2∕4. As a consequence,

𝑄′𝑞(𝑥) ⩽
4𝐶0
𝑞2 ∫

𝑥2

1

∑
𝑎+𝑏=𝑞
1⩽𝑏⩽𝑞∕2

(
𝑞
𝑎

)
𝑚𝑎,𝐴𝑚𝑏,𝐴𝑒

−𝑓𝐴(𝑦)
d𝑦

𝑦
,
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and hence, by Lemma 6.1(ii),

𝑄′𝑞(𝑥) ≪
𝑚𝑞,𝐴

𝑞2𝐴(Log𝐴)1∕2 ∫
𝑥2

1
𝑒−𝑓𝐴(𝑦)

d𝑦

𝑦
.

We make the change of variables 𝑦 = 𝑒𝑒𝑡 to find that

∫
𝑥2

1
𝑒−𝑓𝐴(𝑦)

d𝑦

𝑦
⩽ ∫

Log2 𝑥+1

−∞
𝑒𝑡−𝑓𝐴(exp exp(𝑡)) d𝑡 ≪ 𝑒−𝑓𝐴(𝑥) Log 𝑥,

where we used (5.3) with 𝛿 small enough to show that the function 𝑡 − 𝑓𝐴(exp exp(𝑡)) is piece-
wise differentiable with derivative bounded from below by an absolute positive constant. In
conclusion,

𝑄′𝑞(𝑥) ≪
𝑒−𝑓𝐴(𝑥)𝑚𝑞,𝐴 Log 𝑥

𝑞2𝐴(Log𝐴)1∕2
.

Together with (6.10), this implies that

𝑄𝑞(𝑥) ≪ 12
𝑞𝑞𝑞𝐴𝑞−2 +

𝑒−𝑓𝐴(𝑥)𝑚𝑞,𝐴 Log 𝑥

𝑞2𝐴(Log𝐴)1∕2
.

Inserting the above bound into (6.7), and using Mertens’ theorem, we conclude that

𝑇𝑞(𝑥) ≪ 12
𝑞𝑞𝑞𝐴𝑞−2 Log 𝑥 +

𝑚𝑞,𝐴 Log 𝑥

𝑞2𝐴(Log𝐴)1∕2

(
1 +

∑
𝑝

𝑒−𝑓𝐴(𝑝)

𝑝

)
, (6.11)

where we used that the sum
∑
𝑝

1
𝑝 log 𝑝

converges. Finally, we break up the sum
∑
𝑝
𝑒−𝑓𝐴(𝑝)

𝑝
over 𝑝

on the right-hand side of (6.11) into intervals such that 𝑗 ⩽ Log2 𝑝 < 𝑗 + 1 for some 𝑗 ∈ ℤ⩾0. For
each fixed 𝑗, we have 𝑓𝐴(𝑝) = 𝑓𝐴(exp exp(𝑗)) + 𝑂(1) as well as

∑
𝑗⩽Log2 𝑝<𝑗+1

1
𝑝
≪ 1 by Mertens’

theorem. Consequently,

∑
𝑝

𝑒−𝑓𝐴(𝑝)

𝑝
≪

∑
𝑗⩾1

𝑒−𝑓𝐴(exp exp(𝑗)) ≪ (Log𝐴)1∕2,

by the definition of 𝑓𝐴 (cf. (5.3)). Hence, using Lemma 6.1(i), we conclude (for 𝐶0 large enough)
that

𝑇𝑞(𝑥) ⩽
𝐶0
𝑞2𝐴

𝑚𝑞,𝐴 Log 𝑥.

This completes the proof of the proposition. □

7 CLOSING THE ARGUMENT

Henceforth, we fix 𝐶0 so that Proposition 6.2 applies, and allow implied constants to depend on
𝐶0.
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Corollary 7.1 (Weak type estimate). Uniformly for 𝜆 ⩾ 1, we have

∑
𝑛∈<𝑥

Δ(𝑛)⩾𝜆 Log2 𝑥

1
𝑛
≪
(Log 𝜆)3∕4

𝜆
⋅ Log 𝑥.

Proof. Let 𝐶1 be a large constant and define 𝐴 > 0 implicitly via the equation

𝜆 = 𝐶1𝐴(Log𝐴)
3∕4.

We may assume that 𝐴 ⩾ 1, as the estimate is trivial otherwise. Our task is now to show that∑
𝑛∈<𝑥

Δ(𝑛)⩾𝜆 Log2 𝑥

1
𝑛
≪
Log 𝑥

𝐴
.

