
WEYL’S LAW FOR THE STEKLOV PROBLEM ON SURFACES WITH
ROUGH BOUNDARY

MIKHAIL KARPUKHIN, JEAN LAGACÉ, AND IOSIF POLTEROVICH

Abstract. The validity of Weyl’s law for the Steklov problem on domains with Lipschitz bound-
aries is a well-known open question in spectral geometry. We answer this question in two dimensions
and show that Weyl’s law holds for an even larger class of surfaces with rough boundaries. This
class includes domains with interior cusps as well as “slow” exterior cusps. Moreover, the condition
on the speed of exterior cusps cannot be improved, which makes our result in a sense optimal. The
proof is based on the methods of Suslina and Agranovich combined with some observations about
the boundary behaviour of conformal mappings.

1. Introduction and main results

1.1. Asymptotics of Steklov eigenvalues. Let Ω be a bounded domain in a smooth complete
Riemannian manifold (M, g) of dimension d > 2. Consider the Steklov eigenvalue problem{

∆u = 0 in Ω;

∂νu = σu on ∂Ω,
(1.1)

where ∆ is the Laplace-Beltrami operator onM associated with the Riemannian metric g and ∂ν
is the outward normal derivative. Under some regularity conditions on the boundary, for instance
∂Ω Lipschitz [AM12], the spectrum is discrete and forms a sequence accumulating only at infinity:

0 = σ0(Ω) 6 σ1(Ω) 6 σ2(Ω) 6 . . .↗∞.
We will discuss weaker conditions under which the spectrum is discrete later on. To study eigenvalue
asymptotics it is convenient to introduce the eigenvalue counting function

N(σ) := # {j ∈ N : σj(Ω) < σ} .
If ∂Ω is piecewise C1, it is known [Agr06] that the counting function satisfies the Weyl asymptotics

N(σ) =
ωd−1

(2π)d−1
Vold−1(∂Ω)σd−1 + o

(
σd−1

)
, (1.2)

where ωd is the volume of the d-dimensional unit ball. We refer also to [San55, Sha71, Sus99b, AA96]
for earlier results on this topic, as well as to [Roz79, Edw93, GPPS14, GKLP22] for improvements of
the error estimate under stronger regularity assumptions. Extending the asymptotic formula (1.2)
to domains with Lipschitz boundaries is a well known open problem, see e.g. [GP17, RS21, Sus21,
GKLP22], to which we provide an answer in two dimensions.
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Theorem 1.1. Let Ω be a bounded domain with Lipschitz boundary in a smooth complete Riemann-
ian manifold of dimension two. Then its Steklov eigenvalues satisfy the asymptotics (1.2).

In fact, we prove that (1.2) holds for domains satisfying weaker regularity conditions defined via
the boundary behaviour of conformal maps, see Section 1.2. We give examples of domains satisfying
those conditions in Section 4, they include the so-called chord-arc domains, as well as domains with
inward and “slow” outward cusps, see Proposition 4.2.

The proof of Theorem 1.1 relies on the variational characterisation of Steklov eigenvalues. While
this characterisation is standard for Lipschitz domains, certain subtleties arise for domains with less
regular boundary which we clarify in Section 1.3. We use a conformal map to obtain an isospectral
weighted Steklov problem on a surface with smooth boundary. The isospectrality follows from
the equivalence of the corresponding variational characterisations; for Lipschitz domains, it can
be deduced almost directly from the analogous results for the Neumann problem [GU16]. Finally,
we use the methods developed in [BS80, Sus99b], see also [Agr06], in order to obtain spectral
asymptotics for these weighted Steklov problems. For Lipschitz domains we could use the results
from [Sus99b, Agr06] in a straightforward way; we extend these techniques to allow for more singular
weights corresponding to less regular boundaries.

1.2. Conformal regularity. As was mentioned above, our first goal is to reduce the Steklov
problem on a surface with rough boundary to a weighted Steklov problem on a surface with
smooth boundary, via a conformal map. Slightly abusing terminology, we refer to domains in
two-dimensional Riemannian manifolds whose boundary is a finite collection of disjoint closed sim-
ple curves as surfaces with boundary. We say that two surfaces Ω1 and Ω2 with (potentially empty)
boundary are conformally equivalent, or in the same conformal class if there exists ϕ : Ω1 → Ω2 a
conformal diffeomorphism of their interior extending to a homeomorphism of their boundary. This
defines an equivalence relation on surfaces with boundary, and it is clear that every conformal class
consists of surfaces with the same topological type, i.e. same orientability, genus and number of
boundary components.

