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Conventions

We assume that the reader has already taken a first course in Analytic Number Theory and
thus she is familiar with basic techniques, such as partial summation and Perron’s inversion
formula, as well as with basic results, such as Chebyshev’s and Mertens’s estimates, as well
as the Prime Number Theorem for arithmetic progressions. However, we do give an almost
self-contained proof of the latter in Appendix B.

Throughout these notes there are various exercises which are imbedded in the text (rather
than at the end of each section or chapter). The most difficult ones have a “star”.

We make use of some standard and of some less standard notation. We write 1A to
denote the characteristic function of the set A. The symbol P denotes the set of prime
numbers and the letter p, with or without subscripts, will always denote a member of P. We
write f = O(g) or, equivalently, f � g if there is a constant M such that |f | ≤ Mg. The
constant M will be absolute unless otherwise specified, e.g. by a subscript. Also, we write
f � g if f � g and g � f . For n ∈ N we use P+(n) and P−(n) to denote the largest and
smallest prime factor of n, respectively, with the notational conventions that P+(1) = 1 and
P−(1) = +∞. We write ω(n) for the number of distinct prime factors of n and Ω(n) for
the total number of prime factors of n, counted with multiplicity. As usually, µ denotes the
Möbius function, defined to be (−1)ω(n) if n is square-free and 0 otherwise, ϕ denotes Euler’s
totient function, which counts the size of the set {r (modn) : (r, n) = 1}, Λ denotes the von
Mangoldt function, which is defined to be log p if n = pk, for some prime p and some k ≥ 1,
and 0 otherwise, and τk denotes the k-divisor function, defined by τk(n) =

∑
d1···dk=n 1. In

particular, τ2(n) is the number of divisors of n, which we simply denote by τ(n). We write
π(x) for the number of primes up to x and π(x; q, a) for the number of primes up to x that lie
in the arithmetic progression a (mod q). Finally, we give below references to the page where
some additional basic notation is introduced.

Symbol Page Equation Page
Ad 23 (A1) 23

S(A, z) 23 (A2) 24
P (z) 23 (A3) 25
g(d) 23 (A4a) 25
rd 23 (A4b) 26
V (z) 24 (R) 33
βκ 37 (R′) 58

(r) 58
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Chapter 0

Prelude: multiplicative functions

We start by covering some basic background material, which we will need in order to handle
some technical parts of the theory of sieve methods. In particular, we will see various
techniques for evaluating asymptotically the average value of a multiplicative function.

0.1 Arithmetic functions: basic definitions

An arithmetic function is a function f : N → C. Two important classes of arithmetic
functions are the so-called multiplicative functions, as well as the completely multiplicative
functions. An arithmetic function f : N→ C is called multiplicative if f(1) = 1 and

f(mn) = f(m)f(n) whenever (m,n) = 1,

whereas f is called completely multiplicative if f(1) = 1 and the above relation holds for
all m and n, without the requirement that they are co-prime. Some important examples of
multiplicative functions are the functions ns, the divisor functions

τk(n) := #{(d1, . . . , dk) ∈ Nk : d1 · · · dk = n}

and the Möbius function

µ(n) :=

{
(−1)r if n is square free and has r prime divisors,

0 otherwise.

Given two arithmetic functions f, g : N→ C, we define a new arithmetic function f ∗ g :
N→ C by the formula

(f ∗ g)(n) =
∑
ab=n

f(a)g(b) =
∑
d|n

f(d)g(n/d).

The function f ∗ g is called the convolution of f and g. For example, we have that τ = 1 ∗ 1
and, in general, τk = 1 ∗ · · · ∗ 1︸ ︷︷ ︸

k times

.

7
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Note that the operation ∗ is commutative and associative. Moreover, if f and g are both
multiplicative functions, then their convolution f ∗ g is also multiplicative. The unit of the
convolution operation is the completely multiplicative function

1(n) =

{
1 if n = 1,

0 if n > 1.

Any arithmetic function f with f(1) 6= 0 has an inverse with respect to ∗, that is to say,
there is g : N→ C with f ∗ g = 1. In particular, any multiplicative function has an inverse
with respect to ∗. Combining all of the above, we conclude that the set of multiplicative
functions together with the operation ∗ is an abelian group.

A particularly important example of a multiplicative function is the constant function 1.
Its convolution inverse is the Möbius function. Equivalently, we have the Möbius inversion
formula

∑
d|n

µ(d) =

{
1 if n = 1,

0 if n > 1,
(0.1.1)

which follows by the inclusion-exclusion principle. Alternatively, one may observe that 1 ∗ µ
is multiplicative and verify directly the above formula when n is a prime power. A direct
consequence of (0.1.1) is that if f is completely multiplicative, then its convolution inverse
is given by µf .

Exercise 0.1.1. Prove all of the above assertions.

0.2 Averages of multiplicative functions: basic tech-

niques

In this section we cover some basic techniques for studying the average behaviour of multi-
plicative functions. The most basic such technique is the ‘convolution method’. Basically,
this method allows us to compute average values of a multiplicative function f : N → C
by relating it to (approximating it by) a simpler multiplicative function g, whose average
value we already understand. It turns out that a good way of doing this is by finding a nice
function g such that f(p) ≈ g(p) most of the time. Then we write f = g ∗h and we compute
h by inverting g. For example, if f(n) = n/ϕ(n), then f(p) = p/(p− 1) = 1 +O(1/p). So a
good choice would be to set g = 1, in which case h = µ ∗ f , by the Möbis inversion formula.
This method allows us to obtain the following result:

Theorem 0.2.1. For x ≥ 2, we have that

∑
n≤x

n

ϕ(n)
= x

∏
p

(
1 +

1

p(p− 1)

)
+O(

√
x).
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Proof. Let f(n) = n/ϕ(n). We write f = 1 ∗ h, so that h = µ ∗ f . Then

h(pν) =
∑
d|pν

µ(d)f(pν/d) = f(pν)− f(pν−1) =

{
1
p−1

if ν = 1,

0 if ν ≥ 2.

In particular, |h(pν)| ≤ 1/
√
p for all p > 3, which also holds when p = 2 and ν ≥ 2. So

|h(n)| ≤
√

2/n for all n ∈ N and, consequently,∑
n≤x

f(n) =
∑
n≤x

∑
d|n

h(d) =
∑
d≤x

h(d)
∑

n≤x, d|n

1 =
∑
d≤x

h(d)
(x
d

+O(1)
)

= x

∞∑
d=1

h(d)

d
+O

(∑
d>x

1

d3/2
+
∑
d≤x

1√
d

)
= x

∞∑
d=1

h(d)

d
+O(

√
x),

which completes the proof of the theorem.

Exercise 0.2.2. Let σ(n) =
∑

d|n d. Use the convolution method to show that∑
n≤x

1

σ(n)
∼ c log x (x→∞),

for some appropriate constant c.

We now turn to another important example, the divisor function τ . As we said above,
τ = 1 ∗ 1. So we have that∑

n≤x

τ(n) =
∑
n≤x

∑
d|n

1 =
∑
d≤x

⌊x
d

⌋
=
∑
d≤x

(x
d

+O(1)
)

= x

(
log x+ γ +O

(
1

x

))
+O(x)

= x log x+O(x).

Dirichlet discovered that it possible to take advantage of the fact that both factors of τ = 1∗1
are ‘nice’ functions and improve significantly upon this result.

First, note that for every A and B with AB = x we have the general formula∑
n≤x

(f ∗ g)(n) =
∑
a≤A

f(a)
∑
b≤x/a

g(b) +
∑
b≤B

g(b)
∑
a≤x/b

f(b)−

(∑
a≤A

f(a)

)(∑
b≤B

g(b)

)
.(0.2.1)

If we know something about the average behaviour of both f and g, then may pick both A
and B to be increasing functions of x. This allows us to reduce the length of sums we are
considering and thus improve the error term in our formula for the summatory function of
f ∗ g. In particular, when f = g = 1, then choosing A = B =

√
x yields the formula∑

n≤x

τ(n) = 2
∑
a≤
√
x

⌊x
a

⌋
−
⌊√

x
⌋2

= 2
∑
a≤
√
x

(x
a

+O(1)
)
− (
√
x+O(1))2

= 2x

(
log
√
x+ γ +O

(
1√
x

))
− x+O(

√
x)

= x log x+ (2γ − 1)x+O(
√
x).

This argument can be generalized to deduce the following theorem.
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Theorem 0.2.3. Fix k ≥ 2. There is a polynomial Pk of degree k − 1 such that∑
n≤x

τk(n) = x · Pk(log x) +Ok(x
1−1/k) (x ≥ 1).

Proof. Exercise.

Exercise 0.2.4. (a) Find an asymptotic formula for the summatory function of 2ω(n), i.e.
for
∑

n≤x 2ω(n).

(b)* Try doing the same thing for the summatory function of 2Ω(n). What happens? Can
you explain why?

Exercise 0.2.5.

(a) Show that, for every x ≥ 1,

#{n ≤ x : n is square-free} = x ·
∏
p

(
1− 1

p2

)
+O(

√
x).

(b)* Show that the error term is in fact o(
√
x) as x→∞.

Next, we show the following very useful result.

Theorem 0.2.6. Let f : N→ [0,+∞) be a multiplicative function such that∑
p≤x

f(p) log p ≤ Ax (x ≥ 1), and
∑
p prime
ν≥2

f(pν) log(pν)

pν
≤ B.

Then, for x ≥ 2, we have that∑
n≤x

f(n) ≤ (A+B + 1)
x

log x

∑
n≤x

f(n)

n
and

∑
n≤x

f(n)

n
≤ eB

∏
p≤x

(
1 +

f(p)

p

)
.

Remark 0.2.7. Taking f(n) = τk(n), we see that the above theorem is best possible in this
generality, up to multiplicative constants (cf. Theorem 0.2.3).

Proof. Note that

(log x)
∑
n≤x

f(n) =
∑
n≤x

f(n) log n+
∑
n≤x

f(n) log
x

n

≤
∑
n≤x

f(n)
∑
pν‖n

log(pν) +
∑
n≤x

f(n) · x
n

=
∑
ν≥1

∑
mpν≤x
p-m

f(mpν) log(pν) + x
∑
n≤x

f(n)

n

≤
∑
ν≥1

∑
mpν≤x

f(m)f(pν) log(pν) + x
∑
n≤x

f(n)

n
.
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When ν = 1, we have that∑
mp≤x

f(m)f(p) log p =
∑
m≤x

f(m)
∑
p≤x/m

f(p) log p ≤
∑
m≤x

f(m) · A x

m
= Ax

∑
m≤x

f(m)

m
.

Finally, we bound the rest of the summands by noting that∑
ν≥2

∑
mpν≤x

f(m)f(pν) log(pν) ≤ x
∑
ν≥1

∑
mpν≤x

f(m)f(pν) log(pν)

mpν

≤ x
∑
ν≥1

∑
m≤x

f(m)f(pν) log(pν)

mpν

=

(∑
m≤x

f(m)

m

)( ∑
ν≥2, p prime

f(pν) log(pν)

pν

)
≤ Bx

∑
m≤x

f(m)

m
.

So we conclude that ∑
n≤x

f(n) ≤ (A+B + 1)
x

log x

∑
n≤x

f(n)

n
.

To see the second part of the theorem, note that∑
n≤x

f(n)

n
≤
∏
p≤x

(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)
≤
∏
p≤x

(
1 +

f(p)

p

)
exp

{
f(p2)

p2
+
f(p3)

p3
+ · · ·

}
,

by the inequality 1 + u+ v ≤ (1 + u)ev, u ≥ 1, v ≥ 0. Since∑
p

(
f(p2)

p2
+
f(p3)

p3
+ · · ·

)
≤ 1

log 4

∑
ν≥2, p prime

f(pν) log(pν)

pν
≤ B

log 4
≤ B,

the desired result follows.

Exercise 0.2.8. Fix r ≥ 0 and k ∈ N. Show that∑
n≤x

τk(n)

(
n

ϕ(n)

)r
�r,k x(log x)k−1 (x ≥ 1)

and ∑
n≤x

τk(n)

(
ϕ(n)

n

)r
�r,k x(log x)k−1 (x ≥ 1)

Exercise 0.2.9. Show that

n

ϕ(n)
�
∏
p|n
p≤y

(
1 +

1

p

)
(y ≥

√
log n).

Use this fact to show that ∑
x−y<n≤x

n

ϕ(n)
�ε y (xε ≤ y ≤ x).
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Exercise 0.2.10. Show that the error term in Theorem 0.2.1 can be strengthened to
O(log x).

Exercise 0.2.11. This exercise generalizes and strengthens Theorem 0.2.1. Let s 6= 0 and
x ≥ 1. Show that∑

a≤x
(a,s)=1

a

ϕ(a)
= x

∏
p-s

(
1 +

1

p(p− 1)

)∏
p|s

(
1− 1

p

)
+O

(
|s|
ϕ(s)

· log(2x)

)
.

Conclude that

∑
a≤x

(a,s)=1

1

ϕ(a)
=
∏
p-s

(
1 +

1

p(p− 1)

)∏
p|s

(
1− 1

p

)
·

log x− γ +
∑
p|s

log p

p− 1
−
∑
p-s

log p

p2 − p+ 1


+O

(
|s|
ϕ(s)

· log(2x)

x

)
.

0.3 Rankin’s method

In this section we discuss briefly the so-called Rankin’s method, which will play a prominent
role at several places throughout these notes. The main idea of this method is that if f is a
multiplicative function which takes non-negative values, then

∑
n≤x

f(n) ≤
∑
n≤x

f(n)
(x
n

)σ
≤ xσ

∞∑
n=1

f(n)

nσ
= xσ

∏
p

(
1 +

f(p)

pσ
+
f(p2)

p2σ
+ · · ·

)
.

Using this simple trick, we obtain the following general result.

Theorem 0.3.1. Let f : N → C be a multiplicative function, which we write as f = 1 ∗ g.
Consider σ ∈ [0, 1) for which

∑
n≥1 g(n)/nσ converges absolutely. Then we have that

∑
n≤x

f(n) = cfx+O

(
xσ

∞∑
n=1

|g(n)|
nσ

)
,

where

cf =
∞∑
n=1

g(n)

n
=
∏
p

(
1− 1

p

)(
1 +

f(p)

p
+
f(p2)

p2
+ · · ·

)
.

Exercise 0.3.2. Use Theorem 0.3.1 to show that∑
n≤x

µ2(n)n

ϕ(n)
= x+O(

√
x log x) (x ≥ 2).

The following result is another application of Rankin’s trick. In fact, it is precisely this
form of the trick that we will see appearing again and again while discussing sieve methods.
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Theorem 0.3.3. Let x ≥ y ≥ 3 and define u ≥ 1 by the relation x = yu. If y ≥ (log x)3,
then we have that ∑

P+(n)≤y
n>x

1

n
� (log y) · eO(u)

(u log u)u
.

Remark 0.3.4. Integers n all of whose prime divisors are ≤ y are called y-smooth. We will
study their distribution more carefully in Chapter 6.

Proof. Clearly, we may assume that u is large enough. For every ε ∈ (0, 1/3], we have that

∑
P+(n)≤y
n>x

1

n
≤ 1

xε

∑
P+(n)≤y

1

n1−ε =
1

xε

∏
p≤y

(
1− 1

p1−ε

)−1

� log y

xε

∏
p≤y

(
1− 1

p

)(
1− 1

p1−ε

)−1

� log y

xε
exp

{∑
p≤y

pε − 1

p

}
,

since

log
∏
p≤y

(
1− 1

pσ

)−1

=
∑
p≤y

log

(
1− 1

pσ

)−1

=
∑
p≤y

∞∑
m=1

1

mpmσ
=
∑
p≤y

1

pσ
+O(1)

for all σ ≥ 2/3. Moreover, note that if p ≤ e1/ε, then pε = 1 +O(ε log p) and consequently∑
p≤e1/ε

pε − 1

p
�

∑
p≤e1/ε

ε log p

p
� 1.

So, if we impose the condition ε ≥ 1/ log y, then we arrive to the estimate

∑
P+(n)≤z
n>x

1

n
� log y

xε
exp

 ∑
e1/ε<p≤y

pε − 1

p

 ≤ log y

xε
exp

 ∑
e1/ε<p≤y

1

p1−ε

 .

By the Prime Number Theorem, we have that∑
e1/ε<p≤y

1

p1−ε =

∫ y

e1/ε

dt

t1−ε log t
+O

(
yε

(log y)2
+ 1

)
.

Moreover, the above integral equals∫ log y

1/ε

eεu

u
du =

∫ ε log y

1

eu

u
du =

yε

ε log y
− e+

∫ ε log y

1

eu

u2
du =

yε

ε log y
+O

(
yε

(ε log y)2

)
,
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by two changes of variable and integration by parts. So we deduce that∑
P+(n)≤z
n>x

1

n
� log y

xε
exp

{
yε

ε log y
+O

(
yε

(ε log y)2

)}
.

Writing x = yu and setting w = ε log y ∈ [1, (log y)/3], we conclude that

1

log y

∑
P+(n)≤y
n>x

1

n
� exp

{
ew

w
− uw +O

(
ew

w2

)}
.

(0.3.1)

In order to optimize the above inequality, we choose w ≥ 1 with ew−1/w = u (for every
u ≥ 1, there is such a w). We need that w ≤ y1/3. This does hold if and only if

u =
ew−1

w
≤ 3y1/3

log y
⇔ log x ≤ 3y1/3.

This last inequality is guaranteed by our assumption that y ≥ (log x)3. Finally, note that
w− logw−1 = log u. In particular, w � log u and thus w = log u+logw = log u+log log u+
O(1). Therefore

ew

w
− uw +O

(
ew

w2

)
= u− u(log u+ log log u) +O(u),

which together with (0.3.1) completes the proof of the theorem.

Exercise 0.3.5. Let x ≥ y ≥ 2 with u ≥ 1. Show that, for every fixed c ≥ 1, we have that∑
P+(n)≤y
n>x

1

n
�c

log y

ecu
.

0.4 Averages of multiplicative functions: integral-delay

equations

In this section we use a different method to show asymptotic formulas for the partial sums
of multiplicative functions under some mild hypotheses.

Theorem 0.4.1. Let g : N → [0,+∞) be a multiplicative function such that g(p) ≤ C5/p
for all primes p, and

(A3′) −L+ κ log z ≤
∑
p≤z

g(p) log p ≤ C6 + κ log z (z ≥ eL),

for some κ > 0 and some constants L,C5, C6 ≥ 1. Then∑
n≤z

µ2(n)g(n) =
S(z)

Γ(κ+ 1)
· (log z)κ ·

{
1 +Oκ,C5,C6

(
L

log z

)}
(z ≥ 2),
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where

S(z) =
∏
p≤z

(1 + g(p))

(
1− 1

p

)κ
.

Moreover, if z ≥ eL and we set S = S(∞), then

∑
n≤z

µ2(n)g(n) =
S

Γ(κ+ 1)
· (log z)κ ·

{
1 +Oκ,C5,C6

(
L

log z

)}
.(0.4.1)

Proof. A natural way to try and prove this theorem would be to approximate µ2(n)g(n)
by the function κω(n)/n or, even, τκ(n)/n, where τκ is defined via the identity ζ(s)κ =∑

n≥1 τκ(n)/ns, the point being that both of these functions are equal to κ on prime numbers.

This would theoretically reduce our task to estimating
∑

n≤x κ
ω(n)/n or

∑
n≤x τκ(n)/n, which

should be easier to analyze due to the regularity of the summands. However, this cannot be
made to work because our assumptions on g are too weak to allow the convolution method
to work. Instead we use a different approach, working directly with the partial sums of µ2g.

Set S(z) =
∑

n≤z µ
2(n)g(n). The idea behind this theorem is the following: we have that

∑
n≤z

µ2(n)g(n) log n = (log z)S(z)−
∫ z

1

S(t)

t
dt,

by partial summation. On the other hand, we have that∑
n≤z

µ2(n)g(n) log n
∑
n≤z

µ2(n)g(n)
∑
p|n

log p ≈
∑
p≤z

g(p)(log p)S(z/p)

≈ κ
∑
p≤z

log p

p
S(z/p) ≈ κ

∫ z

1

S(z/t)
dt

t
= κ

∫ z

1

S(t)
dt

t
.

So if z = eu and σ(u) = S(eu)/uκ, then the above formulas imply that

uκ+1σ(u) ≈ (κ+ 1)

∫ u

0

wκσ(w)dt.(0.4.2)

Differentiating, we find that σ′(u) ≈ 0, so σ(u) is essentially constant. The calculation of
this constant will be performed using different means in the end of the proof.

We shall now make the above argument rigorous. All implied constants might depend
on κ,C5 and C6. Note that∑

n≤z

µ2(n)g(n) ≤
∏
p≤z

(1 + g(p)) � S(z)(log z)κ (z ≥ 2).(0.4.3)

In particular, the theorem holds trivially when z ≤ eL, so we only need to consider the case



16 CHAPTER 0. PRELUDE: MULTIPLICATIVE FUNCTIONS

z > eL. Note that

log

{∏
p>z

(1 + g(p))

(
1− 1

p

)κ}
=
∑
p>z

{
g(p)− κ

p
+O

(
1

p2

)}

= O

(
1

z

)
+

∫ ∞
z

(∑
z<p≤t

(
g(p) log p− κ log p

p

))
dt

t log2 t

= O

(
1

z

)
+

∫ ∞
z

O(L)
dt

t log2 t
= O

(
L

log z

)
,

by partial summation and our assumptions on g, so that

S(z) = S ·
(

1 +O

(
L

log z

))
(z ≥ eL).(0.4.4)

So, it suffices to show (0.4.1) for z ≥ eL.
For each w ≥ 1, we have that∑
n≤ew

µ2(n)g(n) log n =
∑
n≤ew

µ2(n)g(n)
∑
p|n

log p =
∑
p≤ew

log p
∑
p|n≤ew

µ2(n)g(n)

=
∑
p≤ew

g(p) log p
∑

m≤ew/p
p-m

µ2(m)g(m).

Moreover,∑
m≤ew/p
p|m

µ2(m)g(m) = g(p)
∑

r≤ew/p2

p-r

µ2(r)g(r) ≤ g(p)
∑
r≤ew

µ2(r)g(r)� g(p)S(ew)wκ,

by relation (0.4.3). Consequently,

∑
n≤ew

µ2(n)g(n) log n =
∑
p≤ew

g(p) log p
∑

m≤ew/p

µ2(m)g(m) +O

(
S(ew)wκ

∑
p≤ew

g(p)2 log p

)
=
∑
m≤ew

µ2(m)g(m)
∑

p≤ew/m

g(p) log p+O(S(ew)wκ),

where we used our assumption that g(p) ≤ C5/p. Inserting (A3′) into the above formula, we
deduce that∑

m≤ew
µ2(m)g(m) logm =

∑
m≤ew

µ2(m)g(m) (κ log(ew/m) +OC6(L)) +O (S(ew)Lwκ) ,

= κ
∑
m≤ew

µ2(m)g(m) log(ew/m) +O(S(ew)Lwκ)

= κ

∫ ew

1

S(y)

y
dt+O(S(ew)Lwκ),
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on using the formula log(ew/m) =
∫ ew
m
dy/y and inverting the order of summation and

integration. By partial summation, the left hand side of the above formula is wS(ew) −∫ ew
1
S(y)dy/y. So we find that

wS(ew) = (κ+ 1)

∫ ew

1

S(y)

y
dt+O(S(ew)Lwκ)

= (κ+ 1)

∫ w

0

S(et)dt+O(S(ew)Lwκ)

= (κ+ 1)

∫ w

1

S(et)dt+O(S(ew)Lwκ),

where we used (0.4.3). Writing
S(et) = tκσ(t),

the above formula becomes

wκ+1σ(w)− (κ+ 1)

∫ w

1

tκσ(t)dt� S(ew)Lwκ (w ≥ 1).

Set

E(w) := σ(w)− κ+ 1

wκ+1

∫ w

1

tκσ(t)dt,(0.4.5)

so that E(w) � S(ew)L/w for all w ≥ 1. We multiply E(w) by a weight function k(w)
and integrate over w ∈ [1, u]. In anticipation of the choice of k, and in order to simplify
some calculations, we let k(w) = f ′(w)wκ+1/(κ + 1), where f ′ is the derivative of a twice
differentiable increasing function f : [1,+∞) → R to be chosen later. (Assuming that k is
of this form is clearly not a serious restriction.) We have that∫ u

1

E(w)f ′(w)wκ+1

κ+ 1
dw =

∫ u

1

σ(w)f ′(w)wκ+1

κ+ 1
−
∫ u

1

f ′(w)

∫ w

1

tκσ(t)dtdw

=

∫ u

1

σ(w)f ′(w)wκ+1

κ+ 1
−
∫ u

1

tκσ(t)

∫ u

t

f ′(w)dwdt

=

∫ u

1

σ(w)f ′(w)wκ+1

κ+ 1
−
∫ u

1

tκσ(t)(f(u)− f(t))dt

=

∫ u

1

σ(w)

(
f(w)wκ+1

κ+ 1

)′
dw − f(u)

∫ u

1

tκσ(t)dt.

Using (0.4.5) to rewrite the integral
∫ u

1
tκσ(t)dt and rearranging the terms, we find that

f(u)uκ+1

κ+ 1
(σ(u)− E(u)) =

∫ u

1

σ(w)

(
f(w)wκ+1

κ+ 1

)′
dw −

∫ u

1

E(w)f ′(w)wκ+1

κ+ 1
dw.(0.4.6)

We choose f(w) = −(κ + 1)/wκ+1 so that k(w) = f ′(w)wκ+1/(κ + 1) = 1/w and (0.4.6)
becomes

σ(u) = E(u) + (κ+ 1)

∫ u

1

E(w)
dw

w
.(0.4.7)
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Since E(w) � S(ew)L/w for w ≥ 1 and S(ew) � S for w ≥ L, by relation (0.4.4), the
integral in (0.4.7) converges absolutely as u→∞. Moreover,∫ ∞

u

E(w)
dw

w
� SL

∫ ∞
u

dw

w2
� SL

u
(u ≥ L),

and, consequently,

σ(u) = (κ+ 1)

∫ ∞
0

E(w)
dw

w
+O

(
SL

u

)
=: I +O

(
SL

u

)
(u ≥ L).(0.4.8)

Finally, we claim that

I =
S

Γ(κ+ 1)
,(0.4.9)

an identity which completes the proof of (0.4.1) and, hence, of the theorem. In order to
show (0.4.9) note that, as s→ 0+, we have that

∞∑
n=1

µ2(n)g(n)

ns
=
∏
p

(
1 +

g(p)

ps

)
= ζ(s+ 1)κ

∏
p

(
1 +

g(p)

ps

)(
1− 1

ps+1

)κ
∼ S

sκ
,(0.4.10)

by (A3′) and the fact that ζ(s) ∼ 1/(s − 1) as s → 1. On the other hand, integration by
parts implies that

∞∑
n=1

µ2(n)g(n)

ns
=

∫ ∞
1−

dt

ts
dS(t) = s

∫ ∞
1

S(t)

ts+1
dt =

∫ ∞
0

S(eu/s)

eu
du

=

∫ ∞
0

I · (u/s)κ +Og(1 + (u/s)κ−1))

eu
du =

I · Γ(κ+ 1) +Og(s)

sκ
,

(0.4.11)

for every s > 0. Comparing (0.4.10) with (0.4.11) shows relation (0.4.9), thus completing
the proof of the theorem.



Chapter 1

Introduction to sieve methods

1.1 The sieve of Eratosthenes-Legendre

Sieve methods begin with Eratosthenes of Cyrene, who observed that it is possible to deter-
mine all primes up to a certain point. His starting point was the following simple theorem:

Theorem 1.1.1. If n > 1 is composite, then there is a prime number p ≤
√
n that divides

n.

Then, Eratosthenes’s algorithm for founding all primes up to x has the following steps:

(1) List all integers in [1, x].

(2) Delete 1 from the list.

(3) Find the smallest n ∈ (1,
√
x] which has not been deleted yet and put a circle around

it. If such an n does not exist, terminate the algorithm.

(4) Delete all multiples of n.

(5) Go to step (3).

The termination of this algorithm is guaranteed by Theorem 1.1.1. After its termination,
the integers which have not yet been deleted together with the ones that are circled will be
exactly the prime numbers in [1, x]. Eratosthenes’ algorithm is called a sieve because the
integers that are not deleted by it (‘do not pass through it’) are exactly the primes up to a
given point.

Eratosthenes’ sieve provides a way to count primes in various settings. We give below its
simplest application to the basic question of how big is π(x) = #{p ≤ x}. We already know
from Prime Number Theorem that

π(x) ∼ x

log x
(x→∞).(1.1.1)

For comparison, let us see what Eratosthenes’ sieve gives as an answer: consider all primes
p ≤
√
x. If an integer n ≤ x is not divisible by any of these primes, then either n = 1 or n

19
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is a prime number lying in (
√
x, x]. So

π(x) = #{n ≤ x : p|n⇒ p >
√
x} − 1 + π(

√
x)

= #{n ≤ x : p|n⇒ p >
√
x}+O(

√
x).

(1.1.2)

Now we will try to understand what is the cardinality of the set appearing on the right
hand side of (1.1.2). Let {p1, p2, . . . , pr} be an indexing of the set P ∩ [1,

√
x]. Then, by the

inclusion-exclusion principle, we have that

#{n ≤ x : p|n⇒ p >
√
x} = #

(
r⋂
i=1

{n ≤ x : pi - n}

)
= #{n ≤ x} −#

(
r⋃
i=1

{n ≤ x : pi|n}

)

= #{n ≤ x} −
r∑
i=1

#{n ≤ x : pi|n}+
∑

1≤i<j≤r

#{n ≤ x : pipj|n}

−
∑

1≤i<j<k≤r

#{n ≤ x : pipjpk|n} ± · · ·

= bxc −
r∑
i=1

⌊
x

pi

⌋
+

∑
1≤i<j≤r

⌊
x

pipj

⌋
−

∑
1≤i<j≤r

⌊
x

pipjpk

⌋
± · · ·(1.1.3)

Since byc = y +O(1) ≈ y, it is reasonable to expect that

#{n ≤ x : p|n⇒ p >
√
x} ≈ x−

r∑
i=1

x

pi
+

∑
1≤i<j≤r

x

pipj
−

∑
1≤i<j<k≤r

x

pipjpk
± · · ·

= x
r∏
i=1

(
1− 1

pi

)
= x

∏
p≤
√
x

(
1− 1

p

)
.

(1.1.4)

Now, Mertens proved that∏
p≤z

(
1− 1

p

)
=

e−γ

log z

(
1 +O

(
1

log z

))
(z ≥ 2),(1.1.5)

where γ denotes the Euler-Mascheroni constant. Inserting (1.1.5) into (1.1.4) and combining
the resulting estimate with (1.1.2) leads to the prediction that

π(x) ∼ 2e−γx

log x
(x→∞).

Comparing this estimate with (1.1.1), we see that it overestimates π(x), since 2e−γ =
1.1229189671 . . . > 1, a typical feature of sieve methods, as we will see. In order to un-
derstand why this happens, it is convenient to recast formula (1.1.3) in a more compact way,
using the Möbius function µ, so that (1.1.3) becomes

#{n ≤ x : p|n⇒ p >
√
x} =

∑
p|d⇒p≤

√
x

µ(d)
⌊x
d

⌋
.(1.1.6)
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The asymptotic formula bx/dc = x/d+O(1) then implies that

#{n ≤ x : p|n⇒ p >
√
x} = x

∑
p|d⇒p≤

√
x

µ(d)

d
+O(2π(

√
x))

=
(2e−γ + o(1))x

log x
+O(4(1+o(1))

√
x/ log x).(1.1.7)

So we see that our attempt to obtain an asymptotic formula for π(x) fails dramatically, as the
error term in (1.1.7) is much bigger than the main term. This happens for two interconnected
reasons:

• The numbers d in the sum appearing on the right hand side (1.1.6) are in one-to-one
correspondence with the divisors of

∏
p≤
√
x p, and there are too many of these.

• The numbers d in (1.1.6) can get as big as

∏
p≤
√
x

p = exp

∑
p≤
√
x

log p

 = e
√
x(1+o(1)),

which is enormous compared to x. Therefore the approximation bx/dc = x/d + O(1)
is very bad for most d in (1.1.6).

Nevertheless, Legendre observed that it is possible to use the above idea to gain some
information on the size of π(x). His starting point was that, for any z ∈ [1, x], the set of
integers that have all their prime factors > z contain the primes in the interval (z, x]. So

π(x) ≤ π(z) + #{n ≤ x : p|n⇒ p > z} ≤ z + #{n ≤ x : p|n⇒ p > z}.

Moreover, as before, the inclusion-exclusion principle and Mertens’ estimate imply that

#{n ≤ x : p|n⇒ p > z} =
∑

p|d⇒p≤z

µ(d)
⌊x
d

⌋
=

∑
p|d⇒p≤z

µ(d)
(x
d

+O(1)
)

= x
∏
p≤z

(
1− 1

p

)
+O

(
2π(z)

)
� x

log z
+ 2z

and, consequently,

π(x)� x

log z
+ 2z,

This formula is valid for all z ∈ [1, x]. Taking z = (log x)/2 then yields that

π(x)� x

log log x
,(1.1.8)

a non-trivial estimate for π(x). Of course, this estimate is much worse that Chebyshev’s
estimate π(x) � x/ log x. However, as the following exercise shows, it is possible to use
these ideas to obtain other interesting results.
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Exercise 1.1.2 (The square-free sieve). Use the ideas developed above to give a new proof
of the estimate

#{n ≤ x : n is square-free} = x ·
∏
p

(
1− 1

p2

)
+O(

√
x) (x ≥ 2).

Compare the sieve-theoretic and multiplicative-theoretic proofs.

Exercise 1.1.3. Use Legendre’s refinement of the sieve of Eratosthenes to show that

π(x) = o(x) (x→∞),

without using (1.1.5).

Exercise 1.1.4. Find the average value of the greatest common divisor of a and b asymp-
totically, as a and b range over all integers up to x.

1.2 General set-up

The application of sieve-theoretic ideas to the study of π(x) is perhaps not the most engaging
example, since we already know quite a bit about π(x) using the theory of the Riemann ζ
function. However, there are various other prime-counting problems in which the theory of
L-functions is not applicable. Some of the most famous ones are:

• The twin prime conjecture: Are there infinitely many pairs of integers (n, n+ 2) which
are both prime? (Such pairs are called twin primes.)

• Goldbach’s conjecture: Can every even integer greater than 2 be written as the sum
of two primes?

• Is there a prime number between two consecutive squares?

• Are there infinitely many primes of the form n2 + 1?

To this day, all of the above problems remain wide open. However, it is possible to use sieve
methods to make some progress towards them. Examples of results that can be proven using
sieve methods include:

• There are infinitely many primes p such that p+2 has at most two prime factors (Chen,
1966).

•
∑

p, p+2 twin primes 1/p <∞ (Brun, 1908).

• For every large m, the interval (m2, (m+ 1)2) contains an integer with at most 2 prime
factors (Chen, 1975).

• There are infinitely many integers n such that n2 + 1 has at most 2 prime factors
(Iwaniec, 1980).

• There are infinitely many primes of the form a2 + b4 (Friedlander - Iwaniec, 2004).
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In the context of sieve methods, all four problems listed in the beginning of this chapter
as well as many others can be viewed in a unified way. To see this, we need to introduce
some notation. Let A be a finite set of integers and z ≥ 1 some real number. We set

P (z) =
∏
p<z

p

and
S(A, z) = #{a ∈ A : (a, P (z)) = 1}.

By Theorem 1.1.1, if we wish to extract primes (or product of primes) from the set A,
then we need to be able to obtain non-trivial lower bounds on S(A, z) with z as big as
max{p|

∏
a∈A a}1/2. For example,

• To count the number of twin prime pairs (n, n+ 2) with n ≤ x, we take

A = {n(n+ 2) : n ≤ x} and z =
√
x+ 2.

Alternatively, we can take

A = {p+ 2 : p ≤ x} and z =
√
x+ 2.

• To count the number of representations of the even integer 2N as the sum of two
primes, we take

A = {n(2N − n) : n ≤ 2N} and z =
√

2N.

• To count the number of primes in the interval (m2, (m+ 1)2), we take

A = {n ∈ (m2, (m+ 1)2)} and z = m+ 1.

• To count the number of primes of the form n2 + 1 with n ≤ x, we take

A = {n2 + 1 : n ≤ x} and z =
√
x2 + 1 ∼ x.

The above examples indicate how flexible this terminology is. Analyzing S(A, z) will be
one of the main objective of this course. Recall the Möbius inversion formula:∑

d|n

µ(d) =

{
1 if n = 1,

0 if n > 1,

So

S(A, z) =
∑
a∈A

∑
d|(a,P (z))

µ(d) =
∑
d|P (z)

µ(d)|Ad|,(1.2.1)

where
Ad := {a ∈ A : a ≡ 0 (mod d)}.

In order to proceed we write

(A1) |Ad| = g(d) ·X + rd,

for every integer d, where
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• X is some positive number, which we think as an approximation to |A|,
• g : N→ [0, 1] is a multiplicative function such that

(A2) 0 ≤ g(p) < 1 (p prime),

which represents the ‘probability’ that a member of A is divisible by d,

• rd is some real number, which we think as an error term.

The motivation behind the assumption that g is multiplicative comes from the assump-
tion/belief that the events Ad1 and Ad2 are roughly independent if d1 and d2 are co-prime,
something which very often happens in practice. Lastly, we set

V (z) =
∏
p<z

(1− g(p)),

the ‘probability’ that an element of A has no prime factors < z.
Inserting (A1) into (1.2.1), we obtain the exact formula

S(A, z) = X
∑
d|P (z)

µ(d)g(d) +
∑
d|P (z)

µ(d)rd = X · V (z) +
∑
d|P (z)

µ(d)rd(1.2.2)

Ignoring for a moment the second term, we find that

S(A, z) ≈ X · V (z).(1.2.3)

Of course, in general, this is just wishful thinking: the ‘error term’
∑

d|P (z) rd contains too

many terms, so that even if we make the strong assumption that rd = O(1), the error term
is � 2π(z). However, in most application we have that g(p) �A 1/p and hence X · V (z) �
X/(logX)OA(1) (see the next section). Consequently, arguing along these lines, we need to
take z � logX for the approximation (1.2.3) to be accurate.

As a reality check, let us see how good the bound supplied by (1.2.3) is for the problem
of counting twin prime pairs: Let A = {n(n+ 2) : n ≤ x} and z ≤ x, so that

#{n ≤ x : n, n+ 2 are both primes} ≤ z + S(A, z),(1.2.4)

for every z ∈ [1, x]. Note that

|Ad| = ν(d)
(x
d

+O(1)
)

= x · ν(d)

d
+O(ν(d)),(1.2.5)

where
ν(d) = #{n ∈ Z/dZ : n(n+ 2) ≡ 0 (mod d)}.

The function ν is multiplicative by the Chinese Remainder Theorem. Setting g(d) = ν(d)/d,
we see that (A1) is satisfied with rd � ν(d). Moreover, for every prime p, we have that

ν(p) =

{
1 if p = 2,

2 if p > 2.
(1.2.6)
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Therefore we find that V (z) � 1/(log z)2 and relation (1.2.2) yields the estimate

S(A, z)� x

(log z)2
+
∑
d|P (z)

µ2(d)ν(d)� x

(log z)2
+ 3π(z) ≤ X

logX
+ 3z.

Choosing z = (log x)/3 in the above estimate and combining the resulting estimate with (1.2.4),
we deduce that

#{n ≤ x : n, n+ 2 are both prime} � x

(log log x)2
.

This bound is however worse than the semi-trivial bound

#{n ≤ x : n, n+ 2 are both prime} ≤ π(x)� x

log x
.

In conclusion, we see that the sieve of Eratosthenes-Legendre suffers a lot from a quanti-
tative point of view. We will see how this deficiency was remedied, first by Viggo Brun and
then by others. In particular, we shall show that (1.2.3) holds if log z = o(logX) and A is
‘structured’.

1.3 Sifting dimension

We conclude this introductory chapter to sieve methods with a brief discussion of a concept
which plays an important role in them. This concept is called the sifting dimension, which
we will denote by κ. Roughly speaking, κ corresponds to the average value of g(p)p, as p
runs over all primes, provided of course that the latter exists. If A = {f(n) : n ∈ I}, where
f is a polynomial and I is some interval of the real line, then there is a more conceptual
way to interpret the sifting dimension: it corresponds to the average number of congruence
classes that we need to ‘remove’ modulo each prime in order to extract primes (or products
of primes) from the indexing set I. Indeed, if A = {n ≤ x}, then in order to detect primes
in A, we need to ‘remove’ from N ∩ [1, x] the congruence class 0 (mod p) for each p ≤

√
x,

that is to say, κ = 1. On the other hand, if A = {n(n+ 2) : n ≤ x}, then in order to detect
products of two primes in A (and hence twin primes), we need to ‘remove’ from N ∩ [1, x]
the congruence classes 0 (mod p) and −2 (mod p) for each p ≤

√
x+ 2. Hence1, in this case,

κ = 2. Generally speaking, the sieving problem becomes harder as κ increases.

One way to detect the condition that g(p)p is κ on average is by imposing the condition

(A3)
∑
p≤x

g(p) log p = κ log x+O(1) (x ≥ 1).

Often, the above condition is unnecessarily strong and we can get away with the weaker
condition

(A4a)
V (w)

V (w′)
=

∏
w≤p<w′

(1− g(p))−1 ≤ K

(
logw′

logw

)κ
(3/2 ≤ w ≤ w′).

1Note that when p = 2, the classes 0 (mod 2) and −2 (mod 2) coincide. However, this does not affect
things on average.
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Note that (A4a) immediately implies that

g(p) ≤ 1− 1

K
(p prime).(1.3.1)

In practice (cf. relation (1.1.5)), we can often establish the stronger inequality

(A4b)
V (w)

V (w′)
≤
{

1 +
C1

logw

}(
logw′

logw

)κ
(3/2 ≤ w ≤ w′),

for some C1 ≥ 0.