From Proposition 5.1 and relation (6.2), we have∑
𝑛∈<𝑥∖1,𝐴<𝑥

1
𝑛
≪
Log 𝑥

𝐴
. (7.1)

Also, from (6.1), Proposition 6.2, and Markov’s inequality, we have for all 𝑗 ⩾ 2 that

∑
𝑛∈𝑗−1,𝐴<𝑥 ∖𝑗,𝐴<𝑥

1
𝑛
⩽

1
𝑚𝑗,𝐴

∑
𝑛∈𝑗−1,𝐴<𝑥

𝑀𝑗(𝑛)∕𝜏(𝑛)

𝑛
≪
Log 𝑥

𝑗2𝐴
. (7.2)

Summing (7.1) and (7.2) for 𝑗 = 2,… , 𝑞, we conclude that

∑
𝑛∈<𝑥∖𝑞,𝐴<𝑥

1
𝑛
≪
Log 𝑥

𝐴
for all 𝑞 ∈ ℕ.

The corollary will then follow if we can show that there exists 𝑞 ∈ ℕ such that

Δ(𝑛) < 𝜆 Log2 𝑥 for all 𝑛 ∈ 𝑞,𝐴<𝑥 . (7.3)

Indeed, let us fix 𝑞 ∈ ℕ to be chosen later and let 𝑛 ∈ 𝑞,𝐴<𝑥 . From Theorem 72 in [12], we know
that†

Δ(𝑛)𝑞 ⩽ 2𝑞𝑀𝑞(𝑛).

Hence, by (6.1) and (5.2), we have

Δ(𝑛)𝑞 ≪ 2𝑞𝐴𝑚𝑞,𝐴 Log 𝑥.

† For completeness, we give the short proof of this inequality. We have Δ(𝑛) = Δ(𝑛; 𝑢0) for some real 𝑢0, hence Δ(𝑛)𝑞 ⩽
(Δ(𝑛; 𝑢) + Δ(𝑛; 𝑢 + 1))𝑞 ⩽ 2𝑞−1(Δ(𝑛; 𝑢)𝑞 + Δ(𝑛; 𝑢 + 1)𝑞) for all 𝑢 ∈ [𝑢0 − 1, 𝑢0]. Integrating both sides over 𝑢 ∈ [𝑢0 −
1, 𝑢0] yields the inequality Δ(𝑛)𝑞 ⩽ 2𝑞𝑀𝑞(𝑛).
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Taking 𝑞th roots and using Lemma 6.1(iii), we find that

Δ(𝑛) ≪ 𝑞𝐴(Log𝐴)3∕4(Log 𝑥)1∕𝑞.

We take 𝑞 ∶= ⌊Log2 𝑥⌋ to optimize constants. Recalling the definition of 𝐴 in terms of 𝜆, and
assuming the constant 𝐶1, there is chosen to be large enough, and we conclude that (7.3) does
hold for all 𝑛 ∈ 𝑞,𝐴<𝑥 . This completes the proof of the corollary. □

Corollary 7.2 (Strong type estimate). For any 𝑥 ⩾ 1, we have

∑
𝑛∈<𝑥

Δ(𝑛)

𝑛
≪ (Log2 𝑥)

11∕4 Log 𝑥.

Proof. For those 𝑛 with Δ(𝑛) ⩾ (Log 𝑥)10, we use the trivial bound Δ(𝑛) ⩽ 𝜏(𝑛)2∕(Log 𝑥)10, and
this contribution is acceptable by Lemma 4.1.
On the other hand, those 𝑛 with Δ(𝑛) ⩽ Log2 𝑥 also have an acceptable contribution because

11∕4 > 1.
We then subdivide the remaining range Log2 𝑥 ⩽ Δ(𝑛) < (Log 𝑥)10 into 𝑂(Log2 𝑥) dyadic

ranges 2𝑗 Log2 𝑥 ⩽ Δ(𝑛) < 2𝑗+1 Log2 𝑥 with 𝑗 ∈ ℤ⩾0. In each range, we use Corollary 7.2.
Thus,

∑
𝑛∈<𝑥

Log2 𝑥⩽Δ(𝑛)<(Log 𝑥)
10

Δ(𝑛)

𝑛
⩽

∑
0⩽𝑗≪Log2 𝑥

∑
𝑛∈<𝑥

2𝑗⩽Δ(𝑛)∕ Log2 𝑥<2
𝑗+1

Δ(𝑛)

𝑛

⩽
∑

0⩽𝑗≪Log2 𝑥

(2𝑗+1 Log2 𝑥)
∑
𝑛∈<𝑥

Δ(𝑛)⩾2𝑗 Log2 𝑥

1
𝑛

≪
∑

0⩽𝑗≪Log2 𝑥

(2𝑗+1 Log2 𝑥) ⋅
𝑗3∕4

2𝑗
Log 𝑥 ≪ (Log2 𝑥)

11∕4 Log 𝑥.