The uniformisation theorems are concerned with finding a canonical representative in every con-
formal class C. These canonical representatives are circle domains, which are the complement of b
geodesic disks in a closed surface M endowed with a metric of constant curvature. It follows from
the uniformisation theorems of Haas and Maskit [Haa84, Mas89] that there is a circle domain in
every orientable conformal class with finite topology; this result was extended to the non-orientable
setting in [KS21, pp. 11–12]. We shall denote this canonical representative (ΩC , gC).

Many boundary regularity results in the litterature are proven for conformal maps from the disk
to simply connected surfaces with boundary. It follows from [BK87, p.24] that any such result for
maps from the disk is also valid for maps from an annulus into a doubly connected surface with
boundary, by alternately filling the boundary components of the target with a disk and conjugating
with inversions. As observed in [KS21, Remark 2.2], this allows one to extend the regularity theory
to conformal maps from arbitrary circle domains with finite topology. Indeed, in that situation
the restriction of the conformal map to a neighbourhood of one boundary component in the circle
domain is a map from an annulus into a doubly connected surface with boundary. In particular,
Carathéodory’s Theorem tells us that any conformal diffeomorphism of the interiors ϕ : ΩC → Ω
extends to a homeomorphism of the boundary [Pom92, Theorem 2.6].
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Definition 1.2. Let C be a conformal class and ϕ : ΩC → Ω be a conformal diffeomorphism. We
define when they exist,

β :=
∣∣∣dϕ∣∣∂ΩC

∣∣∣ and η := |dϕ|2 .

We call β the boundary conformal factor and η the interior conformal factor.

The interior conformal factor η ∈ L1(ΩC) and the Riemannian volume measure dvg on Ω is the
pushforward measure ϕ∗(ηdvgC). If a surface with boundary has finite perimeter the boundary
conformal factor β ∈ L1(∂ΩC), and the boundary length measure d`g on ∂Ω is the pushforward
measure ϕ∗(βd`gC) [Pom92, Theorem 6.8]. Integrability properties of the conformal factors β and
η are controlled by the regularity of the boundary ∂Ω. This motivates the following definition of
regularity classes.

Definition 1.3. Let C be a conformal class, Ω ∈ C, and X (ΩC) and Y(∂ΩC) be function spaces. We
say that Ω has boundary conformal regularity Y if for some conformal diffeomorphism ϕ : ΩC → Ω,
the boundary conformal factor β ∈ Y. We say that Ω has interior conformal regularity X if for
some conformal diffeomorphism the interior conformal factor η ∈ X .

We note that our definition of interior conformal regularity differs from that in [GU16, GPU18] by
a factor of 2 since in those papers it was stated in terms of the integrability of |dϕ| rather than |dϕ|2.
In other words, interior conformal regularity Lp corresponds to domains which are 2p-conformally
regular in their definitions.

The integrability class of the interior conformal factor Ω has been used to investigate the prop-
erties of the Neumann Laplacian, see [GU16, GPU18]. As expected, the regularity of the boundary
conformal factor also appears in the study of the Steklov problem.

Remark 1.4. By the Kellogg–Warschawski Theorem [Pom92, Theorem 3.6], surfaces with boundary
of class Cn,α, n > 1 and 0 < α < 1, have boundary conformal regularity Cn−1,α. It follows
furthermore from the arguments in the proof of [BBL16, Lemma 5.1] that any surface with Lipschitz
boundary (or, more generally, a chord–arc domain, see Section 4) has boundary conformal regularity
Lp for some p > 1, and surfaces of finite perimeter have boundary conformal regularity L1.

Note that domains with exterior cusps do not have boundary conformal regularity Lp for any
p > 1. In order to include some of these domains in our analysis we need to recall the following
definition [BS88, Sections IV.6, IV.8].

Definition 1.5. Given (Ξ, µ) a measure space of finite measure and a > 0 the space L(log L)a(Ξ)
is a space of functions f on Ξ such that

ˆ
Ξ
|f |(log(2 + |f |)a dµ <∞

endowed with the norm

‖f‖L(log L)a(Ξ) = inf

{
t > 0 :

ˆ
Ξ

∣∣∣∣ft
∣∣∣∣ (log

(
2 +

∣∣∣∣ft
∣∣∣∣))a dµ 6 1

}
.
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One can show that L(log L)a(Ξ) is a Banach space for every a > 0. The dual of L(log L)a(Ξ) is the
space exp L1/a(Ξ) of functions f on Ξ such that

‖f‖exp L1/a(Ξ) := inf

{
t > 0 :

ˆ
Ξ

exp

(∣∣∣∣ft
∣∣∣∣1/a dµ

)
6 1

}
<∞. (1.3)

The norm (1.3) is equivalent to the dual norm on exp L1/a so that there is C depending only on
(Ξ, µ) such that for all f ∈ L(log L)a(Ξ) and u ∈ exp L1/a(Ξ) the Hölder-type inequality

‖fu‖L1(Ξ) 6 C ‖f‖L(log L)a(Ξ) ‖u‖exp L1/a(Ξ) (1.4)

holds.