Exercise 1.3.1. Verify the ‘sieve axioms’ (A1), (A2), (A3) and (A4b) when A is the set
{n(2N − n) : n ≤ 2N}, {x2 < n ≤ (x+ 1)2}, or {n2 + 1 : n ≤ N}.

Exercise 1.3.2. Verify the ‘sieve axioms’ (A1), (A2), (A3) and (A4b) when A = {p+2 : p ≤
x}. For this set, S(A,

√
x+ 2) counts twin primes. This is also true ifA = {n(n+2) : n ≤ x}.

What difference do you notice among these two choices of A?



Chapter 2

Interlude: probabilistic number
theory

Before we embark on the study of the combinatorial sieve, and in order to motivate Brun’s
pure sieve, we give a very brief introduction to probabilistic number theory.

2.1 The number of prime factors of an integer

In probabilistic number theory instead of studying the properties of a fixed integer, we focus
on statistical properties of the integers. For example, we often talk of a typical integer, an
expression which refers to an integer that enjoys properties shared among almost all other
integers too1. More precisely, when we say that a typical integer n has some property Q(n),
we mean that the set of integers n which do not satisfy Q(n) has density 0, in the sense that

lim
x→∞

1

x
#{n ≤ x : Q(n) does not hold} = 0.

The prototypical such result was proven by Hardy and Ramanujan:

Theorem 2.1.1. Fix some ε > 0. Then we have that

lim
x→∞

1

x
#{n ≤ x : (1− ε) log log x ≤ ω(n) ≤ (1 + ε) log log x} = 1.

The above theorem can be expressed loosely by saying that a typical integer n has about
log log n prime factors. Hardy and Ramanujan deduced theorem 2.1.1 from the following
result.

Theorem 2.1.2. There exists constants A and B such that

πr(x) = #{n ≤ x : ω(n) = r} ≤ Ax

log x

(log log x+B)r−1

(r − 1)!
,

uniformly for x ≥ 1 and r ∈ N.

1This expression is often used in a non-rigorous fashion.
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Proof. When r = 1, we have that

π1(x) = π(x) +
∑

2≤k≤ log x
log 2

∑
pk≤x

1 ≤ π(x) +
log x

log 2
·
√
x ≤ cx

log x
(x ≥ 3),

for some constant c, by Chebyshev’s estimate π(x) � x/ log x. We will show the theorem
with A = c and B large enough.

We argue by induction: assume that the result holds for some r ∈ N. Let n ≤ x be an
integer with r + 1 distinct prime factors, say n = pa1

1 · · · p
ar+1

r+1 with p1 < p2 < · · · < pr+1.

Then p
aj+1
j < p

aj
j pr+1 ≤ x for j ≤ r, so that there are at least r ways to write n = pam for

some p ≤ x1/(a+1), a ≥ 1 and m with ω(m) = r. Consequently,

rπr+1(x) ≤
∑
a≥1

∑
pa≤x1/(a+1)

πr(x/p
a) ≤

∑
a≥1

∑
p≤x1/(a+1)

Ax/pa

log(x/pa)

(log log(x/pa) +B)r−1

(r − 1)!

≤ Ax(log log x+B)r−1

(r − 1)!

∑
a≥1

∑
p≤x1/(a+1)

1

pa log(x/pa)
.

Therefore, we need to show that
∑

a≥1

∑
p≤x1/(a+1)

1
pa log(x/pa)

≤ (log log x+O(1))/ log x. Then
choosing B large enough will complete the inductive step and hence the proof. Indeed, note
that 1/(1− y) ≤ 1 + (a+ 1)y for y ∈ [0, a/(a+ 1)]. So∑

a≥1

∑
p≤x1/(a+1)

1

pa log(x/pa)
=

1

log x

∑
a≥1

∑
p≤x1/(a+1)

1

pa
(

1− a log p
log x

)
≤ 1

log x

∑
a≥1

∑
p≤x1/(a+1)

1

pa

(
1 +

(a+ 1) log p

log x

)

≤ 1

log x

∑
p≤
√
x

1

p− 1

(
1 +

log p

log x

∑
a≥1

a+ 1

2a−1

)

≤ log log x+O(1)

log x
,

which shows the desired result.

Exercise 2.1.3. Given λ > 0, we set

Q(λ) := λ log λ− λ+ 1 =

∫ λ

1

log tdt.

(a) Show that for x ≥ 2 and λ > 1, we have that

#{n ≤ x : ω(n) ≥ λ log log x} �λ
x

(log x)Q(λ)
√

log log x
.

Similarly, show that for 0 < λ < 1, we have that

#{n ≤ x : ω(n) ≤ λ log log x} �λ
x

(log x)Q(λ)
√

log log x
.
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(b) Deduce Theorem 2.1.1.

Exercise 2.1.4.

(a) Show that the entries of the N×N multiplication table form a sparse set of the integers
in the sense that

lim
N→∞

1

N2
#{ab : a ≤ N, b ≤ N} = 0

(b)* Show that

#{ab : a ≤ N, b ≤ N} � N2

(logN)δ
√

log logN
,

where δ = Q(1/ log 2) = 1− (1 + log log 2)/ log 2 = 0.08607 . . . .

2.2 The Kubilius model

Theorem 2.1.2 leads to prediction that ω is distributed like a Poisson random variable on
the set {n ≤ x} and has mean value log log x. There is a nice heuristic argument in support
of this statement based on the Kubilius model of the integers. Note that

1

bxc
#{n ≤ x : d|n} =

bx/dc
bxc

≈ 1

d
.

Motivated by this rough calculation, Kubilius assigned to the event {d|n} the probability
1/d. In addition, note that if d1 and d2 and co-prime, then

Prob({d1|n} ∩ {d2|n}) = Prob({d1d2|n}) =
1

d1d2

= Prob({d1|n}) Prob({d2|n}).

So it is reasonable to assume that the events {d1|n} and {d2|n} are independent of each
other. This leads to the estimate

Prob({ω(n) = r |n ≤ x})

=
∑

p1<···<pr≤x

Prob({p1 · · · pr|n} ∩ {p - n ∀p ∈ [1, x] \ {p1, . . . , pr}})

=
∑

p1<···<pr≤x

1

p1 · · · pr

∏
p≤x

p/∈{p1,...,pr}

(
1− 1

p

)
=
∏
p≤x

(
1− 1

p

) ∑
p1<···<pr≤x

1

(p1 − 1) · · · (pr − 1)

=
1

r!

∏
p≤x

(
1− 1

p

) ∑
p1,...,pr≤x

distinct

1

(p1 − 1) · · · (pr − 1)
≈ 1

r!

∏
p≤x

(
1− 1

p

)(∑
p≤x

1

p

)r

� 1

log x

(log log x+O(1))r

r!
,

which confirms heuristically our prediction.
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It is possible to go beyond Theorem 2.1.2 and show that ω(n; t) = {p|n : p ≤ t} is
also distributed like a Poisson random variable with mean value log log t, for t ≤ n. So
if n = pa1

1 p
a2
2 · · · parr is the prime factorization of a typical integer n, then we expect that

j = ω(n; pj) ≈ log log pj, that is to say, the sequence {log log p}p|n is very close to being an
arithmetic progression. This implies that

log(p1 · · · pj) =

j∑
i=1

log pi ≈ log pj,(2.2.1)

since the sequence {log pi}ri=1 is close to being a geometric progression2.

We shall be using statements like the ones above - or at least the spirit of them - to
justify certain choices in the subsequent sections. As a matter of fact, we have already used
something similar in the previous chapter. Indeed, if we assume that the events Ad1 and Ad2

are independent of each other whenever d1 and d2 are coprime, then Prob(Ad) should be a
is a multiplicative function. This justifies the assumption that g(d) ≈ |Ad|/|A| = Prob(Ad)
is a multiplicative function.

For similar reasons, we expect that

Prob({(a, P (z)) = 1 | a ∈ A}) = Prob

(⋂
p<z

{a 6≡ 0 (mod p) | a ∈ A}

)
=
∏
p<z

Prob({a 6≡ 0 (mod p) | a ∈ A})

≈
∏
p<z

(1− g(p)) = V (z).

So we see that, even though the Kubilius model is very successful in predicting the
distribution of ω, it fails in the case of S(A, z). The reason for this failure lies in the
assumption that the eventsAd1 andAd2 are independent of each other whenever d1 and d2 are
coprime. Indeed, if for example A = {n ≤ x} and z =

√
x, then an integer a ≤ x is divisible

by at most three distinct primes p ∈ (x1/3, z], which certainly violates the independence
assumption we made above3. In rough terms, this is why it is hard to obtain asymptotic
formulas on S(A, z) when z is large and, in fact, why the approximation S(A, z) ≈ X · V (z)
is generally false if z is large. However, we shall see in the next sections that the Kubilius
model is accurate when z = Xo(1).

2Indeed, if λ > 1, then λN ≤ 1 + λ+ λ2 + · · ·+ λN ≤ λ
λ−1 · λ

N .
3This phenomenon is not significant in the study of ω, since n has at most 1000 prime factors in [n1/1000, n].

So we may ignore these large primes without sacrificing a whole lot in precision.



Chapter 3

The combinatorial sieve

3.1 Brun’s pure sieve

As we saw in Chapter 1, one of the main deficiencies of (1.2.2) is that the ‘error term’∑
d|P (z) µ(d)rd contains too many terms. It was Viggo Brun who first realized that is possible

to remedy this deficiency using some simple combinatorial ideas: Formula (1.2.1), and hence
formula (1.2.2), is a consequence of the inclusion-exclusion principle and, when written out
fully, it reads

S(A, z) = |A| −
∑
p1<z

|Ap1|+
∑

p2<p1<z

|Ap1p2 | −
∑

p3<p2<p1<z

|Ap1p2p3| ± · · ·

= |A|+
∑
j≥1

(−1)j
∑

pj<···<p1<z

|Ap1···pj |.

But it is a well-known fact that

|A|+
2m−1∑
j=1

(−1)j
∑

pj<···<p1<z

|Ap1···pj | ≤ S(A, z) ≤ |A|+
2m∑
j=1

(−1)j
∑

pj<···<p1<z

|Ap1···pj |(3.1.1)

for every m ∈ N. This implies that, for every r ∈ N, we have that

S(A, z) = |A|+
∑

1≤j<r

(−1)j
∑

pj<···<p1<z

|Ap1···pj |+O

( ∑
pr<···<p1<z

|Ap1···pr |

)

=
∑
d|P (z)
ω(d)<r

µ(d)|Ad|+O

 ∑
d|P (z)
ω(d)=r

|Ad|



= X
∑
d|P (z)
ω(d)<r

µ(d)g(d) +O

 ∑
d|P (z)
ω(d)≤r

|rd|+X
∑
d|P (z)
ω(d)=r

g(d)

 ,(3.1.2)
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by (A1). Even though the above relation holds for all r, Theorem 2.1.1 suggests that, in
order to have any hope of succeeding, we must take r as a function of x and z (usually,
r ≈ c log log x suffices).

Instead of estimating the main term in (3.1.2) directly, we observe that

V (z) = 1 +
∑
j≥1

(−1)j
∑

pj<···<p1<z

g(p1 · · · pj).

So

1 +
2m+1∑
j=1

(−1)j
∑

pj<···<p1<z

g(p1 · · · pj) ≤ V (z) ≤ 1 +
2m∑
j=1

(−1)j
∑

pj<···<p1<z

g(p1 · · · pj)(3.1.3)

for every m ∈ N and, consequently,

∑
d|P (z)
ω(d)<r

µ(d)g(d) = V (z) +O

 ∑
d|P (z)
ω(d)=r

g(d)

 .(3.1.4)

Exercise 3.1.1. Show relation (3.1.3).

Inserting (3.1.4) into (3.1.2), we deduce that

S(A, z) = X · V (z) +O

X ∑
d|P (z)
ω(d)=r

g(d) +
∑
d|P (z)
ω(d)≤r

|rd|



= X · V (z) +O

Xr!
(∑
p<z

g(p)

)r

+
∑

d|P (z), d≤zr
ω(d)≤r

|rd|

 .

(3.1.5)

Since ∑
p<z

g(p) ≤
∑
p<z

log
1

1− g(p)
=

1

log V (z)
,

we obtain the formula

S(A, z) = X · V (z) +O

X · | log V (z)|r

r!
+

∑
d|P (z), d≤zr
ω(d)≤r

|rd|

 .

By Stirling’s formula, the main term in the above formula is bigger than the first error term
if r > 3.6| log V (z)|. Indeed, we have the following estimate:
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Theorem 3.1.2. Let A be a finite set of integers which satisfies (A1) and (A2). For z ≥ 1
and r ≥ 3.6| log V (z)|, we have that

S(A, z) = X · V (z)

{
1 +O

(
1√
r

)}
+O

 ∑
d|P (z)

d≤zr, ω(d)≤r

|rd|

 .

Controlling the second error in Theorem 3.1 is often very hard and depends on having at
our disposal an estimate of the form

(R)
∑
d≤D

µ2(d)|rd| ≤
C2X

(logX)A

with D = zr and A some large enough positive number. If such an estimate holds, then
we say that A has level of distribution D. Assuming(A4a) and (R), we may simplify the
statement of Theorem 3.1.2.

Theorem 3.1.3. Let A be a finite set of integers which satisfies (A1) and (A4a), as well
as (R) with A = κ+ 1 and D = Xθ for some θ ∈ (0, 1]. For 1 ≤ z ≤ Xθ/(4κ log logX), we have
that

S(A, z) = X · V (z)

{
1 +O

(
1√

log logX

)}
;

the implied constant depends at most of κ, K, θ and C2.

Proof. Without loss of generality, we may assume that X is large enough. Note that
relation (A2) holds by (1.3.1). The result then follows by Theorem 3.1.2 applied with
r = 4κ log logX ≥ 3.6| log V (z)|, so that zr ≤ Xθ.

In the next section we will see that, by improving upon Brun’s idea, it is possible to extend
the above theorem to z ≤ X. But before this, we give a nice application of Theorem 3.1.3,
due to Brun.

Theorem 3.1.4. We have that ∑
p, p+2 twin primes

1

p
<∞.

Remark 3.1.5. The value of the sum
∑

p, p+2 twin primes
1
p

is called Brun’s constant. Since we

know that
∑

p 1/p = +∞, the above theorem tells us that primes p for which (p, p + 2) are
twin primes are sparse among the sequence of primes.

Proof of Theorem 3.1.4. First, we apply Theorem 3.1.3 with A = {n(n+ 2) : n ≤ x}. Note
that (A1) holds with X = x, g(d) = ν(d)/d and rd � ν(d), where

ν(d) = #{n ∈ Z/dZ : n(n+ 2) ≡ 0 (mod d)},
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by (1.2.5). Moreover, (A4a) holds with κ = 2, by (1.2.6). Finally, (R) holds for any A > 0
and any θ < 1, since |ν(d)| ≤ τ2(d) for d square-free. So Theorem 3.1.3, applied with
z = x1/(10 log log x), yields the estimate

#{n ≤ x : n, n+ 2 twin primes} ≤ z + S(A, z)� z +
x

(log z)2
� x(log log x)2

(log x)2
.

The desired result then follows by partial summation.

3.2 Buchstab iterations and general upper & lower bound

sieves

Buchstab observed that

S(A, z) = |A| −
∑
p<z

S(Ap, p).(3.2.1)

This identity can be used to obtain an entire family of combinatorial sieves, as follows:
Consider sets

Πj ⊂ {(p1, . . . , pj) : z > p1 > p2 > · · · > pj primes} (j ≥ 1)

such that

Π3 ⊂ Π1 × {p < z}2, Π5 ⊂ Π3 × {p < z}2, . . . , Π2j+1 ⊂ Π2j−1 × {p < z}2, . . .

and

Π4 ⊂ Π2 ⊂ {p < z}2, Π6 ⊂ Π4 × {p < z}2, . . . , Π2j+2 ⊂ Π2j × {p < z}2, . . .

Moreover, set

D+ = {1} ∪ {d = p1 · · · pr > 1 : (p1, . . . , pj) ∈ Πj, 1 ≤ j ≤ r, j odd}
and

D− = {1} ∪ {d = p1 · · · pr > 1 : (p1, . . . , pj) ∈ Πj, 1 ≤ j ≤ r, j even}.

Then we have that

S(A, z) = |A| −
∑
p1<z

S(Ap1 , p1) ≤ |A| −
∑
p1∈Π1

S(Ap1 , p1)

= |A| −
∑
p1∈Π1

|Ap1|+
∑
p2<p1
p1∈Π1

S(Ap1p2 , p2)

= |A| −
∑
p1∈Π1

|Ap1|+
∑
p2<p1
p1∈Π1

|Ap1p2| −
∑

p3<p2<p1
p1∈Π1

S(Ap1p2p3 , p3)

≤ |A| −
∑
p1∈Π1

|Ap1|+
∑
p2<p1
p1∈Π1

|Ap1p2| −
∑

(p1,p2,p3)∈Π3

S(Ap1p2p3 , p3)

≤ · · · ≤
∑
d|P (z)

µ+(d)|Ad|,

(3.2.2)
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where

µ+(d) =

{
µ(d) if d ∈ D+,

0 otherwise.
(3.2.3)

Exercise 3.2.1. Show that
S(A, z) ≥

∑
d|P (z)

µ−(d)|Ad|,

where

µ−(d) =

{
µ(d) if d ∈ D−,
0 otherwise.

(3.2.4)

Exercise 3.2.2. Show that

(1 ∗ µ−)(n) ≤ 1P−(n)>z ≤ (1 ∗ µ+)(n).

This construction gives a great deal of flexibility. For example, the choice Πj = {p < z}j
for j < r and Πj = ∅ for j ≥ r corresponds to Brun’s pure sieve. The goal is to choose the
sets Πj as large as possible, so that we are not throwing away too much information, while
at the same time if (p1, . . . , pj) ∈ Πj, then p1 · · · pj is not too big, so that we can control well
the sum

∑
(p1,...,pj)∈Πj

|Ap1···pj | using (A1) and (R).
It turns out that a good choice for the sets Πj is given by

Πj =

{
(p1, p2, . . . , pj) : z > p1 > · · · > pj, p1 · · · pi <

D

pβi
, 1 ≤ i ≤ j, i ≡ j (mod 2)

}
,

(3.2.5)

for some parameter β, which depends on the dimension of the sieve problem. This leads to
the so-called β sieve, pioneered by Rosser and brought to maturity by Iwaniec [I]. In the
next section, we shall see how our choice allows us to improve upon Theorem 3.1.2. For now,
we give a heuristic argument [FI10, Section 6.4]) which motivates the above choice of Πj.

Fix a dimension κ and assume that β = β(κ) is the minimum number u ≥ 1 such that

S(A, z)� X · V (z),

for all sieve problems of dimension κ such thatA that satisfy (A1) and has level of distribution
D ≥ zu. We consider such a triplet (A,P, z) and make the further assumption that the level
of distribution of Ad is D/d. Now, we have that

S(A, z) = |A| −
∑
p1<z

S(Ap1 , p1) = |A| −
∑
p1<z

|Ap1|+
∑
p2<p1
p1∈Π1

S(Ap1p2 , p2).

From the sum over p1 and p2 we drop the terms with D/(p1p2) < pβ2 , since some of these
are potentially much smaller than expected, and keep all of the terms with D/(p1p2) ≥ pβ2 ,
since for these we have that

S(Ap1p2 , p2)� |Ap1p2| · V (p2) ≈ g(p1p2)X · V (p2)
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by our assumption and by (A1). This suggests setting

Π2 = {(p1, p2) : z > p1 > p2, p1p2 < D/pβ2}.

Next, we have that

S(A, z) ≥ |A| −
∑
p1<z

|Ap1|+
∑

(p1,p2)∈Π2

S(Ap1p2 , p2)

= |A| −
∑
p1<z

|Ap1|+
∑

(p1,p2)∈Π2

|Ap1p2| −
∑

p3<p2<p1

(p1,p2)∈Π2

S(Ap1p2p3 , p3)

= |A| −
∑
p1<z

|Ap1|+
∑

(p1,p2)∈Π2

|Ap1p2| −
∑

p3<p2<p1

(p1,p2)∈Π2

|Ap1p2p3|+
∑

p4<···<p1

(p1,p2)∈Π2

S(Ap1···p4 , p4)

As before, we drop the terms with D/(p1p2p3p4) < pβ4 and keep the rest. This leads us to
the choice

Π4 = {(p1, . . . , p4) : z > p1 > · · · > p4, p1 · · · p4 < D/pβ4}.

Continuing in the above fashion suggests selecting the sets Πj as in (3.2.5).

In general, a sequence S + = {µ+(d)}d≤D such that

(S+) µ+(1) = 1 and
∑
d|n

µ+(d) ≥ 0 (n > 1)

is called an upper bound sieve of level D. Similarly, a sequence S − = {µ−(d)}d≤D such that

(S−) µ−(1) = 1 and
∑
d|n

µ−(d) ≤ 0 (n > 1)

is called a lower bound sieve of level D. The reason for this terminology is that, under the
above assumptions, we have that

S(A, z) =
∑
a∈A

(a,P (z))=1

1 ≤
∑
a∈A

∑
d|(a,P (z))

µ+(d) =
∑
d|P (z)

µ+(d)|Ad|

and

S(A, z) =
∑
a∈A

(a,P (z))=1

1 ≥
∑
a∈A

∑
d|(a,P (z))

µ−(d) =
∑
d|P (z)

µ−(d)|Ad|,

for any finite set of integers A and any real number z.
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3.3 The fundamental lemma of sieve methods

In this section we show that choosing the sets Πj as in (3.2.5) for an appropriate β, depending
on the dimension of the sieving problem, allows us to evaluate S(A, z) asymptotically when
z = Xo(1), thus extending Theorem 3.1.3. Indeed, if

βκ = 2
(
e

1
2κ − 1

)−1

+ 1 < 1 + 4κ,(3.3.1)

then we have the following result.

Theorem 3.3.1 (Fundamental Lemma of Sieve Methods, I). Let A be a finite set of integers
which satisfies (A1) and (A4a), for some κ > 0 and K ≥ 1. For z ≥ 1 and u ≥ ε > 0, we
have that

S(A, z) = X · V (z)
{

1 +O
(
e−u log u+Oκ,K,ε(u)

)}
+O

 ∑
d|P (z), d≤zu

|rd|

 .

If, in addition, (A4b) holds for some C1 ≥ 0, then

S(A, z) ≥ X · V (z)

8
+O

 ∑
d|P (z), d≤zβκ

|rd|

 ,

provided that z is large enough in terms of κ, C1 and ε.

As an immediate corollary, we have the following result.

Theorem 3.3.2 (Fundamental Lemma of Sieve Methods, II). Let A be a finite set of integers
which satisfies (A1) and (A4a), for some κ > 0 and K ≥ 1, and (R) for A = κ + 1 and
D = Xθ, θ ∈ (0, 1]. If z = X1/s with s ≥ 1, then we have that

S(A, z) = X · V (z)

{
1 +Oκ,K

(
e−θs log s+Oκ,K,θ(s) +

1

logX

)}
.

If, in addition, (A4b) holds for some C1 ≥ 0, then

S(A, z) ≥ X · V (z)

10
(z0 ≤ z ≤ Xθ/βk),

where z0 is a sufficiently large constant that depends at most on κ and C1.

Proof. The first part of the theorem follows by taking u = θs and ε = θ in the first part of
Theorem 3.3.1, since relation (A4a) implies that V (z)�κ,K (logX)−κ. For the second part,
note that zβκ ≤ Xθ. So the desired lower bound on S(A, z) follows by the second part of
Theorem 3.3.1.

Theorem 3.3.1 is an easy consequence of the following technical result.
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Theorem 3.3.3 (Fundamental Lemma of Sieve Methods, III). Let κ > 0, z ≥ 1 and D = zu

with u ≥ 2. There exist two arithmetic functions µ± : N→ [−1, 1], depending at most on κ,
z and D, such that:

(1) µ+ and µ− are both supported in {d|P (z) : d ≤ D};

(2) (µ− ∗ 1)(n) = 1 = (µ+ ∗ 1)(n) if P−(n) ≥ z;

(3) (µ− ∗ 1)(n) ≤ 0 ≤ (µ+ ∗ 1)(n) if P−(n) < z;

(4) If g : N→ [0, 1) is a multiplicative function satisfying (A4a) with parameter κ as above
and for some K ≥ 1, then∑

d

λ(d)g(d) = V (z)
{

1 +O
(
e−u log u+Oκ,K(u)

)}
(λ ∈ {µ+, µ−}).

(5) If g : N→ [0, 1) is a multiplicative function satisfying (A4b) with parameter κ as above
and for some C1 ≥ 0, then ∑

d

µ−(d)g(d) ≥ V (z)

8
,

provided that u ≥ βκ and that z is large enough in terms of κ and C1.

Deduction of Theorem 3.3.1 from Theorem 3.3.3. Note that we may assume throughout the
proof that u ≥ 2, since if ε ≤ u ≤ 2, then we have that

0 ≤ S(A, z) ≤ S(A, zε/2) ≤ cκ,K ·X · V (zε/2) +O

 ∑
d|P (zε/2), d≤zε

|rd|


≤ cκ,K ·X ·K

(
2

ε

)κ
V (z) +O

 ∑
d|P (z), d≤zu

|rd|


by the case u = 2 and relation (A4a), where cκ,K is some constant depending at most on κ
and K. Therefore holds in this case too, possibly by enlarging the implied constants in the
statement of Theorem 3.3.1. Now, assume that u ≥ 2 and let µ± be the two sequences from
Theorem 3.3.3 applied with z and κ as in the statement of Theorem 3.3.1, and with D = zu.
Then

S(A, z) =
∑
a∈A

(a,P (z))=1

1 ≤
∑
a∈A

∑
d|(a,P (z))

µ+(d) =
∑
d|P (z)

µ+(d)|Ad|

= X
∑
d|P (z)

µ+(d)g(d) +
∑
d|P (z)

µ+(d)rd

= X · V (z)
{

1 +Oκ,K

(
e−u log u+Oκ,K(u)

)}
+O

 ∑
d|P (z), d≤zu

|rd|

 ,
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by part (4) of Theorem 3.3.2. Similarly, we find that

S(A, z) ≥
∑
d|P (z)

µ−(d)|Ad| = X
∑
d|P (z)

µ−(d)g(d) +
∑
d|P (z)

µ−(d)rd

= X · V (z)
{

1 +Oκ,K

(
e−u log u+Oκ,K(u)

)}
+O

 ∑
d|P (z), d≤zu

|rd|

 ,

which completes the deduction of Theorem 3.3.1.

Proof of Theorem 3.3.3. For the most part, we follow an argument in [FI10]. We define µ±

as in (3.2.3) and (3.2.4) with β = βκ. Then property (1) is satisfied by the definition of µ±

and Exercise 3.2.2 implies that properties (2) and (3) holds as well. It remains to show that
properties (4) and (5) are also satisfied.

First, we show property (4). Consider g : N → [0, 1] that satisfies (A4a). With a slight
abuse of notation, given a sequence of primes p1, p2, . . . , we write yj = (D/(p1 · · · pj))1/β.
Also, we define

Vr =
∑

z>p1>···>pr≥yr
pj<yj , 1≤j<r, j≡r (mod 2)

g(p1 · · · pr)V (pr).

Then we have that ∑
d|P (z)

µ+(d)g(d)− V (z) =
∑
r≥1
r odd

Vr
(3.3.2)

and

V (z)−
∑
d|P (z)

µ−(d)g(d) =
∑
r≥1
r even

Vr.(3.3.3)

We fix an integer r ≥ 1 and proceed to the estimation of Vr. This will be done by studying the
complicated range of summation in Vr and replacing it by a much simpler one. In particular,
we will show that the primes pi are bounded from below by certain appropriate powers of z.
Consider p1, . . . , pr lying in the range of Vr. We claim that

p1 · · · pj ≤ Dz−(u−1)(β−1
β+1)b

j
2c

(0 ≤ j ≤ r, j ≡ r − 1 (mod 2)).(3.3.4)

We argue by induction: if j = 0 or j = 1, then relation (3.3.4) holds trivially, since p1 < z ≤
D. Assume now that (3.3.4) holds for some j ∈ {0, . . . , r− 3} that has opposite parity than
r. Then

p1 · · · pj+2 < p1 · · · pjp2
j+1 < p1 · · · pj

(
D

p1 · · · pj

) 2
β+1

= (p1 · · · pj)
β−1
β+1D

2
β+1 ≤

(
Dz−(u−1)(β−1

β+1)b
j
2c
)β−1

β+1

D
2

β+1

= Dz−(u−1)(β−1
β+1)b

j+2
2 c

,
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which completes the inductive step and hence the proof of (3.3.4). Note that relation (3.3.4)
and our assumption that pr ≥ yr imply that

pr ≥
(

D

p1 · · · pr−1

) 1
β+1

≥ zδr ,(3.3.5)

where

δr =
u− 1

β + 1

(
β − 1

β + 1

)b r−1
2 c
≥ 1

β + 1

(
β − 1

β + 1

) r
2

.(3.3.6)

Consequently, for every ε > 0, we have that

Vr ≤
∑

z>p1>···>pr≥zδr
p1···pr−1p

β+1
r >D

g(p1) · · · g(pr)V (zδr)

≤ V (zδr)

Dε

∑
z>p1>···>pr≥zδr

g(p1) · · · g(pr)(p1 · · · pr−1p
β+1
r )ε

≤ V (zδr)

Dε(r − 1)!

∑
z>pr≥zδr

g(pr)p
ε(β+1)
r

∑
z>p1,...,pr−1>zδr

g(p1) · · · g(pr−1)(p1 · · · pr−1)ε

≤ KV (z)

δκrD
ε(r − 1)!

∑
zδr≤p<z

g(p)pε(β+1)

 ∑
zδr≤p<z

g(p)pε

r−1

.

(3.3.7)

by relation (A4a) and Rankin’s trick (see Section 0.3). Moreover, if λ is some number > 1
and ε� 1/ log z, then we have that∑

zδr≤p<z

g(p)pε ≤ λ
∑

zδr≤p<λ1/ε

g(p) +
∑

1≤t≤ ε log z
log λ

λt+1
∑

λt/ε≤p<λ(t+1)/ε

g(p)

≤ λ log

(
K

(
log λ

εδr log z

)κ)
+

∑
1≤t≤ε log z

λt+1 log

(
K

(
t+ 1

t

)κ)
.

≤ λ log

(
K

(
1

δr

)κ)
+OK,κ,λ(z

ε) ≤ λ · κr
2

log

(
β + 1

β − 1

)
+OK,κ,λ(z

ε),

by (A4a). The inequality x+ y ≤ xey/x, for x and y positive, and relation (3.3.6) then imply
that

1

δκr

 ∑
zδr≤p<z

g(p)pε

r−1

≤ (β + 1)κ
(
β + 1

β − 1

)κr
2
(
λ · κr

2
log

(
β + 1

β − 1

))r−1

eOK,κ,λ(zε)

≤
(
λρr

e

)r−1

eOK,κ,λ(zε),

(3.3.8)
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where

ρ =

(
β + 1

β − 1

)κ
2 κe

2
log

(
β + 1

β − 1

)
=
e5/4

4
< 0.873,(3.3.9)

by the choice of β = βκ. Similarly, we find that

∑
zδr≤p<z

g(p)pε(β+1) ≤ λ · κr
2

log

(
β + 1

β − 1

)
+OK,κ,λ(z

ε(β+1))�κ,λ,K r · zε(β+1),(3.3.10)

Inserting (3.3.8) and (3.3.10) into (3.3.7) and choosing λ > 1 so that λρ ≤ 0.9, we deduce
that

Vr ≤
eOK,κ(zε)

Dε

(
0.9

e

)r−1
rr+1

r!

Since r!/r > rr−1/er, we conclude that

Vr ≤
eOK,κ(zε)

Dε
r2(0.9)r.

Summing the above inequality over r ≥ 1, we arrive to the estimate

∑
r≥1

Vr ≤
eOκ,K(zε)

Dε
.

Selecting ε = (log u)/(log z) completes the proof of property (4).

Finally, we show that property (5) holds. Assume that u ≥ βk = β and consider g : N→
[0, 1] that satisfies (A4b). The argument is similar with the previous one, but this time we
avoid the use of Rankin’s trick: We have that

Vr ≤
∑

z>p1>···>pr≥zδr

g(p1) · · · g(pr)V (zδr) ≤ V (zδr)

r!

∑
z>p1,...,pr≥zδr

g(p1) · · · g(pr)

=
V (zδr)

r!

 ∑
zδr≤p<z

g(p)

r

.

(3.3.11)

Now, let η ∈ (0, 1] be such that

(
β + 1

β − 1

)κ+η
2 (κ+ η)e

2
log

(
β + 1

β − 1

)
≤ 0.873

and (
β + 1

β − 1

)κ+η
2

=

(
1 +

2

β − 1

)κ+η
2

≤
(

1 +
2

4κ

)κ
2

< e
1
4 ,
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which is possible since β = βκ > 1 + 4κ and ρ = e5/4/4 < 0.873, by relation (3.3.9). Note
that for 3/2 ≤ w < z we have that

V (w)

V (z)
≤
(

1 +
C

logw

)(
log z

logw

)κ
≤
(

1 +
C

(logw)1−η(log z)η

)(
log z

logw

)κ+η

≤ 1.001

(
log z

logw

)κ+η

,

provided that z is large enough. So∑
zδr≤p<z

g(p) ≤ log
V (zδr)

V (z)
≤ log

(
1.001

δκ+η
r

)
.

Inserting the above inequalities into (3.3.11), we find that

Vr ≤
1.001V (z)

δκr r!
logr

(
1.001

δκ+η
r

)
.

Furthermore, observe that, for r ≥ 2 even, we have that

δr =
u− 1

β + 1

(
β − 1

β + 1

) r−2
2

=
u− 1

β − 1

(
β − 1

β + 1

) r
2

≥
(
β − 1

β + 1

) r
2

by our assumption that u ≥ β = βκ. Moreover, we have that r! ≥ rr/(2er−2), which can be
proven inductively for r ≥ 2. So we conclude that, for an even r ≥ 2, we have that

Vr
V (z)

≤ 1.001

rr/(2er−2)

(
β + 1

β − 1

) r(κ+η)
2
(
r(κ+ η)

2
log

(
β + 1

β − 1

)
+ log(1.001)

)r
≤ 1.001

2e2

{(
β + 1

β − 1

)κ+η
2 e(κ+ η)

2
log

(
β + 1

β − 1

)
+

(
β + 1

β − 1

)κ+η
2 e log(1.001)

r

}r

≤ 1.001

2e2

(
0.873 + e

1
4 · e log(1.001)

r

)r
=

1.001(0.873)r

2e2

(
1 +

e
5
4 log(1.001)

0.873 r

)r

≤ 1.001(0.873)r

2e2
exp{e5/4 log(1.001)/0.873} ≤ 0.272 (0.873)r,

by the choice of η. Consequently,

1

V (z)

∑
r≥1
r even

Vr ≤ 0.272
∑
r≥1
r even

0.873r = 0.272 · 0.8732

1− 0.8732
<

7

8
.

Inserting the above inequality into (3.3.3) completes the proof of property (5) and hence of
Theorem 3.3.3.



Chapter 4

Some applications of sieve methods

In this chapter, we give some applications of the results we proved in the previous sections,
particularly of the fundamental lemma of sieve methods. In order to show that (R) holds
for certain sequences A, we need to control the number of primes in arithmetic progressions
on average. If we let

li(x) :=

∫ x

2

dt

log t
,

then we expect that π(x; q, a), the number of primes up to x in the arithmetic progression
a (mod q), should be very well approximated by li(x)/ϕ(q). The prime number theorem for
arithmetic progressions implies that this is true if x is large enough in terms of q, specifically,
when x > eq

ε/3
. Bombier and Vinogradov showed (independently) that this remains true for

much smaller x as well (for x as small as q2+ε), but on an average sense. Indeed, if we set

E(x; q) = max
y≤x

max
(a,q)=1

∣∣∣∣π(y; q, a)− li(y)

ϕ(q)

∣∣∣∣ ,(4.0.1)

then their result is formulated as follows:

Theorem 4.0.4 (Bombieri-Vinogradov). Let A > 0. There is some constant B = B(A)
such that ∑

q≤x1/2/(log x)B

E(x; q)�A
x

(log x)A
(x ≥ 2).

We will prove this theorem in Chapter 10. Note that the ‘trivial’ bound on the sum in
question, which comes from the Brun-Titchmarsch inequality (see Theorem 4.1.4 below), is∑

q≤x1/2/(log x)B

max
y≤x

max
(a,q)=1

∣∣∣∣π(y; q, a)− li(y)

ϕ(q)

∣∣∣∣� ∑
q≤x1/2/(log x)B

x

ϕ(q) log x
� x (x ≥ 2).

So the Bombieri-Vinogradov theorem allows us to save an arbitrary power of log over this
trivial estimate. Moreover, Theorem 4.0.4 is essentially of the same strength with the Gen-
eralized Riemann Hypothesis (GRH) on average. Indeed, GRH implies the bound∑
q≤x1/2/(log x)B

max
y≤x

max
(a,q)=1

∣∣∣∣π(y; q, a)− li(y)

ϕ(q)

∣∣∣∣� ∑
q≤x1/2/(log x)B

√
x log x ≤ x

(log x)B−1
(x ≥ 2).

43
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So taking B = A+ 1, we deduce the Bombieri-Vinogradov theorem.
Elliott and Halberstam have conjectured that it is possible to improve significantly upon

the Bombieri-Vinogradov theorem:

Conjecture 4.0.5 (Elliott-Halberstam). Fix A > 0 and ε > 0. Then∑
q≤x1−ε

E(x; q)�ε,A
x

(log x)A
(x ≥ 2).

This conjecture is, in a certain sense, stronger than GRH.

Remark 4.0.6. As Friedlander and Granville [FG] have shown, if we replace x1−ε with
x/(log x)B in the above conjecture, then the conclusion is not always correct.

Exercise 4.0.7. Show that the Bombieri-Vinogradov theorem is equivalent to the following
statement: “For every A > 0, there is some C > 0, such that if 1 ≤ Q ≤

√
x/(log x)C , then

#

{
q ≤ Q : E(x; q) ≥ x

ϕ(q) log x
· 1

(log x)A

}
�A

Q

(log x)A
.”

Exercise 4.0.8. Let k ∈ N and A > 0. Using the Bombieri-Vinogradov theorem, prove that
there is B = B(A, k) such that∑

q≤x1/2/(log x)B

τk(q)E(x; q)�k,A
x

(log x)A
(x ≥ 2).

4.1 Prime values of polynomials

We start with an application of the sieve to the twin prime problem.

Theorem 4.1.1 (Twin primes). For x ≥ 3, we have that

#{p ≤ x : p+ 2 prime} � x

(log x)2

and

#{p ≤ x : Ω(p+ 2) ≤ 8} � x

(log x)2
(x ≥ 3).

Proof. Let A = {p+ 2 : p ≤ x} and note that

|Ad| = π(x; d,−2) = 1

whenever 2|d, and

|Ad| = π(x; d,−2) =
li(x)

ϕ(d)
+

(
π(x; d,−2)− li(x)

ϕ(d)

)
,
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if (d, 2) = 1. So (A1) holds with X = li(x),

g(d) =


1

ϕ(d)
if (d, 2) = 1,

0 otherwise,

and

rd =

π(x; d,−2)− li(x)

ϕ(d)
if (d, 2) = 1,

1 if (d, 2) > 1.

In addition, note that∏
w≤p<w′

(
1− 1

ϕ(p)

)−1

=
∏

max{3,w}≤p<w′

(
1− 1

p− 1

)−1

=
∏

max{3,w}≤p<w′

(
1− 1

p

)−1(
1 +

1

p(p− 2)

)

=

{
1 +O

(
1

logw

)}
logw′

logw
·
{

1 +O

(
1

w

)}
=

{
1 +O

(
1

logw

)}
logw′

logw
(3/2 ≤ w ≤ w′),(4.1.1)

by Mertens’ estimate (1.1.5), that is to say, relation (A4b) holds with κ = 1. Lastly,
relation (R) holds with A = 2 and D = xθ, for any θ ∈ (0, 1/2), by the Bombieri-Vinogradov
Theorem (see Theorem 4.0.4). So Theorem 3.3.1 and relation (4.1.1) imply that

#{p ≤ x : p+ 2 prime} ≤
√
x+ S(A,

√
x)�

√
x+ li(x)

∏
p<
√
x

(
1− 1

ϕ(p)

)
� x

(log x)2
,

which completes the proof of the first part of the theorem.
For the second part, note that we may assume that x is large enough, since 3 and 5

are twin primes. Now, applying the second part of Corollary 3.3.2 with θ = 10/21 and
z = x1/8.6 < x10/(21β1) yields

#{p ≤ x : Ω(p+ 2) ≤ 8} ≥ S(A, x1/8.6) ≥ li(x)

10

∏
p<x1/8.6

(
1− 1

ϕ(p)

)
� x

log x
· 1

log x
=

x

(log x)2
.

This completes the proof of the theorem.

Exercise 4.1.2.

(a) Show that

#{n ≤ x : (n, P (z)) = 1} � x

log z
(3/2 ≤ z ≤ x)
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and
#{n ≤ x : (n, P (z)) = 1} � x

log z
(3 ≤ 2z ≤ x).

(b)* Show the stronger estimates∑
n≤x

P−(n)≥z

n

ϕ(n)
� x

log z
(3/2 ≤ z ≤ x)

and ∑
n≤x

P−(n)≥z

µ2(n)ϕ(n)

n
� x

log z
(3 ≤ 2z ≤ x).

Exercise 4.1.3 (Goldbach’s problem). Let N ≥ 2 be an integer. Show that

#{(p, q) : p, q primes, p+ q = 2N} � N

ϕ(N)
· N

(logN)2
.

Moreover, if N is large, then prove that

#{p ≤ 2N : Ω(2N − p) ≤ 8} � N

ϕ(N)
· N

(logN)2
.

The following result is an extremely useful inequality due to its uniformity and large
range of applicability. In particular, it can give non-trivial results for the number of primes
in short intervals that are, in certain cases, stronger than GRH (when y/q <

√
x).

Theorem 4.1.4 (Brun-Titchmarsch inequality). For 1 ≤ q ≤ y ≤ x and (a, q) = 1, we have
that

π(x; q, a)− π(x− y; q, a)� y

ϕ(q) log(2y/q)
.