This completes the proof. □

Lastly, Theorem 1 follows immediately by Corollary 7.2 and inequality (3.1).

8 PROOF OF (1.5)

Fix 𝑘, 𝑐1, … , 𝑐𝑘,𝓁1, … ,𝓁𝑘 as in Remark 2. All implied constants might depend on these parameters
without further notice.
Following the proof of Theorem 1.1 in Section 5 of [18], we have

𝑆≠(𝑥) ≪ 𝑥 + 𝑥
log 𝑥

(Log2 𝑥)
2+24𝐿

∑
𝑝|𝑚 ⇒ 𝑝<𝑦

Δ(𝑚)𝑓(𝑚)

𝑚
(8.1)
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with 𝑦 = exp(𝑐 Log 𝑥
Log2 𝑥

) for some constant 𝑐 > 0 and 𝑓(𝑚) = 𝑁(𝓁; 𝑐;𝑚)∕(𝑚2𝑘−2𝜑(𝑚)), where
𝜑(𝑚) = #(ℤ∕𝑚ℤ)∗ is Euler’s totient function and𝑁(𝓁; 𝑐;𝑚) is defined to be the number of tuples
(𝑚1, … ,𝑚𝑘, 𝑛1, … , 𝑛𝑘) ∈ (ℤ∕𝑚ℤ)

2𝑘 such that
∑𝑘
𝑗=1 𝑐𝑗𝑚

𝓁𝑗
𝑗

≡ ∑𝑘
𝑗=1 𝑐𝑗𝑛

𝓁𝑗
𝑗
(mod𝑚).

Now, in view of [18, Lemma 3.4] and our assumption that† 𝑘 ⩾ 2, we have 𝑓(𝑝) = 1 + 𝑂(1∕𝑝)
and 𝑓(𝑝𝜈) ⩽ 𝜈𝑂(1) for 𝜈 ⩾ 2. Therefore,

∑
𝑝|𝑚 ⇒ 𝑝<𝑦

Δ(𝑚)𝑓(𝑚)

𝑚
≪

∑
𝑚∈<𝑦

Δ(𝑚)𝑓(𝑚)

𝑚
(8.2)

≪
∑
𝑚∈<𝑦

Δ(𝑚)

𝑚
(8.3)

≪ (Log 𝑦)(Log2 𝑦)
11∕4 ≍ (Log 𝑥)(Log2 𝑥)

7∕4, (8.4)

where (8.2) is proven by writing 𝑚 = 𝑚1𝑚2 with 𝑚1 square-free, 𝑚2 square-full and (𝑚1,𝑚2) =
1, so that Δ(𝑚) ⩽ Δ(𝑚1)𝜏(𝑚2), (8.3) is proven by writing 𝑓 = 1 ∗ g so that 𝑓(𝑚)Δ(𝑚) ⩽∑
𝑎𝑏=𝑚 Δ(𝑎)|g(𝑏)|𝜏(𝑏) for𝑚 square-free (becausewemust then have (𝑎, 𝑏) = 1whenever𝑚 = 𝑎𝑏,

and thus, Δ(𝑚) ⩽ Δ(𝑎)𝜏(𝑏)), and (8.4) follows by Corollary 7.2 and the definition of 𝑦.
Combining (8.1) and (8.4) completes the proof of (1.5).
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†When 𝑘 = 1, we have 𝑓(𝑝) = 2 + 𝑂(1∕𝑝), and the behavior of
∑
𝑝|𝑚 ⇒𝑝<𝑦 𝑓(𝑚)Δ(𝑚)∕𝑚 changes. Indeed, the case 𝑘 = 1

of (1.4) corresponds to the classical problem of which integers 𝑛 can be written in the form 𝑐0𝑚20 + 𝑐1𝑚
2
1
. In particular, a

correction is needed in [18, Theorem 1.1] to indicate that 𝑘 must be at least 2.
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