Given a conformal class C and Ω ∈ C with boundary conformal factor β we consider the weighted
Steklov problem {

∆u = 0 in ΩC ;

∂νu = βσu on ∂ΩC ,
(1.5)

The spectrum of this weighted problem is discrete and accumulates at infinity if the trace W1,2(ΩC) ↪→
L2(∂ΩC , βd`gC) is compact, see [GKL21, Sections 3 and 4]. This is the case if β ∈ L log L(ΩC), see
Proposition 2.2.

Theorem 1.6. Let C be a conformal class and (Ω, g) ∈ C be a surface with boundary conformal
regularity L log L. Then, problems (1.1) and (1.5) are isospectral in the sense that σk(Ω) = σk(ΩC , β)
for all k ∈ N.

Remark 1.7. A simple computation shows that Theorem 1.6 holds when the boundary is smooth,
see e.g. [JS14, Lemma 3.3]. If the boundary is sufficiently rough, isospectrality is not a priori
clear, and is resolved through the study of composition operators between Sobolev spaces with
appropriately chosen norm. In a similar way, the existence of those bounded composition operators
gives rise to isospectrality of the weighted Neumann problems, see [GU16]. This issue was not
previously addressed in the literature on the Steklov problem on Lipschitz domains, cf. [GP10,
Proposition 2.1.4].

Our main technical theorem is the following.

Theorem 1.8. Let Ω be a surface with boundary of boundary conformal regularity L log L. Then
its Steklov eigenvalues satisfy the asymptotic formula (1.2).

Equivalently, for any surface Ω with smooth boundary and β ∈ L log L(∂Ω), the eigenvalues of the
weighted problem (1.5) satisfy the asymptotic formula (1.2), with Vold−1(∂Ω) replaced by

´
∂Ω β d`g.

The equivalence of the two formulations follows from Theorem 1.6. Note that in view of Remark
1.4, Theorems 1.6 and 1.8 imply Theorem 1.1.

1.3. Variational characterisation and natural domains for the Steklov problem. On a
surface with boundary Ω, consider the Sobolev space

W1,2(Ω) :=
{
f ∈ L2(Ω) : |∇f | ∈ L2(Ω)

}
,
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where ∇f is the weak gradient. If Ω is a surface with Lipschitz boundary, there are two equivalent
norms on W1,2(Ω):

‖f‖2W1,2(Ω) =

ˆ
Ω
|∇f |2 dvg +

ˆ
Ω
f2 dvg, (1.6)

and

‖f‖2
W1,2
∂ (Ω)

=

ˆ
Ω
|∇f |2 dvg +

ˆ
∂Ω
f2 d`g. (1.7)

The norm (1.6) is the standard one and is commonly used in interior problems, for instance the
Neumann problem. On the other hand the norm (1.7) is a natural norm of choice for the Steklov
problem. When the boundary is only some collection of Jordan curves these norms may not be
equivalent, even when the boundary has finite perimeter (one can show that this the case for
domains with fast cusps as defined in subsection 4.2). By the Meyers–Serrin theorem, for any
surface with boundary Ω the space W1,2(Ω) is the completion of

W(Ω) :=
{
f ∈ C∞(Ω) : ‖f‖W1,2(Ω) <∞

}
under the ‖·‖W1,2(Ω) norm, which motivates the following definition.

Definition 1.9. Let Ω be a surface with boundary. The boundary Sobolev space W1,2
∂ (Ω) is defined

as the completion of

W∂(Ω) :=
{
f : Ω→ R : f ∈ C∞(Ω) and ‖f‖

W1,2
∂ (Ω)

<∞
}

under the ‖·‖
W1,2
∂ (Ω)

norm.

Again, for surfaces with sufficiently regular boundary, W1,2(Ω) and W1,2
∂ (Ω) are isomorphic.

We give the following condition for their equivalence in terms of interior and boundary conformal
regularity.

Proposition 1.10. Let Ω be a surface with boundary with both interior and boundary conformal
regularity L log L. Then, W1,2(Ω) and W1,2

∂ (Ω) are isomorphic.