Proof. If y/2 < q ≤ y, then the theorem follows by the trivial inequality

π(x; q, a)− π(x− y; q, a) ≤ #{x− y < n ≤ x} ≤ 1 +
y

q
.

Assume now that q ≤ y/2 and let A = {x − y < n ≤ x : n ≡ a (mod q)}. Fix for the
moment an integer d. Note that if (d, q) > 1, then there are no solutions to the congruence
dm ≡ a (mod q), since (a, q) = 1 by assumption. Therefore |Ad| = 0 in this case. On the
other hand, if (d, q) = 1 and we let d ∈ [1, q] be the multiplicative inverse of d modulo q,
then

|Ad| = #

{
x− y
d

< m ≤ x

d
: dm ≡ a (mod q)

}
= #

{
x− y
d

< m ≤ x

d
: m ≡ da (mod q)

}
= #

{
k ∈ Z :

x− y
d

< kq + da ≤ x

d

}
=

y

dq
+O(1).
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In any case, we find that (A1) is satisfied with X = y/q,

g(d) =

{
0 if (d, q) > 1,

1/d if (d, q) = 1.

which is easily seen to be multiplicative, and rd � 1. Next, observe that∏
w≤p<w′

(1− g(p))−1 ≤
∏

w′≤p<w′

(
1− 1

p

)−1

� logw′

logw
,

that is to say, (A4a) holds with κ = 1. Finally, relation (R) holds trivially with A = 2 and
D = (y/q)θ, for any θ < 1. Therefore applying Corollary 3.3.3 with z =

√
y/q and u = 1

implies that

π(x; q, a)− π(x− y; q, a) ≤
√
y

q
+ S(A,

√
y/q)�

√
y

q
+
y

q

∏
p<
√
y/q

(1− g(p))

=

√
y

q
+
y

q

∏
p<
√
y/q

p-q

(
1− 1

p

)

�
√
y

q
+

y

q log(y/q)

∏
p<
√
y/q

p|q

(
1 +

1

p

)
� y

ϕ(q) log(y/q)
,

which completes the proof of the theorem.

Theorem 4.1.5. Let F1(x), . . . , Fr(x) be distinct irreducible polynomials over Z[x] with posi-
tive leading coefficient. Suppose that the polynomial F = F1 · · ·Fr has no fixed prime divisors,
i.e. there is no prime p such that p|F (n) for all integers n. Then we have that

#{n ≤ x : F1(n), . . . , Fr(n) are all primes} �F
x

(log x)r
.

Moreover, if x is large enough and d denotes the degree of F , then

#{n ≤ x : Ω(F (n)) ≤ 4rd} �F
x

(log x)r
.

Proof. Exercise.

Hint: If G is an irreducible polynomial over Z[x] and

νG(d) = #{m ∈ Z/dZ : G(m) ≡ 0 (mod d)},

then there is a constant cG such that∑
p≤x

νG(p)

p
= log log x+ cG +OG

(
1

log x

)
(x ≥ 2).
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4.2 The image of Euler’s totient function

If p is a prime number, then we expect that p− 1 behaves like a ‘typical’ integer, except for
obvious restrictions such as that 2|p − 1 for all but one primes. For example, we have the
following result:

Theorem 4.2.1. There are absolute constants A′ > 0 and B′ > 0 such that, for every x ≥ 3
and every integer r ≥ 1, we have that

#

{
3 < p ≤ x : ω

(
p− 1

2

)
= r

}
≤ A′x

log2 x

(log log x+B′)r−1

(r − 1)!

Proof. Exercise.

Hint: Show the stronger statement that

Sr(x, k) := #

{
p ≤ x : p ≡ 1 (mod 2k), ω

(
p− 1

2k

)
= r

}
≤ A′x

ϕ(k) log2(x/d)

(log log(x/k) +B′)r−1

(r − 1)!
,

(4.2.1)

uniformly in r ≥ 1 and 1 ≤ k ≤ x/2.

Now, note that ϕ(n) =
∏

pa‖n p
a−1(p− 1), so we expect ϕ(n) to have many prime factors,

many more than a typical integer of the same size. Our goal in this section is how fast the
image of ϕ grows. So set V (x) = #{ϕ(n) ≤ x}. Clearly, V (x) ≥ π(x + 1) � x/ log x for
x ≥ 2. Erdős showed that this lower bound is not so far from the truth:

Theorem 4.2.2 (Erdős, 1935). Let ε > 0. For x ≥ 2, we have that

V (x)�ε
x

(log x)1−ε .

Proof. The idea of the proof is the following: we have that ϕ(n) =
∏

pa‖n p
a−1(p − 1).

Moreover, a ‘typical’ integer n ≤ x has about log log x prime factors p by Theorem 2.1.2 and,
for each such p, the number p−1 should have about log log x prime factors by Theorem 4.2.1.
So ϕ(n) should have abnormally many prime factors.

Without loss of generality, we may assume that x is large enough. If m = ϕ(n) ≤ x, then
n ≤ cx log log x =: x1. Set R = (log log x)/N for some integer N ≥ 2, which is fixed for the
moment, and P = {p prime : ω(p − 1) ≤ 100N}. We expect that most m counted by V (x)
are images of integers n with ω(n) ≤ R. We bound the exceptional set by observing that

V (x) ≤ V1 + V2 + V3 + V4,(4.2.2)

where

V1 = #{n ≤ x1 : ω(n) ≤ R}
V2 = #{n ≤ x1 : ω(n) > R, there are > R/2 primes in P that divide n}
V3 = #{m ≤ x : ω(m) > 10 log log x},
V4 = #{m ≤ x : there is d2|m with d > (log x)10}.
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Indeed, if m = ϕ(n) ≤ x is counted by V (x) but not by V1, V2 or V3, then ω(m) ≤ 10 log log x
and there are> R/2 primes in Pc that divide n. So, if we writem =

∏r
i=1 p

ai
i =

∏
pb‖n p

b−1(p−
1), where p1, . . . , pr are the distinct prime factors of m, then

Ω(m)− ω(m) ≥
∑
p|n

ω(p− 1)− 10 log log x ≥ R

2
· 100N − 10 log log x = 40 log log x.

Consequently,

r∏
i=1

p
bai/2c
i ≥

r∏
i=1

p
ai−1

2
i ≥ 2

∑r
i=1

ai−1

2 = 2
Ω(m)−ω(m)

2 ≥ 220 log log x > (log x)10,

that is to say, ϕ(m) is divisible by a square d > log x and thus it is counted by V4.
As we mentioned above, we expect that in the right hand side of (4.2.2) the main con-

tribution comes from V1, whereas V2, V3 and V4 are error terms. We start by estimating V4

which is the easiest. We have that

V4 ≤
∑

d>(log x)10

#{m ≤ x : d2|m} ≤
∑

d>(log x)10

x

d2
� x

(log x)10
,

which is admissible. Next, Theorem 2.1.2 and Stirling’s formula imply that

V3 ≤
∑

r>10 log log x

πr(x) ≤
∑

r>10 log log x

Ax

log x

(log log x+B)r−1

(r − 1)!

� x

log x

(log log x+B)b10 log log xc

(b10 log log xc)!

� x

log x

(log log)10 log log x

(10(log log x)/e)10 log log x
√

log log x

≤ x

(log x)10 log 10−9
≤ x

(log x)14
,

which is also admissible. Similarly, we have that

V1 ≤
∑
r≤R

πr(x1) ≤
∑
r≤R

Ax

log x
· (log log x+B)r−1

(r − 1)!
� x

log x

(log log x+B)bRc−1

(bRc − 1)!

� x1

log x1

(log log x+B)
log log x
N

((log log x)/(eN))!
√
R

≤ x1

(log x)
−1+logN

N
+1
,

which is admissible, provided that N is large enough. Finally, we estimate V2: note that if
n is counted by V2, then it is possible to write n = ab, where a has exactly S = bR/2c prime
factors all of which are in P. Call A the set of such numbers a. Then

V2 ≤
∑
a∈A

#{n ≤ x1 : a|n} ≤
∑
a∈A

x

a
= x

∑
p1<···<pS
pi∈P

1

p1 · · · pS
≤ x

S!

(∑
p∈P

1

p

)S

.
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Now, Theorem 4.2.1 implies that

|P ∩ [1, u]| ≤
∑

r≤100N

Sr(u, 1) ≤ 1 +
∑

1≤r≤100N−1

Cx

(log x)2

(log log x+D)r−1

(r − 1)!

≤ 1 +
100NCx

(log x)2
(log log x+D)100N−2 �N

x

(log x)3/2

and, consequently, partial summation yields that∑
p∈P

1

p
�N 1.

So we deduce that

V2 ≤
xeON (S)

S!
� xeON (S)

(S/e)S
√
S
�N

x

(log x)
log log log x

2N
+ON (1)

�N
x

(log x)2
,

which is admissible. This completes the proof of the theorem.

4.3 The Titchmarsch-Linnik divisor problem

Given s ∈ Z and k ∈ N, what is the asymptotic behavior of the sum
∑

p≤x τk(p + s), as
x→∞? As we saw before shifted primes of the form p− 1 behave like typical integers. The
same is also true for the shifted primes p+ s. So we should expect that∑

p≤x

τk(p+ s) ≈ Prob(n prime |n ≤ x)
∑
n≤x

τk(n) � 1

log x
· x(log x)k−1 = x(log x)k−2.

Titchmarsch first studied this sum when k = 2 and evaluated it asymptotically under the
assumption of GRH. Subsequently, Linnik removed this assumption, so that the following
result now holds unconditionally:

Theorem 4.3.1. For 1 ≤ |s| ≤ x and x ≥ 3, we have that∑
p≤x

τ(p+ s) = x
∏
p-s

(
1 +

1

p(p− 1)

)∏
p|s

(
1− 1

p

)
+O

(
x log log x

(log x)2

)
.

Proof. We shall present a proof due to Rodriguez [Ro] based on the Bombieri-Vinogradov
theorem (i.e. Theorem 4.0.4). We have that

T =
∑
p≤x

τ(p+ s) =
∑
p≤x

∑
ab=p+s

1 =
∑
p≤x

2
∑

a<
√
p+s

a|p+s

1 + 1p+s=�


= 2

∑
p≤x

∑
a<
√
p+s

1 +O(
√
x)

= 2
∑

a<
√
x+s

(π(x, a,−s)− π(a2 − s, a,−s)) +O(
√
x).
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Note that if (a, s) > 1 and a|p+ s, then p|s. So∑
a<
√
x+s

(a,s)>1

(π(x, a,−s)− π(a2, a,−s)) =
∑

a<
√
x+s

(a,s)>1

∑
a2−s<p≤x
a|p+s

1 ≤
∑
p|s

∑
a|p+s

1

�
∑
p|s

|s|1/4 ≤ τ(s)|s|1/4 � H1/2 ≤ x1/2.

So we deduce that

T = 2
∑

a<
√
x+s

(a,s)=1

(π(x, a,−s)− π(a2 − s, a,−s)) +O(
√
x).

For (a, s) = 1, the Brun-Titchmarsch inequality (Theorem 4.1.4) implies that

π(a2 − s, a,−s) = π(a2 − s, a,−s)− π(−s, a,−s)� a2

ϕ(a) log(2a)
.

So ∑
a<
√
x+s

(a,s)=1

π(a2 − s, a,−s)�
∑
a<2
√
x

a2

ϕ(a) log(2a)
� x

log x
,

by Theorem 0.2.1. Hence

T = 2
∑

a<
√
x+s

(a,s)=1

π(x, a,−s) +O

(
x

log x

)
.

Next, the Bombieri-Vinogradov Theorem with A = 1 implies that there is some absolute
constant B > 0 such that ∑

p≤Q

∣∣∣∣π(x, a,−s)− li(x)

ϕ(a)

∣∣∣∣� x

log x
,

where Q = x1/2/(log x)B. So we find that

T = 2
∑
a≤Q

(a,s)=1

li(x)

ϕ(a)
+

∑
Q<a≤

√
x+s

(a,s)=1

π(x, a,−s) +O

(
x

log x

)
.

(4.3.1)

Now, Exercise 0.2.11 yields that

∑
a≤Q

(a,s)=1

1

ϕ(a)
=
∏
p-s

(
1 +

1

p(p− 1)

)∏
p|s

(
1− 1

p

)logQ+O

1 +
∑
p|s

log p

p− 1


=
∏
p-s

(
1 +

1

p(p− 1)

)∏
p|s

(
1− 1

p

) log x

2
+O

log log x+
∑
p|s

log p

p− 1

 .
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Moreover, we have that∑
p|s

log p

p− 1
≤
∑
p≤y

log p

p− 1
+

log y

y
· ω(s) ≤ log y +O(1) +

log y

y − 1
· log |s|

log 2
.

Selecting y = log |s|+ 1, we deduce that∑
p|s

log p

p− 1
� log log(3|s|) ≤ log log(3x),

and consequently∑
a≤Q

(a,s)=1

1

ϕ(a)
=
∏
p-s

(
1 +

1

p(p− 1)

)∏
p|s

(
1− 1

p

){
log x

2
+O(log log x)

}
.

Inserting this estimate into (4.3.1), and noting that li(x) = x/ log x+O(x/ log2 x), we deduce
that

T = x
∏
p-s

(
1 +

1

p(p− 1)

)∏
p|s

(
1− 1

p

)
+

∑
Q<a≤

√
x+s

(a,s)=1

π(x, a,−s) +O

(
x log log x

log x

)
.

This estimate reduces the theorem to showing that∑
Q<a≤

√
x+s

(a,s)=1

π(x, a,−s)� x log log x

log x
.

(4.3.2)

The reason that this sum is so small is that log a lies in a short interval: log a is of size
log x and it is restricted in an interval of length log log x. To see (4.3.2), we apply the
Brun-Titchmarsch inequality and Exercise 0.2.9 to get that∑

Q<a≤
√
x+s

(a,s)=1

π(x, a,−s)�
∑

Q<a≤
√
x+s

(a,s)=1

x

ϕ(a) log(x/a)
� x

log x

∑
Q<a≤2

√
x

(a,s)=1

1

ϕ(a)

≤ x

log x

∑
Q/2≤2m≤2

√
x

1

2m

∑
2m<a≤2m+1

a

ϕ(a)
� x

log x

∑
Q/2≤2m≤2

√
x

1

2m
· 2m

=
x

log x
· (log

√
x− logQ+ 1) � x log log x

log x
,

which completes the proof of (4.3.2) and hence of the theorem.

Exercise 4.3.2.

(a) Show that, for 1 ≤ |s| ≤ x and x ≥ 3, we have that∑
p≤x

τ3(p+ s) � x log x
∏
p|s

(
1− 1

p

)2
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(b)* Let 1 ≤ |s| ≤ x and x ≥ 3. Show that under the Elliott- Halberstam conjecture we
have that ∑

p≤x

τ3(p+ s) = C(s)x log x+O(x),

for some appropriate constant C(s).
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Chapter 5

Selberg’s sieve

5.1 An optimization problem

The combinatorial sieve was based on an iterative procedure, which we tried to optimize
at every single step. In 1947 Selberg introduced a new approach to sieving which is based
on global optimization. The starting point is the following simple idea: If {λd}d≥1 is any
sequence of real numbers with λ1 = 1, and we denote with χz the characteristic function of
integers n such that (n, P (z)) = 1, then

χz(n) ≤

 ∑
d|(n,P (z))

λd

2

.

Note that this immediately provides an upper bound sieve: expanding the square, we find
that

χz(n) ≤
∑

d|(n,P (z)

µ+(d), where µ+(d) =
∑

d1,d2∈N
[d1,d2]=d

λd1λd2 .

In particular, for any finite set of integers A satisfying (A1), we have that

S(A, z) ≤
∑

d1,d2|P (z)

λd1λd2 |A[d1,d2]|

= X
∑

d1,d2|P (z)

λd1λd2g([d1, d2]) +
∑

d1,d2|P (z)

λd1λd2r[d1,d2]

≤ X
∑

d1,d2|P (z)

λd1λd2g([d1, d2]) +
∑
d|P (z)

|µ+(d)r[d1,d2]|

=: X ·G+R.

This inequality turns upper bounds for S(A, z) to an optimization problem: we need to
choose the parameters λd so that XG + R is minimized. It turns out that this problem is
too hard. Instead we optimize only the main term XG. In order to have some control on
the error term R, we impose the additional constraint that λd = 0 for d >

√
D, so that µ+

is supported on integers d ≤ D.

55
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Now we turn to the problem of optimizing the value of the bilinear form

G =
∑

di|P (z), di≤
√
D

i∈{1,2}

λd1λd2g([d1, d2]),

under the restriction that λ1 = 1. For any prime p, if pν1‖d1 and pν2‖d2, then pmax{ν1,ν2}‖[d1, d2]
and pmin{ν1,ν2}‖(d1, d2). This implies that

g((d1, d2))g([d1, d2]) = g(d1)g(d2).(5.1.1)

Let P = {p prime : g(p) 6= 0} and Pz = P∩ (1, z). Note that in optimizing G we may assume
that the λd’s are supported in

Dz = {d ≤
√
D : d|

∏
p∈Pz

p}.

Moreover, we assume that (A2) holds. From the above discussion, we have that

G =
∑

d1,d2∈Dz

λd1λd2

g(d1)g(d2)

g((d1, d2))
.

Next, let h(n) =
∏

p|n g(p)/(1− g(p)) > 0 so that 1/g(n) = (1 ∗ (1/h))(n), whenever n is

a square-free integer for which g(n) 6= 0. Then

G =
∑

d1,d2∈Dz

λd1λd2g(d1)g(d2)
∑

m|(d1,d2)

1

h(m)

=
∑
m∈Dz

1

h(m)

∑
di∈Dz ,m|di
i∈{1,2}

λd1λd2g(d1)g(d2)

=
∑
m∈Dz

1

h(m)

 ∑
d∈Dz

d≡0 (modm)

λdg(d)


2

.

We make the change of variable

ξm =
∑
d∈Dz

d≡0 (modm)

λdg(d) (m ∈ Dz)

in order to diagonalize G. Then we have that∑
m∈Dz

m≡0 (mod d)

ξmµ(m/d) =
∑
m∈Dz

m≡0 (mod d)

µ(m/d)
∑
f∈Dz

f≡0 (modm)

λfg(f)

=
∑
f∈Dz

f≡0 (mod d)

λfg(f)
∑

m: d|m|f

µ(m/d)

=
∑
f∈Dz

f≡0 (mod d)

λfg(f)
∑
k|f/d

µ(k) = λdg(d).

(5.1.2)
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This proves that there is a one-to-one correspondence between the variables λd and the
variables ξm. In particular, the constraint λ1 = 1 becomes∑

m∈Dz

ξmµ(m) = 1.(5.1.3)

So our task now is to minimize

G =
∑
m∈Dz

ξ2
m

h(m)

under condition (5.1.3). Using Lagrange multipliers, we find that this is achieved when
ξm = c · µ(m)h(m), m ∈ Dz, for some constant c. Then (5.1.3) implies that

c
∑
m∈Dz

h(m) = 1 =⇒ c =

(∑
m∈Dz

h(m)

)−1

.

So, we conclude that, for any d ∈ Dz,

λd =
1

g(d)

∑
m∈Dz

m≡0 (mod d)

ξmµ(m/d) =
1

g(d)

(∑
m∈Dz

h(m)

)−1 ∑
m∈Dz

m≡0 (mod d)

µ(m/d)µ(m)h(m)

=
µ(d)

g(d)
·

 ∑
m∈Dz

m≡0 (mod d)

h(m)


/(∑

m∈Dz

h(m)

)
.

(5.1.4)

Additionally,

G =
∑
m∈Dz

1

h(m)
c2µ2(m)h2(m) = c2

∑
m∈Dz

h(m) =

(∑
m∈Dz

h(m)

)−1

.(5.1.5)

Finally, note that (5.1.4) implies that

|λd| ≤ 1.(5.1.6)

Indeed, if d ∈ Dz, then d is square-free and 1/g(d) = (1 ∗ (1/h))(d). Consequently,

1

g(d)

∑
m∈Dz

m≡0 (mod d)

h(m)

=

∑
f |d

1

h(f)


 ∑

m∈Dz
m≡0 (mod d)

h(m)

 =

∑
f |d

h(d)

h(f)


 ∑

k∈Dz
k≤
√
D/d, (k,d)=1

h(k)



=

∑
f |d

h(f)


 ∑

k∈Dz
k≤
√
D/d, (k,d)=1

h(k)

 =
∑

m=kf∈Dz
k≤
√
D/d, (k,d)=1, f |d

h(kf) ≤
∑
m∈Dz

h(m),
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which proves (5.1.6). Lastly, note that (5.1.6) implies that

|µ+(d)| ≤
∑

d1,d2|P (z)
[d1,d2]=d

1 ≤ 3ω(d) ≤ τ3(d).

Combining all of the above, we conclude that

Theorem 5.1.1. Let A be a finite set of integers satisfying (A1) and (A2) and let D and
z be positive real numbers. If h(n) =

∏
p|n g(p)/(1− g(p)), then

S(A, z) ≤ X

 ∑
m≤
√
D,m|P (z)

h(m)

−1

+
∑

d≤D, d|P (z)

τ3(d)|rd|.

Remark 5.1.2. Note that we no longer need to keep track of the fact that the first sum
above runs over integers m with g(m) 6= 0, as this is captured by the vanishing of h(m)
whenever g(m) = 0.

As we will see in the next section, this theorem is essentially as strong as the upper bound
implicit in Theorem 3.3.1. For now, let us point out that∑

m≤
√
D,m|P (z)

h(m) ≤
∏
p<z

(1 + h(p)) =
∏
p<z

1

1− g(p)
=

1

V (z)
.

So the upper bound provided by Theorem 5.1.1 is always at least as big as X · V (z).

Remark 5.1.3. As in the combinatorial sieve, we need control of the error terms on average.
We may then impose the condition that

(R′)
∑

d≤D, d|P (z)

τ3(d)|rd| ≤
C3X

(logX)B
.

This can be related to condition (R) under the assumption of a crude bound on rd. Indeed,
assume that

(r) |rd| ≤ C4 ·Xg(d) (d ≤ D, d|P (z))

If, in addition, (A4a) holds and z ≤ X, then∑
d≤D, d|P (z)

τ3(d)2|rd| ≤ C4X
∑

d≤D, d|P (z)

τ3(d)2g(d) ≤ C4X
∏
p<z

(1 + 9g(p))

≤ C4X

V (z)9
≤ C4X

V (X)9
≤ C4K

9X

(
logX

log 2

)9κ

.
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So if (R) holds, then the Cauchy-Schwarz inequality implies that

∑
d≤D, d|P (z)

τ3(d)|rd| ≤

 ∑
d≤D, d|P (z)

τ3(d)2|rd|

1/2 ∑
d≤D, d|P (z)

|rd|

1/2

≤

(
C4K

9X

(
logX

log 2

)9κ

· C2X

(logX)A

)1/2

and hence (R′) holds with C3 = (C2C4)1/2(K/ log 2)9κ/2 and B = (A− 9κ)/2.

5.2 The fundamental lemma: encore

In this section we give a proof of a version of the fundamental lemma using Selberg’s sieve.
The following theorem confirms that this new sieve is of similar same strength with the
β-sieve.

Theorem 5.2.1 (Fundamental Lemma of Sieve Methods, IV). Let A be a finite set of
integers which satisfies (A1) and (A4b), for some κ > 0 and C1 ≥ 0. For z ≥ 1 and
u ≥ ε > 0, we have that

S(A, z) = X · V (z)
{

1 +Oκ,K,ε

(
u−u/2

)}
+O

 ∑
d|P (z), d≤zu

τ3(d)|rd|

 .

Proof. Without loss of generality, we may assume that u is large enough. First, we show the
upper bound. We claim that

V (z)
∑

m≤zu/2,m|P (z)

h(m) = 1 +O
(
u−(u+1)/2

)
.

(5.2.1)

Together with Theorem 5.1.1, relation (5.2.1) certainly implies the desired upper bound.
Since ∑

m|P (z)

h(m) =
∏
p<z

(1 + h(p)) =
∏
p<z

1

1− g(p)
=

1

V (z)
,

it suffices to show that

V (z)
∑

m|P (z),m>zu/2

h(m)�κ,C1 u
−(u+1)/2

(5.2.2)

Note that P (z) ≤ eO(z), so we may assume that u � z/ log z. We shall show (5.2.1) using
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Rankin’s trick, arguing as in Theorem 0.3.3. For every ε ∈ [1/ log z, 1], we have that∑
m|P (z),m>zu/2

h(m) ≤ z−εu/2
∑
m|P (z)

h(m)mε = z−εu/2
∏
p<z

(1 + h(p)pε)(5.2.3)

=
z−εu/2

V (z)

∏
p<z

(
1 + h(p)pε

1 + h(p)

)
(5.2.4)

=
z−εu/2

V (z)

∏
p<z

(1 + g(p) (pε − 1)) .(5.2.5)

Note that pε ≤ 1 + eε log p for p ≤ e1/ε ≤ z and thus

log
∏
p<e1/ε

(1 + g(p)(pε − 1)) ≤ eε
∑
p<e1/ε

g(p) log p

≤ ε
∑

−1≤m<log(1/ε)

em+2
∑

em≤log p<em+1

g(p)

≤ ε
∑

−1≤m<log(1/ε)

em+2 log
V (exp{em})
V (exp{em+1})

≤ ε
∑

−1≤m<log(1/ε)

em+2

(
C1

em
+ κ

)
�C1,κ 1,

(5.2.6)

by (A4b). Moreover, note that for every integer r with 2 ≤ r ≤ ε log z + 1, we have that

log
∏

e(r−1)/ε≤p<er/ε
(1 + g(p) (pε − 1)) ≤ er

∑
e(r−1)/ε≤p<er/ε

g(p) ≤ er log
V (e(r−1)/ε)

V (er/ε)

≤ er
(
εC1

r − 1
+ κ log

r

r − 1

)
�C1,κ

er

r
.

by (A4b), and consequently

log
∏

e1/ε≤p<z

(1 + g(p)(pε − 1)) ≤ OC1,κ

(
zε

ε log z

)
.

Combining the above estimates, we deduce that

V (z)
∑

m|P (z),m>zu/2

h(m) ≤ exp

{
−εu log z

2
+OC1,κ

(
zε

ε log z

)}
,

for every ε ∈ [1/ log z, 1]. We set w = ε log z and choose w ≥ 1 so that ew−1/w = u. Then
w = log u+ log log u+O(1) and thus

−εu log z

2
+OC1,κ

(
zε

ε log z

)
= −uw

2
+Oκ,C1

(
ew

w

)
= −u log u+ u log log u

2
+OC1,κ(u)

≤ −(u+ 1) log u

2
+OC1,κ(1),
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which completes the proof of (5.2.2) and hence of the desired upper bound.
Finally, for the lower bound, we start with Buchstab’s identity (3.2.1)

S(A, z) = |A| −
∑
p<z

S(Ap, p),(5.2.7)

which allows to turn the task of finding a lower bound for S(A, z) to finding upper bounds for
S(Ap, p), for p < z, which will be accomplished by an appeal to (5.2.2). We remark here that
in the proof of (5.2.2) we only needed to (A1) for d|P (z) and (A4b) with 3/2 ≤ w ≤ w′ ≤ z.
Note that for d|P (p), we have that

|(Ap)d| = |A[p,d]| = |Apd| = Xg(pd) + rpd = (g(p)X) · g(d) + rdp,(5.2.8)

which shows that (A1) holds with Xg(p) and rdp in place of X and rd, respectively. Moreover,
relation (A4b) is clearly satisfied for 3/2 ≤ w ≤ w′ ≤ p with the same parameters κ and C1.
Therefore, relation (5.2.2) with Ap, p and wp in place of A, z and u, respectively, implies
that

S(Ap, p) ≤
{

1 +OC1,κ

(
w−(wp+1)/2
p

)}
· g(p)X

∏
p′<p

(1− g(p′)) +O

 ∑
d≤pwp , d|P (p)

τ3(d)|rdp|

 .

We pick wp so that pwp = zu/p, that is to say, wp = −1 + u log z/ log p, so that if we set
h = u(log z/ log p− 1), then

(wp + 1) logwp = O(1) + (wp + 1) log(wp + 1) = O(1) + (u+ h) log(u+ h)

≥ O(1) + u log u+ h ≥ O(1) + u log u+
log z

log p
,

by the Mean Value Theorem, so that w
(wp+1)/2
p � uu/2e− log z/ log p. So we conclude that

S(Ap, p) ≤
{

1 +OC1,κ

(
u−u/2e− log z/ log p

)}
·g(p)X

∏
p′<p

(1−g(p′))+O

 ∑
d≤zu/p, d|P (p)

τ3(d)|rdp|

 .

Inserting this inequality into (5.2.7) and using (A1) to write |A| in terms of g, X and r1, we
find that

S(A, z) ≥ X

(
1−

∑
p<z

g(p)V (p)

)
+OC1,κ

(
X

uu/2

∑
p<z

g(p)V (p)

e
log z
log p

)

+O

 ∑
m≤zu,m|P (z)

τ3(m)|rm|

 ,

(5.2.9)

since each m|P (z) with m ≤ zu can be written uniquely as m = dp with d|P (p), p < z and
d ≤ zu/p. Finally, observe that

1−
∑
p<z

g(p)V (p) = V (z)(5.2.10)
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and that ∑
p<z

g(p)V (p)

e
log z
log p

�C1 V (z)
∑
p<z

g(p)V (p)

e
log z
log p

(
log z

log p

)κ
�C1,κ

V (z)

log z

∑
p<z

g(p) log p�C1,κ V (z),

(5.2.11)

by the argument leading to (5.2.6). Combining relations (5.2.9), (5.2.10) and (5.2.11) com-
pletes the proof of the desired lower bound as well.

5.3 Applications

Our goal here is to obtain upper bounds on S(A, z) that are as tight as possible for z as
large as possible. Our starting point is Theorem 5.1.1 with D = z2, which implies that

S(A, z) ≤ X

(∑
m<z

µ2(m)h(m)

)−1

+
∑
d≤z2

τ3(d)|rd|.(5.3.1)

This reduces upper bounds on S(A, z) to lower bounds on the partial sums of µ2(m)h(m).
Theorem 0.4.1 then handles these averages.

Theorem 5.3.1. Let A be a finite set of integers which satisfies (A1) and (A3′) for some
κ > 0, C6 ≥ 0 and L ≥ 1. Furthermore, assume that g(p) ≤ C5/p for all primes p, and that
(R′) holds with B = κ+ 1 and D = Xθ, for some θ ∈ (0, 1). For z ≥ eL/θ, we have that

S(A, z) ≤ S(A) · X

(logX)κ
·
{

Γ(κ+ 1)

(θ/2)κ
+Oκ,C5,C6

(
L

θκ+1 log z

)}
,

where

S(A) =
∏
p

(1− g(p))

(
1− 1

p

)−κ
.

Proof. This is a direct corollary of Theorems 5.1.1 and 0.4.1 (note that since g satisfies its
hypotheses, so does h).

Corollary 5.3.2. Let F1(x), . . . , Fr(x) be distinct irreducible polynomials over Z[x] with
positive leading coefficient. Suppose that the polynomial F = F1 · · ·Fr has no fixed prime
divisors, i.e. there is no prime p such that p|F (n) for all integers n. Then we have that

#{n ≤ x : F1(n), . . . , Fr(n) are all primes} ≤ S(F )x

(log x)r

{
2rr! +OF

(
log log x

log x

)}
,

where

S(F ) =
∏
p

(
1− νF (p)

p

)(
1− 1

p

)−r
,

and νF (m) = #{n ∈ Z/mZ : F (n) ≡ 0 (modm)}.
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Proof. Exercise.

With regard to the frequency that tuples of polynomials are simultaneously prime num-
bers, Bateman-Horn conjectured that

Conjecture 5.3.3 (Bateman-Horn). Let F1(x), . . . , Fr(x) be distinct irreducible polynomials
over Z[x] with positive leading coefficient. Suppose that the polynomial F = F1 · · ·Fr has no
fixed prime divisors, i.e. there is no prime p such that p|F (n) for all integers n. Then we
have that

#{n ≤ x : F1(n), . . . , Fr(n) are all primes} ∼F S(F )x
r∏
i=1

1

log(xdi)
(x→∞),

where di denotes the degree of Fi.

Exercise 5.3.4. Using the ideas of Section 7.4, build a probabilistic model in favour of the
above conjecture.

In certain cases, it is possible to improve upon Corollary 5.3.2.

Theorem 5.3.5. Let s ∈ N. For x ≥ 2, we have that

#{p ≤ x : p+ 2s is prime} ≤
{

4 +O

(
log log x

log x

)}
· cx

(log x)2
·
∏
p|s
p>2

p− 1

p− 2
,

where

c = 2
∏
p>2

(
1− 2

p

)(
1− 1

p

)−2

is the twin prime constant.

Proof. If A = {p+ 2s : p ≤ x}, then we have that

#{p ≤ x : p+ 2s is prime} ≤ S(A, z) + z.(5.3.2)

Moreover, relation (A1) holds with X = li(x),

g(d) =

{
1/ϕ(d) if (d, 2s) = 1,

0 otherwise,

and

|rd| ≤

{
E(x; d) if (d, 2s) = 1,

ω(2s) otherwise,

where E(x; d) is defined by (4.0.1). Therefore, if D ≤
√
x/(log x)B for some large enough

B, then the Bombieri-Vinogradov theorem (Theorem 4.0.4) and Remark 5.1.3 imply that
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(R′) holds with A = 3. Consequently, Theorem 5.1.1 and relation (5.3.2) with D = z2 =√
x/(log x)B yield that

#{p ≤ x : p+ 2s is prime} ≤ li(x)

S
+O

(
x

(log x)3

)
,(5.3.3)

where

S =
∑
n≤
√
D

(n,s)=1

µ2(n)h(n) with h(n) =
∏

p|n, p>2

1

p− 2
.

Note that

∏
p|s

(1 + h(p))
∑
n≤
√
D

(n,s)=1

µ2(n)h(n) =

∑
d|s

µ2(d)h(d)

 ∑
n≤
√
D

(n,s)=1

µ2(n)h(n) ≥
∑
m≤
√
D

µ2(m)h(m).

Moreover, Theorem 0.4.1 (or the convolution method) implies that∑
m≤
√
D

µ2(m)h(m) =
logD

2

∏
p

(1 + h(p))

(
1− 1

p

)
+O(1) =

log x

4c
+O(log log x).

Hence

S ≥
(

log x

4c
+O(log log x)

)∏
p|s

(1 + h(p))−1 =

(
log x

4c
+O(log log x)

) ∏
p|s, p>2

p− 2

p− 1
.

Inserting the above estimate into (5.3.3), we conclude that

#{p ≤ x : p+ 2s is prime} ≤
{

4 +O

(
log log x

log x

)}
· li(x)

log x
·
∏
p|s
p>2

p− 1

p− 2
+O

(
x

(log x)3

)
.

Since li(x) = x/ log x+O(x/ log2 x) and (p− 1)/(p− 2) > 1, the theorem follows.

The following result is an improved version of Theorem 4.1.4.

Theorem 5.3.6 (Brun-Titchmarsch inequality, II). For 1 ≤ q ≤ y ≤ x and (a, q) = 1, we
have that

π(x; q, a)− π(x− y; q, a) ≤ 2y

ϕ(q) log(2y/q)

(
1 +O

(
log log(3y/q)

log(2y/q)

))
.

Proof. Exercise.

Finally, following an argument due to Selberg [Se91, p. 226-233], we show how keeping
track of the special structure of the parameters λd can yield an improved version of Theorem
5.3.6.
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Theorem 5.3.7 (Brun-Titchmarsch inequality, III). For 1 ≤ q ≤ y ≤ x and (a, q) = 1, we
have that

π(x; q, a)− π(x− y; q, a) ≤ 2y

ϕ(q)(log(y/q) + 2.4)
+O(1).

Proof. Clearly, we may assume that y ≥ cq, for some large enough constant c. First, we
show the theorem when q = 1. The general case will follow from this special case. We shall
go through the proof of Theorem 5.1.1 again because we need to use the structure of the
λd’s in the error term too.

We start with the inequality

π(x)− π(x− y) ≤ z − 1 + #{x− y < n ≤ x : (n, P (z)) = 1}.(5.3.4)

Then, for any real numbers λd with λ1 = 1, we have that

#{x− y < n ≤ x : (n, P (z)) = 1} ≤
∑

x−y<n≤x

 ∑
d|(n,P (z))

λd

2

=
∑

d1,d2|P (z)

λd1λd2

(⌊
x

[d1, d2]

⌋
−
⌊
x− y
[d1, d2]

⌋)
≤

∑
d1,d2|P (z)

λd1λd2

y

[d1, d2]
+

∑
d1,d2|P (z)

|λd1λd2 |

= y
∑

d1,d2|P (z)

λd1λd2

[d1, d2]
+

∑
d|P (z)

|λd|

2

.

(5.3.5)

Let D ≥ 1. Arguing as in the proof of Theorem 5.1.1 (with g(d) = 1/d and h(d) = 1/ϕ(d)
for d square-free), we find that if we let

λd = µ(d)d

 ∑
m|P (z), m≤

√
D

m≡0 (mod d)

1

ϕ(m)


/ ∑

m|P (z),m≤
√
D

1

ϕ(m)

 ,

then

∑
d1,d2|P (z)

λd1λd2

[d1, d2]
=

 ∑
m|P (z),m≤

√
D

1

ϕ(m)

−1

=
1

S
.(5.3.6)
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Moreover, the choice of the parameters λd implies that∑
d|P (z)

|λd| =
∑
d|P (z)

d

S

∑
m|P (z), m≤

√
D

m≡0 (mod d)

1

ϕ(m)
=

1

S

∑
m|P (z), m≤

√
D

σ(m)

ϕ(m)

≤ 1

S

∑
m|P (z), m≤

√
D

σ(m)

ϕ(m)
≤ 1

S

∑
m≤
√
D

µ2(m)σ(m)

ϕ(m)

∼
√
D

S

∏
p

(
1 +

p+ 1

p(p− 1)

)(
1− 1

p

)
,

(5.3.7)

as D →∞, by the convolution method (see Section 0.2). Note that∏
p

(
1 +

p+ 1

p(p− 1)

)(
1− 1

p

)
=
∏
p

(
1 +

1

p2

)
=
ζ(2)

ζ(4)
=

15

π2
<
√

2.31.

So if D is large enough, then inserting (5.3.6) and (5.3.7) into (5.3.5), we deduce that

#{x− y < n ≤ x : (n, P (z)) = 1} ≤ y

S
+

2.31D

S2
.

Next, note that if D = z2, then

S =
∑
d≤z

µ2(d)

ϕ(d)
= log z + γ +

∑
p

log p

p(p− 1)
+O

(
log z

z

)
≥ log z + 1.29

for z large enough. Consequently, writing z =
√
y/t for some t > 0, we find that

#{x− y < n ≤ x : (n, P (z)) = 1} ≤ y

log z + 1.29
+

2.31z2

log2 z

=
2y

log y − log t+ 2.58
+

4.62 · 2y
t(log y − log c)2

=
2y

log y
·
(

1 +
log t− 2.58 + 4.62/t

log y
+Ot

(
1

log y

))
.

We choose t = 4.62, in which case log t− 2.58− 4.62/t ≤ 2.409, to conclude that

#{x− y < n ≤ x : (n, P (
√
y/4.62)) = 1} ≤ 2y

log y + 2.409
(y ≥ c1).(5.3.8)

Inserting this estimate into (5.3.4) when z =
√
y/4.62 completes the proof of the theorem

in the case when q = 1.
The case q > 1 now follows from the case q = 1: note that

π(x; q, a)− π(x− y; q, a) ≤ z

q
+ 1 +

∑
x−y<n≤x
n≡a (mod q)
(n,P (z))=1

1.
(5.3.9)
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Write Pq(z) =
∏

p<z, p-q p and note that if n ≡ a (mod q), then (n, P (z)) = 1 if and only if

(n, Pq(z)) = 1. Let w ∈ [1, Pq(z)] be the multiplicative inverse of q (modPq(z)), that is to
say wq ≡ 1 (modPq(z)). Then if we write n = a+ kq, we find that

1 = (a+ kq, Pq(z)) = (w(a+ kq), Pq(z)) = (aw + k, Pq(z)).

Moreover, since x− y < n ≤ x, we have that (x− a− y)/q < k ≤ (x− a)/q. Thus if we set
m = k + aq, then x1 − y/q < m ≤ x1, where x1 = (x− a)/q + aq, and consequently∑

x−y<n≤x
n≡a (mod q)
(n,P (z))=1

1 =
∑

x1−y/q<m≤x1

(n,Pq(z))=1

1.

Now note that if z =
√

(y/q)/4.62, then

ϕ(q)
∑

x1−y/q<m≤x1

(m,Pq(z))=1

1 =
∑

x1−y/q<m≤x1

(m,Pq(z))=1

∑
1≤j≤q

(m+jPq(z),q)=1

1 =

q∑
j=1

∑
x1−y/q<m≤x1

(m+jPq(z),P (z))=1

1

≤ q · 2y/q

log(y/q) + 2.409
(y ≥ c1q)

by (5.3.8). So letting z =
√

(y/q)/4.62 in (5.3.9), we deduce that

π(x; q, a)− π(x− y; q, a) ≤
√
y/q

q
+ 1 +

2y

ϕ(q)(log(y/q) + 2.409)
(y ≥ c1q),

and the theorem follows.

Remark 5.3.8. Using different methods, Montgomery and Vaughan [MV] proved that

π(x; q, a)− π(x− y; q, a) ≤ 2y

ϕ(q) log(y/q)
(1 ≤ q < y ≤ x, (a, q) = 1).

Remark 5.3.9. Improving the constant 2 in the statement of Theorem 5.3.7 would have
very important consequences. In particular, if there are positive constants ε and L such that

π(x; q, a) ≤ (2− ε) · x

ϕ(q) log(x/q)
(q ≥ 2, (a, q) = 1, x ≥ qL),

then it is possible to show that there are no Landau-Siegel zeroes, that is to say, there is
some constant c′, depending at most on L and ε, such that the L-function L(s, χ) has no
zeroes in (1 − c′/ log q, 1), for every Dirichlet character χ (mod q). However, Selberg’s sieve
alone cannot lead to such an improvement: as we will see in the next section, the constant
2 is, in general, best possible.
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5.4 The parity problem in sieve methods

Selberg noticed that Theorem 5.1.1 is best possible. More precisely, by constructing sets A
for which the true size of S(A, z) matches the upper bound provided by Theorem 5.1.1.

More precisely, let A be a finite set of integers that satisfies (A1), (A3) with κ = 1, and
(R′) with B = 2 and D = Xθ, for some θ = 1 − o(1) as X → ∞. Assume in addition
that for the multiplicative function g in relation (A1) we have that g(p) � 1/p, so that
h(p) = g(p)/(1− g(p)) = g(p) + O(1/p2). Then h satisfies the hypotheses of Theorem 0.4.1
and consequently ∑

m≤x

µ2(m)h(m) ∼ (log x)
∏
p

1− 1/p

1− g(p)
(x→∞).

Then the upper bound supplied by Theorem 5.1.1 with D = Xθ and z ∈ (
√
X,X] is

asymptotically

S(A, z) ≤ (1 + o(1))
2X

logX

∏
p

1− g(p)

1− 1/p
(X →∞).(5.4.1)

Moreover, note that we trivially have that S(A, z) ≥ 0.
In the converse direction, Selberg constructed sets A for which (5.4.1) is satisfied, as well

as sets A for which S(A, z) = o(X/ logX), as X →∞. These extremal examples are

A(1) = {n ≤ x : Ω(n) is odd} and A(0) = {n ≤ x : Ω(n) is even}.

Then we have that∣∣∣A(j)
d

∣∣∣ =
∑
n≤x
d|n

1 + (−1)j+Ω(n)

2
=

x

2d
+O(1) +

(−1)j+Ω(d)

2

∑
m≤x/d

(−1)Ω(m)

=
x

2d
+O

(x
d
e−c
√

log(x/d)
)
,

by the Prime Number Theorem. So (A1) is satisfied with X = x/2 and g(d) = 1/d, and
(A3) holds with κ = 1. Morever, relation (R′) holds with B = 2 and D = x/eM(log log x)2

, for
some sufficiently large M . So the discussion of the previous paragraph implies that

0 ≤ S(A(j),
√
x) ≤ (1 + o(1))

2X

logX
= (1 + o(1))

x

log x
.

However, note that

S(A(1),
√
x+ 1) = 1 + #{

√
x+ 1 ≤ p ≤ x : Ω(p) is odd} = 1 + π(x)− π(

√
x) ∼ x

log x
,

whereas
S(A(0),

√
x+ 1) = 1 + #{

√
x+ 1 ≤ p ≤ x : Ω(p) is even} = 1.

So we have found two examples of sets A which satisfy exactly the same set of sieve-
theoretic axioms but for which the size of S(A, z) is vastly different for a certain choice of
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z. This was accomplished by taking the integers n ∈ [1, x] and splitting them two subsets
of roughly the same size, according to the parity of Ω(n). This inability of sieve methods
to distinguish between the elements of the same set that have an even or an odd number
of prime factors is referred to as the parity problem in sieve methods and it is a stumbling
block in many important number-theoretic questions, such as the twin prime conjecture. As
Friedlander and Iwaniec showed [FI98], it is possible to overcome this obstacle by adding an
extra axiom to (A1), (A3) and (R′), which eliminates examples such as the sets A(0) and
A(1) defined above. This extra axiom guarantees that the characteristic function of A does
not correlate with the Möbius function, that is to say, we impose conditions of the form∑

a∈A

µ(a) = o(|A|) (|A| → ∞)

or, at least, of the same spirit.
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Chapter 6

Smooth numbers

So far we have dealt with sieving problems where we try to estimate the size of a set A
after having removed all multiplies of small primes from it, say of primes < z, in the hope
of detecting prime numbers in A. However, another natural problem, which also occurs
frequently is to study the size of a set A after having removed all multiplies of large primes
from it, say of primes > y. Such numbers are called y-smooth numbers1, and their study has
various important applications. We shall study the problem of counting y-smooth numbers
in the simple case when A = {n ≤ x}. To this end, given real numbers x and y, we define

Ψ(x, y) = #{n ≤ x : P+(n) ≤ y}.

Following a heuristic argument based on probabilistic grounds (see Section 2.2), one might
guess that Ψ(x, y) � x · log y

log x
. However, as we will see, in reality the size of Ψ(x, y) is much

smaller.

6.1 Iterative arguments and integral-delay equations

As one might expect, estimating Ψ(x, y) becomes harder as y becomes smaller in terms of
x. But for large values of x, it is not terribly hard to estimate Ψ(x, y). Indeed, observe that
when y ≥ x, we trivially have that

Ψ(x, y) = bxc = x+O(1),(6.1.1)

1The term ‘friable numbers’, that is to say, numbers that can be easily broken into many little pieces, is
used often too.
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so there is not much to say in this case. Assume now that y ∈ [
√
x, x]. Note that an integer

n ≤ x can have at most one prime divisor in (
√
x, x]. Therefore

Ψ(x, y) = bxc −#{n ≤ x : ∃p ∈ (y, x] such that p|n}

= bxc −
∑
y<p≤x

#{n ≤ x : p|n} = bxc −
∑
y<p≤x

⌊
x

p

⌋
= x+O(1)−

∑
y<p≤x

(
x

p
+O(1)

)
= x− x log

(
log x

log y

)
+O

(
x

log x

)
,

(6.1.2)

by Mertens’ estimate. So, we have found an asymptotic formula for Ψ(x, y) for all y >
√
x.

Let us now try to estimate Ψ(x, y) when y ∈ [x1/3, x1/2). In order to do this, we use
Ψ(x,

√
x) as an approximation for Ψ(x, y), and try to understand how big is their difference:

we have that

Ψ(x, y) = Ψ(x,
√
x)−#{n ≤ x : y < P+(n) ≤

√
x}

= Ψ(x,
√
x)−

∑
y<p≤

√
x

#{n ≤ x : P+(n) = p}

= Ψ(x,
√
x)−

∑
y<p≤

√
x

#{m ≤ x/p : P+(m) ≤ p}

= Ψ(x,
√
x)−

∑
y<p≤

√
x

Ψ(x/p, p).

(6.1.3)

Now, note that
√
x/p < p ≤ x/p for all p ∈ (y,

√
x] ⊂ (x1/3, x1/2]. So, we may use (6.1.2) to

estimate all terms appearing in (6.1.2). Hence we arrive to the estimate

Ψ(x, y) = x(1− log 2) +O

(
x

log x

)
−

∑
y<p≤

√
x

x

p

{
1− log

(
log(x/p)

log p

)
+O

(
1

log(x/p)

)}

= x(1− log 2)−
∑

y<p≤
√
x

x

p

{
1− log

(
log(x/p)

log p

)}
+O

(
x

log x

)

= x(1− log 2)−
∫ √x
y

{
1− log

(
log(x/t)

log t

)}
dt

t log t
+O

(
x

log x

)
,

(6.1.4)

by Mertens’ estimate and partial summation, which is an asymptotic formula for Ψ(x, y) for
y ∈ [x1/3, x1/2).

Relations (6.1.2) and (6.1.4) suggest introducing the parameter

u =
log x

log y
.
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Indeed, if we set

ρ(u) =

{
1 if 0 ≤ u < 1,

1− log u if 1 ≤ u ≤ 2,
(6.1.5)

then (6.1.1) and (6.1.2) can be rewritten as

Ψ(x, x1/u) = xρ(u) +O

(
x

log x

)
(0 ≤ u ≤ 2).

Moreover, with this notation, relation (6.1.4) can be rewritten as

Ψ(x, x1/u) = xρ(2)−
∫ √x
y

ρ

(
log(x/t)

log t

)
dt

t log t
+O

(
x

log x

)
= xρ(2)− x

∫ u

2

ρ(w − 1)
dw

w
+O

(
x

log x

)
= x

{
1−

∫ u

1

ρ(w − 1)
dw

w

}
+O

(
x

log x

)
.

(6.1.6)

So we see an iterative procedure building up. Indeed, we may define a function ρ :
[0,+∞)→ R by letting ρ(u) = 1 for u ≤ 1 and then defining ρ inductively for u > 1 via the
relation

ρ(u) = 1−
∫ u

1

ρ(t− 1)
dt

t
.(6.1.7)

Note that when u ∈ [1, 2], we find that ρ(u) = 1−log u, which matches (6.1.5). The function ρ
is called Dickman’s function. Its defining equation (6.1.7) is called an integral-delay equation.
It can be viewed as a continuous analogue of the Buchstab-like identity

Ψ(x, y) = Ψ(x, z)−
∑
y<p≤z

Ψ(x/p, p) (y ≤ z ≤ x),(6.1.8)

which can be derived using the argument leading to (6.1.3). So it should come to no surprise
that ρ(u) = limx→∞Ψ(x, x1/u)/x. Indeed, this is a consequence of the next theorem:

Theorem 6.1.1. Let x ≥ y ≥ 1 and set x = yu. Then

Ψ(x, y) = xρ(u) +O

(
x

log y

)
.(6.1.9)

Before we prove this theorem, we discuss briefly some properties of Dickman’s function.
First of all, note that differentiating (6.1.7) yields the estimate

uρ′(u) = −ρ(u− 1) (u ≥ 1).(6.1.10)

Integrating the above relation, we find that∫ u

1

wρ′(w)dw = −
∫ u

1

ρ(w − 1)dw = −
∫ u−1

0

ρ(t)dt.
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On the other hand, the left hand side of the above identity is equal to∫ u

1

wρ′(w)dw = uρ(u)− ρ(1)−
∫ u

1

ρ(w)dw = uρ(u)−
∫ u

0

ρ(t)dt.

Putting together the above formulas, we conclude that

uρ(u) =

∫ u

u−1

ρ(t)dt (u ≥ 1).(6.1.11)

This formula is particularly useful in the study of the Dickman-de Brujin function. For
example, using this formula, it is not very hard to show that

0 < ρ(u) ≤ 1

Γ(u+ 1)
(u ≥ 0).(6.1.12)

To see the lower bound, we argue by contradiction: let u0 be the smallest u ≥ 0 with
ρ(u) ≤ 0. Then we necessarily have that u0 > 1, since ρ(u) = 1 for u ∈ [0, 1]. So (6.1.11)
implies that

0 ≥ ρ(u0) =
1

u0

∫ u0

u0−1

ρ(t)dt > 0,

which is a contradiction. This proves the lower bound in (6.1.12) does hold. Now, the upper
bound follows by (6.1.11) and induction: indeed, the lower bound and (6.1.10) imply that ρ
is a decreasing function. Therefore (6.1.11) yields that uρ(u) ≤ ρ(u− 1), and the inequality
ρ(u) ≤ 1/Γ(u + 1) follows by inducting on buc and the fact that when u ∈ [0, 1], we have
that ρ(u) = 1 ≤ 1/Γ(u+ 1).

The following theorem gives a more accurate estimate on the rate of decay of u.

Theorem 6.1.2. For u ≥ 10, we have that

ρ(u) = e−u log(u log u)+O(u).

Proof. First, we show the lower bound, which is simpler. Define ξ(u) by eξ(u) = uξ(u) + 1.
Clearly, ξ is an increasing function and ξ(1) = 0. Moreover, since

ξ(u) = log(uξ(u) + 1) = log u+ log ξ(u) +O(1) (u ≥ 2),(6.1.13)

we find that ξ(u) � log u. Inserting this estimate into (6.1.13), we conclude that

ξ(u) = log(u log u) +O(1).(6.1.14)

Next, we claim that

ρ(u) ≥ c

euξ(u)
(u ≥ 1),(6.1.15)

where c is some absolute constant. Note that if we can establish (6.1.15), then the lower
bound follows by (6.1.14). In order to show (6.1.15), we argue by contradiction: assume that
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(6.1.15) fails, and let u0 be the smallest counterexample to it. By choosing c small enough,
we may assume that u0 ≥ 2. Then

c

eu0ξ(u0)
> ρ(u0) ≥ 1

u0

∫ u0

u0−1

dt

etξ(t)
≥ 1

u0

∫ u0

u0−1

dt

etξ(u0)

=
1

u0ξ(u0)

(
1

e(u0−1)ξ(u0)
− 1

eu0ξ(u0)

)
=

1

eu0ξ(u0)
,

by the definition of ξ(u), which is a contradiction. So relation (6.1.15) does hold, and the
lower bound in our theorem follows.

For the upper bound we follow a similar argument: define ψ(u) by eψ(u)+2 = uψ(u). Then
relation (6.1.14) also holds with ψ in place of ξ. Moreover, arguing as above, we can show
that

ρ(u) ≤ C

euψ(u)
(u ≥ 1),

where C is some large absolute constant. This completes the proof of the upper bound as
well.

Exercise 6.1.3. Show that

ρ(u) =

(
e+ o(1)

u log u

)u
(u→∞).

Hint: For each fixed ε > 0, show that(
e− ε
u log u

)u
� ρ(u)�

(
e+ ε

u log u

)u
(u ≥ 2).

Exercise 6.1.4. Consider the Laplace transform of Dickman’s function

ρ̂(s) =

∫ ∞
0

ρ(t)e−stdt (s ∈ C).

Show that ρ̂ satisfies the differential equation

d

ds
(sρ̂(s)) = e−sρ̂(s).

Derive a formula for ρ̂ (this formula might not be closed).

Next, we show Theorem 6.1.1:

Proof of Theorem 6.1.1. We argue by induction. However, instead of using relation (6.1.8),
we establish another iterative formula for Ψ(x, y): using the identity log = 1 ∗ Λ, we have
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that ∑
n≤x

P+(n)≤y

log n =
∑
n≤x

P+(n)≤y

∑
d|n

Λ(n) =
∑
d≤x

P+(d)≤y

Λ(d)Ψ(x/d, y)

=
∑
p≤y

(log p)Ψ(x/p, y) +O

( ∑
ν≥2, p≤y

x log p

pν

)
=
∑
p≤y

(log p)Ψ(x/p, y) +O(x).

On the other hand, we have that

∑
n≤x

P+(n)≤y

log n = (log x)Ψ(x, y) +O

(∑
n≤x

log(x/n)

)
= (log x)Ψ(x, y) +O(x).

Putting together the above estimates, we conclude that

(log x)Ψ(x, y) =
∑
p≤y

(log p)Ψ(x/p, y) +O(x) (2 ≤ y ≤ x).(6.1.16)

It is not hard to show that a similar formula also holds for Dickman’s function: indeed, by
Mertens’ theorem and partial summation, we find that∑

p≤y

log p

p
ρ

(
log(x/p)

log y

)
=

∫ y

1

ρ

(
log(x/t)

log y

)
dt

t
+O

(∫ y

1

∣∣∣∣ρ′( log(x/t)

log y

)∣∣∣∣ dt

t log y

)
= (log y)

∫ u

u−1

ρ(w)dw +O

(∫ u

u−1

|ρ′(w)|dw
)
.

The first integral is equal to uρ(u), by (6.1.11), and the second one is equal to ρ(u−1)−ρ(u) ≤
1, since ρ′(w) for all w ≥ 1, by (6.1.10) and (6.1.12). So we conclude that

(log x)ρ(u) =
∑
p≤y

log p

p
ρ

(
log(x/p)

log y

)
+O(1).(6.1.17)

Combining (6.1.16) and (6.1.17), we conclude that

(log x)

(
Ψ(x, y)

x
− ρ(u)

)
=
∑
p≤y

log p

p

{
Ψ(x/p, y)

x/p
− ρ

(
log(x/p)

log y

)}
+O(1),(6.1.18)

for all x ≥ y ≥ 2.
We are now ready to show the theorem. Fix y ≥ 2. We need to prove that there is some

absolute constant C such that

E(x, y) =

∣∣∣∣Ψ(x, y)

x
− ρ

(
log x

log y

)∣∣∣∣ ≤ C

log y
,(6.1.19)
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for all x ≥ y. We may assume that y ≥ eC/2; else, relation (6.1.19) holds trivially for all
x ≥ 2. Moreover, (6.1.19) holds when x ∈ [y, y2], by the discussion in the beginning of this
chapter. In order to establish for larger x, we argue inductively: assume that (6.1.19) holds
for all x ∈ [y, 2my2], for some m ≥ 0, and consider x ∈ (2my2, 2m+1y2]. Write x = yu and
note that y ≤ x/p ≤ 2my, for every prime p ∈ [2, y], so the induction hypothesis and (6.1.18)
imply that

(log x)E(x, y) ≤
∑
p≤y

log p

p
· C

log y
+O(1) =

C(log y +O(1))

log y
+O(1) = C +O(1),

by Mertens’ theorem and our assumption that y ≥ eC/2. Since x ≥ y2, we deduce that

E(x, y) ≤ C

log x
+O

(
1

log x

)
≤ C

2 log y
+O

(
1

log y

)
≤ C

log y
,

provided that C is large enough, which we may assume. This completes the inductive step
and hence the proof of the theorem.

6.2 Rankin’s method: encore

Finally, in this section we show a result which is cruder than Theorem 6.1.1 when u is small
but provides stronger results when u is large. We follow the argument given in [Fo, Part
4]. The main idea is to use Rankin’s trick, as in Theorem 0.3.3. However, we first need
to rewrite Ψ(x, y) appropriately and to do this we use ideas coming from the integral-delay
equations satisfied by multiplicative functions (see Section 0.4). A cruder argument is also
possible, but with an extra factor of log y on our estimate for Ψ(x, y).

Theorem 6.2.1. Let x ≥ y ≥ 3 and set x = yu. If y ≥ (log x)3, then we have that

Ψ(x, y) ≤ x · eO(u)

(u log u)u
.

Proof. Without loss of generality, we may assume that u and x are large enough. As in the
proof of Theorem 6.1.1, we start with the formula∑

n≤x
P+(n)≤y

log n =
∑
m≤x

P+(m)≤y

∑
d≤x/m
P+(d)≤y

Λ(d).
(6.2.1)

Now, fix some ε ∈ [1/ log y, 1/3], and note that for 1 ≤ n ≤ x we have that

log x = log n+ log(x/n) ≤ log n+
1

1− ε
· x

1−ε

n1−ε ≤ log n+
3x1−ε

n1−ε ,

by the inequality log t ≤ t, for t > 0. Together with (6.2.1), this implies that

(log x)Ψ(x, y)�
∑
n≤x

P+(n)≤y

x1−ε

n1−ε +
∑
m≤x

P+(m)≤y

∑
d≤x/m
P+(d)≤y

Λ(d).
(6.2.2)
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Next, note that∑
d≤x/m
P+(d)≤y

Λ(d) =
∑

p≤min{y,x/m}

(log p)
∑
ν≥1

pν≤x/m

1�
∑

p≤min{y,x/m}

log(x/m).

So, if x/y < m ≤ x, then we find that∑
d≤x/m
P+(d)≤y

Λ(d)� x

m
≤ yεx1−ε

m1−ε ,

whereas, if 1 ≤ m ≤ x/y, then

∑
d≤x/m
P+(d)≤y

Λ(d)�
y log x

m

log y
= y +

y log x
my

log y
≤ yεx1−ε

m1−ε +
y

log y
· 1

1− ε
· x1−ε

y1−εm1−ε �
yεx1−ε

m1−ε .

In any case, we have that ∑
d≤x/m
P+(d)≤y

Λ(d)� yεx1−ε

m1−ε .

Inserting this estimate into (6.2.2), we arrive to the estimate

Ψ(x, y)� yεx1−ε

log x

∑
n≤x

P+(n)≤y

1

n1−ε ≤
yεx1−ε

log x

∏
p≤y

(
1− 1

p1−ε

)−1

� yεx1−ε

u
exp

{∑
p≤y

pε − 1

p

}
.

We bound this last sum as in the proof of Theorem 0.3.3 and choose ε = w/ log y, where
ew−1/w = u, to complete the proof of the theorem.



Chapter 7

Gaps between primes

Let p1, p2, p3, . . . be the sequence of prime numbers in increasing order. Our goal in this
chapter is to study the spacing of this sequence and, in particular, how small and how large
the gaps between two consecutive primes can get. The Prime Number Theorem implies
that pn ∼ n log n as n → ∞ or, equivalently, that

∑
k≤n(pk+1 − pk) = pn+1 − p1 ∼ n log n.

Consequently,

∑
1<k≤n

pk+1 − pk
log k

=

∫ n

1

1

log t
d

(∑
1<k≤t

(pk+1 − pk)

)

=
pn − p2

log n
−
∫ n

1

(∑
1<k≤t

(pk+1 − pk)

)
dt

t log2 t

=
pn − p2

log n
−
∫ n

1

(pbt+1c − p2)dt

t log2 t
∼ n (n→∞),

that is to say, the mean value of (pk+1 − pk)/ log k is 1. However, it could be possible that
this ratio deviates significantly from its mean. Indeed, if the twin prime conjecture is true,
then it immediately follows that pk+1 − pk = 2 for infinitely many values of k. One of the
main results of this chapter, which will be proven in Section 7.0.2, is a major step towards
this conjecture.

Theorem 7.0.2. For each m ∈ N, we have that

lim inf
n→∞

(pn+m − pn)� e4mm5.

This result is due to Maynard [May15a] and Tao [Tab], who built upon previous work
of Goldston, Pintz and Yildirim [GPY]. In the special case m = 1, the first person to show
that lim infn→∞(pn+1−pn) <∞ was Zhang [Z]. We will discuss more the history of Theorem
7.0.2 in Section 7.1, where its proof will be presented.

Exercise 7.0.3. Show that

lim inf
n→∞

pn+1 − pn
log n

≤ 7

8
.
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Hint: Fix δ > 0. Starting from the formula

(1 + o(1))N logN =
∞∑
k=1

2k
∑

N<n≤2N
pn+1−pn=2k

1 (N →∞),

show that ∑
k≤ (1+δ) logN

2

((1 + δ) logN − 2k)
∑

N<n≤2N
pn+1−pn=2k

1 ≥ (δ + o(1))N logN,

as N →∞. Next, use the sieve to bound #{N < n ≤ 2N : pn+1− pn = 2k} from above and
deduce the desired result.

On the other hand, one could imagine that it would be feasible to construct long strings
of consecutive numbers that are all compositive. For example, all numbers in the sequence
n! + 2, n! + 3, . . . , n! + n are composite. Consequently, if pr < n! + 2 < pr+1 are consecutive
primes, then pr+1 − pr ≥ n. Moreover, Bertrand’s postulate implies that pr > n!/2 and
therefore log r ∼ log pr ∼ log(n!) ∼ n log n as n → ∞, by Stirling’s formula, that is to say,
n ∼ log r/ log log r. So this construction produces gaps dr & log r/ log log r, for infinitely
many integers r. This is not quite enough to yield gaps that are longer than the average ones.
However, Westzynthius used a different construction to construct large gaps between primes,
that is to say infinitely many integers n such that pn+1 − pn/ log n can get arbitrarily large.
His ideas were strengthened by Erős and subsequently by Rankin. Following their arguments,
we will show the following slightly stronger result (Rankin’s result had the constant eγ/2 in
place of eγ):

Theorem 7.0.4. There are infinitely many integers n such that

pn+1 − pn
log n

≥ (eγ + on→∞(1)) · (log log n)(log log log log n)

(log log log n)2

Erdős offered $10,000 for improving the constant eγ to an arbitrarily large constant, the
largest Erdős prize ever. This problem was solved independently in two papers that appeared
simultaneously, one by Maynard [May] and another one by Ford, Green, Konyagin and Tao
[FGKT]:

Theorem 7.0.5. We have that

lim sup
n→∞

(
pn+1 − pn

log n

/
(log log n)(log log log log n)

(log log log n)2

)
=∞.

The proof of Theorem 7.0.5 we will present is the one due to Maynard, as it is simpler
and its methods fit more naturally within the context of this chapter. The argument will be
given in Section 7.3.

7.1 Bounded gaps between primes

In this section we prove Theorem 7.0.2. In order to detect m + 1 primes close together, we
use the following construction: Let 0 ≤ s1 < s2 < · · · < sk be integers such that the k-tuple
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s = (s1, . . . , sk) is admissible, that is to say, its elements do not cover all congruences classes
modulo any prime. Then, for an integer N ≥ sk and a sequence of non-negative weights
{wn}∞n=1, we consider the sum

S =
∑

N<n≤2N

(
k∑
j=1

1P(n+ sj)−m

)
wn.

Clearly, if S > 0, then there are m+ 1 primes distinct primes in (N + s1, 2N + sk] within an
interval of length sk− s1. So the sum S is our “short gap detector”. The key to making this
approach work is to judiciously choose the weights wn in a way that we achieve two things:

• Most of the contribution to the sum S comes from integers n for which there is a high
probability that several of the numbers n + s1, . . . , n + sk are simultaneously primes.
Indeed, if, for example, wn = 1 for all n, then S ∼ kN/ logN −mN < 0 as N → ∞,
so this is not a good choice for wn.

• We can actually estimate S unconditionally (e.g. without appealing to the twin prime
conjecture, which would result to our argument entering a vicious cycle). Indeed, if wn
is the characteristic function of integers n such that n + s1, . . . , n + sk are all primes,
then S ∼ (k −m)(logN) ·#{N < n ≤ 2N : wn = 1}, so in order to show that S > 0,
we need to show that wn = 1 often with k = m+ 1, thus entering a circular argument.

These two restrictions suggest setting wn = (1 ∗ µ+)(Q(n)), where

Q(n) :=
k∏
i=1

(n+ sj)

and µ+ is an upper bound sieve. Indeed, the original idea presented here is due to Goldston,
Pintz and Yildirim [GPY], who defined µ+ using the same idea as in Selberg’s sieve, by
letting

wn =

 ∑
d|(P (z),Q(n))

λd

2

,(7.1.1)

with the parameters λd being at our disposal, with the condition that they are supported
on integers d ≤ D (we don’t have to assume that λ1 = 1 here). If we set D = N θ/2, then
opening the square and interchanging the order of summation, we find that we need a bound
of the form ∑

q≤xθ
max

(a,q)=1

∣∣∣∣π(x; q, a)− li(x)

ϕ(q)

∣∣∣∣�A
x

(log x)A
,(7.1.2)

for all x ≥ 2 and all A ≥ 1. Note the Bombieri-Vinogradov theorem implies that (7.1.2)
holds with x1/2/(log x)B and B sufficiently large in place of xθ. In particular, any θ < 1/2
is permissible. However, this was not enough to deduce that lim infn→∞(pn+1 − pn) <∞ in
the original approach by Goldston, Pintz and Yildirim. Indeed, their method required (a
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weaker version of) (7.1.2) with some fixed θ > 1/2 that was not available at the time. This
missing ingredient was supplied by Zhang in May 2013 in his breakthrough paper [Z], where
he proved a variation of (7.1.2) with θ = 1/2 + 1/584 that was sufficient for him to deduce
that lim infn→∞(pn+1 − pn) <∞.

Very shortly after Zhang’s paper was published, another method was proposed by James
Maynard [May15a]. Maynard, instead of trying to prove stronger level-of-distribution results
about the primes, took an alternative path and introduced a multidimensional variation of
the GPY weights. His idea, also discovered independently by Tao [Tab], was to consider
weights of the form

wn =

 ∑
dj |n+sj
1≤j≤k

λd


2

.

It turned out that this simple idea has very far reaching consequences. As we will see,
these modified weights need very weak level-of-distribution results as input. In fact, we only
need to know that (7.1.2) holds for some θ > 0, a much weaker result that the available
Bombieri-Vinogradov result that allows us to take θ = 1/2 − ε. This new flexibility that
the Maynard-Tao variation of the Goldston-Pintz-Yildirim weights permits makes them very
applicable to a wide variety of set-ups. Indeed, after the publication of Maynard’s paper,
the subject has witnessed an explosion of activity.

We now proceed to the proof of Theorem 7.0.2. We will add a small technical twist to
the construction of Maynard’s weights, by performing a preliminary sieve up to z, where this
is a parameter at our disposal (we will eventually take z to be a large power of logN - a
similar idea is also used in [May15a], but the pre-sieving parameter is smaller). Indeed, we
set

wn = 1P−(Q(n))>z ·

 ∑
dj |n+sj
1≤j≤k

λd


2

,

where the sequence λd is supported on those k-tuples d = (d1, . . . , dk) with d1 · · · dk ≤ D.
We will eventually take D = N1/4/(logN)log z. We need to estimate the sum

S(N, z) :=
∑

N<n≤2N
P−(Q(n))>z

(
k∑
j=1

1P(n+ sj)−m

) ∑
dj |n+sj
1≤j≤k

λd


2

.

In the estimation of S(N, z) in the following two lemmas, we use the notations

ν(d) := #{m ∈ Z/dZ : Q(m) ≡ 0 (mod d)},

M := max
d
|λd| and X :=

∫ 2N

N

dt

log t
=

N

logN
+O

(
N

(logN)2

)
.

All implicit constants in this section might depend on k and the choice of the k-tuple s.
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Lemma 7.1.1. If D ≤ N1/2−ε and (logN)A+3k+1 ≤ z ≤ N1/ log logN , then

∑
N<n≤2N
P−(Q(n))>z

 ∑
dj |n+sj
1≤j≤k

λd


2

= N ·
∏
p≤z

(
1− ν(p)

p

) ∑
P−(aj)>z

1≤j≤k

a1 · · · ak


∑

dj≡0 (mod aj)

P−(dj)>z
1≤j≤k

λd
d1 · · · dk


2

+OA,ε

(
NM2

(logN)A

)
.

Proof. Call T the sum in question. Applying the Fundamental Lemma of Sieve Methods (cf.
Lemma 3.3.1) with u defined via the relation zu = N ε, we find that

T =
∑

(diei,djejP (z))=1
1≤i,j≤k, i 6=j

λdλe ·#
{
N < n ≤ 2N
P−(Q(n)) > z

:
n ≡ −sj (mod [dj, ej]),
1 ≤ j ≤ k

}

=
∑

(diei,djejP (z))=1
1≤i,j≤k, i 6=j

λdλe ·

(1 +O(u−u/2)
) N ·∏p≤z

(
1− ν(p)

p

)
[d1, e1] · · · [dk, ek]

+O
(
N ε(logN)k−1

)
= N ·

∏
p≤z

(
1− ν(p)

p

) ∑
(diei,djejP (z))=1

1≤i,j≤k, i 6=j

λdλe
[d1, e1] · · · [dk, ek]

+Oε,A

(
M2N

(logN)A

)
,

We need to remove the conditions (diei, djej) = 1 for i 6= j. We do this by noting that if a
pair of k-tuples d, e is such that (d1 · · · dk, P (z)) = (e1 · · · ek, P (z)) = 1 but (diei, djej) > 1,
then there must be a prime p > z dividing both [di, ei] and [dj, ej]. We therefore conclude
that ∑

(diei,djejP (z))=1
1≤i,j≤k, i 6=j

λdλe
[d1, e1] · · · [dk, ek]

=
∑

(diei,P (z))=1
1≤i≤k

λdλe
[d1, e1] · · · [dk, ek]

+O

(
M2(logN)3k

z

)
,

which is admissible by our assumption that z ≥ (logN)3k+A+1. Finally, we note that

1

[d, e]
=

(d, e)

de
=

1

de

∑
a|(d,e)

ϕ(a).

Therefore

∑
P−(diei)>z

1≤i≤k

λdλe
[d1, e1] · · · [dk, ek]

=
∑

P−(a1···ak)>z

ϕ(a1) · · ·ϕ(ak)


∑

dj≡0 (mod aj)

P−(dj)>z
1≤j≤k

λd
d1 · · · dk


2

.
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If P−(a) > z and a ≤ ez, then it is easy to see that

1 ≤ a

ϕ(a)
=
∏
p|a

(
1 +

1

p− 1

)
≤
(

1 +
1

z − 1

)ω(a)

≤ exp

{
ω(a)

z − 1

}
= 1 +O

(
log a

z

)
,

since ω(a)� log a. So we may replace ϕ(aj) by aj for all j ∈ {1, . . . , k} by producing a total
error term of size (logN)3k+1/z, which is admissible by our assumption on z.

Lemma 7.1.2. If (logN)A+3k+1 ≤ z ≤ N1/(10 log logN), D ≤ N1/4/(logN)log z and j0 ∈
{1, . . . , k}, then

∑
N<n≤2N
P−(Q(n))>z

1P(n+ sj0)

 ∑
dj |n+sj
1≤j≤k

λd


2

= X ·
∏
p≤z

(
1− ν(p)

p

)(
1− 1

p

)−1 ∑
P−(aj)>z

1≤j≤k
aj0=1

a1 · · · ak

×


∑

P−(dj)>z, dj0=1

dj≡0 (mod aj)
1≤j≤k

λd
d1 · · · dk


2

+OA,ε

(
NM2

(logN)A

)
.

Proof. Call Tj0 the sum in question. For simplicity, we consider the case j0 = k; the proof
of the other cases is identical. Observe that the fact that n + sk is a prime number greater
than N forces n + sk to be co-prime to integers d ≤ D ≤ N . Therefore, for such an n, the
sum

∑
dj |n+sj (1≤j≤k) λd must have dk = 1, and the condition P−(Q(n)) > z is reduced to

P−(Q∗(n)) > z, where

Q∗(n) =
k−1∏
j=1

(n+ sj).

(This decreases the dimension of the sieve we are considering by 1.) So, opening the square,
changing the order of summation and setting p = n+ sk, we find that

Tk =
∑
dj ,ej

(diei,djejP (z))=1
1≤i,j<k, i 6=j

λd,1λe,1 ·#
{
N + sk < p ≤ 2N + sk
P−(Q∗(p− sk)) > z

:
p ≡ sk − sj (mod [dj, ej]),
1 ≤ j < k

}
.

For each fixed d, e, we use the Fundamental Lemma of Sieve Methods with u = log logN to
control the cardinality of the above set of primes. If we set

ν∗(a) := # {x ∈ (Z/aZ)∗ : Q∗(x− sk) ≡ 0 (mod a)} ,

so that ν∗(p) = ν(p)− 1, then we find that the main term equals

XV

ϕ([d1, e1]) · · ·ϕ([dk, ek])
,
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where

V :=
∏
p≤z

(
1− ν∗(p)

p− 1

)
=
∏
p≤z

(
1− ν(p)

p

)(
1− 1

p

)−1

,

and the error term is

� X

(logN)A+3kϕ([d1, e1]) · · ·ϕ([dk, ek])
+

∑
a≤zlog logN

a|P (z)

(k − 1)ω(a)E(a[d1, e1] · · · [dk, ek]),

where

E(q) := max
(a,q)=1

∣∣∣∣∣∣∣∣
∑

N+sk<p≤2N+sk
p≡a (mod q)

1− X

ϕ(q)

∣∣∣∣∣∣∣∣ = max
(a,q)=1

∣∣∣∣∣∣∣∣
∑

N<p≤2N
p≡a (mod q)

1− X

ϕ(q)

∣∣∣∣∣∣∣∣+O(1).

Therefore

Tk = XV
∑

(diei,djejP (z))=1
1≤i,j<k, i 6=j

λd,1λe,1
ϕ([d1, e1]) · · ·ϕ([dk−1, ek−1])

+O

 M2N

(logN)A
+M2

∑
q≤N1/2/(logN)log z

τ2k(q)E(q)

 .

The Bombieri-Vinogradov theorem (see, also, Exercice 4.0.8) implies that the sum over q in
the error term is � N/(logN)A. So we conclude that

Tk = XV ·
∑

(diei,djejP (z))=1
1≤i,j<k, i 6=j

λdλe
ϕ([d1, e1]) · · ·ϕ([dk, ek])

+O

(
M2N

(logN)A

)
.

As in the proof of Lemma 7.1.1, we may remove the conditions (diei, djej) = 1 and we may re-
place ϕ([dj, ej]) by [dj, ej] at the cost of introducing an error of total sizeO(M2N(logN)3k+1/z),
which is admissible since z ≥ (logN)A+3k+1. Moreover, using the formula

1

[d, e]
=

1

de

∑
a|(d,e)

ϕ(a),

we find that

∑
P−(diei)>z

1≤i<k

λd,1λe,1
[d1, e1] · · · [dk−1, ek−1]

=
∑

P−(ai)>z
1≤i<k

ϕ(a1) · · ·ϕ(ak−1)


∑

P−(di)>z
di≡0 (mod ai)

1≤i<k

λd,1
d1 · · · dk−1


2

.

Finally, we replace ϕ(aj) by aj, thus introducing a total error of size O(M2N(logN)3k+1/z),
which is admissible since z ≥ (logN)A+3k+1. This completes the proof of the lemma.



86 CHAPTER 7. GAPS BETWEEN PRIMES

Motivated by the two lemmas above, we make a change of variable which diagonalizes
the quadratic form appearing in Lemma 7.1.1: for a k-tuple a = (a1, . . . , ak), we set

ξa
a1 · · · ak

=
∑

P−(dj)>z
dj≡0 (mod aj)

1≤j≤k

λd
d1 · · · dk

.
(7.1.3)

Clearly, ξa is supported on k-tuples with a1 · · · ak ≤ D and P−(a1 · · · ak) > z.
We want to compute the expression appearing in Lemma 7.1.2 in terms of the new

parameters ξa. As in Section 5.1 (see relation (5.1.2)), if P−(d1 · · · dk) > z, we have the
inversion formula

λd
d1 · · · dk

=
∑

aj≡0 (mod dj)
1≤j≤k

ξa
a1 · · · ak

k∏
j=1

µ(aj/dj).(7.1.4)

Consequently, if P−(a1 · · · ak) > z with aj0 = 1, then we find that

∑
P−(d1···dk)>z
dj≡0 (mod aj)
1≤j≤k, dj0=1

λd
d1 · · · dk

=
∑

P−(d1···dk)>z
dj≡0 (mod aj)
1≤j≤k, dj0=1

∑
bj≡0 (mod dj)

1≤j≤k

ξb
b1 · · · bk

k∏
j=1

µ(bj/dj)

=
∑

P−(b1···bk)>z
bj≡0 (mod aj)

1≤j≤k

ξb
b1 · · · bk

∑
dj≡0 (mod aj)
dj/aj |bj/aj

1≤j≤k, dj0=1

k∏
j=1

µ

(
bj/aj
dj/aj

)

=
∑
bj=aj

1≤j≤k, j 6=j0
P−(bj0 )>z

µ(bj0)ξb
b1 · · · bk

=
∑

P−(b)>z

µ(b)ξa1,...,aj0−1,b,aj0+1,...,ak

a1 · · · akb
.(7.1.5)

This computation suggests setting

ξa := 1P−(a1···ak)>z · λ(a1 · · · ak) · f
(

log a1

logD
, . . . ,

log ak
logD

)
·
∏
p≤z

(
1− 1

p

)−k
,

where
∏

p≤z(1 − 1/p)−k is a normalisation factor, λ(n) = (−1)Ω(n) is Liouville’s function
(which is placed here to annihilate the sign change caused by µ(b) in (7.1.5)) and f is a
smooth function supported on the simplex

Tk := {t ∈ [0, 1]k : t1 + · · ·+ tk ≤ 1}.

With this choice, we have that the following result.
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Lemma 7.1.3. If z = (logN)6k+2 and D = N1/4/(logN)log z, then

S(N, z)

S(s)N(logD)k
=

1

4

k∑
j0=1

∫ (∫
f(t)dtj0

)2 ∏
1≤j≤k
j 6=j0

dtj −m
∫
f(t)2dt +O

(
1√

logN

)
,

where

S(s) :=
∏
p

(
1− ν(p)

p

)(
1− 1

p

)−k
;

the implied constant depends at most on ε, f, k and s.

Except for Lemmas 7.1.1 and 7.1.2, the key input to the proof of the above lemma comes
from the following result:

Lemma 7.1.4. Let D and z be two parameters with
√

logD ≤ z ≤ D. If g : Rk → R is a
smooth function supported on {t ∈ [1,+∞)k : t1 · · · tk ≤ D} and such that ∂g

∂tj
� 1/tj, then

∑
P−(n1···nk)>z

g(n1, . . . , nk)

n1 · · ·nk
=
∏
p≤z

(
1− 1

p

)k ∫
g(t1, . . . , tk)

t1 · · · tk
dt +O

((
logD

log z

)k−1
)

;

the implied constant depends at most on k and g.

Proof. All implied constants might depend on g and on k. We may assume that z ≤
D1/(1000k); otherwise, the result is trivially true. We note that

∑
P−(n1···nk)>z

g(n1, . . . , nk)

n1 · · ·nk
=

∑
P−(nj)>z

nj>z
100

1≤j≤k

g(n1, . . . , nk)

n1 · · ·nk
+O

((
logD

log z

)k−1
)
.

We split the range of summation {n : n1 · · ·nk ≤ D, nj > z100 (1 ≤ j ≤ k)} into small cubes

of the form B =
∏k

j=1(xj, xj +
√
xj]. We note that

g(n1, . . . , nk)

n1 · · ·nk
=
g(x1, . . . , xk)

x1 · · ·xk
+O

(
1

z100 · x1 · · ·xk

)
=

I
√
x1 · · ·xk

+O

(
1

z100 · x1 · · ·xk

)

by our assumption on g, where

I :=

∫
B

g(t1, . . . , tk)

t1 · · · tk
dt.
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Therefore

∑
P−(n1···nk)>z

n∈B

g(n1, . . . , nk)

n1 · · ·nk
=

I
√
x1 · · ·xk

k∏
j=1

∑
xj<nj≤xj+

√
xj

P−(nj)>z

1 +O

(
1

z100(log z)k
√
x1 · · · xk

)

= I ·
(

1 +O

(
max
1≤j≤k

(x
−1/ log z
j )

))
·
∏
p≤z

(
1− 1

p

)k
+O

(
1

z100(log z)k
√
x1 · · · xk

)
= I ·

∏
p≤z

(
1− 1

p

)k
+O

(
(log z)−k
√
x1 · · ·xk

(
1

z100
+ max

1≤j≤k
(x
−1/ log z
j )

))

by the Fundamental Lemma of Sieve Methods (cf. Lemma 3.3.1). Hence, summing over all
cubes B ⊂ {n : n1 · · ·nk ≤ D, nj > z100 (1 ≤ j ≤ k)} completes the proof of the lemma.