The appropriate space to define the Steklov problem (especially when they are not isomorphic)
is W1,2

∂ (Ω), see [NT08]. The Steklov eigenvalues σk(Ω) satisfy the variational characterisation

σk(Ω) = inf
Ek

sup
u∈Ek\{0}

´
Ω |∇u|

2 dvg´
∂Ω u

2 d`g
,

where Ek is a k + 1 dimensional subspace of W1,2
∂ (Ω). For the weighted problem on ΩC , we have

that for β ∈ L log L(ΩC) the weighted Steklov eigenvalues satisfy the characterisation

σk(ΩC , β) = inf
Ek

sup
u∈Ek\{0}

´
ΩC
|∇u|2 dvg´

∂ΩC
u2β d`g

,

where again Ek is a k + 1 dimensional subspace of W1,2
∂ (ΩC). The isospectrality Theorem 1.6 is a

consequence of the following result on composition operator between Sobolev spaces.
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Proposition 1.11. Let C be a conformal class and (Ω, g) ∈ C be a surface with boundary. Let
ϕ : ΩC → Ω be a conformal diffeomorphism with boundary conformal factor β ∈ L log L. Then, the
composition operator

ϕ∗ : W1,2
∂ (Ω)→W1,2

∂ (ΩC) ϕ∗f := f ◦ ϕ
induced by ϕ is an isomorphism.

Plan of the paper. The paper is organised as follows. Section 2 is concerned with the proof
of Theorem 1.6. We then use the variational isospectrality to prove that domains of boundary
conformal regularity L log L have discrete Steklov spectrum. Section 3 is dedicated to proving The-
orem 1.8, expanding on the theory of spectral asymptotics for variational eigenvalues developed
in [BS80, Sus99b]. In Section 4 we give a few examples of domains satisfying the hypotheses of
Theorem 1.8. Finally, in Section 5 we discuss some further extensions and applications of our meth-
ods, in particular to the Steklov problem with an indefinite weight and to the Neumann eigenvalue
problem.
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2. Isospectrality and composition operators

We first prove the following lemma about composition operators on some Orlicz spaces, in similar
fashion to [GU16, Theorem 4] which is stated for Lebesgue spaces.

Lemma 2.1. For j ∈ {1, 2}, let (Ξj , µj) be measure spaces with finite measure, ϕ : Ξ1 → Ξ2 be
measurable and suppose that the pushforward measure ϕ∗(µ1) = βµ2, where β : Ξ2 → (0,∞). Then,
ϕ induces a bounded composition operator

ϕ∗ : exp L2(Ξ2)→ L2(Ξ1), ϕ∗f := f ◦ ϕ

if and only if β ∈ L log L(Ξ2).

Proof. To prove that the condition β ∈ L log L(Ξ2) is sufficient, assume that f ∈ exp L2(Ξ2), so that
|f |2 ∈ exp L(Ξ2). Since L log L(Ξ2) is a reflexive space with dual exp L(Ξ2), we can computeˆ

Ξ1

|ϕ∗f |2 dµ1 =

ˆ
Ξ2

|f |2 β dµ2

6 ‖β‖L log L(Ξ2)

∥∥f2
∥∥

exp L(Ξ2)

= ‖β‖L log L(Ξ2) ‖f‖
2
exp L2(Ξ2) .

(2.1)
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Let us now show that the condition is necessary. Indeed, if β 6∈ L log L(Ξ2), it is not a bounded
linear functional on exp L(Ξ2), so we can find |f |2 ∈ exp L(Ξ2) so that the second term on the first
line in (2.1) is not finite. �

In the next proposition, we show compactness of a weighted boundary trace. The proof is similar
in nature to the ideas in [GKL21, Example 3.19 (iii)] where the weight is instead in the interior.

Proposition 2.2. Let Ω be a surface with smooth boundary and 0 6 β ∈ L log L(∂Ω), β 6≡ 0. Then,
the trace Tβ : W1,2(Ω)→ L2(∂Ω, βd`) is compact.

Proof. Define θ : ∂Ω→ R as θ := 1
β1{β>0}. Consider the diagram

W1,2(Ω) exp L2(∂Ω) L2(∂Ω)

L2(∂Ω, βd`),

T

Tβ

M√β

M√θ

where T is the trace and Mh is the operator of multiplication by the function h. The trace operator
T is bounded; exp L2(∂Ω) is in fact the optimal target space on ∂Ω for bounded traces from W1,2(Ω),
see [CP16, Example 5.3]. By Hölder inequality (1.4) between expL(∂Ω) and L log L(∂Ω) there exists
C > 0 such that∥∥∥M√βf∥∥∥2

L2(∂Ω)
=

ˆ
∂Ω
f2β d` 6 C

∥∥f2
∥∥

exp L(∂Ω)
‖β‖L log L(∂Ω) = C ‖f‖2exp L2(∂Ω) ‖β‖L log L(∂Ω) .

In other words, M√β is bounded with norm at most C ‖β‖L log L(∂Ω). As for M√θ, we have that∥∥∥M√θf∥∥∥2

L2(∂Ω;β d`)
=

ˆ
∂Ω∩{β>0}

f2 d` 6 ‖f‖2L2(∂Ω)

Thus, for a probably different constant C > 0 independent of β we have

‖Tβ‖ 6 C ‖β‖L log L(∂ΩC) .