Proof of Lemma 7.1.3. Note that our choice of ξa and an upper bound sieve imply that

M = max
d
|λd| � (logN)k.

So, if we set

g(a1, . . . , ak) = f

(
log a1

logD
, . . . ,

log ak
logD

)
and

V =
∏
p≤z

(
1− 1

p

)
,

then Lemmas 7.1.1 and 7.1.4, and our assumption that (logN)6k+2 ≤ z ≤ e
√

logN imply that

∑
N<n≤2N
P−(Q(n))>z

 ∑
dj |n+sj
1≤j≤k

λd


2

=
N

V 2k

∏
p≤z

(
1− ν(p)

p

) ∑
P−(a1···ak)>z

g(a)2

a1 · · · ak
+O

(
N

(logN)k+1

)

=
N

V k

∏
p≤z

(
1− ν(p)

p

)(∫
g(u)2

u1 · · ·uk
du +O((logN)k−1/2)

)
.

Moreover,

V −k
∏
p≤z

(
1− ν(p)

p

)
= S(s)

(
1 +O

(
1

z

))
(7.1.6)

and ∫
g(u)2

u1 · · ·uk
du = (logD)k

∫
Tk

f(t)2dt,
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so that

∑
N<n≤2N
P−(Q(n))>z

 ∑
dj |n+sj
1≤j≤k

λd


2

= S(s)N(logD)k
(∫

f(t)2dt +O

(
1√

logN

))
.(7.1.7)

Next, if we set

Sj0(a) =
∑

P−(b)>z

µ2(b)g(a1, . . . , aj0−1, b, aj0+1, . . . , ak)

b
,

where j0 ∈ {1, . . . , k}, then Lemma 7.1.2 and relations (7.1.5) and (7.1.6) imply that

∑
N<n≤2N
P−(Q(n))>z

1P(n+ sj0)

 ∑
dj |n+sj
1≤j≤k

λd


2

=
X

V 2k+1

∏
p≤z

(
1− ν(p)

p

) ∑
P−(a1···ak)>z

aj0=1

Sj0(a)2

a1 · · · ak

+O

(
N

(logN)k+1

)

=
S(s)N

V k+1 logN

 ∑
P−(a1···ak)>z

aj0=1

Sj0(a)2

a1 · · · ak
+O

(
1

logN

) .

If µ2(b) = 0 and P−(b) > z, then b is divisible by the square of a prime > z. Therefore,

Sj0(a) =
∑

P−(b)>z

g(a1, . . . , aj0−1, b, aj0+1, . . . , ak)

b
+O

(
logN

z

)

= V ·
(∫

g(a1, . . . , aj0−1, u, aj0+1, . . . , ak)

u
du+O

(√
logN

))
= V · (logD) ·

(
Gj0(a1, . . . , ak) +O

(
1√

logN

))
by Lemma 7.1.3, where

Gj0(a1, . . . , ak) :=

∫
g(a1, . . . , aj0−1, D

tj0 , aj0+1, . . . , ak)dtj0 � 1.

Therefore

∑
N<n≤2N
P−(Q(n))>z

1P(n+ sj0)

 ∑
dj |n+sj
1≤j≤k

λd


2

=
S(s)N(logD)2

V k−1 logN

 ∑
P−(a1···ak)>z

aj0=1

Gj0(a)2

a1 · · · ak
+O

(
1√

logN

) .
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Finally, applying again Lemma 7.1.4, we find that

∑
P−(aj)>z

1≤j≤k
aj0=1

Gj0(a)2

a1 · · · ak
= V k−1


∫

u∈Rk
uj0=1

Gj0(u)2

u1 · · ·uk

∏
1≤j≤k
j 6=j0

duj +O((logN)k−3/2)



= V k−1(logD)k−1

∫ (∫ f(t)dtj0

)2 ∏
1≤j≤k
j 6=j0

dtj +O

(
1√

logN

) ,

which completes the proof of Lemma 7.1.3.

In view of Lemma 7.1.3, it is clear that our goal is to choose f supported on Tk and
maximizing the ratio

ρ(f) :=
1

k

k∑
j=1

∫ (∫
f(t)dtj

)2
dt1 · · · dtj−1dtj+1 · · · dtk∫
f(t)2dt

.

If we can show that, for k large enough, ρ(f) > 4m/k, then we deduce that lim infn→∞(pn+m−
pn) <∞.

As a warm-up, using calculus of variations, we show that the maximiser of ρ(f) is an
eigenvector of the linear operator

(Lkf)(t) :=
1

k

k∑
j=1

∫
f(t1, . . . , tj−1, u, tj+1, . . . , tk)du

and the corresponding eigenvalue is the maximum possible ratio ρ = ρ(f). Indeed, for a
function f supported on Tk, we have that

ρ(f) =
〈Lkf, f〉
〈f, f〉

,

where

〈g, h〉 :=

∫
Tk

g(t)h(t)dt.

If, now, f is a maximiser of the function ρ(·), then the function ε→ ρ(f+εg) has a maximum
at ε = 0 for any smooth g : Rk → R supported on Tk. So its derivative at ε = 0 must vanish,
which implies that

〈Lkf, g〉+ 〈Lkg, f〉 = 2ρ(f)〈f, g〉.

It is easy to see that Lk is a self-adjoint operator, so this implies that

〈Lkf, g〉 = ρ(f)〈f, g〉.
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Taking g(u1, . . . , uk) to be a smooth approximation to the function 1Bn(u1, . . . , uk)/Vol(Bn)
for a shrinking family of k-dimensional cubes (Bn)n≥1 centered at a fixed point t, we deduce
that Lkf = ρ(f) · f , as claimed.

Now, note that the symmetric function

f̃(t1, . . . , tk) :=
∑
σ∈Sk

f(tσ(1), . . . , tσ(k))

is also an eigenvalue of the operator Lk of eigenvalue ρ(f). Therefore, ρ(f̃) = ρ(f), which

means that f̃ is also a maximiser for the function ρ(·).
In view of the above discussion, we may restrict our attention to symmetric functions f ,

in which case

ρ(f) =

∫ (∫
f(t)dtk

)2
dt1 · · · dtk−1∫

f(t)2dt
.

Moreover, we may also drop the assumption that f is smooth, since the integral of every
measurable function can be approximated well-enough by integrals of smooth functions. So
our goal becomes to estimate

Mk := sup{ρ(f) : f : Rk → R, supp(f) ⊂ Tk, f symmetric and measurable}

An asymptotic estimation for Mk is given in Lemma 7.1.6 below. For explicit bounds on
Mk, the reader is invited to consult the paper by Maynard [May15a] as well [Pol].

Remark 7.1.5. The original weights of Goldston, Pintz and Yildirim essentially correspond
to taking the supremum over the restricted set of functions of the form f(t) = F (t1+· · ·+tk),
where F is supported on [0, 1]. Then we have that

ρ(f) = (k − 1) ·
∫ 1

0
uk−2(

∫ 1

u
F )2du∫ 1

0
uk−1F (u)2du

.

It is possible to show that ρ(f) ≤ 4/k in this special case [Sou], which means that the weights
of Goldston, Pintz and Yildirim cannot yield bounded gaps between primes. On the other
hand, choosing F (t) = (1− t)`, we find that

ρ(f) =
k − 1

(`+ 1)2
·
∫ 1

0
uk−2(1− u)2`+2du∫ 1

0
uk−1(1− u)2`du

=
k − 1

(`+ 1)2
·

(k − 2)!(2`+ 2)!

(k + 2`+ 1)!

(k − 1)!(2`!)

(k + 2`)!

=
2(2`+ 1)

(`+ 1)(k + 2`+ 1)
∼ 4

k

if ` = o(k) and `, k →∞. This means that if we could have inserted a slightly stronger input
to the computations in Lemma 7.1.2, which would have allowed to take D slightly larger,
we would have been able to prove Theorem 7.0.2 when m = 1 with these weights. This is
precisely what Zhang did. As we will see in the lemma below, using the higher dimensional
structure of f allow us to show that ρ(f) can get much bigger.
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Lemma 7.1.6. For large integers k, we have that

log k − 4 log log k +O(1)

k
≤Mk ≤

log k + log log k +O(1)

k

Proof. For the lower bound, we consider functions of the form

f(t1, . . . , tk) = 1Tk(t1, . . . , tk)
k∏
j=1

g(ktj),

where g : [0,+∞) → [0,+∞) is a function supported on the interval [0, T ] and such that∫∞
0
g(t)2dt = 1. Then ∫

f(t)2dt ≤
k∏
j=1

∫ ∞
0

g(ktj)
2dtj =

1

kk
,

so that

ρ(f) ≥ 1

k

∫
g(t1)2 · · · g(tk−1)2

(∫ k−t1−···−tk−1

0

g(tk)dtk

)2

dt1 · · · dtk−1

≥
(∫∞

0
g(t)dt

)2

k

∫
t1+···+tk−1≤k−T

g(t1)2 · · · g(tk−1)2dt1 · · · dtk−1

=

(∫∞
0
g(t)dt

)2

k
·Prob (X1 + · · ·+Xk−1 ≤ k − T ) ,

where X1, . . . , Xk−1 are independent random variables with density function g2. Let

µ = E[X1] =

∫
tg(t)2dt

and Yi = Xi − µ, 1 ≤ i ≤ k, so that Y1, . . . , Yk are mean-zero independent random variables
that are identically distributed. If we assume that (k − 1)µ < k − T , then Chebyshev’s
inequality implies that

Prob (X1 + · · ·+Xk−1 > k − T ) = Prob (Y1 + · · ·+ Yk−1 > k − T − (k − 1)µ)

≤ 1

(k − T − (k − 1)µ)2
Var[Y1 + · · ·+ Yk−1]

=
(k − 1) Var[Y1]

(k − T − (k − 1)µ)2
≤ kE[X2

1 ]

(k − T − (k − 1)µ)2

Since

E[X2
1 ] =

∫
t2g(t)2dt ≤ T

∫
tg(t)2dt = Tµ

by our assumption that g is supported in [0, T ], we deduce that

ρ(f) ≥
(∫∞

0
g(t)dt

)2

k
·
(

1− kTµ

(k − T − kµ)2

)



7.1. BOUNDED GAPS BETWEEN PRIMES 93

for any measurable function g ≥ 0 supported on [0, T ] with
∫
g(t)2dt = 1 and µ =

∫
tg(t)2dt ≤

1− T/k. We choose

g(t) = c ·
1[0,T ](t)

1 + At
.

(See Remark 7.1.7 for an explanation behind this choice of g.) In order to have that∫
g(t)2dt = 1, we take

c2 =

(∫ T

0

dt

(1 + At)2

)−1

=
A

1− 1/(1 + AT )
= A+

1

T
.

We then have that

µ =

∫ T

0

c2t

(1 + At)2
dt =

c2

A2

∫ AT

0

t

(1 + t)2
dt =

c2

A2

(
log(1 + AT )− 1 +

1

1 + AT

)
=

log(AT )

A

(
1 +O

(
1

log(AT )

))
.

This suggests choosing A ∼ log T . We take T = k/(log k)3 and A = log k, so that

µ =
log(k/(log k)2)

log k

(
1 +O

(
1

log k

))
= 1− 2 log log k

log k
+O

(
1

log k

)
≤ 1− T

k
− log log k

log k

for k large enough. In particular,

kTµ

(k − T − kµ)2
=

Tµ

k(1− T/k − µ)2
� 1

log k

and therefore

k · ρ(f) ≥
(∫ ∞

0

g(t)dt

)2

·
(

1− Tµ

k(1− T/k − µ)2

)
=
c2 log2(1 + AT )

A2

(
1 +O

(
1

log k

))
=

log2(k/(log k)2)

log k

(
1 +O

(
1

log k

))
= log k − 4 log log k +O(1),

as claimed.
Finally, we prove the upper bound on ρ(f). Let f be a symmetric measurable function

supported on Tk. Motivated by the choice for f above, we use the Cauchy-Schwarz inequality
in the following fashion:(∫

f(t1, . . . , tk)dtk

)2

=

(∫ 1

0

f(t1, . . . , tk)dtk

)2

≤
(∫

(1 + kAtk)f(t1, . . . , tk)
2dtk

)
·
(∫ 1

0

dtk
1 + kAtk

)
=

log(1 + kA)

kA

∫
(1 + kAtk)f(t1, . . . , tk)

2dtk.
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Therefore∫ (∫
f(t1, . . . , tk)dtk

)2

dt1 · · · dtk−1 ≤
log(1 + kA)

kA

∫
(1 + kAtk)f(t1, . . . , tk)

2dt.

By symmetry,∫ (∫
f(t1, . . . , tk)dtk

)2

dt1 · · · dtk−1 ≤
log(1 + kA)

kA

∫
(1 + kAtj)f(t1, . . . , tk)

2dt

for all j ∈ {1, . . . , k}. So, summing over j and using the fact that t1 + · · · + tk ≤ 1 in the
support of f , we find that

k · ρ(f) ≤ log(1 + kA)

kA
·
∫
Tk

(k + kA(t1 + · · ·+ tk))f(t1, . . . , tk)
2dt∫

f(t)2dt

≤ (1 + A) log(1 + kA)

A
.

for any A > 0. So, setting A = log k yields that

k · ρ(f) ≤ log k + log log k +O(1)

for all symmetric functions f supported on Tk. This completes the proof of the lemma.

Remark 7.1.7.

It is now easy to complete the proof of Theorem 7.0.2:

Proof of Theorem 7.0.2. Combining Lemmas 7.1.3 and 7.1.6, we find that there is a choice
of the parameters λd such that

S(N, z)

S(s)N(logD)k
≥ log k − 4 log log k +O(1)− 4m

4
+O

(
1√

logN

)
.

So, if k = bCm4e4mc for a large enough constant C, then S(N, z) > 0 for large enough N ,
which implies that lim infn→∞(pn+m − pn) ≤ sk − s1. We take sj to be the j-th prime that
is > k, which clearly form an admissible set. Then sk . k log k � e4mm5 by the Prime
Number Theorem, which completes the proof of Theorem 7.0.2.

7.2 Large gaps between primes

This section is devoted to the proof of Theorem 7.0.5. The construction of large gaps between
primes is based on the following lemma.

Lemma 7.2.1. Let N ≥ 1, and assume that there is z ≥ 3 and progressions ap (mod p),
p < z, such that if n ≤ N , then n ≡ ap (mod p), for some p ≤ y. Then there exists
x ∈ (P (z), 2P (z)] for which there are no primes in (x, x+N ].
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Proof. Consider x ∈ {P (z)+1, P (z)+2, . . . , 2P (z)} such that x ≡ −ap (mod p), for all p < z.
If n ∈ [1, N ] ∩ Z, then n ≡ ap (mod p), for some p < z, that is to say, there exists a prime
p < z that divides x+ n. In particular, x+ n cannot be a prime number, for all 1 ≤ n ≤ N .
This completes the proof of the lemma.

We are now in position to show Theorem 7.0.4.

Proof of Theorem 7.0.4. Let z ≥ 1, and N ∈ [z, z2]. To each prime p < z, we will assign a
congruence ap (mod p) such that {n ≤ N} ⊂

⋃
p<z ap (mod p), as in Lemma 7.2.1. Therefore,

in order to show Theorem 7.0.4, we need to be able to take

z ∼ e−γN(log logN)2

(logN)(log log logN)
,

so that

N ∼ eγz(log z)(log log log z)

(log log z)2
∼ eγ(logX)(log logX)(log log log logX)

(log log logX)2

with X = P (z).
We will choose ap (mod p) using different arguments, according to whether p ≤ N1/u,

N1/u < p ≤ N1−1/M or N1−1/M < p ≤ z, where u and M are defined by

uu = logN =⇒ u ∼ log logN

log log logN
(7.2.1)

and

N1/M =
logN

log logN
=⇒ M ∼ logN

log logN
.(7.2.2)

Intermediate primes: When p ∈ (N1/u, N1−1/M ], we choose ap = 0. Call S the
set of integers n ≤ N which do not belong to any of the congruence classes ap (mod p),
p ∈ (N1/u, N1−1/M ]. Clearly,

S = {n ≤ N : P+(n) ≤ N1/u} ∪ {n ≤ N : ∃p|n with p > N1−1/M},

and consequently

|S| ≤ Ψ(N,N1/u) +
∑

N1−1/M<p≤N

N

p
≤ NeO(u)

(u log u)u
+
N

M
+O

(
N

(logN)2

)

=
N

M
+O

(
N

(logN)e
√

log logN

)
∼ N log logN

logN

by Theorem 6.2.1, the Prime Number Theorem and our choice of u and M .

Small primes: For each p ≤ N1/u, we select the progressions ap (mod p) “greedily”: we
let a2 (mod 2) be such that

#{n ∈ S : n ≡ a2 (mod 2)} = max
j∈{1,2}

#{n ∈ S : n ≡ j (mod 2)}.
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Having chosen a2, we set S2 = {n ∈ S : n 6≡ a2 (mod p)}, and we select a3 (mod 3) such that

#{n ∈ S2 : n ≡ a3 (mod 3)} = max
j∈{1,2,3}

#{n ∈ S2 : n ≡ j (mod 3)},

and we set S3 = {n ∈ S2 : n 6≡ a3 (mod 3)}. Continuing this way, we find that there are
progressions ap (mod p), p ≤ N1/u, such that the set

S ′ := {n ∈ S : ∃p ≤ N1/u for which n 6≡ ap (mod p)}

has cardinality

|S ′| ≤ |S| ·
∏

p≤N1/u

(
1− 1

p

)
.
e−γuN log logN

(logN)2
∼ e−γ · N(log logN)2

(logN)2(log log logN)
.(7.2.3)

Large primes: Finally, to each n ∈ S ′, we assign a prime p ∈ (N1−1/M , z] and the
arithmetic progression ap (mod p) in which n lies modulo p. In order to be able to assign to
each n a different prime p ∈ (N1−1/M , z), we need to have that |S ′| ≤ π(z) − π(N1−1/M) ∼
z/ log z, since N1−1/M = o(z). In view of (7.2.3), this reduces to knowing that

z

log z
& e−γ · N(log logN)2

(logN)2(log log logN)
⇔ z & e−γ · N(log logN)2

(logN)(log log logN)
.

So, choosing

z = (e−γ + ε) · N(log logN)2

(logN)(log log logN)

for some positive ε = ε(N) tending to 0 sufficient slowly as N → ∞ completes the proof of
Theorem 7.0.4.

7.3 Even larger gaps between primes

The proof of Theorem 7.0.5 has the same general structure as the proof of Theorem 7.0.4,
but now we need to show that we can take

z =
1

C
· N(log logN)2

(logN)(log log logN)

in Lemma 7.2.1, where C is a fixed but arbitrarily large constant. Again, we choose ap = 0 for
the “intermediate” residue classes p ∈ (N1/u, N1−1/M ], where u and M are defined by (7.2.1)
and (7.2.2), respectively. Moreover, for p ≤ N1/u, we choose ap = 1. This has essentially the
same effect as choosing the ap’s greedily because if n is an integer with no prime factors in
(N1/u, N1−1/M ], then n − 1 looks like a ‘random’ integer. After these first steps have been
performed, we are left with the set of integers N1 ∪N2, where

N1 := {n ≤ N : P+(n) ≤ N1/u, P−(n− 1) > y}

and
N2 := {mq ≤ N : m ≤ N1/M , q > N1−1/M prime, P−(mq − 1) > N1/u}.
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(Here and for the rest of this section, the letter q will always denote a prime number, and
the same will be true later on for the letter `.) Recall that N1/M = (logN)/ log logN . We
further write N2 as a disjoint union N ′2 ∪N ′′2 , where

N ′2 := {mq ≤ N : N1/M/ log logN < m ≤ N1/M , q > N1−1/M , P−(mq − 1) > N1/u}.

As in the proof of Theorem 7.0.5, our choice of u implies that

|N1| �
N

e
√

log logN
= o

(
z

log z

)
.

Moreover, for an even integer m ≤ N1/M , set

Qm := {q ≤ N/m : P−(aq − 1) > N1/u},

so that S2 is the disjoint union of the sets {mq : q ∈ Qm}, m ≤ N1/M , with N ′2 consisting of
those with N1/M/ log logN < m ≤ N1/M . An upper bound sieve implies that

|Qm| �
uN

ϕ(m)(logN)2
∼ N log logN

ϕ(m)(logN)2 log log logN
,

so that

|N ′2| �
N log logN

(logN)2 log log logN

∑
N1/M/ log logN<m≤N1/M

1

ϕ(m)

� N log logN

(logN)2 log log logN
· log log logN = o

(
z

log z

)
.

So we may pick residue classes ap (mod p) for the primes p ∈ (N1−1/M , z/2] to cover N1∪N ′2.
We are then left with the challenge of covering S ′2 using residue classes ap (mod p) for the
primes p ∈ (z/2, z].

Note that if m ≤ N1/M/ log logN , then

N

m
−N1−1/M =

N(1−m/N1/M)

m
∼ N

m
.

So the Fundamental Lemma of Sieve Methods (cf. Lemma 3.3.1) and the Bombieri-Vinogradov
theorem imply that

|Qm| ∼ c · e−γ ·

∏
p|m
p>2

p− 1

p− 2

 · N/m

(logN1/u)(log(N/m))

∼ c · e−γ ·

∏
p|m
p>2

p− 1

p− 2

 · N

m(logN)2
· log logN

log log logN
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for even integers m ≤ N1/M/ log logN , where c is the twin prime constant, that is to say

c = 2
∏
p>2

(
1− 2

p

)(
1− 1

p

)2

.

In particular, writing m = 2n, we find that

|N ′2| ∼
ce−γ

2
· N log logN

(logN)2 log log logN

∑
n≤N1/M/(2 log logN)

1

n

∏
p|n
p>2

p− 1

p− 2

∼ e−γ

2
· N log logN

M(logN)(log log logN)

∼ e−γ

2
· N(log logN)2

(logN)2(log log logN)

∼ C

2eγ
· z

log z
,

where the sum over n is estimate using the convolution method (see, for example, the proof
of Theorem 0.2.1 and Exercise 0.2.2). Therefore, we need to choose the residue classes
ap (mod p) for p ∈ (z/2, z] in a way that, on average, each one will cover > C/eγ elements
of N ′2. In order to do so, we will use the Maynard-Tao sieve weights from Section 7.1 to
construct a probability measure on

∏
z/2<p≤z Z/pZ that will be biased on choices of residue

classes ap (mod p), z/2 < p ≤ z, that each cover many elements of N ′2 simultaneously. Here
is the key result:

Proposition 7.3.1. Fix η > 0 and let m ≤ N1/M/ log logN be even. If Im ⊂ [z/2, z] is
an interval whose length is between η|Qm| logN and 2η|Qm| logN , and Ck > k5, then there
there are choices of residue classes ap (mod p), p ∈ Im, whose union covers Qm.

Theorem 7.0.5 is now a direct corollary of Proposition 7.3.1 and of the above discus-
sion. As we mentioned before, our goal is to construct a probability measure on the space∏

p∈Im Z/pZ. Indeed, we set

sj = pπ(Ck)+j

∏
p≤Ck

p,

where Ck is a large auxiliary integer to be chosen later. For the convenience of notation, we
also set

s0 = 0,

and we assume that Ck > 2k, so that the polynomial

Qp,m(x) :=
k∏
j=0

[(x+ psj)(m(x+ psj)− 1)]

does not have a fixed prime divisor (recall that m is even here). We further decompose

Qp,m = Q
(1)
p,m ·Q(2)

p,m, where

Q(1)
p,m(x) :=

k∏
j=0

(m(x+ psj)− 1) and Q(2)
p,m(x) :=

k∏
j=0

(x+ psj).
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We also set
w = e

√
logN

and fix two upper bound sieves (µj(d))d≥1 such that µ1 has dimension k+1, µ2 has dimension
1, and

supp(µ1) ⊂ {d ≤ N1/100 : p|d =⇒ w < p ≤ N1/u},
supp(µ2) ⊂ {d ≤ N1/100 : p|d =⇒ N1/u < p ≤ N1/1000}.

Finally, we let λd be some sieve parameters supported on k-tuples d = (d1, . . . , dk) with
d1 · · · dk ≤ N1/100. Eventually, we will take λd exactly as in Section 7.0.2. Then we define
the probability density function

δp,m(a) :=
1

∆p,m

∑
n∈N/m

P−(Qp,m(n))>w
n≡a (mod p)

(1 ∗ µ1)(Q(1)
p,m(n)) · (1 ∗ µ2)(n)

 ∑
dj |n+psj
1≤j≤k

λd


2

,

with ∆p,m being the normalizing factor

∆p,m :=
∑

n≤N/m
P−(Qp,m(n))>w

(1 ∗ µ1)(Q(1)
p,m(n)) · (1 ∗ µ2)(n)

 ∑
dj |n+psj
1≤j≤k

λd


2

.

Then the probability measure on
∏

p∈Im Z/pZ is simply defined by

δm((ap)p∈Im) :=
∏
p∈Im

δp,m(a).

The choice of the parameters λd will be similar to the one leading to the proof of Theorem
7.0.2: we choose them so that many of the numbers n+psj are biased towards being primes,

while the weight 1Np,m(n)(1 ∗ µ2)(Q
(1)
p,m(n))(1 ∗ µ3)(n) guarantees that our sum is essentially

supported on integers n for which mn−1,m(n+ps1)−1, . . . ,mn(n+psk)−1 have no prime
factors ≤ N1/u and n has no primes ≤ N1/1000 (so, there is a positive probability it will be
prime). We then have the following crucial estimate.

Lemma 7.3.2. There are choices of λd such that the following holds: if m, η and Im are as
in the statement of Proposition 7.3.1, q ∈ Qm ∩ (skz,∞) and N is large enough in terms of
k and η, then there are absolute constants c, c′ > 0 such that∑

p∈Im

δp,m(q) ≥ cη log k − c′ηk
3 log k

Ck
· eGm(q),

where

Gm(q) :=
∑

1≤j,j′,j′′≤k
j,j′,j′′ distinct

∑
Ck<`≤(logN)2

`|(qm(sj−sj′ )−(sj−sj′′ ))

2k

`
.

(7.3.1)
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Before we turn to the proof of Lemma 7.3.2, let us see how it implies Proposition 7.3.1.

Deduction of Proposition 7.3.1 from Lemma 7.3.2. Let Q′m be the set of q ∈ Qm such that
Gm(q) ≤ 1 and q > skz. Markov’s inequality and the sieve imply that

|Qm \ Q′m| ≤
∑

q≤N/m
P−(mq−1)>N1/u

Gm(q) + #{q ≤ skz : P−(mq − 1) > N1/u}

�
∑

1≤j,j′,j′′≤k
j,j′,j′′ distinct

∑
Ck<`≤(logN)2

k

`
·#
{
q ≤ N

m
:
P−(mq − 1) > N1/u

qm(sj − sj′) ≡ (sj − sj′′) (mod `)

}

+
uskzm

ϕ(m)(logN)2

�
∑

1≤j,j′,j′′≤k
j,j′,j′′ distinct

∑
Ck<`≤(logN)2

k

`
·
(

1

`
+ 1`|(sj−sj′ )(sj−sj′′ )

)
· |Qm|+

mskz

N
· |Qm|

�
(
k4 logCk
Ck

+
sk

log log logN

)
· |Qm|

for all m ≤ N1/M/ log logN , where we used the fact that if a prime ` > Ck divides (sj −
sj′)(sj − sj′′), then it must be one of the O(logCk) divisors of the number (pπ(Ck)+j −
pπ(Ck)+j′)(pπ(Ck)+j − pπ(Ck)+j′′).

Now, let Jm be the left half of the interval Im and fix q ∈ Q′m. The probability that q is
not covered by a random selection of congruences (ap)p∈Jm ∈

∏
p∈Jm Z/pZ is

∏
p∈Jm

(1− δp,m(q)) ≤ exp

{
−
∑
p∈Jm

δp,m(q)

}
<
η

5

if N and k are large enough in terms of η, by Lemma 7.3.2. Hence, the expected cardinality
of the random set

Rm((ap)p∈Jm) :=

{
q ∈ Q′m : q /∈

⋃
p∈Jm

{ap (mod p)}

}
,

which is the uncovered part of Q′m, is < η|Qm|/4. This implies that there is a choice of
(ap)p∈Jm such that

|Rm((ap)p∈Jm)| < η|Qm|
4
≤ meas(Im)

4 logN
∼ #{p ∈ Im \ Jm}

2
,

where we used the Prime Number Theorem. Finally, we may use one congruence class per
prime in Im\Jm to cover the remaining set (Qm\Q′m)∪R((ap)p∈Jm), provided that k is large
enough in terms of η and that Ck > k5. This completes the proof of Proposition 7.3.1.

So, it remains to prove that we may choose the parameters λd in a way that will make
Lemma 7.3.2 true. For each p ∈ Im, we only look at the terms of the sum defining δp,m(q) with
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n = q−psj for some j ∈ {1, . . . , k}. Note that q−psj ≤ q ≤ N/m and q−psj ≥ q−zsk > 0,
so that the condition n ∈ [1, N/m] is always satisfied for these integers, and the same is true
for the condition n ≡ q (mod p). Therefore

∑
p∈Im

δp,m(q) ≥
k∑
j=1

∑
p∈Im

P−(Qp,m(q−psj))>w

(1 ∗ µ1)(Q
(1)
p,m(q − psj)) · (1 ∗ µ2)(q − psj)

∆p,m

 ∑
di|q+p(si−sj)

1≤i≤k

λd


2

.

(7.3.2)

So we see that we need an upper bound for ∆p,m and a lower bound for the resulting sums
over p ∈ Im. Anticipating the choice of the parameters λd, and in order to simplify the
statements of the results, we make the change of variables

ξa
a1 · · · ak

:=
∑

P−(dj)>w
dj≡0 (mod aj)

1≤j≤k

λd
d1 · · · dk

.
(7.3.3)

We further set

ξa :=
1P−(a1···ak)>w∏
`≤w(1− 1/`)k

· λ(a1 · · · ak) · f
(

log a1

log(N1/100)
, . . . ,

log ak
log(N1/100)

)
,

where λ is Liouville’s functions and f is a smooth function supported on the simplex

Tk = {t ∈ [0,+∞)k : t1 + · · ·+ tk ≤ 1}.

As in Section 7.1, we have the inversion formula (7.1.4), which also implies that

max
d
|λd| �k (logN)k · sup

t
|f(t)| �k,f (logN)k.

With this notation, we have the following two lemmas.

Lemma 7.3.3. Let m ≤ N and p ∈ (z/2, z]. If Ck > ek and N is large enough in terms of
k and f , then

∆p,m � eHp,m · |Qm| ·
(
eγ(logCk)

2u

100

)k
·
∫
f(t)2dt,

where the implied constant is absolute and

Hp,m =
∑

1≤i,j≤k
i 6=j

∑
Ck<`≤(logN)2

`|pm(si−sj)−1

2k + 2

`
.

Proof. All implicit constants might depend on k, f and A, unless otherwise specified. Write
P(s, t) for the set of integers all of whose prime factors are in the interval (s, t]. Opening
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the square and the two convolutions 1 ∗ µ2 and 1 ∗ µ3 in the definition of ∆p,m, we find that

∆p,m =
∑

dj ,ej |n+psj
(diei,djejP (w))=1

1≤i,j≤k, i 6=j

∑
f1∈P(w,N1/u)

f2∈P(N1/u,N1/1000)

µ1(f1)µ2(f2)λdλe

×#

 n ≤ N/m
P−(Qp,m(n)) > w

:

Q
(1)
p,m(n) ≡ 0 (mod f1),

n ≡ 0 (mod f2),
n+ psj ≡ 0 (mod [dj, ej]),
1 ≤ j ≤ k

 .

If (f1f2, d1e1 · · · dkek) = 1, then the Fundamental Lemma of Sieve Methods (cf. Lemma
3.3.1) applied with z = w and u =

√
logN/10 implies that the cardinality of the above set

of integers n is(
1 +O

(
e−
√

logN
))
· N
m
· ν

(1)
p,m(f1)

f1f2[d1, e1] · · · [dk, ek]
∏
`≤w

(
1− νp,m(`)

`

)
.

On the other hand, if (f1f2, d1e1 · · · dkek) > 1, then we note that there must exist a prime

r > w dividing f1f2 and d1e1 · · · dkek. In particular, r|Q(1)
p,m(n) and r|n + psi for some

i ∈ {1, . . . , k}, which implies that r|Q(1)
p,m(−psi). Therefore, in this case the cardinality of

the above set of integers n is

�
k∑
i=1

∑
r|(f1f2,d1e1···dkek)

r|Q(1)
p,m(−psi), r>w

N

m
· (k + 1)ω(f1)

[f1f2, [d1, e1] · · · [dk, ek]]

Combining these observations, we deduce that

∆p,m =
N

m
·
∏
`≤w

(
1− νp,m(`)

`

)
·

∑
dj ,ej |n+psj

(diei,djejP (w))=1
1≤i,j≤k, i 6=j

∑
f1∈P(w,N1/u)

f2∈P(N1/u,N1/1000)
(f1f2,d1e1···dkek)=1

ν
(1)
p,m(f1)µ1(f1)µ2(f2)λdλe
f1f2[d1, e1] · · · [dk, ek]

+O

(
N

m(logN)10
+ (logN)O(1) · E

)
,

where

E :=
k∑
i=1

∑
r>w

r|Q(1)
p,m(−psi)

∑
dj ,ej

(diei,djejP (w))=1
1≤i,j≤k, i 6=j

d1···dk,e1···ek≤N1/100

∑
f1∈P(w,N1/u)

f2∈P(N1/u,N)

f1,f2≤N1/100

r|(f1f2,d1e1···dkek)

N

m
· (k + 1)ω(f1)

[f1f2, [d1, e1] · · · [dk, ek]]

�
∑
r>w

r|Q(1)
p,m(−psi)

N(logN)O(1)

rm
� N(logN)O(1)

wm
,
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since Q
(1)
p,m(−psi) has � logN prime factors in total. Next, we remove again the condition

(f1f2, d1e1 · · · dkek) = 1 from our new formula for ∆p,m. Since any common prime factor of
f1f2 and d1e1 · · · dkek must be > w by the fact that (d1e1 · · · dkek, P (w)) = 1, this produces
an error term of size � N(logN)O(1)/w, which is admissible. In conclusion,

∆p,m =
N

m
· S1 · S2 ·

∏
`≤w

(
1− νp,m(`)

`

)
·

∑
dj ,ej

(diei,djejP (w))=1
1≤i,j≤k, i 6=j

λdλe
[d1, e1] · · · [dk, ek]

+O

(
N

m(logN)10

)
,

where

S1 :=
∑

f1∈P(w,N1/u)

µ1(f1)ν
(1)
p,m(f1)

f1

and S2 :=
∑

f1∈P(N1/u,N1/1000)

µ2(f2)

f2

.

As in the proof of Lemma 7.1.3, we have that

∑
dj ,ej

(diei,djejP (w))=1
1≤i,j≤k, i 6=j

λdλe
[d1, e1] · · · [dk, ek]

=
∑

P−(a1···ak)>w

y2
a

a1 · · · ak
+O

(
(logN)O(1)

w

)

� (log(N1/100))k
∏
`≤w

(
1− 1

`

)−k ∫
f(t)2dt

�
(
eγ(logN)(logw)

100

)k ∫
f(t)2dt,

by Mertens’s formula. The implied constants in the second and third line are absolute,
provided that N is large enough in terms of k. Moreover, the Fundamental Lemma of Sieve
Methods (cf. Lemma 3.3.3) implies that1

S1 �
∏

w<`≤N1/u

(
1− ν

(1)
p,m(`)

`

)
�
(

logw

log(N1/u)

)k+2

since ν
(1)
p,m(`) = k + 2, unless ` is one of the O(logN) prime divisors of the discriminant of

the polynomial Qp,m, and

S2 �
∏

N1/u<`≤N1/1000

(
1− 1

`

)
� 1

u

Both constants are absolute here, as long as N is large enough in terms of k. Finally, note
that the definition of sj implies that νp,m(`) = 1 + 1`-m for primes ` ≤ Ck. Moreover,

1Strictly speaking, Lemma 3.3.3 cannot be used directly to estimate S1 and S2. It is easy to deduce the
claimed estimates from it though. For example, we may take µ1 := µ̃ · 1P−(n)>w, where µ̃1 is an upper

bound sieve supported on the set {d ≤ N1/100 : d|P (N1/u)} and apply Lemma 3.3.3 with the multiplicative
function g(n) = 1P−(n)>w/n. The sum S2 is handle in an analogous way.
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if Ck < ` ≤ w, then νp,m(`) = 2k + 2, unless ` divides one of the numbers (si − sj) or
mp(si − sj)− 1, for some 0 ≤ i, j ≤ k with i 6= j. Since∑

0≤i,j≤k
i 6=j

∑
Ck<`≤w
`|si−sj

k

`
� k3 logCk

Ck
� 1

and ∑
0≤i,j≤k
i 6=j

∑
(logN)2<`≤w
`|mp(si−sj)−1

k

`
� k3 logN

(logN)2
� 1

for large enough N , we deduce that∏
`≤w

(
1− νp,m(`)

`

)
=
∏
`≤Ck

(
1−

1 + 1`-m
`

)
·
∏

Ck<`≤w

(
1− 1

`

)2k+2

·
∏

Ck<`≤w

1− νp,m(`)/`

(1− 1/`)2k+2

� m

ϕ(m)
· 1

(logCk)2
·
(

logCk
logw

)2k+2

· eHp,m ,

where the constant is absolute by our assumption that Ck > ek. Since

|Qm| �
uN

ϕ(m)(logN)2
,

the lemma follows.

Lemma 7.3.4. If m, η and Im are as in the statement of Proposition 7.3.1, q ∈ Qm ∩
(skz,∞), j0 ∈ {1, . . . , k} and N is large enough in terms of k, A and η, then

∑
p∈Im

P−(Qp,m(q−psj0 ))>w

(1 ∗ µ1)(Q(1)
p,m(q − psj0)) · (1 ∗ µ2)(q − psj0)

 ∑
di|q+p(si−sj0 )

1≤i≤k

λd


2

� η · |Qm| ·
(
eγ(logCk)

2u

100

)k
·
∫ (∫

f(t)dtj0

)2

dt1 · · · dtj0−1dtj0+1
· · · dtk,

where the implied constant is absolute. Moreover, if `0 ≤ (logN)2 is a prime and b0 ∈
{1, . . . , `0 − 1}, then

∑
p∈Im

p≡b0 (mod `0)
P−(Qp,m(q−psj0 ))>w

(1 ∗ µ1)(Q(1)
p,m(q − psj0)) · (1 ∗ µ2)(q − psj0)

 ∑
di|q+p(si−sj0 )

1≤i≤k

λd


2

� eGm(q) · η|Qm|
`0

·
(
eγ(logCk)

2u

100

)k
·
∫ (∫

f(t)dtj0

)2

dt1 · · · dtj0−1dtj0+1
· · · dtk,

where the implied constant is again absolute and Gm(q) is defined by (7.3.1).
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Proof. The proof is a combination of the proofs of Lemmas 7.1.2 and 7.3.3. We outline the
argument when j0 = k, the other cases being similar. All implicit constants might depend
on k, f and A, unless otherwise specified. Also, recall the notation P(s, t) from the proof of
Lemma 7.3.3.

Note that since q is a prime > z ≥ N1/100, it cannot have any divisors ≤ N1/100. In
particular, we must have that dk = 1. Similarly, since q ∈ Qm and q > N1/u, we know
that P−(q(qm − 1)) > N1/u. Therefore the condition P−(Qp,m(q − psk)) > w reduces to

P−(Q̃p,m(q − psk)) > w, where

Q̃p,m(x) :=
k−1∏
i=0

[(x+ psi)(m(x+ psi)− 1)].

In the same fashion, we have that (1 ∗ µ1)(Q
(1)
p,m(q − psj)) = (1 ∗ µ1)(Q̃

(1)
p,m(q − psj)) by our

assumption that µ1 is supported on the set P(w,N1/u), where

Q̃(1)
p,m(x) :=

k−1∏
i=0

(m(x+ psi)− 1).

So, if we set

S =
∑
p∈Im

p≡b0 (mod `0)
P−(Qp,m(q−psk))>w

(1 ∗ µ1)(Q(1)
p,m(q − psk)) · (1 ∗ µ2)(q − psk)

 ∑
di|q+p(si−sk)

1≤i<k

λd,1


2

,

where we now allow `0 to be either 1 or a prime number ≤ (logN)2 and b0 is coprime to `0,
we find that

S =
∑

di,ei|n+psj
(diei,djejP (w))=1

1≤i,j<k, i 6=j

∑
f1∈P(w,N1/u)

f2∈P(N1/u,N1/1000)

µ1(f1)µ2(f2)λd,1λe,1

×#


p ∈ Im
p ≡ b0 (mod `0)

P−(Q̃p,m(q − psk)) > w

:

Q̃
(1)
p,m(q − psk) ≡ 0 (mod f1),

q − psk ≡ 0 (mod f2),
q + p(si − sk) ≡ 0 (mod [dj, ej]),
1 ≤ j < k

 .

Note that if Q̃b0,m(q − b0sk) ≡ 0 (mod `0), then S = 0. So we may assume that Q̃b0,m(q −
b0sk) 6≡ 0 (mod `0). As in the proof of Lemma 7.3.3, we note that if r is a common prime
factor of f1f2 and of d1e1 · · · dkek, then it must also divide

D =
k∏
j=1

k∏
i=0

((sk − sj)(mq − 1)− q(sk − si)).
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So the contribution to S of integers f1, f2 that are not coprime to d1e1 · · · dkek is

�
∑
r|D
r>w

∑
di,ei|n+psj

(diei,djejP (w))=1
1≤i,j<k, i 6=j

∑
f1∈P(w,N1/u)

f2∈P(N1/u,N1/1000)
r|(f1f2,d1e1···dkek)

meas(Im) · (k − 1)ω(f1)

[f1f2, d1e1 · · · dkek]
� N(logN)O(1)

mw
.

Next, if (f1f2, d1e1 · · · dkek) = 1, then we estimate the cardinality of primes p ∈ Im that
appears in the above expression for S using the Fundamental Lemma of Sieve Methods
(cf. 3.3.3) as in the proof of Lemma 7.1.2, controlling the total error using the Bombieri-
Vinogradov theorem. The resulting estimate is

S =
#{p ∈ Im}
ϕ(`0)

·
∏
`≤w
` 6=`0

(
1− ν̃(`)

`

) ∑
di,ei,f1,f2

(diei,djejf1f2P (w))=1
1≤i,j<k, i 6=j

ν̃(1)(f1)µ1(f1)µ2(f2)λd,1λe,1
ϕ(f1)ϕ(f2)ϕ([d1, e1]) · · ·ϕ([dk−1, ek−1])

+O

(
N

m(logN)A

)
,

where

ν̃(d) := #{n (mod d) : Q̃n,m(q − nsk) ≡ 0 (mod d)}

and

ν̃(1)(d) := #{n (mod d) : Q̃(1)
n,m(q − nsk) ≡ 0 (mod d)}.

Next, we remove again the condition that (f1f2, d1e1 · · · dkek) = 1 as in Lemma 7.3.3 at the
cost of a total error that is� N(logN)O(1)/(mw), which is of admissible size. This separates
the variables f1, f2, f3 from each other and from d1, e1, . . . , dkek, and we deduce that

S =
#{p ∈ Im}
ϕ(`0)

· S1 · S2 ·
∏
`≤w
6̀=`0

(
1− ν̃(`)

`− 1

)
·

∑
di,ei

(diei,djejP (w))=1
1≤i,j<k, i 6=j

λd,1λe,1
ϕ([d1, e1]) · · ·ϕ([dk−1, ek−1])

+O

(
N

m(logN)A

)
,

where

S1 :=
∑
f1

ν̃(1)(f1)µ1(f1)

ϕ(f1)
, and S2 :=

∑
f2

µ2(f2)

ϕ(f2)
.



7.3. EVEN LARGER GAPS BETWEEN PRIMES 107

The sum over d and over e is estimated as in Section 7.1: we have that∑
di,ei

(diei,djejP (w))=1
1≤i,j<k, i 6=j

λd,1λe,1
ϕ([d1, e1]) · · ·ϕ([dk−1, ek−1])

=
∑

P−(a1···ak−1)>w

1

a1 · · · ak−1

 ∑
P−(b)>w

µ(b)ξa,b
b

2

+O

(
(logN)O(1)

w

)

� (log(N1/100))k+1
∏
`≤w

(
1− 1

`

)−k−1 ∫ (∫
f(t)dtk

)2

dt1 · · · dtk−1

� ekγ(logN)k+1(logw)k+1

100k

∫ (∫
f(t)dtk

)2

dt1 · · · dtk−1

by Mertens’s formula, provided thatN is large enough in terms of k. The implied constants in
the third and fourth line are absolute. Moreover, the Fundamental Lemma of Sieve Methods
(cf. Lemma 3.3.3) implies that

S1 �
∏

w<`≤N1/u

(
1− ν̃(1)(`)

`− 1

)
�
(

logw

log(N1/u)

)k+1

,

where the constant is uniform in k if N is large enough, since ν̃(1)(`) = k + 1 unless ` is one

of the O(logN) divisors of the discriminant of the polynomial n→ Q̃n,m(n− psk), and that

S2 �
∏

N1/u<`≤N1/1000

(
1− 1

`− 1

)
� 1

u
.

Moreover, note that ν̃(`) = 0 if ` ≤ Ck since q(qm−1) have no divisors ≤ N1/u. This implies
that∏
Ck<`≤w
`-`0

(
1− ν̃(`)

`− 1

)
=

∏
Ck<`≤w
`-`0

(
1− ν̃(`)

`− 1

)
�

∏
Ck<`≤w

(
1− 1

`

)2k

·
∏

Ck<`≤w

1− ν̃(`)/(`− 1)

(1− 1/`)2k

�
(

logCk
logw

)2k

·
∏

Ck<`≤w
ν̃(`)<2k

1− ν̃(`)/`

1− 2k/`

since we have assumed that Ck > ek � k2. Therefore

1�
∏

Ck<`≤w
ν̃(`)<2k

1− ν̃(`)/(`− 1)

(1− 1/`)2k
� exp


∑

Ck<`≤w
ν̃(`)<2k

2k

`

� exp


∑

Ck<`≤(logN)2

ν̃(`)<2k

2k

`

 .

Note that

Q̃n,m(q − nsk) =
k−1∏
j=0

[(q + n(sj − sk))(mq − 1 +mn(sj − sk))].
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Therefore, if ν̃(`) < 2k and Ck < ` ≤ w, then ` must be a divisor of

∏
1≤j,j′≤k−1

j 6=j′

[(sj − sj′)(qm(sj − sj′)− (sj − sk))].

Finally, note that if `|sj − sj′ with ` > Ck, then we must have that ` is one of the O(logCk)
divisors of the number pπ(Ck)+j − pπ(Ck)+j′ . Since k3(logCk)/Ck � 1 by our assumption that
Ck > ek, the lemma follows.

Proof of Lemma 7.3.2. Since we are looking for a lower bound, we may restrict the summa-
tion in

∑
p∈Im δp,m(q) to those primes p ∈ Im with Hp,m ≤ 1, where Hp,m is defined in the

statement of Lemma 7.3.3. Then relation (7.3.2) and Lemma 7.3.3 imply that

∑
p∈Im

δp,m(q)�
k∑
j=1

∑
p∈Im
Hp,m≤1

P−(Qp,m(q−psj))>w

(1 ∗ µ1)(Q
(1)
p,m(q − psj)) · (1 ∗ µ2)(q − psj)

|Qm|
(
eγ(logCk)2u

100

)k ∫
f(t)2dt

 ∑
di|q+p(si−sj)

1≤i≤k

λd


2

=
∆1 −∆2

|Qm|
(
eγ(logCk)2u

100

)k ∫
f(t)2dt

,

where the implicit constant is absolute,

∆1 :=
k∑
j=1

∑
p∈Im

P−(Qp,m(q−psj))>w

(1 ∗ µ1)(Q(1)
p,m(q − psj)) · (1 ∗ µ2)(q − psj)

 ∑
di|q+p(si−sj)

1≤i≤k

λd


2

and

∆2 :=
k∑
j=1

∑
p∈Im
Hp,m>1

P−(Qp,m(q−psj))>w

(1 ∗ µ1)(Q(1)
p,m(q − psj)) · (1 ∗ µ2)(q − psj)

 ∑
di|q+p(si−sj)

1≤i≤k

λd


2

.

The lower bound in Lemma 7.3.4 implies that

∆1 � η|Qm|
(
eγ(logCk)

2u

100

)k k∑
j=1

∫ (∫
f(t)dtj

)2

dt1 · · · dj−1dtj+1 · · · dtk,
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whereas Markov’s inequality and the upper bound in Lemma 7.3.4 imply that

∆2 ≤
k∑
j=1

∑
p∈Im
Hp,m>1

P−(Qp,m(q−psj))>w

Hp,m · (1 ∗ µ1)(Q(1)
p,m(q − psj)) · (1 ∗ µ2)(q − psj)

 ∑
di|q+p(si−sj)

1≤i≤k

λd


2

=
k∑
j=1

∑
0≤i,i′≤k
i 6=i′

∑
Ck<`≤(logN)2

`-m(si−si′ )

2k + 2

`

×
∑
p∈Im

pm(si−si′ )≡1 (mod `)

P−(Qp,m(q−psj))>w

(1 ∗ µ1)(Q(1)
p,m(q − psj)) · (1 ∗ µ2)(q − psj)

 ∑
di|q+p(si−sj)

1≤i≤k

λd


2

� k3eGm(q)

Ck
η|Qm|

(
eγ(logCk)

2u

100

)k k∑
j=1

∫ (∫
f(t)dtj

)2

dt1 · · · dj−1dtj+1 · · · dtk.

Putting together the above estimates and choosing f such that the quantity

k∑
j=1

∫
(f(t)dtj) dt1 · · · dj−1dtj+1 · · · dtk∫

f(t)2dt

is � log k, which is possible by Lemma 7.1.6, completes the proof of Lemma 7.3.2.

7.4 Cramér’s model

We conclude this chapter with a heuristic discussion of the local distribution of primes and,
in particular, of the gaps between them. In order to do so, we introduce the so-called Cramér
model for the prime numbers and its refinement due to Granville. This model turns out to
be very effective in making accurate predictions about the distribution of primes (local and
global), unlike the Kubilius model which, as we saw in Section 2.2, is not very successful in
this task.

First of all, let us recall a quantitative form of the Prime Number Theorem:

π(x) = li(x) +OA

(
x

(log x)A

)
=

∫ x

2

dt

log t
+OA

(
x

(log x)A

)
(x ≥ 2).

This estimate can be also interpreted by saying that the density of primes around x is
about 1/ log x (this is was what Gauss had conjectured in fact). So an integer n should be
prime with probability about 1/ log n. Of course, the primes are deterministic objects, so this
statement is obviously false. However, modelling them this way leads to surprisingly accurate
estimates. More precisely, we define a sequence of Bernoulli random variables Y2, Y3, . . . such
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that 
Prob(Yn = 1) =

1

log n
,

Prob(Yn = 0) = 1− 1

log n
.

(7.4.1)

Furthermore, we assume that the variables Yn are independent from each other, since á priori
there should not be any correlation between two integers being prime. This is the so-called
Cramér model of the prime numbers, which we can use to make predictions about various
questions regarding the primes.

For example, the random variable

Π(x) =
∑

2≤n≤x

Yn,

is a model for π(x). Now, note that

E[Π(x)] =
∑

2≤n≤x

E[Yn] =
∑

2≤n≤x

1

log n
= li(x) +O(1)

and

Var[Π(x)] =
∑

2≤n≤x

Var[Yn] =
∑

2≤n≤x

(
1

log n
− 1

log n2

)
= li(x) +O(1) ∼ x

log x
.

So, the Law of the Iterated Logarithm predicts that

|Π(x)− li(x)| ≤ (1 + ε)
√

2 Var[Π(x)] log log(Var[Π(x)]) ∼ (1 + ε)

√
2x log log x

log x

almost surely, for every fixed ε > 0. In particular, with probability 1, the Riemann Hypoth-
esis is true for our model Π(x).

Next, we use Cramér’s model to study the distribution of the difference of two consecutive
primes. Let p1, p2, . . . denote the sequence of prime numbers in increasing order. Then,
according to Cramér’s model, a model for

#{pm ≤ x : pm+1 = pm + k}

is given by

E

[∑
n≤x

YnYn+k

k−1∏
j=1

(1− Yn+j)

]
=
∑
n≤x

1

log n
log(n+ k)

k−1∏
j=1

(
1− 1

log(n+ j)

)

∼ x

(log x)2

(
1− 1

log x

)k−1

∼ x

(log x)2
e−

k
log x ,
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uniformly in 1 ≤ k ≤ log x, as x→∞. So, for fixed α < β, we expect that

#{pm ≤ x : α <
pm+1 − pm

logm
≤ β} ≈ #{pm ≤ x : α log x < pm+1 − pm ≤ β log x}

∼ x

(log x)2

∑
α log x<k≤β log x

e−
k

log x

∼ x

log x
(e−α − e−β) ∼ π(x)

∫ β

α

e−tdt,

as x→∞. This leads to the prediction that the sequence (pm+1 − pm)/ logm should follow
an exponential distribution.

Now, let us use this model to study another problem: counting twin primes. A model
for the number of twin primes (p, p+ 2) with p ≤ x then is Π2(x) =

∑
2≤n≤x YnYn+2. Since

E[Π2(x)] =
∑

2≤n≤x

E[YnYn+2] =
∑

2≤n≤x

E[Yn] · E[Yn+2] =
∑

2≤n≤x

1

(log n) log(n+ 2)
∼ x

log2 x
,

as x → ∞. So this leads to the prediction that the numbers of twin primes (p, p + 2) with
p ≤ x is asymptotic to x/ log2 x. However, it is widely believed that

#{n ≤ x : (n, n+ 2) are twin primes} ∼ x

log2 x
· 2
∏
p>2

(
1− 1

p

)−2(
1− 2

p

)
.(7.4.2)

The reason why Cramér’s model failed to give the right asymptotic formula for the
number of twin primes is the assumption that the variables Yn are independent from each
other. Indeed, two consecutive integers larger than 2 can never be prime simultaneously. So
there is a strong correlation between Yn and Yn+1. Similarly, if n > 3, then n, n + 2 and
n+ 4 cannot be simultaneously prime, since at least one of them is divisible by 3. So there
the variables Yn, Yn+2 and Yn+4 are correlated. Similar constraints arise for all small primes
and we need to adjust our model appropriately if we want to make accurate predictions.

The way we modify Cramér’s is by ensuring that n and n+2 are in the right classes modulo
all small primes. This is done by applying what is called a preliminary sieve and restricting
n and n+ 2 to a priori have no fixed prime factors. This increases the probability that the
randomly chosen n and n+2 are both primes. More precise, we setN = {n ∈ N : P−(n) > z}
and we consider a new sequence of independent Bernoulli random variables {Zn}n∈N such
that 

Prob(Zn = 1) =
1

log n

∏
p≤z

(
1− 1

p

)−1

,

Prob(Zn = 0) = 1− 1

log n

∏
p≤z

(
1− 1

p

)−1

.

(7.4.3)

(Strictly speaking, we have to assume that n is large enough in terms of z, otherwise the
above probabilities might not be numbers in [0, 1]. This is a minor technical assumption.)
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Then our model for the number of twin primes up to x is the function

Π̃2(x) =
∑
n≤x

n,n+2∈N

ZnZn+2.

We have that

E[Π̃2(x)] =
∑
n≤x

n,n+2∈N

E[ZnZn+2] =
∑
n≤x

n,n+2∈N

E[Zn] · E[Zn+2]

=
∑
n≤x

n,n+2∈N

1

(log n) log(n+ 2)

∏
p≤z

(
1− 1

p

)−2

∼ x

log2 x

∏
p≤z

(
1− 1

p

)−2(
1− ν(p)

p

)
,

where

ν(p) := #{m (mod d) : m(m+ 2) ≡ 0 (mod p)} =

{
1 if p = 2,

2 otherwise,

by the Fundamental Lemma of Sieve Methods (cf. Lemma 3.3.1). So we arrive to the refined
prediction that

#{n ≤ x : (n, n+ 2) are twin primes} ∼ x

log2 x
· 2

∏
2<p≤z

(
1− 1

p

)−2(
1− 2

p

)
.

Letting z →∞, we recover the conjectured estimate (7.4.2).

Exercise 7.4.1. Let N ≥ 1. Use the Cramér-Granville model to predict an asymptotic
formula for the number of pairs of primes (p, q) such that p+ q = 2N .

Finally, it is possible to use Cramér’s model (or its refinement) to make predictions about
how big the difference of two consecutive primes can be. To do this, we appeal to the Borel-
Cantelli lemma. Before we state this lemma, recall that, for a sequence of sets {An}∞n=1, all
of which are subsets of some ambient space Ω, we have that

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
m=n

Am = {ω ∈ Ω : ω ∈ Am for infinitely many m}

and

lim inf
n→∞

An =
∞⋃
n=1

∞⋂
m=n

Am = {ω ∈ Ω : ω ∈ Am for all but finitely many m}.

Then we have the following result:

Lemma 7.4.2 (Borel-Cantelli). Let (Ω,F ,Prob) denote a probability space and consider
{An}∞n=1, a sequence of events in the σ-algebra F .
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(1) If
∑∞

n=1 P (An) <∞, then Prob(lim supn→∞An) = 0.

(2) If the events An are independent and
∑∞

n=1 P (An) =∞, then Prob(lim supn→∞An) =
1.

Now, let Ω be the sample space where the random variables Yn, defined by (7.4.1), live.
Given an increasing function h : N→ [1,∞), we set

An(h) = {ω ∈ Ω : Yn(ω) = 1, Yn+j(ω) = 0 (1 ≤ j ≤ h(n))} (n ≥ 2),

If we can show that

Prob

(
lim sup
n→∞

An(h)

)
= 0,(7.4.4)

then it readily follows that

Prob
(

lim inf
n→∞

An(h)c
)

= 1,

that is to say, almost surely all but finitely many of the events An(h)c occur simultaneously.
This leads to the prediction that, for all but finitely many n, we have that pn+1− pn ≤ h(n).

Assume that h(n) ≤ n/ log n for all n, since we already know by the Prime Number
Theorem that pn+1 ≤ pn +O(pn/ log2 pn). Then

Prob(An(h)) =
1

log n

bh(n)c∏
j=1

(
1− 1

log(n+ j)

)
� 1

log n

(
1− 1

log n

)h(n)

≤ 1

log n
e−h(n)/ logn,

for all n ≥ 2. If h(n) = (1 + ε) log2 n, then

Prob(An(h))� 1

n1+ε log n
.

Summing this inequality over all n ≥ 2, we find that

∞∑
n=2

Prob(An(h)) <∞.

So applying Lemma 7.4.2, we deduce that (7.4.4) holds for this choice of h. Consequently,
the discussion of the previous paragraph leads to the prediction that, for every fixed ε > 0,
we have that pn+1 − pn ≤ (1 + ε) log2 n for n ≥ n0(ε).

Using a similar but slightly more involved argument, we arrive to the prediction that
pn+1 − pn > (1− ε) log2 n for infinitely many n. Let

mn =

⌊
(1− ε)

n∑
k=2

log2 k

⌋
= (1− ε)(n log2 n− n log n+ n) +O(1),

by Stirling’s formula and partial summation, and consider the events

Bn(ε) = {ω ∈ Ω : Ymn(ω) = 1, Ymn+j(ω) = 0 (1 ≤ j ≤ (1− ε) log n− 1)} (n ≥ 10).
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As before, we have that

Prob(Bn(h)) =
∏

(Amn(h)) � 1

logmn

(
1− 1

logmn

)(1−ε) log2 n

� e(1−ε) log2 n/ logmn

log n
�ε

1

n1−ε/2 ,

and consequently, ∑
n≥10

Prob(Bn(h)) =∞.

Since the events Bn(h) are independent, by our assumption that the random variables Yn
are independent, Lemma 7.4.2 implies that

Prob

(
lim sup
n→∞

Bn(h)

)
= 1,

that is to say, infinitely many of the events Bn(h) occur simultaneously almost surely. This
leads to the prediction that infinitely many of the intervals [mn,mn+1) contain precisely one
prime number, or equivalently, that pn+1 − pn > (1 − ε) log2 n for infinitely many n, as we
mentioned above.

Putting together the above predictions, Cramér was led to conjecture that

lim sup
n→∞

pn+1 − pn
(log n)2

= 1.

Later, building on the work of Maier [Mai85], Granville [Gr95] gave evidence that this
conjecture might not be true. More precisely, using the refinement of Cramér’s model that
we gave above, he conjectured that

lim sup
n→∞

pn+1 − pn
(log n)2

≥ 2e−γ = 1.12291896713 · · · > 1.(7.4.5)

In any case, we expect that pn+1 − pn � (log n)2, for all n ≥ 2.

Exercise 7.4.3. Use the refinement of Cramér’s model given by (7.4.3) to give evidence in
support of (7.4.5).



Chapter 8

Irregularities in the distribution of
primes

So far we were concentrating our efforts into proving that the primes behave in the ‘expected
way’. As it is discussed in Section 7.4, we expect the maximal gap between two consecutive
primes pn and pn+1 to be of the order of (log pn)2. So, if y ≥ (log x)2+ε, then it seems natural
to conjecture that the interval (x, x+ y] contains the ‘right’ amount of prime numbers, that
is to say,

π(x+ y)− π(x) ∼ y

log x
,(8.0.1)

as x→∞. Indeed, Selberg showed a partial (conditional) result towards this direction:

Theorem 8.0.4 (Selberg). Assume that the Riemann Hypothesis is true. For every fixed
ε > 0 and δ > 0, we have that

lim
x→∞

1

X
meas

({
X ≤ x ≤ 2X :

∣∣∣∣π(x+ y)− π(x)− y

log x

∣∣∣∣ ≤ εy

log x
, y = (log x)2+δ

})
= 1.

However, in 1985 Maier arrived to the groundbreaking conclusion that (8.0.1) fails in-
finitely often when y is a power of log x:

Theorem 8.0.5 (Maier). For every fixed α > 2, we have that

lim inf
x→∞

π(x+ (log x)α)− π(x)

(log x)α−1
< 1 < lim sup

x→∞

π(x+ (log x)α)− π(x)

(log x)α−1
.(8.0.2)

Remark 8.0.6. Note that if relation (8.0.2) holds for some fixed α0, then it also holds for
all α ∈ (0, α0] by the pigeonhole principle.

We will show Theorem 8.0.5 in Section 8.2. Before this, in Section 8.1, we will introduce
and study the so-called Buchstab function, which is central in the proof of Theorem 8.0.5.

115
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8.1 Buchstab’s function

Buchstab’s function arises naturally in the following basic sieve problem: given x and z, let

Φ(x, z) = #{n ≤ x : P−(n) > z}.

We know that

Φ(x, z) = 1 + π(x)− π(z) =

∫ x

z

dt

log t
+O

( x

ec
√

log x

)
=

x

log x
+O

(
x

(log x)2
+

z

log z

)
(
√
x ≤ z ≤ x).

(8.1.1)

On the other hand, Theorem 3.3.2 and Mertens’ estimate imply that

Φ(x, z) =
e−γx

log z

{
1 +O

(
1

log x
+ e−s log s+O(s)

)}
(1 ≤ z ≤ x, x = zs).(8.1.2)

We want to understand the transition from (8.1.1) to (8.1.2) as z becomes smaller compared
to x. As in Chapter 6, in order to achieve this, we use a variation of Buchstab’s identity:

Φ(x, z) = Φ(x, z′)−
∑

z<p≤z′
Φ(x/p, p) (1 ≤ z ≤ z′).(8.1.3)

When x1/3 ≤ z < x1/2, applying formula (8.1.3) with z′ =
√
x yields

Φ(x, z) = Φ(x,
√
x) +

∑
z<p≤

√
x

Φ(x/p, p)

=
x

log x
+O

(
x

(log x)2

)
+

∑
z<p≤

√
x

(
x/p

log(x/p)
+O

(
x/p

log2(x/p)
+

z

log z

))

=
x

log x
+ x

∫ √x
z

1

u log(x/u)

du

log u
+O

(
x

(log x)2

)
=

x

log x
+ x

∫ √x
z

1
log x
log u
− 1

du

u(log u)2
+O

(
x

(log x)2

)

=
x

log x
+

x

log x

∫ log x
log z

2

dt

t− 1
+O

(
x

(log x)2

)
.

(8.1.4)

Motivated by relations (8.1.1), (8.1.2), (8.1.3) and (8.1.4), we define Buchstab’s function
w : [0,+∞)→ R by letting w(u) = 0 for u ≤ 1, w(u) = 1/u for 1 < u ≤ 2, and then defining
w inductively for u > 2 via the relation

w(u) =
1

u
+

1

u

∫ u−1

1

w(t)dt.(8.1.5)

This define a continuous and differentiable function for u > 2. The following theorem gives
the expected relation between Φ(x, z) and ω(u).
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Theorem 8.1.1. For 1 ≤ z ≤
√
x with x = zu, we have that

Φ(x, z) =
xω(u)

log z
+O

(
x

(log z)2

)
.

Before we prove Theorem 8.1.1, we discuss briefly the properties of Buchstab’s function.
By induction and relation (8.1.5), we immediately find that

1

u
≤ w(u) ≤ 1 (u > 1).(8.1.6)

Moreover, mutiplying (8.1.5) by u and differentiating the resulting identity, we find that

w′(u)u = −w(u) + w(u− 1) = −
∫ u

u−1

w(t)dt (u > 2).(8.1.7)

Taking absolute values, we deduce that

|w′(u)| ≤ 1

u

∫ u

u−1

|w′(t)|dt (u > 2).

So, arguing as in the proof of Theorem 6.1.2, we deduce that

w′(u)� e−u log(u log u)+O(u) (u > 2).(8.1.8)

Proof of Theorem 8.1.1. First, we show that Buchstab’s function satisfies an identity similar
to (8.1.3). Indeed, the prime number theorem implies that∑

p≤x

1

p log p
= c1 +

∫ x

2

dt

t(log t)2
+R(x) with R(x)� e−c2

√
log x,

for some appropriate constants c1 ∈ R and c2 > 0. Together with relations (8.1.5), (8.1.6)
and (8.1.8), this implies that for z′ = x1/u′ ∈ [z,

√
x],

∑
z<p≤z′

w

(
log x

log p
− 1

)
1

p log p
=

∫ z′

z

w

(
log x

log t
− 1

)
dt

t(log t)2
+ R(t)w

(
log x

log t
− 1

)∣∣∣∣z′
t=z

+

∫ z′

z

R(t)w′
(

log x

log t
− 1

)
log x

t(log t)2
dt

=
1

log x

∫ u

u′
w(s− 1)ds+O(e−c2

√
log z)

=
w(u)u− w(u′)u′

log x
+O(e−c2

√
log z) =

w(u)

log z
− w(u′)

log z′
+O(e−c2

√
log z).

Together with (8.1.3), the above relation implies that

R(x, z) = R(x, z′) +
∑

z<p≤z′
R(x/p, p) +O

( x

ec2
√

log z

)
,(8.1.9)
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where

R(y, t) := Φ(y, t)− y

log t
w

(
log y

log t

)
.

We will prove Theorem 8.1.1 using the above formula and an inductive argument, much like
the proof of Theorem 6.1.1. It suffices to prove that there is some absolute constant C such
that

|R(x, z)| ≤ Cx

(log z)2
(x = zu ≥ z2 ≥ 4).(8.1.10)

Clearly, we may assume that z is large enough. Also, if u ∈ [2, 3), then note that (8.1.10)
follows by (8.1.4). Next, assume that relation (8.1.10) holds for all u ∈ [2, U), for some
U ≥ 3, and consider u ∈ [U,U + 1). Note that (log(x/p))/(log p) ≤ u− 1 < U , for all p > z,
so the induction hypothesis and (8.1.9) with z′ =

√
x imply that

|R(x, z)| ≤ |R(x,
√
x)|+

∑
z<p≤

√
x

Cx

p(log p)2
+O

( x

ec2
√

log z

)
≤ Cx

∑
p>z

1

p(log p)2
+O

(
x

(log x)2
+

x

ec2
√

log z

)
,

where we used (8.1.1). So the prime number theorem yields that

|R(x, z)| ≤ Cx

(∫ ∞
z

dt

t(log t)3
+O(e−c3

√
log z)

)
+O

(
x

(log x)2
+

x

ec2
√

log z

)
=

Cx

2(log z)2
+O

(
x

(log x)2
+

(C + 1)x

emin{c2,c3}
√

log z

)
.

Choosing C large enough implies that (8.1.10) when u ∈ [U,U + 1) too, thus completing the
inductive step. This concludes the proof of (8.1.10), and hence of Theorem 8.1.1.

Theorem 8.1.2. We have that

w(u) = e−γ +O
(
e−u log(u log u)+O(u)

)
(u ≥ 2).

Moreover, the difference w(u)− eγ changes signs infinitely often as u→∞.

Proof. By relation (8.1.8), we find that the integral
∫∞

2
w′(t)dt converges absolutely. So

w(u) = w(2) +

∫ u

2

w′(t)dt = w(2) +

∫ ∞
2

w′(t)dt+O
(
e−u log(u log u)+O(u)

)
(u > 2).

(8.1.11)

In particular, the limit limu→∞w(u) exists. On the other hand, Theorem 3.3.2 and Mertens’
estimate imply that

Φ(x, z) =
e−γx

log z

{
1 +O

(
1

log z
+ e−u log u+O(u)

)}
.
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Comparing the above formula with Theorem 8.1.1, we deduce that limu→∞w(u) = e−γ.
Together with relation (8.1.11), this implies that

w(u) = e−γ +O
(
e−u log(u log u)+O(u)

)
(u ≥ 2),(8.1.12)

and the first part of the theorem follows. To see the second part, write E(u) = w(u)− e−γ
and note that relation (8.1.7) can be rewritten as

(tE(t))′ = E(t− 1) (t > 2).

Integrating over t ∈ [u,∞), we find that

uE(u) = −
∫ ∞
u

E(t− 1)dt = −
∫ ∞
u−1

E(t)dt (u ≥ 2).

Now, if u+ = sup{u ≥ 2 : E(t) > 0 for all t ≥ u}, then we must have that u+ =∞; otherwise
we have that

0 < (u+ + 1)E(u+ + 1) = −
∫ ∞
u+

E(t)dt < 0,

a contradiction. Similarly, if u− = sup{u ≥ 2 : E(t) < 0 for all t ≥ u}, then we have
that u− = ∞. These two facts together imply that E changes sign infinitely often, thus
completing the proof of the theorem.

8.2 Maier’s matrix method

In this section, we prove Theorem 8.0.5. The key idea is that primes cannot be simultaneously
very well distributed in arithmetic progressions and in short intervals. In order to capture
this, we consider the matrix

M(m,h, q) =


1 + (m+ 1)q 2 + (m+ 1)q · · · h+ (m+ 1)q
1 + (m+ 2)q 2 + (m+ 2)q · · · h+ (m+ 2)q

...
...

...
1 + 2mq 2 + 2mq · · · h+ 2mq

 ,(8.2.1)

where m, h and q are fixed positive integers. Note that the i-th row of this matrix contains
all integers in the short interval (1+(m+ i)q, h+(m+ i)q], whereas its j-th column contains
all integers in the arithmetic progression {n ≡ j (mod q) : j + mq < n ≤ j + 2mq}. Now,
if we know that primes are well distributed in the arithmetic progressions {n ≡ j (mod q) :
j +mq < n ≤ j + 2mq}, 1 ≤ j ≤ h, (j, q) = 1, then we expect that

#{p prime : p appears in M(m, q, h)} ∼
∑

1≤j≤h
(j,q)=1

1

ϕ(q)

∫ j+2mq

j+mq

dt

log t

∼ mq

ϕ(q) log(mq)
#{1 ≤ j ≤ h : (j, q) = 1}.



120 CHAPTER 8. IRREGULARITIES IN THE DISTRIBUTION OF PRIMES

On the other hand, if we know that each short interval (1+(m+i)q, h+(m+i)q], 1 ≤ i ≤ m,
contains the expected proportion of primes, then

#{p prime : p appears in M(m, q, h)} ∼
m∑
i=1

h

log(mq)
=

mh

log(mq)
.

Therefore, if we can take q and h such that

#{1 ≤ j ≤ h : (j, q) = 1}
hq/ϕ(q)

≥ c > 1(8.2.2)

as q, h→∞, then we obtain a contradiction. Similarly, if we can take q and h such that

#{1 ≤ j ≤ h : (j, q) = 1}
hq/ϕ(q)

≤ c′ < 1(8.2.3)

as q, h → ∞, then we obtain a contradiction. Such a modulus q will be provided by the
second part of Theorem 8.1.2. Indeed, if we take q =

∏
p≤z p for some appropriate z ≥ 1,

then Theorems 8.1.1 and 8.1.2, together with Mertens’ estimate
∏

p≤z(1− 1/p) ∼ e−γ/ log z,
imply that (8.2.2) and (8.2.3) both hold for infinitely many values of h. In order to be able
to deduce Theorem 8.0.5, we need to be able to show that the primes are well-distributed
in the arithmetic progressions {n ≡ j (mod q) : j +mq < n ≤ j + 2mq}, for 1 ≤ j ≤ h with
(j, q) = 1. The following result ensures that this is indeed the case for infinitely many This
is ensured by the

Lemma 8.2.1. There exists a constant c > 0 such that there are infinitely many values of
z ≥ 1 for which the modulus q =

∏
p≤z satisfies the estimate

π(x; q, a) =
li(x)

ϕ(q)

{
1 +O

(
x−c/ log q + e−c

√
log x
)}

(x ≥ q, (a, q) = 1).

Proof. Without loss of generality, we may assume that x ≥ qL for a sufficiently large L;
otherwise, the result follows from the Brun-Titchmarsch inequality. For any T ≥ 1, we have
that

ψ(x; q, a) :=
∑
n≤x

n≡a (mod q)

Λ(n) =
x

ϕ(q)
+

1

ϕ(q)

∑
χ (mod q)

∑
ρ:L(ρ,χ)=0
|Im(ρ)|≤T

xρ

ρ
+O

(
x log2(qx)

T

)
.

(8.2.4)

(This is a standard consequence of Perron’s formula and the residue theorem in complex
analysis; see, for example, [Da, Chapters 17, 19].) Since the zeroes of L(s, χ) are sym-
metric about the line Re(s) = 1/2, a consequence of the functional equation for Dirichlet
L-functions, relation (8.2.4) can be rewritten as

ψ(x; q, a) =
x

ϕ(q)
+

1

ϕ(q)

∑
χ (mod q)

∑
ρ:L(ρ,χ)=0

Re(ρ)≥1/2, |Im(ρ)|≤T

(
xρ

ρ
+
x1−ρ

1− ρ

)
+O

(
qx log2(qx)

T

)
.

(8.2.5)
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Now, Linnik (see, for example, [IK, Chapter 18]) showed that there exists an absolute positive
constant c1 such that∑

χ (mod q)

∑
ρ:L(ρ,χ)=0

Re(ρ)≥σ, |Im(ρ)|≤T

1� (qT )c1(1−σ) (σ ≥ 1/2, T ≥ 1).
(8.2.6)

We will show that this estimate, together with an assumption about a certain zero-free region
for all L(s, χ) implies the conclusion of the lemma. More precisely, we assume that there
exists some constant c2 > 0 such that

L(σ + it, χ) 6= 0 for all σ ≥ 1− c2

log(q + |t|)
and all χ (mod q),(8.2.7)

that is to say, that there is no Landau-Siegel zero for any Dirichlet character (mod q). Then
choosing T = q2e

√
log x in relation (8.2.4), and then applying (8.2.6) and partial summation

implies that

ψ(x; q, a) =
x

ϕ(q)
+O

(
xe−c3

√
log x + x1−c3/ log q

ϕ(q)

)
(x ≥ qL),(8.2.8)

for some positive constant c3 that depends at most on c2, provided that L is large in terms
of the absolute constant c1. Partial summation the implies that the conclusion of the lemma
holds, provided that q satisfies (8.2.7). So it remains to show that (8.2.7) holds for infinitely
many moduli q of the form q =

∏
p≤z p.

We know (see, for example, [Da, p. 93]) that for each modulus q ≥ 2 there is at most one
possible counterexample to (8.2.7), that is to say, there exists a constant c4 > 0 which has
the following property: there is at most one real non-principal Dirichlet character (mod q)
which has at most one zero ρ = β+ iγ with β ≥ 1− c4/ log(q+ |γ|). Moreover, if such a zero
ρ exists, then it is necessarily real and simple, that is to say ρ = β ≥ 1− c4/ log q.

Now, consider q =
∏

p≤z p for which an exceptional zero as above exists, say at β. By
Betrand’s postulate, there exists some q′ =

∏
p≤z′ p ≥ q such that

1− c4

log q′
≤ β ≤ 1− c4

2 log q′
.

By the discussion in the previous paragraph, the modulus q′ satisfies relation (8.2.7) with c2 =
c4/2. (The character χ induces a character χ′ (mod q′), which has a zero β ≥ 1− c4/ log(q′).
Therefore, this is the unique character failing (8.2.7) when c2 = c4.) In any case, we see that
we can construct arbitrarily large moduli of the form q =

∏
p≤z p for which relation (8.2.7)

is true. As we saw above, such moduli satisfy the conclusion of the lemma, which completes
the proof.

Lemma 8.2.1 together with the argument we gave in the beginning of the section yield
Theorem 8.0.5. We give the complete argument below.

Proof of Theorem 8.0.5. By Remark 8.0.6, it suffices to show the theorem for an unbounded
sequence of arbitrarily large values of λ. Fix for the moment some λ ≥ 3. Let q =

∏
p≤z p be
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a sufficiently large modulus which satisfies the conclusion of Lemma 8.2.1. Set m = qL ≥ eL
2
,

where L is a large integer, and let h =
⌊
(log q)λ

⌋
∈ [z2, q]. Consider the matrix M(m,h, q),

defined by (8.2.1), and let N be the number of its elements that are prime numbers. Then

N =
∑

1≤j≤h
(j,q)=1

∑
j+mq<p≤j+2mq
p≡j (mod q)

1 =
∑

1≤j≤h
(j,q)=1

{
1

ϕ(q)

∫ j+2mq

j+mq

dt

log t
+O

(
mq

ecLϕ(q) log(mq)

)}

=
∑

1≤j≤h
(j,q)=1

mq

ϕ(q)

{
1 +O

(
1

L log q
+

1

ecL

)}
= Φ(h, z)

mq

ϕ(q)

{
1 +O

(
1

log(mq)
+

1

ecL

)}
.

Theorem 8.1.1 and the fact that w(t) � 1, for all t ≥ 2, imply that

Φ(h, z) =
xw(λ′)

log z

{
1 +O

(
1

log z

)}
,

where λ′ = log h
log z
∼ λ, as z →∞. Since we also have that

ϕ(q)

q
=
∏
p≤z

(
1− 1

p

)
=

e−γ

log z

{
1 +O

(
1

log z

)}
,

by Mertens’ estimate, we deduce that

N = w(λ′)eγ · mh

log(mq)

{
1 +O

(
1

log z
+

1

ecL

)}
.

On the other hand, we have that

N =
2m∑

k=m+1

(π(kq + h)− π(kq))

So, there exists at least one k ∈ {m+ 1, . . . , 2m} such that

π(kq + h)− π(kq) ≥ w(λ′)eγ · h

log(mq)

{
1−O

(
1

log z
+

1

ecL

)}
= w(λ′)eγ · h

log(kq)

{
1−O

(
1

log z
+

1

ecL

)}
,

(8.2.9)

and at least one k′ ∈ {m+ 1, . . . , 2m} such that

π(k′q + h)− π(k′q) ≤ w(λ′)eγ · h

log(kq)

{
1 +O

(
1

log z
+

1

ecL

)}
.(8.2.10)

So if we choose λ ≥ 3 with w(λ) > e−γ, by Theorem 8.1.2, and L = L(λ) and z = z(λ) big
enough, then we find that there exists at least one k ∈ {m+ 1, . . . , 2m} such that

π(kq + h)− π(kq) ≥ 1 + w(λ)eγ

2
· h

log(kq)
>

h

log(kq)
.
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Therefore

lim sup
x→∞

π(x+ (log x)λ)− π(x)

(log x)λ−1
≥ 1 + w(λ)eγ

2
> 1,

which proves the first part of the theorem. The second part follows similarly, by using
relation (8.2.10) in place of (8.2.9).
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Chapter 9

The large sieve

In this chapter we will see a quite different approach to sieving, the so-called large sieve.
There are three versions of it, each suited for different applications. Originally, the large
sieve arose as an inequality involving trigonometric polynomials, which explored the idea of
quasi-orthogonality. However, for number-theoretic purposes, the power of the large sieve is
revealed when stated in its two other forms: the arithmetic version and the character sum
version. As we will see, the former allows us to obtain quite good estimates in sieve problems
of very large dimension, whereas using the later we can control the average distribution of
interesting sets of integers in arithmetic progressions.

We begin with the arithmetic formulation of the large sieve, Theorem 9.1.1, which will
allow for a direct comparison with the results of the previous chapters. Then we give the more
classical trigonometric version of the large sieve, Theorem 9.2.1, and show how to deduce
Theorem 9.1.1 from it. Finally, we conclude with the character sum version in Section 9.3.
Arguably the most important application of this last version is the Bombieri-Vinogradov
theorem, whose proof we give in the subsequent chapter.

9.1 Arithmetic version and applications

Theorem 9.1.1 (Large sieve - arithmetic version). Let N ⊂ {M + 1, . . . ,M + N}. Let
{Rp : p < z} be a collection of sets such that Rp ⊂ Z/pZ for each prime p < z. Then

#{n ∈ N : n /∈ Rp (mod p), for all p < z} ≤ (πN + z2)

/(∑
m<z

µ2(m)h(m)

)
,

where

h(m) =
∏
p|m

|Rp|/p
1− |Rp|/p

=
∏
p|m

|Rp|
p− |Rp|

.

Remark 9.1.2. Let F (x) ∈ Z[x] and N ⊂ {M + 1, . . . ,M +N}. If we set

A = {F (n) : n ∈ N}

and
Rp = {m ∈ Z/pZ : F (m) ≡ 0 (mod p)},

125
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then

#{n ∈ N : n /∈ Rp (mod p), ∀p < z} = #{n ∈ N : p - F (n), ∀p < z} = S(A, z).

So we see that Theorem 9.1.1 can be translated to a sieve estimate in important cases
such as the above one. Moreover, it provides an upper bound on S(A, z) that is - up to
the value of the constant C - as strong as Theorem 5.1.1. Finally, Theorem 9.1.1 has the
significant advantage that it does not depend on the assumption of hypotheses such as (A1),
(A3) and (R′), and it is particularly strong when the sifting dimension κ becomes unbounded.

The proof of Theorem 9.1.1 will be given in Section 9.2. We give below a couple of
applications of it.

Given a prime p, we define

n(p) = min

{
a ∈ N :

(
a

p

)
6= 1

}
.

It is easy to see that n(p) is a prime number < p. The least quadratic non-residue problem
asks for estimates on n(p). It is believed that n(p) �ε (log p)1+ε, whereas the Generalized
Riemann Hypothesis would imply that n(p) �ε (log p)2+ε. The pointwise bound known is
n(p) �ε p

1/(4
√
e)+ε, for every fixed ε > 0. Using Theorem 9.1.1, we will show that for most

primes p it is possible to do much better than this bound:

Theorem 9.1.3. Fix ε > 0. Then we have that

#{p ≤ N : n(p) > N ε} �ε 1.