To prove compactness, it is sufficient to prove thatM√β ◦T is compact; if β is a nonnegative smooth
function this follows from the usual trace restriction theorem. By density of smooth functions in
L log L, for every ε > 0, there is a nonnegative βε ∈ C∞(∂Ω) such that ‖β − βε‖L log L(∂Ω) < ε and
βε 6 β almost everywhere, so that

√
β −
√
βε 6

√
β − βε. But then,∥∥∥M√β ◦ T −M√βε ◦ T∥∥∥ 6 ∥∥∥M√β−βε∥∥∥ ‖T‖ 6 ‖β − βε‖L log L(∂Ω) ‖T‖ 6 ε ‖T‖ .

ThusM√β ◦T is a norm limit of compact operators hence compact itself and Tβ is compact also. �

We now have the right tools to prove the composition Propositon 1.11, following the structure of
the proof of [GU16, Theorem 6].

Proof of Proposition 1.11. Let f ∈ W∂(Ω) as in Definition 1.9. Invariance of the Dirichlet energy
under conformal diffeomorphisms tells us that

‖∇f‖L2(Ω) = ‖∇(ϕ∗f)‖L2(ΩC) .
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Since the boundary conformal factor is in L log L, ϕ induces the bounded composition operator
(ϕ−1)∗ : exp L2(∂ΩC)→ L2(∂Ω). Therefore, for every a ∈ R, we have that

|a| = Per(Ω)−1/2 ‖c‖L2(∂Ω) 6 Per(Ω)−1/2
(
‖f‖L2(∂Ω) + ‖f − a‖L2(∂Ω)

)
6 Per(Ω)−1/2

(
‖f‖L2(∂Ω) + ‖ϕ∗f − a‖exp L2(∂ΩC)

)
.

(2.2)

We claim that there exists a constant C > 0 such that

‖ϕ∗f‖L2(∂ΩC) 6 inf
a∈R

(
‖a‖L2(∂ΩC) + ‖ϕ∗f − a‖L2(∂ΩC)

)
6 inf

a∈R

(
Per(Ω)−1/2 Per(ΩC)

1/2 + C ‖1‖L log L(∂ΩC)

)(
‖f‖L2(∂Ω) + ‖ϕ∗f − a‖exp L2(∂ΩC)

)
.

Indeed, the first inequality is just the triangle inequality. We then use (2.2) to estimate the first
term, and inequality (1.4) together with the relations ‖h‖2L2 =

∥∥h2
∥∥

L1 , ‖h‖2exp L2 =
∥∥h2
∥∥

exp L1 to
estimate the second.

The space exp L2(∂ΩC) is the optimal target space for traces from W1,2(ΩC), and this is equivalent
to the validity of a Poincaré trace inequality, see [CP16, Theorems 1.3 and 5.3],

inf
a
‖ϕ∗f − a‖exp L2(∂ΩC) 6 C ‖∇ϕ

∗f‖L2(ΩC) .

Combining the previous display formulas gives us the existence of some constant C > 0 such that

‖ϕ∗f‖
W1,2
∂ (ΩC)

6 C ‖f‖
W1,2
∂ (Ω)

.

SinceW∂(Ω) is dense in W1,2
∂ (Ω), the pullback ϕ∗ extends to the whole space as a bounded operator

as well. Proving the analogous result for (ϕ−1)∗ is simpler. Since ΩC has smooth boundary, the
spaces W1,2(ΩC) and W1,2

∂ (ΩC) are isomorphic. Compactness (in fact, boundedness is enough here)
of the trace W1,2(ΩC) → L2(∂ΩC , βd`gC) obtained in Proposition 2.2 then implies that for every
h ∈ W(ΩC), ∥∥(ϕ−1)∗h

∥∥2

W1,2
∂ (Ω)

= ‖∇h‖2L2(ΩC) + ‖h‖2L2(∂ΩC ,βd`gC ) 6 C ‖h‖
2
W1,2
∂ (ΩC)

.

By density we once again have that (ϕ−1)∗ extends to the whole space as a bounded operator,
completing the proof. �

We can now prove Theorem 1.6.

Proof of Theorem 1.6. Let Ek be a k + 1 dimensional subspace of W1,2
∂ (Ω). Then, by Proposition

1.11, ϕ∗(Ek) is a k + 1 dimensional subspace of W1,2
∂ (ΩC), and for every u ∈ Ek,´

Ω |∇u|
2 dvg´

∂Ω u
2 d`g

=

´
ΩC
|∇u|2 dvgC´

∂ΩC
u2β d`gC

.