Proof. Let N = {m ≤ N2 : P+(m) ≤ N ε}, and note that

|N | �ε N
2(9.1.1)

by Theorem 6.1.1. For each prime p < N , let

Rp =

{{
k ∈ Z/pZ :

(
k
p

)
= −1

}
if n(p) > N ε,

∅ otherwise,

so that

|Rp| =

{
p−1

2
if n(p) > N ε and p ≥ 3,

0 otherwise,

Note that if p is such that n(p) > N ε, then ( q
p
) = 1 for all primes q ≤ N ε, and consequently

(m
p

) = 1 for all m ∈ N. This implies that

N ⊂ {m ≤ N2 : m /∈ Rp (mod p), for all p < N}(9.1.2)

The idea of the proof is that if Rp 6= 0 for too many primes p < N , then N will be forced to
have abnormally small size, thus contradicting (9.1.1). Indeed, relations (9.1.1) and (9.1.2)
imply that

N2 �ε #{n ≤ N2 : n /∈ Rp (mod p), for all p < N}.
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So, if we let

S =
∑
m<N

µ2(m)
∏
p|m

|Rp|
p− |Rp|

,

then Theorem 9.1.1 yields the inequality

S �ε 1.(9.1.3)

On the other hand, we have that

S ≥
∑
p<N

|Rp|
p− |Rp|

≥
∑

3≤p<N
n(p)>Nε

p− 1

p+ 1
� #{3 ≤ p < N : n(p) > N ε}.

Combining the above relation with (9.1.3) completes the proof of the theorem.

Corollary 9.1.4. Fix ε > 0. Then we have that

#{p ≤ N : n(p) > pε} �ε log logN.

Proof. Exercise.

Exercise 9.1.5. Fix ε > 0. Show that, for every prime p, we have that

n(p)�ε p
1/(2
√
e)+ε.

Hint: Use Theorem A.3.1 and the fact that (m
p

) = 1 for all m with P+(m) ≤ n(p).

Finally, we give a last application to demonstrate the power of the large sieve when the
sifting dimension grows. As a motivation, note that the set of squares occupies exactly
(p + 1)/2 congruence classes modulo each odd prime p, or equivalently, it avoids (p − 1)/2
congruence classes modulo each odd prime p. Moreover, there are about

√
N squares of size

≤ N . Theorem 9.1.1 implies that this is in fact best possible:

Proposition 9.1.6. Let Rp ⊂ Z/pZ with |Rp| = p/2 +O(1). Then

#{n ≤ N : n /∈ Rp (mod p), for all p <
√
N} �

√
N.

Proof. We may assume that Rp ≤ p − 1 for all p <
√
N ; else, Rp0 = Z/p0Z for some prime

p0, and there are no integers n /∈ Rp0 (mod p0). Now, in view of Theorem 9.1.1, it suffices to
show that ∑

m<
√
N

µ2(m)
∏
p|m

|Rp|
p− |Rp|

�
√
N.(9.1.4)

Since |Rp| = p/2 + O(1), we find that |Rp|/(p − |Rp|) = 1 + O(1/p), and (9.1.4) follows by
an application of the convolution method (see Section 0.2).
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9.2 Quasi-orthogonality and the trigonometric version

of the large sieve

Fix N ≥ 1, and consider the space of sequences of complex numbers a = {an}Nn=1 equipped
with the inner product

〈a, b〉 =
N∑
n=1

anbn.

Given x ∈ R, set e(x) = e2πix, and let ‖x‖ denote the distance of x from its nearest integer,
that is to say, ‖x‖ = min{|x− n| : n ∈ Z}. Note that

N∑
n=1

e(αn)e(βn) =
e(α− β)− e((N + 1)(α− β))

1− e(α− β)
� 1

‖α− β‖
.

So we see that if ‖α− β‖ is large, then the sequences {e(nα)}Nn=1 and {e(βn)}Nn=1 are nearly
orthogonal.

Motivated by the above observation, we call a set of real numbers {α1, . . . , αR} δ-spaced
if ‖αr − αs‖ ≥ δ for all 1 ≤ r < s ≤ R. Given such a set, the sequences {e(nαr)}Nn=1,
1 ≤ r ≤ R, appropriately scaled, form a quasi-orthonormal set. Indeed, we have that

N∑
n=1

e(nαr)e(nαs) =

{
N if r = s,

O(1/δ) if r 6= s.

Then standard facts about Hilbert spaces lead us to the prediction that, given any sequence
of complex numbers {an}Nn=1, we should have that

R∑
r=1

∣∣∣∣∣
N∑
n=1

ane(nαr)

∣∣∣∣∣
2

≤M
N∑
n=1

|an|2,

for some relatively small M = M(δ,N) that is close to N . The following theorem confirms
this guess.

Theorem 9.2.1 (Large sieve - trigonometric version). Let {an}Nn=1 be a sequence of complex
numbers. Consider a set of δ-spaced real numbers {α1, . . . , αR}. Then

R∑
r=1

∣∣∣∣∣
N∑
n=1

ane(nαr)

∣∣∣∣∣
2

≤ (πN + 1/δ)
N∑
n=1

|an|2.(9.2.1)

Remark 9.2.2. Selberg [Se91] and, independently, Montgomery and Vaughan [MV] showed
that the above theorem holds with N + 1/δ− 1 in place of πN + 1/δ, which is best possible
in this generality, as the two examples below indicate:

• If R is fixed and an = e(−nα1) for all n, then the left hand side of (9.2.1) is ≥ N2,
whereas the right hand side of (9.2.1), which is asymptotically equal to (N + 1/δ −
1)
∑

n=1 |an|2. In fact, if R = 1 and δ = 1, then we have that

R∑
r=1

∣∣∣∣∣
N∑
n=1

ane(nαr)

∣∣∣∣∣
2

= N2 = (N + 1/δ − 1)
N∑
n=1

|an|2.
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• The constant 1/δ is necessary: if N is fixed, αj = j/R for 1 ≤ j ≤ R, and δ = 1/R,
then the left hand side of (9.2) multiplied by δ is a Riemann sum for the integral

∫ 1

0

∣∣∣∣∣
N∑
n=1

ane(nα)

∣∣∣∣∣
2

dα =
∑

1≤n,m≤N

anam

∫ 1

0

e((n−m)α)dα =
N∑
n=1

|an|2.

So we have that

δ
R∑
r=1

∣∣∣∣∣
N∑
n=1

ane(nαr)

∣∣∣∣∣
2

∼
∫ 1

0

∣∣∣∣∣
N∑
n=1

ane(nα)

∣∣∣∣∣
2

dα =
N∑
n=1

|an|2

as δ → 0+. In fact, if N = 1 and a1 = 1, then

R∑
r=1

∣∣∣∣∣
N∑
n=1

ane(nαr)

∣∣∣∣∣
2

= R = (N + 1/δ − 1)
N∑
n=1

|an|2.

There are several approaches to proving Theorem 9.2.1, or other closely related results.
We follow an argument due to Gallagher, which is based on the following key lemma.

Lemma 9.2.3. Let f : [c− δ/2, c+ δ/2]→ C be continuously differentiable function. Then

|f(c)| ≤ 1

δ

∫ c+δ/2

c−δ/2
|f(t)|dt+

1

2

∫ c+δ/2

c−δ/2
|f ′(t)|dt.

Proof. We may assume that c = 0 and δ = 2; if not, we replace f(t) by g(t) = f(c + tδ/2).

The idea of the proof is that f(0) should be well approximated by the mean value 1
2

∫ 1

−1
f(t)dt,

and the quality of this approximation should be controlled by how large f ′ changes. Indeed,
note that∫ 1

−1

f(t)dt− 2f(0) =

∫ 1

−1

(f(t)− f(0))dt = f(1)− f(0) + f(−1)− f(0)−
∫ 1

−1

tf ′(t)dt

=

∫ 1

0

f ′(t)dt−
∫ 0

−1

f ′(t)−
∫ 1

−1

tf ′(t)dt

=

∫ 1

−1

sgn(t)(1− |t|)f ′(t)dt,

where sgn(t) denotes the sign of t. Consequently,

2f(0) =

∫ 1

−1

f(t)dt−
∫ 1

−1

sgn(t)(1− |t|)f ′(t)dt.

Taking absolute values and using the triangle inequality then completes the proof of the
theorem.
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Proof of Theorem 9.2.1. For each r ∈ {1, . . . , R}, we apply Lemma 9.2.3 with c = αr and

f(t) =

(
N∑
n=1

ane((n−N/2)t)

)2

to get that

|f(αr)| ≤
1

δ

∫ αr+δ/2

αr−δ/2
|f(t)|dt+

1

2

∫ αr+δ/2

αr−δ/2
|f ′(t)|dt.(9.2.2)

Since the points {α1, . . . , αr} are δ-spaced, the intervals (αr−δ/2, αr+δ/2) are disjoint (mod 1).
But f is 1-periodic, so summing relation (9.2.2) yields that

R∑
r=1

|f(αr)| ≤
1

δ

∫ 1

0

|f(t)|dt+
1

2

∫ 1

0

|f ′(t)|dt.

In order to complete the proof of the theorem, note that∫ 1

0

|f(t)|dt =

∫ 1

0

∣∣∣∣∣∣
∑

−N/2<n≤N/2

ane((n−N/2)t)

∣∣∣∣∣∣
2

=
∑

1≤n,m≤N

anam

∫ 1

0

e((n−m)t)dt

=
∑

−N/2<n≤N/2

|an|2

and, similarly,∫ 1

0

|f ′(t)|dt = 2

∫ 1

0

∣∣∣∣∣
(

N∑
n=1

ane((n−N/2)t)

)(
N∑
n=1

2π

(
n− N

2

)
ane((n−N/2)t)

)∣∣∣∣∣ dt
≤ 4π

∫ 1

0

∣∣∣∣∣
N∑
n=1

ane(nt)

∣∣∣∣∣
2
1/2∫ 1

0

∣∣∣∣∣
N∑
n=1

(
n− N

2

)
ane(nt)

∣∣∣∣∣
2
1/2

= 4π

(
N∑
n=1

|an|2
)(

N∑
n=1

(
n− N

2

)2

|an|2
)1/2

≤ 2πN
N∑
n=1

|an|2.

Combining the above estimates completes the proof of the theorem.

In order to put Theorem 9.2.1 into use for arithmetic applications, we shall pick as our
δ-spaced points the Farey fractions

FQ =

{
a

q
: 1 ≤ a ≤ q ≤ Q, (a, q) = 1

}
,

for some parameter Q ≥ 1. Note that if a/q and a′/q′ are distinct elements of FQ written
in lowest terms, then ∣∣∣∣aq − a′

q′
+ n

∣∣∣∣ =
|aq′ − aq′ + nqq′|

qq′
≥ 1

qq′
≥ 1

Q2
,

for every integer n, that is to say, the set FQ is (1/Q2)-spaced. So we obtain the following
corollary:
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Corollary 9.2.4. Let Q ≥ 1, and {an}Nn=1 be a sequence of complex numbers. Then we have
that ∑

q≤Q

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣
N∑
n=1

ane(na/q)

∣∣∣∣∣
2

≤ (πN +Q2)
N∑
n=1

|an|2.

We now show how Corollary 9.2.4 can be used to obtain control on the average of the
error ∑

1≤n≤N
n≡a (mod p)

an −
1

p

N∑
n=1

an,

over prime moduli p.

Corollary 9.2.5. Let Q ≥ 1, and {an}Nn=1 be a sequence of complex numbers. Then we have
that

∑
p≤Q

p

p∑
b=1

∣∣∣∣∣∣∣∣
∑

1≤n≤N
n≡b (mod p)

an −
1

p

N∑
n=1

an

∣∣∣∣∣∣∣∣
2

≤ (πN +Q2)
N∑
n=1

|an|2.

Proof. For brevity, we write S(α) =
∑N

n=1 ane(nα). Note that

∑
1≤n≤N

n≡b (mod p)

an −
1

p

N∑
n=1

an =
1

p

N∑
n=1

an

p∑
j=1

e(j(n− b)/p)− 1

p

N∑
n=1

an

=
1

p

N∑
n=1

an

p−1∑
j=1

e(j(n− b)/p) =
1

p

p−1∑
j=1

e(−jb/p)S(j/p).

Consequently,

p∑
b=1

∣∣∣∣∣∣∣∣
∑

1≤n≤N
n≡b (mod p)

an −
1

p

N∑
n=1

an

∣∣∣∣∣∣∣∣
2

=
1

p2

p∑
b=1

p−1∑
j1=1

p−1∑
j2=1

e((j2 − j1)b/p)S(j1/p)S(j2/p)

=
1

p2

p−1∑
j1=1

p−1∑
j2=1

S(j1/p)S(j2/p)

p∑
b=1

e((j2 − j1)b/p)

=
1

p

p−1∑
j=1

|S(j/p)|2.

(9.2.3)

Multiplying the above identity by p, summing the resulting formula over p ≤ Q, and applying
Corollary 9.2.4 completes the proof of the corollary.
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Remark 9.2.6. Note that if we divide the inequality in the statement of Corollary 9.2.5 by
N2, we find that

∑
p≤Q

1

p

p∑
b=1

∣∣∣∣∣∣∣∣
1

N/p

∑
1≤n≤N

n≡b (mod p)

an −
1

N

N∑
n=1

an

∣∣∣∣∣∣∣∣
2

≤
(

1

N
+
Q2

N2

) N∑
n=1

|an|2.

If |an| ≤ 1 for all n, then the right hand side of the above inequality is ≤ 1+Q2/N . Therefore,
if Q = o(N), then we find that, for most p ≤ Q,

1

p

p∑
b=1

∣∣∣∣∣∣∣∣
1

N/p

∑
1≤n≤N

n≡b (mod p)

an −
1

N

N∑
n=1

an

∣∣∣∣∣∣∣∣
2

= o(1),

that is to say, an is well-distributed in most progressions b (mod p), for most primes p ≤ Q.

We conclude this section with the proof of Theorem 9.1.1.

Proof of Theorem 9.1.1. Set

M = {M < n ≤M +N : n /∈ Rp (mod p), for all p < z}.

We claim that for all sequences of complex numbers, and for all square-free integers q < z,
we have that

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣∑
n∈M

ane(an/q)

∣∣∣∣∣
2

≥ h(q)

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣
2

.(9.2.4)

When q = 1, this holds trivially. For q > 1, we argue by induction on ω(q). First, we
establish (9.2.4) when q = p is prime. Our starting point is relation (9.2.3), which implies
that

p−1∑
a=1

∣∣∣∣∣∑
n∈M

ane(an/p)

∣∣∣∣∣
2

= p

p∑
b=1

∣∣∣∣∣∣∣∣
∑
n∈M

n≡b (mod p)

an −
1

p

∑
n∈M

an

∣∣∣∣∣∣∣∣
2

.
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Now, using the identity |z − w|2 = |z|2 + |w|2 − 2Re(zw), we find that

p−1∑
a=1

∣∣∣∣∣∑
n∈M

ane(an/p)

∣∣∣∣∣
2

= p

p∑
b=1


∣∣∣∣∣∣∣∣
∑
n∈M

n≡b (mod p)

an

∣∣∣∣∣∣∣∣
2

+
1

p2

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣
2

− 2

p
Re

 ∑
n∈M

n≡b (mod p)

an
∑
m∈M

am




= p

p∑
b=1

∣∣∣∣∣∣∣∣
∑
n∈M

n≡b (mod p)

an

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣
2

− 2Re

(∑
n∈M

an
∑
m∈M

am

)

= p

p∑
b=1

∣∣∣∣∣∣∣∣
∑
n∈M

n≡b (mod p)

an

∣∣∣∣∣∣∣∣
2

−

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣
2

.

On the other hand, the Cauchy-Schwarz inequality and the fact that if b ∈ Rp (mod p), then
there are no elements of M that lie in the arithmetic progression b (mod p), imply that

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
p∑
b=1

∑
n∈M

n≡b (mod p)

an

∣∣∣∣∣∣∣∣
2

≤ (p− |Rp|)
p∑
b=1

∣∣∣∣∣∣∣∣
∑
n∈M

n≡b (mod p)

an

∣∣∣∣∣∣∣∣
2

.(9.2.5)

Combining the two last relations, we conclude that

p−1∑
a=1

∣∣∣∣∣∑
n∈M

ane(an/p)

∣∣∣∣∣
2

≥
(

p

p− |Rp|
− 1

) ∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣
2

= h(p)

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣
2

,

that is to say, (9.2.4) does hold when p is a prime < z. Now assume that (9.2.4) holds for
all square-free integers q < z with ω(q) ≤ j, where j is some positive integer. Let q be a
square-free integer < z with ω(q) = j + 1. Then we may write q = q1q2 with ω(qi) ≤ j for
i ∈ {1, 2}. Furthermore, note that the set {a1q2 + a2q1 : 1 ≤ ai ≤ qi, (ai, qi) (i ∈ {1, 2})} is
a set of representatives for the set of residues {1 ≤ a ≤ q : (a, q) = 1}. Hence

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣∑
n∈M

ane(an/q)

∣∣∣∣∣
2

=
∑

1≤a1≤q1
(a1,q1)=1

∑
1≤a2≤q2
(a2,q2)=1

∣∣∣∣∣∑
n∈M

ane

(
a1n

q1

+
a2n

q

)∣∣∣∣∣
2

.

For each fixed a1 as above, we apply (9.2.4) with q2 in place of q and ane(a1n/q1) in place
of an, which holds by the induction hypothesis. So

∑
1≤a2≤q2
(a2,q2)=1

∣∣∣∣∣∑
n∈M

ane

(
a1n

q1

+
a2n

q

)∣∣∣∣∣
2

≥ h(q2)

∣∣∣∣∣∑
n∈M

ane

(
a1n

q1

)∣∣∣∣∣
2

.
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Summing the above inequality over a1 and applying (9.2.4) with q1 in place of q, which also
holds by the induction hypothesis, yields that

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣∑
n∈M

ane(an/q)

∣∣∣∣∣
2

≥ h(q1)h(q2)

∣∣∣∣∣∑
n∈M

an

∣∣∣∣∣
2

.

Since h is a multiplicative function, we deduce that relation (9.2.4) is true. This completes
the inductive step, and hence the proof of (9.2.4). Finally, applying this relation with an
being the characteristic function of the set N implies that

|N |2
∑
q<z

µ2(q)h(q) ≤
∑
q<z

∑
1≤a≤q
(a,q)=1

∣∣∣∣∣∑
n∈M

e(na/q)

∣∣∣∣∣
2

≤ (πN + z2)|N |,

by Corollary 9.2.4. This completes the proof of Theorem 9.1.1.

9.3 Character sum version

In this last section, we show another consequence of Corollary 9.2.4, which will play a central
role in the proof of the Bombieri-Vinogradov theorem.

Theorem 9.3.1 (Large sieve - character sum version). Let {an}Nn=1 be a sequence of complex
numbers. For every Q ≥ 1, we have that

∑
q≤Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣
N∑
n=1

anχ(n)

∣∣∣∣∣
2

≤ (N +Q2)
N∑
n=1

|an|2,

where the notation
∑∗

means that the sum runs over primitive characters only.

Proof. For brevity, we write S(α) =
∑N

n=1 ane(nα). In order to translate the statement
of the theorem to an inequality involving the additive characters n → e(an/q) and apply
Corollary 9.2.4, we use Theorem A.2.2 (i.e. we use Fourier inversion with respect to the
additive characters; see Section A.1). This theorem implies that, for every primitive character
χ (mod q), we have

N∑
n=1

anχ(n) =
N∑
n=1

an
1

τ(χ)

q∑
a=1

χ(a)e(an/q) =
1

τ(χ)

q∑
a=1

χ(a)S(a/q).
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Since for such a character we also have that |τ(χ)| = √q, we find that

∑∗

χ (mod q)

∣∣∣∣∣
N∑
n=1

anχ(n)

∣∣∣∣∣
2

=
1

q

∑∗

χ (mod q)

∣∣∣∣∣
q∑

a=1

χ(a)S(a/q)

∣∣∣∣∣
2

≤ 1

q

∑
χ (mod q)

∣∣∣∣∣
q∑

a=1

χ(a)S(a/q)

∣∣∣∣∣
2

=
1

q

∑
χ (mod q)

q∑
a1

q∑
a2=1

χ(a1)χ(a2)S(a1/q)S(a2/q)

=
1

q

q∑
a1

q∑
a2=1

S(a1/q)S(a2/q)
∑

χ (mod q)

χ(a1)χ(a2) =
ϕ(q)

q

∑
1≤a≤q
(a,q)=1

|S(a/q)|2,

by Theorem A.1.1. Multiplying the above relation by q/ϕ(q), summing the resulting in-
equality over q ≤ Q, and applying Corollary 9.2.4 completes the proof of the theorem.
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Chapter 10

The Bombieri-Vinogradov theorem

In this chapter we prove the Bombieri-Vinogradov theorem. We shall prove this theorem in
a slightly different but equivalent formulation: set

E ′(x; a) = max
(a,q)=1

max
y≤x

∣∣∣∣∣∣∣∣
∑
n≤y

n≡a (mod q)

Λ(n)− y

ϕ(q)

∣∣∣∣∣∣∣∣ ,
where Λ is the von Mangoldt function. Then we have the following result.

Theorem 10.0.2 (Bombieri-Vinogradov theorem, II). Fix A > 0. There is B = B(A) > 0
such that ∑

q≤x1/2/(log x)B

E ′(x; q)�A
x

(log x)A
,

Exercise 10.0.3. Deduce Theorem 4.0.4 from Theorem 10.0.2.

10.1 Reduction to Dirichlet characters

The first step in the proof of Theorem 10.0.2 is to reduce it to an estimate about Dirichlet
characters. Indeed, the main result of this chapter will be the following result:

Theorem 10.1.1 (Bombieri-Vinogradov theorem, III). Let 1 ≤ Q ≤ x2/3. Then

∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

max
y≤x

∣∣∣∣∣∑
n≤y

χ(n)Λ(n)

∣∣∣∣∣� (log x)6(x+ x1/2Q2 + x4/5Q13/10),

where the notation
∑∗

means that the sum runs over primitive characters only.

Remark 10.1.2. If Q ≥ x3/7, then x + x1/2Q2 + x4/5Q13/10 � x1/2Q2. SoTheorem 10.1.1
implies that ∑

n≤x

Λ(n)χ(n)� x1/2+ε

137



138 CHAPTER 10. THE BOMBIERI-VINOGRADOV THEOREM

for most q ∈ (Q, 2Q] and for most primitive characters χ (mod q), an estimate which is as
good as the Generalized Riemann Hypothesis.

As we prove below, Theorem 10.0.2 follows by Theorem 10.1.1 and the following funda-
mental result:

Theorem 10.1.3 (Siegel-Walfisz). Fix A > 0. Let χ be a primitive Dirichlet character (mod q).
For 1 ≤ q ≤ (log x)A, we have that∑

n≤x

Λ(n)χ(n) = δ(χ)x+OA

( x

ec
√

log x

)
,

where c is some absolute constant and

δ(χ) =

{
1 if χ = 1,

0 otherwise.

Remark 10.1.4. As it is well-known, the implied constant in the above theorem cannot be
computed effectively due to the potential presence of Landau-Siegel zeroes. This deficiency
will be inherited to the Bombieri-Vinogradov theorem, as it will become clear below.

Deduction of Theorem 10.0.2 from Theorem 10.1.1. First, we rewrite E ′(x; q) in terms of
primitive characters. Note that∑

n≤y
(n,q)>1

Λ(n) ≤
∑
p|q

log p
∑
m≥1
pm≤y

1� ω(q) log y � (log q)(log y).
(10.1.1)

In particular,∑
n≤y

(n,q)=1

Λ(n) =
∑
n≤y

Λ(n) +O((log y)(log q)) = y +O
( y

ec
√

log y
+O((log y)(log q))

)
=: y +O(Rq(y)).

So we have that∑
n≤y

n≡a (mod q)

Λ(n)χ(n)− y

ϕ(q)
=

∑
n≤y

n≡a (mod q)

Λ(n)χ(n)− 1

ϕ(q)

∑
n≤y

(n,q)=1

Λ(n) +O(Rq(y))

=
∑
n≤y

1

ϕ(q)

∑
χ (mod q)

χ(a)χ(n)− 1

ϕ(q)

∑
n≤y

Λ(n)χ0(n) +O(Rq(y))

1

ϕ(q)

∑
χ (mod q)
χ 6=χ0

χ(a)
∑
n≤y

Λ(n)χ(n) +O(Rq(y)).
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by Theorem A.1.1, where χ0 denotes the principal character. Given a non-principal character
χ (mod q), let χ′ be the primitive character which induces it, say of conductor d > 1. Then

∣∣∣∣∣∑
n≤y

Λ(n)χ(n)−
∑
n≤y

Λ(n)χ′(n)

∣∣∣∣∣ ≤ ∑
n≤y

(n,q)>1

Λ(n)χ(n)� (log q)(log y),

by (10.1.1). Therefore, if we set

R′q(y) =
|Rq(y)|
ϕ(q)

+ (log q)(log y),

then

∑
n≤y

n≡a (mod q)

Λ(n)χ(n)− y

ϕ(q)
=

1

ϕ(q)

∑
χ (mod q)
χ 6=χ0

χ(a)
∑
n≤y

Λ(n)χ′(n) +O(R′q(y))

=
1

ϕ(q)

∑
d|q
d>1

∑∗

χ′ (mod d)

∑
n≤y

Λ(n)χ′(n)
∑

χ (mod q)
χ is induced by χ′

χ(a) +O(R′q(y)).

Since, each primitive character χ′ (mod d) induces at most one character χ (mod q), taking
absolute values we deduce that

∑
q≤x1/2/(log x)B

E ′(x; q) ≤
∑

q≤x1/2/(log x)B

1

ϕ(q)

∑
d|q
d>1

∑∗

χ′ (mod d)

max
y≤x

∣∣∣∣∣∑
n≤y

Λ(n)χ′(n)

∣∣∣∣∣
+O

 ∑
q≤x1/2/(log x)B

R′q(x)


=

∑
1<d≤x1/2/(log x)B

∑∗

χ′ (mod d)

max
y≤x

∣∣∣∣∣∑
n≤y

Λ(n)χ′(n)

∣∣∣∣∣ ∑
q≤x1/2/(log x)B

d|q

1

ϕ(q)

+O

(
x(log x)

ec
√

log x

)
.

For the sum over q, note that ϕ(ab) ≥ ϕ(a)ϕ(b) for all a and b, and consequently

∑
q≤x1/2/(log x)B

d|q

1

ϕ(q)
=

∑
m≤x1/2/(d(log x)B)

1

ϕ(dm)
≤ 1

ϕ(d)

∑
m≤x1/2/(d(log x)B)

1

ϕ(m)
� log x

ϕ(d)
.



140 CHAPTER 10. THE BOMBIERI-VINOGRADOV THEOREM

Consequently,∑
q≤x1/2/(log x)B

E ′(x; q)

�
∑

1<d≤x1/2/(log x)B

log x

ϕ(d)

∑∗

χ′ (mod d)

max
y≤x

∣∣∣∣∣∑
n≤y

Λ(n)χ′(n)

∣∣∣∣∣+O

(
x(log x)

ec
√

log x

)

≤
∑

1≤2k≤x1/2/(log x)B

log x

2k

∑
2k<d≤2k+1

d

ϕ(d)

∑∗

χ′ (mod d)

max
y≤x

∣∣∣∣∣∑
n≤y

Λ(n)χ′(n)

∣∣∣∣∣+O

(
x(log x)

ec
√

log x

)

� max
1≤Q≤x1/2/(log x)B

(log x)2

Q

∑
Q<d≤2Q

d

ϕ(d)

∑∗

χ′ (mod d)

max
y≤x

∣∣∣∣∣∑
n≤y

Λ(n)χ′(n)

∣∣∣∣∣+O

(
x(log x)

ec
√

log x

)
.

If Q ≤ (log x)A+8, then we apply Theorem 10.1.3 to find that

∑
Q<d≤2Q

d

ϕ(d)

∑∗

χ′ (mod d)

max
y≤x

∣∣∣∣∣∑
n≤y

Λ(n)χ′(n)

∣∣∣∣∣�A
xQ2

ec
√

log x
�A

xQ

(log x)A+2
.

Otherwise, if (log x)A+8 ≤ Q ≤ x1/2/(log x)B, then Theorem 10.1.1 implies that

∑
Q<d≤2Q

d

ϕ(d)

∑∗

χ′ (mod d)

max
y≤x

∣∣∣∣∣∑
n≤y

Λ(n)χ′(n)

∣∣∣∣∣� (log x)6(x+ x1/2Q2 + x4/5Q13/10)� xQ

(log x)A+2
.

provided that B ≥ A + 8. So selecting B = A + 8 completes the deduction of Theorem
10.0.2.

10.2 Vaughan’s identity

Before we delve into the details of the proof of Theorem 10.1.1, we discuss briefly a possible
strategy for proving it. In view of Theorem 9.3.1, a plausible thing to do would be to apply
the Cauchy-Schwarz inequality. Ignoring the maximum over y ≤ x for the moment, this
inequality and Theorem 9.3.1 yield that

∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣∑
n≤x

χ(n)Λ(n)

∣∣∣∣∣� Q

 ∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣∑
n≤x

χ(n)Λ(n)

∣∣∣∣∣
2
 1

2

� Q(Q+
√
x)
√
x log x.

This is barely not sufficient for deducing Theorem 10.0.2: indeed, the above inequality can
be rewritten as

1

Q

∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣∑
n≤x

χ(n)Λ(n)

∣∣∣∣∣� Q
√
x log x+ x

√
log x.
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However, the right hand side in the above estimate is never� x/(log x)A, a crucial ingredient
in the deduction of Theorem 10.0.2.

We will see that the above approach can only work if instead of Λ(n) we have weights
that have a certain bilinear structure, that is to say weights of the form

∑
k`=n akb`, where

ak is supported on integers k � K and b` is supported on integers ` � L, where we also have
that KL = x. Indeed, the key idea in proving Theorem 10.1.1 is to decompose Λ as the
sum of convolutions f ∗ g of some arithmetic functions f and g which have one of the two
following properties: either f is supported on small integers and g is a nice smooth function,
such as g = 1 or g = log, or they are of the form f ∗ g where both f and g are supported on
large integers. In the first case, we take advantage of the cancellation coming from the sums∑

n≤t χ(n)g(n), which is a consequence of the smoothness of g and of the Pólya-Vinogradov
inequality (see Theorem A.3.1). In the second case, we argue as in the previous paragraph,
applying the Cauchy-Schwarz inequality together with the character sum version of the Large
Sieve.

The aforementioned decomposition is given by the following lemma due to Vaughan.
Note that the first two sums appearing are of the first kind (which are often referred to in
the literature as Type I sums), whereas the third sum is of the second kind (which are often
referred to in the literature as Type II sums).

Lemma 10.2.1 (Vaughan’s identity). Let U ≥ 1 and V ≥ 1 be two parameters. For any
n > U , we have that

Λ(n) =
∑
ab=n
a≤V

µ(a) log b−
∑
ab=n
a≤UV

 ∑
cd=a

c≤V, d≤U

µ(c)Λ(d)

− ∑
ab=n

a>U, b>V

Λ(a)

∑
d|b
d≤V

µ(d)


Proof. Note that

Λ(n) =
∑
k`=n

µ(k) log ` =
∑
k`=n
k≤V

µ(k) log `+
∑
k`=n
k>V

µ(k) log `.

Moreover, ∑
k`=n
k>V

µ(k) log ` =
∑
k`=n
k>V

µ(k)
∑
m|`

Λ(m) =
∑
m|n

Λ(m)
∑
k|n/m
k>V

µ(k)

=
∑
mr=n
r>1

Λ(m)
∑
k|r
k>V

µ(k) = −
∑
mr=n
r>1

Λ(m)
∑
k|r
k≤V

µ(k)

= −
∑
mr=n
m≤U

Λ(m)
∑
k|r
k≤V

µ(k)−
∑
mr=n

m>U, r>1

Λ(m)
∑
k|r
k≤V

µ(k)

= −
∑
mk`=n

k≤V,m≤U

µ(k)Λ(m)−
∑
mr=n

m>U, r>V

Λ(m)
∑
k|r
k≤V

µ(k),

which completes the proof of the Lemma.
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Remark 10.2.2. Lemma 10.2.1 can be also proven starting from the straightforward iden-
tity

−ζ ′

ζ
= F − ζFG− ζ ′G+

(
−ζ
′

ζ
− F

)
(1− ζG),

where ζ is the Riemann ζ function,

F (s) =
∑
n≤U

Λ(n)

ns
and G(s) =

∑
m≤V

µ(m)

ms
.

10.3 The smooth part of von Mangoldt’s function

In this section we show how to handle the Type I sums that appear in the decomposition of
Λ given in Lemma 10.2.1. We start with the following general lemma.

Lemma 10.3.1 (Estimates for Type I sums). Let χ be a non-principal character (mod q).
Also, let f : N→ C be an arithmetic function that is supported on integers d ≤ D and which
satisfies the inequality |f | ≤ logr, for some r ≥ 0. Then, for any s ≥ 0, we have that∑

n≤x

(f ∗ logs)(n)χ(n)� D
√
q(log(Dqx))r+s+1 (x ≥ 2).

Remark 10.3.2. The above lemma yields a non-trivial result as soon as x > (D
√
q)1+ε.

Proof of Lemma 10.3.1. Note that∑
n≤x

(f ∗ logs)(n)χ(n) =
∑
ab≤x

f(a)χ(a)(log b)sχ(b) =
∑
a≤x

f(a)χ(a)
∑
b≤x/a

χ(b)(log b)s

�
∑
a≤D

(log a)r

∣∣∣∣∣∣
∑
b≤x/a

χ(b)(log b)s

∣∣∣∣∣∣ .
Now, for every y ≥ 1, the Pólya-Vinogradov inequality (i.e. Theorem A.3.1) and partial
summation imply that

∑
b≤y

χ(b)(log b)s =

∫ y

1

(log t)sd

(∑
b≤t

χ(b)

)
= (log y)s

∑
b≤y

χ(b)− s
∫ y

1

(log t)s−1

t

(∑
b≤t

χ(b)

)
dt

� √q(log q)

(
(log y)s + s

∫ y

1

(log t)s−1

t
dt

)
� √q(log q)(log y)s.

So ∑
n≤x

(f ∗ logs)(n)χ(n)�
∑
a≤D

(log a)r
√
q(log q)

(
log

x

a

)s
� D

√
q(log q)(logDx)r+s,

which completes the proof of the lemma.
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Now, fix for the moment 1 ≤ U, V ≤ x, to be chosen later. Let y ≤ x and χ be a
non-principal Dirichlet character modulo some integer q ≤ x. Then, we have that∑

n≤min{y,U}

Λ(n)χ(n)� U,

and ∑
U<n≤y

χ(n)
∑
ab=n
a≤V

µ(a) log b� V
√
q(log x)2

by Lemma 10.3.1. Moreover, since∣∣∣∣∣∣∣
∑
cd=a

c≤V, d≤U

µ(c)Λ(d)

∣∣∣∣∣∣∣ ≤
∑
d|a

Λ(d) = log a,

applying Lemma 10.3.1 again, we deduce that

∑
U<n≤y

χ(n)
∑
ab=n
a≤UV

 ∑
cd=a

c≤V, d≤U

µ(c)Λ(d)

� UV
√
q(log x)2.

Combining the above estimates with Lemma 10.2.1, we conclude that

∑
n≤y

Λ(n)χ(n) =
∑
ab≤y

a>U, b>V

χ(ab)Λ(a)

∑
d|b
d≤V

µ(d)

+O(UV
√
q(log x)2)

=
∑
mn≤y

m>U, n>V

χ(mn)Λ(m)

∑
d|n
d≤V

µ(d)

+O(UV
√
q(log x)2),

(10.3.1)

for all y ≤ x. Consequently, if we set

αm = Λ(m) and βn =
∑
d|n
d≤V

µ(d),

then, if we set

S(x;Q) =
∑

Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

max
y≤x

∣∣∣∣∣∑
n≤y

χ(n)Λ(n)

∣∣∣∣∣ ,
we have that

S(x;Q)�
∑

Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

max
y≤x

∣∣∣∣∣∣∣∣
∑
mn≤y

m>U, n>V

χ(mn)αmβn

∣∣∣∣∣∣∣∣+ UV Q5/2(log x)2.(10.3.2)

This reduces Theorem 10.1.1 to a bilinear sum estimate,w which will be accomplished in the
next section.
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10.4 The bilinear part of von Mangoldt’s function

We will treat the sum on the right hand side of (10.3.2) using Cauchy-Schwarz and Theorem
9.3.1. However, before we can apply Cauchy-Schwarz, we need to separate the variables m
and n. Before we do this, we perform an initial step, which allows us to partially keep track
of the fact that mn ≤ x: we break the range of summation of m in relation 10.3.2 into
O(log x) dyadic intervals (M, 2M ], and the range of summation of n into O(log x) dyadic
intervals (N, 2N ], where U ≤ M ≤ x/N ≤ x/V . Then taking the maximum over all these
O(log x)2 possibilities, we find that

S(x;Q)� (log x)2 max
M≥U,N≥V
MN≤x

∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

max
y≤x

∣∣∣∣∣∣∣∣∣∣
∑
mn≤y

M<m≤2M
N<n≤2N

χ(mn)αmβn

∣∣∣∣∣∣∣∣∣∣
+ UV Q5/2(log x)2,

(10.4.1)

We are now ready to separate m and n. This is accomplished by applying Perron’s inversion
formula in the following form (see [Da, p. 105-6] for a proof of it).

Lemma 10.4.1. Let

I(z) =


0 if 0 < z < 1,

1/2 if z = 1,

1 if z > 1.

Then, for z > 0, c > 0 and T ≥ 1, we have that∣∣∣∣ 1

2πi

∫ c+iT

c−iT

zs

s
ds− I(z)

∣∣∣∣ ≤
{
zc min{1, 1/(T | log z|)} if z 6= 1,

c/T if z = 1.

Now, let y ≤ x, and note that∑
mn≤y

M<m≤2M
N<n≤2N

χ(mn)αmβn =
∑

mn≤byc+1/2
M<m≤2M
N<n≤2N

χ(mn)αmβn.

So Lemma 10.4.1 implies that∑
mn≤y

M<m≤2M
N<n≤2N

χ(mn)αmβn =
1

2πi

∫ 1/2+ix2

1/2−ix2

∑
M<m≤2M
N<n≤2N

χ(mn)αmβn
(mn)s

(byc+ 1/2)s

s
ds

+O

(
y1/2

x2

∑
m≤2M,n≤2N

|αmβn|√
mn| log byc+1/2

mn
|

)

� √y
∫ x2

−x2

∣∣∣∣∣ ∑
M<m≤2M

χ(m)αm
m1/2+it

∣∣∣∣∣ ·
∣∣∣∣∣ ∑
N<n≤2N

χ(n)βn
n1/2+it

∣∣∣∣∣ dt

1 + |t|
+ 1,
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since MN ≤ x, | log byc+1/2
mn
| � 1/y, |αm| ≤ logm, and |βn| ≤ τ(n)� n1/3, for all m and n.

Therefore

∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

max
y≤x

∣∣∣∣∣∣∣∣∣∣
∑
mn≤y

M<m≤2M
N<n≤2N

χ(mn)αmβn

∣∣∣∣∣∣∣∣∣∣
�
√
x

∫ x2

−x2

∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣∣
∑

U<m≤x/V

χ(m)αm
m1/2+it

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

V <n≤x/U

χ(n)βn
n1/2+it

∣∣∣∣∣∣ dt

1 + |t|
+Q2.

Inserting the above estimate into (10.3.2), and majoring the integrand by its maximum over
all t ∈ [−x2, x2], we deduce that

S(x;Q)�
√
x(log x)3 max

M≥U,N≥V
MN≤x, |t|≤x3

∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣∣
∑

U<m≤x/V

χ(m)αm
m1/2+it

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
∑

V <n≤x/U

χ(n)βn
n1/2+it

∣∣∣∣∣∣
+ UV Q5/2(log x)2.

Finally, Theorem 9.3.1 implies that

∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣ ∑
M<m≤2M

χ(m)αm
m1/2+it

∣∣∣∣∣
2

� (M +Q2)
∑

M<m≤2M

|αm|2

m
� (M +Q2)(log x)2,

since |αm| ≤ logm for all m, and similarly

∑
Q<q≤2Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣∣∣ ∑
N<n≤2N

χ(n)βn
n1/2+it

∣∣∣∣∣
2

� (N +Q2)
∑

N<n≤2N

|βn|2

n
� (N +Q2)(log x)4,

since |βn| ≤ τ(n) for all n. So the Cauchy-Schwarz inequality yields that

S(x;Q)�
√
x(log x)6 max

M≥U,N≥V
MN≤x

√
(M +Q2)(N +Q2) + UV Q5/2(log x)2

�
√
x(log x)6 max

M≥U,N≥V
MN≤x

(√
MN +Q2 +Q(

√
M +

√
N)
)

+ UV Q5/2(log x)2

�
√
x(log x)6

(√
x+Q2 +Q

√
x

U
+Q

√
x

V

)
+ UV Q5/2(log x)2,

(10.4.2)

since M ≤ x/V and N ≤ x/U , for all M and N as above. For Q ≤ x1/2, we choose
U = V = x2/5/Q3/5, so that (10.4.2) becomes

S(x;Q)� (log x)6(x+ x1/2Q2 + x4/5Q13/10).

This completes the proof of Theorem 10.1.1, and hence of the Bombieri-Vinogradov theorem.
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Exercise 10.4.2. Show that

S(x;Q)� (log x)6(x+ x1/2Q2 + x5/6Q) (1 ≤ Q ≤ x2/3),

which is an improvement over Theorem 10.1.1 when Q ≥ x1/9.

Hint: Write

∑
ab=n
a≤UV

 ∑
cd=a

c≤V, d≤U

µ(c)Λ(d)

 =
∑
ab=n
a≤U

 ∑
cd=a

c≤V, d≤U

µ(c)Λ(d)

+
∑
ab=n

U<a≤UV

 ∑
cd=a

c≤V, d≤U

µ(c)Λ(d)

 .



Appendix A

Dirichlet characters

In this chapter we gather some basic facts about an important class of multiplicative func-
tions, the Dirichlet characters. In general, a Dirichlet character modulo some integer q is a
completely multiplicative function1 χ : N→ C such that:

• χ is q-periodic, that is to say, χ(n+ q) = χ(n), for all n ∈ N;

• χ is supported exactly on these integers that are co-prime to q, that is to say, χ(n) 6= 0
if and only if (n, q) = 1.