This implies directly that σk(ΩC , β) 6 σk(Ω). The analogous reasoning with (ϕ−1)∗ instead of ϕ∗
gives the reverse inequality. �

In order to prove Proposition 1.10, we extend the results of [GU16] to a slightly more singular
interior conformal factor.
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Lemma 2.3. Let C be a conformal class and (Ω, g) ∈ C be a surface with boundary, which has
interior conformal regularity L log L through the conformal diffeomorphism ϕ : ΩC → Ω. Then, the
composition operator

ϕ∗ : W1,2(Ω)→W1,2(ΩC) ϕ∗f := f ◦ ϕ
induced by ϕ is an isomorphism.

Proof. The proof is essentially identical to the proof of Proposition 1.11. We replace the result on
the traces W1,2

∂ (ΩC) → exp L2(∂ΩC) and the corresponding Poincaré inequality with the optimal
Sobolev embedding W1,2(ΩC) → exp L2(ΩC), and use the fact that the interior conformal factor
|dϕ|2 ∈ L log L to get a bounded composition operator exp L2(ΩC)→ L2(Ω). �

We can now prove Proposition 1.10.

Proof of Proposition 1.10. Since ΩC is a surface with smooth boundary, the spaces W1,2(ΩC) and
W1,2

∂ (ΩC) are isomorphic, via some linear map ι. Interior conformal regularity L log L provides us
with an isomorphism ϕ∗ : W1,2(Ω) → W1,2(ΩC) and boundary conformal regularity L log L with
an isomorphism ϕ∗∂ : W∂(Ω) → W1,2(ΩC). The composition (ϕ∗∂)−1 ◦ ι ◦ ϕ∗ provides the desired
isomorphism. �

3. Spectral asymptotics

3.1. Eigenvalue counting functions of compact operators. We first present some known re-
sults about spectral asymptotics of compact operators defined via quadratic forms. These results can
be found in the works of Suslina [Sus99b], Birman–Solomyak [BS80], and Sukochev–Zanin [SZ20],
in a more general form. For the convenience of the reader we state them here in a form which is
specific for our purposes.

Let H be a Hilbert space and K ∈ K(H) be a self-adjoint nonnegative compact operator.
The non-zero spectrum of K consists of a discrete set of nonincreasing nonnegative eigenvalues
{λj(K) : j ∈ N} counted with multiplicity and converging to 0. The variational characterisation of
the eigenvalues yields

λj(K) = max
Ej⊂H

min
u∈Ej\{0}

(Ku, u)

(u, u)
, (3.1)

where Ej ranges over j dimensional subspaces. Note that the operatorK can be equivalently defined
via the associated bilinear form appearing in the numerator (3.1); we will use this observation further
on. For λ > 0, define the eigenvalue counting function

n(λ;K) := # {j : λj(K) > λ} ,
and, for a given α > 0, the functionals

nα(K) = lim sup
λ↘0

λαn(λ;K) and nα(K) = lim inf
λ↘0

λαn(λ;K).

Note that if nα(K) = nα(K) = Cα, then

n(λ;K) = Cαλ
−α(1 + o (1)).

We make use of the following general properties of this counting function, which are collected in
[BS80, Appendix 1], see also the references therein.
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Lemma 3.1. The following properties hold:
(1) [BS80, Lemma 1.16] For any α > 0, the functionals nα(K) and nα(K) are invariant under

compact perturbations of the inner product on H, as well as restriction to subspaces of finite
codimension.

(2) [BS80, Lemma 1.18 and its proof], [Sus99b, Lemma 1.5], Weyl–Fan Ky lemma. Let K1 6
K2 ∈ K(H) be nonnegative self-adjoint compact operators. Then, for any α > 0,∣∣∣nα(K1)

1
1+α − nα(K2)

1
1+α

∣∣∣ 6 nα(K2 −K1)
1

1+α

and ∣∣∣nα(K1)
1

1+α − nα(K2)
1

1+α

∣∣∣ 6 nα(K2 −K1)
1

1+α .

(3) [BS80, Lemma 1.15] Let K1 ∈ K(H1) and K2 ∈ K(H2) be nonnegative self-adjoint compact
operators. Let B : H1 → H2 be a bounded operator such that (K1u, u)H1 = 0 for all
u ∈ kerB. If there is a > 0 such that for all u ∈ H1 \ kerB

(K1u, u)H1

(u, u)H1

6 a
(K2Bu,Bu)H2

(Bu,Bu)H2

,

then for all λ > 0, n(λ;K1) 6 n(a−1λ;K2) for all λ > 0.

We will use these abstract results in the concrete situation where H = W1/2,2(Γ), where Γ is a
finite collection of smooth curves with length measure d`. For β : Γ→ [0,∞) let Kβ be the operator
in W1/2,2(Γ) be defined by the bilinear form

(Kβu, v)H =

ˆ
Γ
uvβ d`, u, v ∈ Dom(Kβ). (3.2)

The following lemma essentially goes back to the work of Solomyak [Sol95], see also [Sha13]. It is
a direct reinterpretation of [SZ20, Lemma 4.4] (cf. [RS21, Theorem 2.1]) in view of the variational
characterisation of the eigenvalue counting function [BS80, Lemma 1.14].

Lemma 3.2. Let Γ be a finite collection of smooth curves and 0 6 β ∈ L log L(Γ). Let Kβ be the
self-adjoint operator on W1/2,2(Γ) defined via the bilinear form (3.2). Then there exists a constant
C(Γ) > 0 such that

n(λ;Kβ) 6 C(Γ)λ−1 ‖β‖L log L(Γ) .

We now have the required tools to prove Theorem 1.8.

3.2. Proof of Theorem 1.8. We turn to the second, equivalent, statement. Recall that the
eigenvalues of the weighted Steklov problem on a surface with smooth boundary are characterised
variationally as

σk(Ω, β) = min
Ek

max
U∈Ek\{0}

´
Ω |∇U |

2 dAg´
∂Ω u

2β d`g
. (3.3)

Here Ek ⊂W1,2(Ω) (which is isomorphic to W1,2
∂ (Ω)) is a k+1 dimensional subspace, and u := τU ,

where τ : W1,2(Ω) → W1/2,2(∂Ω) is the trace operator, which is continuous. Here and further
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on we adopt the following convention: capital letters denote functions in the interior, and the
corresponding lower case letters denote their boundary traces.

Let

X :=

{
V ∈W1,2(Ω) :

ˆ
∂Ω
vβ d`g = 0

}
.

be the orthogonal complement in L2(∂Ω;β d`g) to the kernel of the weighted Dirichlet-to-Neumann
map, i.e. to the constant functions. We equip X with the inner product

(U,U)X =

ˆ
Ω
|∇U |2 dAg.

Let us define an operator Qβ on X via the bilinear form

(QβU, V )X =

ˆ
∂Ω
u v β d`g, u, v ∈ X . (3.4)

Clearly, we have that

λk(Qβ) = max
Ek⊂X

min
u∈Ek\{0}

´
∂Ω u

2β d`g

(U,U)X
. (3.5)

In view of (3.5) and (3.3) we have that for k > 1, σk(Ω, β)−1 = λk(Qβ), so that

N(σ;M,β)− 1 = n(σ−1;Qβ), (3.6)

where we have subtracted one on the left to account for the eigenvalue zero. Let us find the
asymptotics of n(σ−1;Qβ) as σ−1 =: λ↘ 0. It follows from Lemma 3.1(1) that the asymptotics of
n(λ;Qβ) does not change if we first replace (U,U)X with (U,U)X + (U,U)L2(Ω) (this is a compact
perturbation), and then lift the orthogonality condition, in order to consider U ∈W1,2(Ω) as in (3.3).
By the density of smooth functions in L log L, for every ε > 0 we can find a smooth βε ∈ C∞(∂Ω)
such that ‖β − βε‖L log L < ε. Without loss of generality, we suppose that βε 6 β almost everywhere
so that Qβ −Qβε is a positive operator. Since we know, by the general theory of pseudodifferential
operators, that as λ↘ 0

n(λ;Qβε) =
λ−1

π

ˆ
∂Ω
βε d`g + o

(
λ−1

)
,

it is sufficient by Lemma 3.1(2) to show that

n(λ;Qβ −Qβε) 6 Cλ−1 ‖β − βε‖L log L ,

with C depending only on Ω. It immediately follows from (3.4) that ker τ ⊂ ker(Qβ−Qβε). Defining
Kβ as in Lemma 3.2 with Γ = ∂Ω, we have that for all U ∈W1,2(Ω),

((Kβ −Kβε)u, u)W1/2,2(∂Ω) = ((Qβ −Qβε)U,U)W1,2(Ω)

By the trace theorem, we also have that there exists CΩ such that

(τU, τU)W1/2,2(∂Ω) 6 CΩ(U,U)W1,2(Ω).



12 MIKHAIL KARPUKHIN, JEAN LAGACÉ, AND IOSIF POLTEROVICH

By applying first Lemma 3.1(3) then Lemma 3.2 we deduce that
n(λ;Qβ −Qβε) 6 n(CΩλ;Kβ −Kβε)

6 C ′Ωλ
−1 ‖β − βε‖L log L(∂Ω)

6 C ′Ωλ
−1ε.

Since this holds for arbitrary ε > 0, we deduce that

n(λ;Qβ) =
λ−1

π

ˆ
∂Ω
β d`g + o

(
λ−1

)
and in view of (3.6) this completes the proof of the theorem.