The two above facts imply that χ induces canonically a group homomorphism χ̃ : (Z/qZ)× →
C \ {0}, simply by letting χ̃(n (mod q)) = χ(n). In group theoretic terms, χ̃ is a character
of the abelian group (Z/qZ)×.

The above discussion gives a natural correspondence between Dirichlet characters mod q
and characters2 of the group (Z/qZ)×. In the next section, we develop the basics of character
theory of finite abelian groups, and then discuss it further in the case of the groups (Z/qZ)×

and Z/qZ.

A.1 Fourier analysis on finite abelian groups

Let (G, ·) be a finite abelian group. We denote with C(G) its set of characters, that is to say,
the set of group homomorphisms χ : G → C \ {0}. The set C(G) forms naturally a group
with respect to the usual multiplication of complex valued functions. Its identity element
is called the principal character of G. It is denoted by χ0, and it is constantly equal to 1.
The cardinality of C(G) is precisely equal to the cardinality of G. This relation is obvious
if G is cyclic: if G = Z/qZ, then every character is uniquely determined by its value at 1.
Since χ(1)q = χ(q · 1) = χ(0) = 1, it follows that χ(1) has to be a q-th root of unity, and
consequently, there are precisely q characters. In the general case of a finite abelian group,

1That is to say, χ(mn) = χ(m)χ(n) for all integers m and n.
2In fact, this is historically the first occurrence of what in modern algebraic language is called group

character. Note that, strictly speaking, χ̃ is a 1-dimensional representation of (Z/qZ)×. However, since
this group is abelian, there are no higher dimensional irreducible representations, so the set of irreducible
representations of (Z/qZ)× is isomorphic with the set of characters of (Z/qZ)×.

147
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the relation |C(G)| = |G| follows by writing G as the direct product of cyclic groups, say

G ' Z/q1Z⊕ · · · ⊕ Z/qkZ,(A.1.1)

and noting that, as a consequence,

C(G) ' C(Z/q1Z)⊕ · · · ⊕ C(Z/qkZ).

The characters of an abelian group G satisfy the following important orthogonality rela-
tions.

Theorem A.1.1. Let (G, ·) be a finite abelian group. For every χ ∈ C(G), we have that

1

|G|
∑
g∈G

χ(g) =

{
1 if χ = χ0,

0 otherwise.
(A.1.2)

Also, for every g ∈ G, we have that

1

|G|
∑

χ∈C(G)

χ(g) =

{
1 if g = 1,

0 otherwise.
(A.1.3)

Proof. First, we prove relation (A.1.2). If χ = χ0, then (A.1.2) is trivially true. Now assume
that χ 6= χ0. For every h ∈ G, we have that hG = G. So we have that

χ(h)
∑
g∈G

χ(g) =

q∑
g∈G

χ(hg) =
∑
g∈G

χ(g).(A.1.4)

Since χ 6= χ0, there must be some g ∈ G with χ(g) 6= 1. Together with (A.1.4), this
completes the proof of (A.1.2).

The proof of relation (A.1.3) is very similar. This relation is trivial when g = 1. Now,
if g 6= 1, then there exists some character χ1 ∈ C(G) such that χ1(g) 6= 1. Indeed, if G is
cyclic, say G = Z/qZ, then this equivalent to saying that, for every n 6≡ (mod q), there is
some a ∈ Z such that an 6≡ 0 (mod q), which is true. In general, the existence of χ1 follows
by the cyclic case and relation (A.1.1). Now, we have that

χ1(g)
∑

χ∈C(G)

χ(g) =
∑

χ∈C(G)

χ1χ(g) =
∑

χ∈C(G)

χ(g).(A.1.5)

Since χ1(g) 6= 1 by assumption, relation (A.1.5) completes the proof of (A.1.3), and hence
of the theorem.

By (A.1.2), the characters of a group G form an orthonormal set in the space of functions
α : G→ C with respect to the inner product

〈α, β〉G =
1

|G|
∑
g∈G

α(g)β(g).
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In particular, for every α : G→ C, we have the inversion formula

α =
∑

χ∈C(G)

〈α, χ〉G · χ.(A.1.6)

This relation allows us to do Fourier analysis on the group G.

Now, we consider the case of the group Z/qZ. As we mentioned above, the characters of
this group are the functions n→ e(an/q), where

e(x) := e2πix for x ∈ R.

These functions are also called additive characters (mod q), as opposed to the Dirichlet char-
acters (mod q), which are also called multiplicative characters (mod q). Of particular impor-
tance is the interaction between these two different kind of characters. To this end, given a
function f : Z/qZ→ C, we define its Fourier transform by

f̂(n) =

q∑
a=1

f(a)e(−an/q).

In order to study the Fourier transform of a Dirichlet character χ, we define its Gauss sum
τ(χ) by the formula

τ(χ) =

q∑
a=1

χ(a)e(a/q).

Note that we have the relation

q∑
a=1

χ(a)e(an/q) = τ(χ)χ(n), whenever (n, q) = 1,(A.1.7)

or equivalently,
χ̂(n) = τ(χ)χ(n), whenever (n, q) = 1.

This gives the Fourier transform of χ in terms of the additive characters mod q for the
frequencies n that are co-prime to q. In the next section we shall see that this formula can
be expanded to all n for an important class of Dirichlet characters, the primitive characters,
thus showing that a primitive Dirichlet character χ (mod q) is a conjugate eigenvector of the
Fourier transform (mod q) 3, with conjugate eigenvalue equal to τ(χ).

A.2 Primitive characters

Two important notions concerning Dirichlet characters is the notion of a primitive character
and the notion of the conductor of a character. They express the fact that a Dirichlet
character (mod q) might be a Dirichlet character a smaller modulus q′|q in disguise. The
smallest such q′ is called the conductor of q. If it happens that the conductor of χ is equal

3That is to say, it is an eigenvector of the conjugate of the Fourier transform (mod q)
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to q, that is to say, χ is a genuine character (mod q), then we say that χ is primitive. We
give the formal definitions below.

Let q1|q2 and consider two Dirichlet characters χ1 and χ2, modulo q1 and q2, respectively.
We say that χ1 induces χ2 if

χ2(n) =

{
χ1(n) if (n, q2) = 1,

0 otherwise.

Note that a Dirichlet character always induces itself.
Let χ be a Dirichlet character (mod q), and define c(χ) to be the smallest positive integer

q′|q for which there exists a Dirichlet character χ′ (mod q′) which induces χ. Then c(χ) is
called the conductor of χ. Finally, χ is called primitive if c(χ) = q.

Exercise A.2.1. Let χ be a Dirichlet character (mod q).

(a) Show that χ is primitive if and only if for every natural number q1 < q there are
integers m and n such that m ≡ n (mod q1), (n, q) = (m, q) = 1 and χ(n) 6= χ(m).

(b) Show that χ is primitive if and only if for every natural number q1 < q there is an
integer n ≡ 1 (mod q1) such that (n, q) = 1 and χ(n) 6= 1.

Theorem A.2.2. Let χ be a primitive Dirichlet character mod q. Then, for every n ∈ N,
we have that

χ(n) =
1

τ(χ)

q∑
a=1

χ(a)e(an/q).

Proof. When (n, q) = 1, this is a consequence of the general Fourier inversion formula for
characters, that is to say, relation (A.1.6). Assume now that (n, q) = d > 1, in which case
we need to show that

q∑
a=1

χ(a)e(an/q) = 0.

Write n = dn1 and q = dq1, and note that

q∑
a=1

χ(a)e(an/q) =
d∑
j=1

q1∑
b=1

χ(b+ jq1)e

(
(b+ jq1)n1

q1

)
=

q1∑
b=1

e(bn1/q1)
d∑
j=1

χ(b+ jq1).

So it suffices to show that

d∑
j=1

χ(b+ jq1) = 0,(A.2.1)

for all b ∈ {1, 2, . . . , q1}. Since χ is primitive, Exercise A.2.1 implies that there is some k ∈ Z
for which(1 + kq1, q) = 1 and χ(1 + kq1) 6= 1. Consequently,

χ(1 + kq1)
d∑
j=1

χ(b+ jq1) =
d∑
j=1

χ(b+ [bk + (1 + kq1)j] · q1).
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Since (1 + kq1, q) = 1, the numbers {bk + j(1 + kq1) : 1 ≤ j ≤ d} run over a complete set of
representatives mod d, and therefore

χ(1 + kq1)
d∑
j=1

χ(b+ jq1) =
d∑
j=1

χ(b+ jq1).

Since χ(1 + kq1) 6= 1, relation (A.2.1) follows. This completes the proof of the theorem.

Using the above theorem, we can determine the size of the Gauss sum for primitive
Dirichlet characters.

Theorem A.2.3. Let χ be a primitive Dirichlet character mod q. Then |τ(χ)| = √q.

Proof. By Theorem A.2.2, we have that

|τ(χ)|2|χ(n)|2 =

∣∣∣∣∣
q∑

a=1

χ(a)e(an/q)

∣∣∣∣∣
2

,

for all n ∈ {1, . . . , q}. So

ϕ(q)|τ(χ)|2 =

q∑
n=1

∣∣∣∣∣
q∑

a=1

χ(a)e(an/q)

∣∣∣∣∣
2

=

q∑
n=1

(
q∑

a=1

χ(a)e(an/q)

)(
q∑
b=1

χ(b)e(−bn/q)

)

=

q∑
a=1

q∑
b=1

χ(a)χ(b)

q∑
n=1

e((a− b)n/q) =

q∑
a=1

|χ(a)|2q = ϕ(q)q.

This completes the proof of the theorem.

Exercise A.2.4. Calculate the absolute value of the Gauss sum τ(χ) for all Dirichlet
characters (mod q).

A.3 The Pólya-Vinogradov inequality

Theorem A.3.1 (Pólya-Vinogradov inequality). Let χ be a non-principal character mod q.
Then ∑

M<n≤M+N

χ(n)� √q log q.

Proof. First, we prove the theorem when χ is primitive. Theorem A.2.2 and the periodicity
of χ imply that∑
M<n≤M+N

χ(n) =
∑

M<n≤M+N

1

τ(χ)

∑
1≤a≤q
(a,q)=1

χ(a)e(an/q) =
∑

M<n≤M+N

1

τ(χ)

∑
−q/2<a≤q/2

(a,q)=1

χ(a)e(an/q)

=
1

τ(χ)

∑
−q/2<a≤q/2

(a,q)=1

χ(a)
∑

M<n≤M+N

e(an/q)� 1

|τ(χ)|
∑

−q/2<a≤q/2
(a,q)=1

1

|1− e(a/q)|
.
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So Theorem A.2.3, and the fact that |1− e(x)| � |x|, for all x ∈ [−1/2, 1/2], imply that∑
M<n≤M+N

χ(n)� 1
√
q

∑
−q/2<a≤q/2

(a,q)=1

1

|a/q|
≤ 2
√
q
∑

1≤a≤q/2

1

a
� √q log q.

This completes the proof in the case that χ is primitive. Finally, if χ is induced by the
primitive character χ1 (mod q1), then∑

M<n≤M+N

χ(n) =
∑

M<n≤M+N
(n,q)=1

χ(n) =
∑

M<n≤M+N
(n,q)=1

χ1(n) =
∑

M<n≤M+N
(n,q/q1)=1

χ1(n)

=
∑

M<n≤M+N

χ1(n)
∑

d|(n,q/q1)

µ(d) =
∑
d|q/q1

µ(d)χ1(d)
∑

M/d<m≤(M+N)/d

χ1(m)

�
∑
d|q/q1

√
q1 log q1 ≤ τ(q/q1)

√
q1 log q �

√
q

q1

· √q1 log q =
√
q log q,

which completes the proof in this case as well.



Appendix B

Primes in arithmetic progressions

The purpose of this chapter is to establish the Siegel-Walfisz theorem:

Theorem B.0.2. Let A > 0. There is a (non-effective) constant cA such that if 1 ≤ q ≤
(log x)A and (a, q) = 1, then

π(x; q, a) =
li(x)

ϕ(q)
+O

( x

ecA
√

log x

)
.

The proof we will present is not the classical complex-analytic proof. Rather, we use the
approach of [Kou], which is based on the theory of pretentious multiplicative functions.

As it is common, instead of working directly with the indicator function of the primes,
we use von Mangoldt’s function Λ(n), which reduces Theorem B.0.2 to proving that∑

n≤x
n≡a (mod q)

Λ(n) =
x

ϕ(q)
+O

( x

ecA
√

log x

)
(q ≤ (log x)A, (a, q) = 1).

For every x ≥ 1 and (a, q) = 1, the orthogonality of characters implies that∑
n≤x

n≡ a (mod q)

Λ(n)− x

ϕ(q)
=

1

ϕ(q)

∑
χ (mod q)

χ(a)
∑
n≤x

(χ(n)Λ(n)− δ(χ)) +O

(
1

ϕ(q)

)
,

where

δ(χ) :=

{
1 if χ is principal,

0 otherwise.

So, it suffices to prove that ∑
n≤x

Λχ(n)� x

e
√

log x
(x ≥ exp{qε})(B.0.1)

for all characters χ (mod q), where we have set

Λχ(n) = χ(n)Λ(n)− δ(χ).

153
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We write Fχ(s) for the Dirichlet series corresponding to Λχ and we note that

Fχ(s) =
∞∑
n=1

Λχ(n)

ns
= −L

′

L
(s, χ)− δ(χ)ζ(s),

where, given an arithmetic function f : N→ C, we employ the standard notation

L(s, f) =
∞∑
n=1

f(n)

ns
.

Our strategy towards proving (B.0.1) is to multiply Λχ(n) by an appropriately high power
of log n and control that sum instead. This manoeuvre will allow us to work with Fχ(s)
when Re(s) > 1, where no arguments about the analyticity and the location of the zeroes of
L(s, χ) are needed. For technical reasons, we also introduce the smoothing log(x/n) to the
sum we consider. Fourier inversion implies that∑

n≤x

Λχ(n)(log n)k−1 log
x

n
=

(−1)k−1

2πi

∫
Re(s)=1+1/ log x

F (k−1)
χ (s)

xs

s2
ds

� x ·
∫ ∞
−∞

∣∣∣∣F (k−1)
χ

(
1 +

1

log x
+ it

)∣∣∣∣ dt

1 + t2

(B.0.2)

for all k ∈ N. In view of the above formula, we need to understand the size of the derivatives
of Fχ. The following key lemma, which is based on an idea in [IK, p. 40], allows us to reduce
this problem to upper bounds for the derivatives of Fχ(s) and a lower bound on |Fχ(s)|.

Lemma B.0.3. Let M ≥ 1, D be an open subset of C and s ∈ D. Consider a function
F : D → C that is differentiable k times at s and its derivatives satisfy the bound |F (j)(s)| ≤
j!M j for 1 ≤ j ≤ k. If F (s) 6= 0, then∣∣∣∣∣

(
F ′

F

)(k−1)

(s)

∣∣∣∣∣ ≤ k!

2

(
2M

min{|F (s)|, 1}

)k
.

Proof. We have the identity

(
−F ′

F

)(k−1)

(s) = k!
∑

a1+2a2+···=k

(−1 + a1 + a2 + · · · )!
a1!a2! · · ·

(
−F ′

1!F
(s)

)a1
(
−F ′′

2!F
(s)

)a2

· · · ,

(B.0.3)

which can be easily verified by induction. In order to complete the proof of the lemma, we
will show that∑

a1+2a2+···+kak=k

(a1 + a2 + · · ·+ ak)!

a1!a2! · · · ak!
=

∑
a1+2a2+···+kak=k

(
a1 + a2 + · · ·+ ak
a1, a2, . . . , ak

)
= 2k−1.(B.0.4)

Indeed, for each fixed k-tuple (a1, . . . , ak) ∈ (N ∪ {0})k with a1 + 2a2 + · · · + kak = k,
the multinomial coefficient

(
a1+a2+···+ak
a1,a2,...,ak

)
represents the way of writing k as the sum of a1
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ones, a2 twos, and so on, with the order of the different summands being important, e.g. if
k = 5, a1 = 1, a2 = 2 and a3 = a4 = a5 = 0, then there are three such ways to write 5:
5 = 2 + 2 + 1 = 2 + 1 + 2 = 1 + 2 + 2. So we conclude that∑

a1+2a2+···+kak=k

(
a1 + a2 + · · ·+ ak
a1, a2, . . . , ak

)
= #{ordered partitions of k},

where we define an ordered partition of k to be a way to write k as the sum of positive integers,
with the order of the different summands being important. To every ordered partition of
k = b1+· · ·+bm, we can associate a unique subset of {1, . . . , k} in the following way: consider
the set B ⊂ {1, . . . , k} which contains {1, . . . , b1}, does not contain {b1 + 1, . . . , b1 + b2},
contains {b1+b2+1, . . . , b1+b2+b3}, does not contain {b1+b2+b3+1, . . . , b1+b2+b3+b4}, and
so on. Then B necessarily contains 1 and, conversely, every subset of {1, . . . , k} containing
1 can arise this way. So we conclude that there are 2k−1 ordered partitions, and (B.0.4)
follows, thus completing the proof of the lemma.

Our next goal is to obtain upper bounds on the derivatives of L(s, χ) and a lower bound
on |L(s, χ)|. In fact, we shall perform a technical manoeuvre and switch to a sifted version
of L(s, χ). We may do so since(

L′

L

)(k−1)

(s, χ) =

(
L′y
Ly

)(k−1)

(s, χ) +O(ckk!(log y)k),

where

Ly(s, χ) :=
∑

P−(n)>y

χ(n)

ns
.

The reason for doing so is that, in general, we can only control
∑

n≤N χ(n)nit for N large
enough in terms of q and t, and it is possible that this sum is rather large for small values
of N . This would force L(j)(s, χ) to be large. But then, the same thing would be true for
L(s, χ). However, it is rather hard to capture this correlation in the sizes of L(j)(s, χ) and
L(s, χ) in practice. By considering the sifted L-function Ly(s, χ), we ensure that the partial
sums we consider

∑
n≤N χ(n)nit all have N > y, so the small values of N can no longer cause

any problems.

Lemma B.0.4. Let χ be a Dirichlet character modulo q, k ∈ N ∪ {0}, and s = σ + it with
σ > 1 and t ∈ R. For y ≥ 3/2 we have that∣∣∣∣∣∣∣∣L

(k)
y (s, χ) +

(−1)k+1k!

(s− 1)k+1

δ(χ)ϕ(q)

q

∏
p≤y
p-q

(
1− 1

p

)∣∣∣∣∣∣∣∣�
k!(c log(|t|+ q + y))k+1

log y
.(B.0.5)

In particular, if y ≥ max
{
q + |t|, eδ(χ)/|t|}ε for some fixed ε > 0, then∣∣L(k)

y (s, χ)
∣∣� k!(cε log y)k.(B.0.6)
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Proof. Set z = max{y, q4, (|t|+ 1)100} and note that

(−1)kL(k)
y (s, χ) =

∑
n>z

P−(n)>y

χ(n)(log n)k

ns
+O

(
(log z)k+1

log y

)
.

(B.0.7)

Next, we need to control the sum
∑

n≤x, P−(n)>y χ(n)n−it. We use the Fundamental Lemma

of Sieve Methods (cf. Lemma 3.3.3) to construct upper and lower bound weights (µ±(d))d≥1

supported on the set {d ≤
√
x : d|P (y)}. Then∑

n≤x
P−(n)>y

χ(n)n−it =
∑
n≤x

(1 ∗ µ+)(n)χ(n)n−it +O

(∑
n≤x

(1 ∗ µ+ − 1 ∗ µ−)(n)

)

=
∑
d≤
√
x

µ+(d)χ(d)d−it
∑
m≤x/d

χ(m)m−it +O

(
x1−1/ log y

log y

)
.

We break the inner sum into congruence classes mod q. For each b ∈ (Z/qZ)∗, partial
summation implies that∑

m≤x/d
m≡b (mod q)

m−it =

∫ x/d

1

u−itd

(
u

q
+O(1)

)
=

(x/d)1−it

q(1− it)
+O(1 + |t| log x).

So, we conclude that∑
n≤x

P−(n)>y

χ(n)n−it =
x1−it

1− it
∑
d≤
√
x

µ+(d)χ(d)

d
· 1

q

∑
b∈(Z/qZ)∗

χ(b) +O

(
q
√
x(1 + |t| log x) +

x1−1/ log y

log y

)

= δ(χ) · ϕ(q)

q
· x

1−it

1− it
∏
p≤y
p-q

(
1− 1

p

)
+O

(
x1−1/ log y

log y

)

for all x ≥ y. Let Rt(x) be the error term in the above approximation. Then

∑
n>z

P−(n)>y

χ(n)(log n)k

ns
=

∫ ∞
z

(log u)k

uσ
d

δ(χ)ϕ(q)

q

u1−it

1− it
∏
p≤y
p-q

(
1− 1

p

)
+Rt(u)


=
δ(χ)ϕ(q)

q

∏
p≤y
p-q

(
1− 1

p

)∫ ∞
z

(log u)k

us
du+

∫ ∞
z

(log u)k

uσ
dRt(u).

Since∫ ∞
z

(log u)k

uσ
dRt(u) = −(log z)kRt(z)

zσ
+

∫ ∞
z

(log u)k−1(σ log u− k)

uσ+1
Rt(u)du

� (log z)k

log y
+
σ + k

log y

∫ ∞
z

(log u)k

uσ+1/ log y
du

≤ (log z)k

log y
+

σ + k

zσ−1 log y

∫ ∞
z

(log u)k

u1+1/ log y
du� (k + 1)!(log z)k+1

log y
,
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by partial summation, and∫ ∞
z

(log u)k

us
du =

∫ ∞
1

(log u)k

us
du+O((log z)k+1) =

k!

(s− 1)k+1
+O((log z)k+1),

by observing that (log u)mu−s = (log u)md(u1−s/(1−s))
du

for all m ≥ 0 and integrating by parts
k times, relation (B.0.5) follows. Finally, relation (B.0.6) is a direct consequence of rela-
tion (B.0.5), since |s− 1| ≥ |t| ≥ ε · δ(χ)/ log y under the assumption that y ≥ eε·δ(χ)/|t|. This
completes the proof of the lemma.

Next, we need a lower bound on Ly(s, χ) close to the line Re(s) = 1. We need to
introduce some notation a state a preliminary result. Given two multiplicative functions
f, g : N→ {z ∈ C : |z| ≤ 1} and real numbers x ≥ y ≥ 1, we set

D(f, g; y, x) =

( ∑
y<p≤x

1− Re(f(p)g(p))

p

)1/2

.

This quantity defines a certain measure of ‘distance’ between f and g, that is to say
D(f, g; y, x) is small if f pretends to be g for primes in (y, x]. It was introduced by Granville
and Soundararajan, partially in order to conceptualize and put under a unified framework
several results in the literature. It is central in the theory of pretentious multiplicative func-
tions and it satisfies the triangle inequality (see [GS, p. 207] for a slightly weaker form of
this inequality).

Lemma B.0.5. Let f, g, h : N→ {z ∈ C : |z| ≤ 1} be multiplicative functions and x ≥ y ≥
1. Then

D(f, g; y, x) + D(g, h; y, x) ≥ D(f, h; y, x).

Proof. It suffices to show that√
Re
(
1− zz′

)
+
√

Re
(
1− z′z′′

)
≥
√

Re
(
1− zz′′

)
.

for all complex numbers z, z′, z′′ of modulus ≤ 1. We set w = zz′, w′ = z′z′′ and r = |z′|, so
that the inequality we need to show becomes√

Re(1− w) +
√

Re(1− w′) ≥
√

Re(1− ww′/r2),(B.0.8)

for all r ∈ (0, 1] and all complex numbers w,w′ such that |w|, |w′| ≤ r. We write w = x+ iy
and w′ = a + ib and we consider r, x and a fixed for the moment. So our goal is to show
that √

1− (ax− by)/r2 ≤
√

1− x+
√

1− a,
for all b, y with |b| ≤

√
r2 − a2 and |y| ≤

√
r2 − b2. It is easy to see that

√
1− (ax− by)

is maximized when b2 = r2 − a2 and y2 = r2 − x2, so that (B.0.8) follows by the case
|w| = |w′| = r. We set w = reiθ and w′ = reiϕ, and we define s ∈ [0, 1] via the relation

2s

s2 + 1
= r.
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Then (B.0.8) reduces to showing that√
Re(1− reiθ) +

√
Re(1− reiϕ) ≥

√
Re(1− ei(θ+ϕ))

or, equivalently, that
|s− eiθ|+ |s− eiϕ|√

s2 + 1
≥ |e

iθ − eiϕ|√
2

,

which is a consequence of the triangle inequality in C and the fact that s ≤ 1.

We can now give our lower bound for |Ly(s, χ)|.

Lemma B.0.6. Fix ε ∈ (0, 1]. Let χ be a Dirichlet character modulo q, s = σ + it with
σ > 1 and t ∈ R, and y ≥ q + |t|. If |t| ≥ ε/ log y or if χ is complex, then we have that
|Ly(s, χ)| �ε 1. Finally, if χ is a non-principal, real character, and |t| ≤ 1/ log y, then
|Ly(s, χ)| � Ly(1, χ).

Proof. First, assume that either |t| ≥ ε/ log y or χ is complex. Equivalently, |t| ≥ εδ(χ2)/ log y.
Note that

log

∣∣∣∣Ly (1 + it+
1

log x
, χ

)∣∣∣∣ =
∑
p>y

Re(χ(p)p−it)

p1+1/ log x
+O(1)

=
∑
y<p≤x

Re(χ(p)p−it)

p
+O(1)

= D(χ(n), µ(n)nit; y, x)− log

(
log x

log y

)
+O(1),

upon observing that p−1/ log x = 1 +O(log p/ log x) for p ≤ x and that
∑

p>x 1/p1+1/ log x � 1.

Therefore we see that if |Ly(1 + 1/ log x, χ) is small, then χ(n) must pretend to be µ(n)nit.
But then the triangle inequality implies that χ2(n) must present to be n2it, and this is
impossible by our upper bounds on |Ly(1 + 1/ log x + 2it, χ2)| provided by Lemma B.0.4.
Indeed, for every x ≥ y we have that

2 · D(χ(n), µ(n)nit; y, x) = D(χ(n)n−it, µ(n); y, x) + D(µ(n), χ(n)nit; y, x)

≥ D(χ(n)n−it, χ(n)nit; y, x) = D(χ2(n), n2it; y, x)

by Lemma B.0.5. Consequently,

D2(χ(n), µ(n)nit; y, x) ≥ 1

4
log

(
log x

log y

)
+O(1)−

∑
y<p≤x

Re(χ2(p)p−2it)

p

=
1

4
log

(
log x

log y

)
+O(1)− log

∣∣∣∣Ly (1 +
1

log x
+ 2it, χ2

)∣∣∣∣
≥ 1

4
log

(
log x

log y

)
+Oε(1),



159

by relation (B.0.6) with k = 0, provided that y ≥ max
{
q + |t|, eε·δ(χ2)/|t|

}
. Hence,∣∣∣∣Ly (1 +

1

log x
+ it, χ

)∣∣∣∣� (
log y

log x

)3/4 (
x ≥ y ≥ max

{
q + |t|, eε·δ(χ2)/|t|

})
,(B.0.9)

We claim that this inequality is self-improving. Indeed, if x and y are as above, then∑
y<p≤x

χ(p)

p1+it
=
∑
p>y

χ(p)

p1+it+1/ log x
+O(1) =

∑
p>y

χ(p)

p1+it+1/ log x
−
∑
p>y

χ(p)

p1+it+1/ log y
+O(1)

=

∫ x

y

∑
p>y

χ(p) log p

p1+it+1/ log u
· du

u(log u)2
+O(1)

= −
∫ x

y

L′y
Ly

(
1 + it+

1

log u
, χ

)
du

u(log u)2
+O(1)

�ε

∫ x

y

(log y)3/4(log u)1/4 du

u(log u)2
+ 1� 1,

by (B.0.6) and (B.0.9). So we conclude that∣∣∣∣∣ ∑
y<p≤x

χ(p)

p1+it

∣∣∣∣∣� 1
(
x ≥ y ≥ max

{
q + |t|, eε·δ(χ2)/|t|

})
.(B.0.10)

The above relation for x = max{e1/(σ−1), y} implies that |Ly(s, χ)| � 1, which completes the
proof of the first part of the lemma.

Finally, assume that χ is a real, non-principal character, and that |t| ≤ 1/ log y. Let
x = max{e1/(σ−1), y} and z = min{x, e1/|t|} ≥ y ≥ q + |t|. Then we have that∣∣∣∣∣ ∑

z<p≤x

χ(p)

p1+it

∣∣∣∣∣� 1,

trivially if z = x, and by relation (B.0.10) with z in place of y otherwise, which holds, since
in this case z = e1/|t| ≥ eδ(χ

2)/|t|. So we deduce that∑
y<p≤x

χ(p)

p1+it
=
∑
y<p≤z

χ(p)

p1+it
+O(1) =

∑
y<p≤z

χ(p) +O(|t| log p)

p
+O(1) =

∑
y<p≤z

χ(p)

p
+O(1).

Finally, for every w ≥ z ≥ q + |t|, we have that∑
z<p≤w

χ(p)

p
= log

∣∣∣∣Lz (1 +
1

logw
, χ

)∣∣∣∣+O(1) ≤ O(1),

by relation (B.0.6) with k = 0. So∑
y<p≤x

Re(χ(p)p−it)

p
=
∑
y<p≤z

χ(p)

p
+O(1) ≥

∑
y<p≤w

χ(p)

p
+O(1) (w ≥ z).

Therefore, we conclude that |Ly(s, χ)| � Ly(1 + 1/ logw, χ) for all w ≥ z. Letting w → ∞
completes the proof of the last part of the lemma too.
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Finally, we prove an estimate for the derivatives of (L′/L)(s, χ), which will be key in the
proof of Theorem B.0.2.

Lemma B.0.7. Let χ be a Dirichlet character modulo q and s = σ + it with σ > 1 and
t ∈ R. For every k ∈ N we have that∣∣∣∣∣

(
L′

L

)(k−1)

(s, χ) +
δ(χ)(−1)k−1(k − 1)!

(s− 1)k

∣∣∣∣∣�
(

ck log(2q + |t|)
δ(χ) + (1− δ(χ))|Lq+|t|(s, χ)|

)k
.

Proof. Set y = q + |t| and fix some constant ε to be chosen later. We separate three cases.

Case 1: σ ≥ 1+ε/ log y. Note that δ(χ)+(1−δ(χ))|Lq+|t|(s, χ)| � 1, trivially if δ(χ) = 1,
and by relation (B.0.6) with k = 0 if δ(χ) = 0. Since we also have that∣∣∣∣∣
(
L′

L

)(k−1)

(s, χ) +
δ(χ)(−1)k−1(k − 1)!

(s− 1)k

∣∣∣∣∣ ≤
∞∑
n=1

Λ(n)(log n)k−1

n1+ε/ log y
+

(k − 1)!

(ε/ log y)k
� (c1k log y)k

for some c1 = c1(ε), the lemma follows.

Case 2: |t| > ε/ log y. Note that(
L′

L

)(k−1)

(s, χ) = O
(
(c2k log y)k

)
+

(
L′y
Ly

)(k−1)

(s, χ).(B.0.11)

Furthermore, relation (B.0.6) implies that |L(j)
y (s, χ)| ≤ j!(c3 log y)j for all j ∈ N, for some

c3 = c3(ε). Additionally, we have that |Ly(s, χ)| �ε 1 by Lemma B.0.6. So Lemma B.0.3
applied to F (s) = Ly(s, χ) yields that the right hand side of (B.0.11) is � (c4k log y)k for
some c4 = c4(ε), and the lemma follows (note that in this case |s− 1| ≥ |t| ≥ ε/ log y).

Case 3: |s− 1| ≤ 2ε/ log y. Let

F (s) = (s− 1)δ(χ)Ly(s, χ)
∏
p≤y

(
1− 1

p

)−δ(χ)

,

and observe that

F (j)(s) =
(
(s− 1)δ(χ)L(j)

y (s, χ) + δ(χ)jL(j−1)
y (s, χ)

)∏
p≤y

(
1− 1

p

)−δ(χ)

� j!(c5 log y)j,

for all j ∈ N, by relation (B.0.5). So Lemma B.0.3 implies that(
L′y
Ly

)(k−1)

(s, χ) +
δ(χ)(−1)k−1(k − 1)!

(s− 1)k
=

(
F ′

F

)(k−1)

(s)�
(

c6k log y

min{|F (s)|, 1}

)k
.

Together with (B.0.11), the above estimate reduces the desired result to showing that

min{|F (s)|, 1} � δ(χ) + (1− δ(χ))|Ly(s, χ)|.(B.0.12)
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If δ(χ) = 0, then (B.0.12) holds, since |F (s)| = |Ly(s, χ)| � 1, by relation (B.0.6) with
k = 0. Lastly, if δ(χ) = 1, then |F (s)| = 1 + O(|s− 1| log y) = 1 + O(ε) by relation (B.0.5)
with k = 0 (note that

∏
p≤y, p|q(1− 1/p) = ϕ(q)/q, since y > q by assumption). So choosing

ε small enough (independently of k, q and s), we find that |F (s)| � 1, that is, (B.0.12) is
satisfied in this case too. This completes the proof of (B.0.12) and hence of the lemma.

The last ingredient missing in order to complete the proof of Theorem B.0.2 is Siegel’s
theorem:

Theorem B.0.8. Let ε ∈ (0, 1]. With at most one exception, for all real, non-principal,
primitive Dirichlet characters we have that L(1, χ) � ε3q−ε, where q denotes the conductor
of χ; the implied constant is effectively computable.

Before proving Theorem B.0.8, we need a preliminary lemma. The idea behind its proof
can be traced back to [Pi].

Lemma B.0.9. Let c ≥ 1, r ∈ N, and Q ≥ 2. Consider a multiplicative function f : N→ R
such that 0 ≤ (1 ∗ f)(n) ≤ τr(n) for all integers n, and∣∣∣∣∣∑

n≤x

f(n)

∣∣∣∣∣ ≤ cx4/5 log x (x ≥ Q).

If L(1 − η, f) ≥ 0 for some η ∈ [0, 1/20], then L(1, f) �c,r η/Q
2η. If, in addition, L(1 −

η, f) = 0, then L(1, f)�c,r η(logQ)r.

Proof. By partial summation, we have that∑
A1<a≤A2

f(a)

a1−η �c
logA1

A
1/5−η
1

(A2 ≥ A1 ≥ Q),

and∑
b≤B

1

b1−η =
Bη − 1

η
+ γη +O(Bη−1) (B ≥ 1), where γη = 1− (1− η)

∫ ∞
1

{u}
u2−η du.

So for x ≥ Q2 we have that

S :=
∑
n≤x

(1 ∗ f)(n)

n1−η =
∑
a≤
√
x

f(a)

a1−η

∑
b≤x/a

1

b1−η +
∑
b≤
√
x

1

b1−η

∑
√
x<a≤x/b

f(a)

a1−η

=
∑
a≤
√
x

f(a)

a1−η

(
(x/a)η − 1

η
+ γη +Oc

(
(x/a)η−1

))
+O

 log x

x1/10−η/2

∑
b≤
√
x

1

b1−η


=
∑
a≤
√
x

f(a)

a1−η
(x/a)η − 1

η
+ γηL(1− η, f) +Oc,r

(
log2 x

x1/10−η

)
,
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since |f | = |µ ∗ (1 ∗ f)| ≤ τr+1. Finally, for A >
√
x we have that

∑
√
x<a≤A

f(a)

a1−η
(x/a)η − 1

η
= −

∫ A

√
x

(x/u)η − 1

η
d

( ∑
u<a≤A

f(a)

a1−η

)
�c

log2 x

x1/10−η ,

by integration by parts. Consequently,

S =
xη

η
L(1, f) +

(
γη −

1

η

)
L(1− η, f) +Oc,r

(
log2 x

x1/10−η

)
.

Note that 1 ≤ S �r x
η logr x, by our assumption that 0 ≤ 1 ∗ f ≤ τr. Since γη < 1 < 1/η

for η ∈ (0, 1), the claimed result then follows by taking x = c1Q
2 for some sufficiently large

constant c1 that depends at most on c and r.

Proof of Theorem B.0.8. Let ε ∈ [0, 1]. If L(s, χ) does not vanish in [1 − ε/30, 1], then
L(1−ε/30, χ) > 0, by continuity, and thus Lemma B.0.9 withQ = q5/4 implies that L(1, χ)�
εq−ε/12. So if there is no character χ for which L(s, χ) has a zero in [1 − ε/30, 1], then the
theorem follows. Therefore we may assume that this is not the case. Let χ1 be a primitive
real character of minimum conductor q1 such that L(s, χ1) vanishes in [1 − ε/30, 1], say at
1 − η. Consider χ 6= χ1 of conductor q. As before, if q < q1, then L(1, χ) � εq−ε/12,
since L(s, χ) does not vanish in [1 − ε/30, 1]. Finally, we consider the case q ≥ q1. Set
f = χ1 ∗ χ ∗ χ1χ. Then∑

n≤x

f(n)� q4/3x2/3 log x ≤ x4/5 log x (x ≥ q10),

by applying Dirichlet’s hyperbola method first to χ1 ∗χ and then to f = (χ1 ∗χ) ∗χ1χ. In a
similar fashion, we find that L(σ, f) = L(σ, χ)L(σ, χ1)L(σ, χ1χ) for σ > 2/3. In particular,
L(1− η, f) = 0 and therefore L(1, f)� ηq−20η, by Lemma B.0.9. Since we also have that

L(1, f) = L(1, χ)L(1, χ1)L(1, χ1χ)� L(1, χ) · (η log2 q) · (log q),

by Lemma B.0.9 applied to χ1 and the standard bound L(1, χ1χ)� log q, which follows by
partial summation, we deduce the theorem.

Also, we state the following classical result, which is a consequence of Dirichlet’s class
number formula [Da, p. 49-50]. See also [IK, p. 37] for an elementary proof, in the spirit of
the proof of Lemma B.0.9.

Lemma B.0.10. If χ is a non-principal real character mod q, then L(1, χ) > 0.

We are now ready to complete the proof of the Siegel-Walfisz theorem:

Proof of Theorem B.0.2. Recall the notations Λχ(n) and Fχ(s), and that our goal is to prove
relation B.0.1. We claim that, for k ∈ N, ε > 0 and s = σ + it with σ > 1 and t ∈ R, we
have that

F (k−1)
χ (s)�

{
(c1k log(2q + |t|))k if |t| ≥ 1/ log(3q),

(c2kq
ε/3)k otherwise,

(B.0.13)
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where c2 = c2(ε) is an ineffective constant. Indeed, relation (B.0.5) with y = 3/2, q = 1,
χ(n) = 1 for all n, and k − 1 in place of k, implies that∣∣∣∣ζ(k−1)(s) +

(−1)k(k − 1)!

(s− 1)k

∣∣∣∣� k!(c3 log(|t|+ 2))k.

Together with Lemma B.0.7, this yields the estimate

F (k−1)
χ (s)�

(
c4k log(2q + |t|)

δ(χ) + (1− δ(χ))|Lq+|t|(s, χ)|

)k
.

This reduces (B.0.13) to showing that

δ(χ) + (1− δ(χ))|Lq+|t|(s, χ)| �

{
1 if |t| ≥ 1/ log(3q),

q−ε/3 otherwise.
(B.0.14)

If, now, |t| ≥ 1/ log(3q) ≥ 1/(3 log(q + |t|) or χ is complex, then |Lq+|t|(s, χ)| � 1 by
Lemma B.0.6, so (B.0.14) follows. Also, if |t| ≤ 1/ log(3q) and χ is principal, that is to
say, δ(χ) = 1, then we have trivially that δ(χ) + (1 − δ(χ))|Lq+|t|(s, χ)| = 1, so (B.0.14)
holds in this case too. Finally, if |t| ≤ 1/ log(3q) ≤ 1 and χ is real and non-principal, then
|t| ≤ 1/ log(q + |t|), and thus Lemma B.0.6 implies that

δ(χ) + (1− δ(χ))|Lq+|t|(s, χ)| = |Lq+|t|(s, χ)| � Lq+|t|(1, χ)

So, a continuity argument implies that

Lq+|t|(1, χ) = lim
σ→1+

L(σ, χ)
∏

p≤q+|t|

(
1− χ(p)

pσ

) = L(1, χ)
∏

p≤q+|t|

(
1− χ(p)

p

)

� L(1, χ)

log q
�ε

1

qε/3

(B.0.15)

by Theorems B.0.8 and B.0.10, which shows (B.0.14) in this last case too. This completes
the proof of (B.0.13).

Next, for every integer k ≥ 3 and for every real number y ≥ 2, we apply relations (B.0.2)
and (B.0.13) to get that∑
n≤y

Λχ(n)(log n)k−1 log
y

n
� y

∫
|t|≥ 1

log(3q)

(c5k log(2q))2 + (c5k log(|t|+ 1))k

t2 + 1
dt+ y(c2kq

ε/3)k

� y(c6k
2)k + y(c6kq

ε/3)k.

Now, set

∆(x) = x
√

log x

{(
c6k

2

log x

)k/2
+

(
c6kq

ε/3

log x

)k/2}
and note that ∆(x) ≥

√
x, since c6k

2 > k ≥ x−1/k log x. We claim that∑
n≤x

Λχ(n)(log n)k−1 � ∆(x)(log x)k−1 (x ≥ 4).(B.0.16)
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If ∆(x) > x/2, then (B.0.16) holds trivially. So assume that ∆(x) < x/2. Applying (B.0.2)
for y = x and y = x − ∆(x) and subtracting one inequality from the other completes the
proof of (B.0.16). Relation (B.0.16) and partial summation imply that

∑
n≤x

Λχ(n) = O(
√
x) +

∫ x

√
x

1

(log t)k−1
d

(∑
n≤t

Λχ(n)(log n)k−1

)
� 2k∆(x) (x ≥ 16).

Choosing

k = min

{√
log x

4c6

,
log x

4c6qε/3

}
+O(1) =

√
log x

4c6

+O(1),

where we used our assumption that x ≥ exp{qε}, yields the estimate∑
n≤x

Λχ(n)� xe−c7
√

log x,(B.0.17)

which proves (B.0.1) and, consequently, completes the proof of the theorem.
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