4. Examples

In this last section, we present examples of domains having conformal regularity L log L and
explore the sharpness of Theorem 1.8. We give planar domains as example, but they extend in a
straightforward manner to domains in a complete Riemannian surface.

4.1. Chord-arc domains. Recall that a Jordan domain Ω ⊂ R2 is called a chord-arc (or Lavren-
tiev) domain if there exists a constant C such that for any x, y ∈ ∂Ω

dist∂Ω(x, y) 6 C distR2(x, y),

where the left-hand sides denotes the length of the shortest arc of the boundary joining x and y,
and the right-hand side denotes the distance between x and y in R2. It is clear that any Lipschitz
domain is a chord-arc domain. The class of chord-arc domains is larger than Lipschitz and includes,
in particular, the domain bounded between two logarithmic spirals. Note that domains with cusps
are not chord-arc.

There is a large literature on the conformal regularity of chord-arc domains, see, for instance
[Jer83] and references therein. The following result is well-known. We outline its proof below for
the convenience of the reader.

Proposition 4.1. Let Ω ⊂ R2 be a chord-arc domain and let ϕ : D→ Ω be a conformal map. Then
ϕ′ ∈ Lp(∂Ω) for some p > 1.

Proof. Since Ω is a chord-arc domain, by [Zin82, Theorem 1] we have that ϕ′ ∈ Aq for some q > 1,
where Aq denotes a Muckenhoupt class of weights (see, for instance [Gar07, Section VI.6] for a
definition). By [Gar07, Corollary 6.10], every Muckenhoupt weight on ∂Ω of class Aq, q > 1 is in
Lp(∂Ω) for some p > 1, which is our claim. �

4.2. Domains with cusps. Let Ω ⊂ R2 be a domain with boundary ∂Ω which is a finite union of
smooth curves. If two curves meet at an interior angle zero we say that they form an outward cusp,
and if the interior angle is equal to 2π we say that they form an inward cusp.

At the tip x0 of an inward cusp ϕ′(x0) = 0, in fact domains with inward cusps have ϕ′ ∈
C0,1(∂Ω) [Pom92, Theorem 3.9]. A typical example is the standard cardioid domain defined in
polar coordinates as {(r, θ) : r = 2(1 + cos θ)}, for which ϕ(z) = (z + 1)2.

Consider now domains with outward cusps. Suppose that in a neighbourhood of the outward
cusp at x0 the boundary of Ω consists of two smooth curves γ1(t), γ2(t), where t is the arc length
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parameter and γ1(0) = γ2(0) = x0. We say that Ω has a slow cusp at x0 if there is α ∈ (0, 1) (the
speed of the cusp) such that

lim
t↘0

|γ1(t)− γ2(t)|
t1+α

= sα > 0

In turn if there is C such that t−2 |γ1(t)− γ2(t)| 6 C < ∞ for all t > 0 we say that Ω has a fast
cusp at x0.

It is shown in [NT08] that whenever a domain has a fast cusp, the Dirichlet-to-Neumann map
does not have a compact resolvent. Therefore, its spectrum is not discrete and Weyl’s law can not
hold. However, the Dirichlet-to-Neumann map for a domain whose boundary is Lipschitz except at
a finite number of slow cusps has a compact resolvent, and hence a discrete spectrum.

Let ϕ : ΩC → Ω be a conformal diffeomorphism and let z0 = ϕ−1(x0) be the pre-image of a cusp
of speed α. Applying [KL17, Proposition 2.10] to [Pro17, Corollary 1], we see that as z → z0 the
conformal factor |dϕ(z)| behaves asymptotically as

|dϕ(z)| = O
(
|z − z0|−1 (− log(|z − z0|)−1− 1

α

)
. (4.1)

A direct calculation gives that |dϕ| ∈ L log L if and only if 0 < α < 1, in other words precisely when
the spectrum is discrete. This shows that Theorem 1.8 gives in a sense an optimal condition for the
validity of Weyl’s law.

Let us summarize the results of this subsection in the following

Proposition 4.2. Let Ω ⊂ R2 be a domain with piecewise smooth boundary, possibly with interior
and exterior cusps. If all exterior cusps are slow then Weyl’s law (1.2) holds for the counting function
of the Steklov eigenvalues on Ω. Moreover, if Ω has at least one fast cusp, then the Steklov spectrum
of Ω is not discrete.

Remark 4.3. It would be interesting to understand if there exist domains for which the Steklov
spectrum is discrete but the Weyl’s law (1.2) does not hold. To construct such an example one
needs to find a domain Ω with the boundary conformal factor in L1 \ L log L, and yet for which the
resolvent of the Dirichlet-to-Neumann map is still compact. We note that in terms of the weighted
problem it seems like this would require going beyond the Orlicz scale: indeed, for every 0 6 a < 1
one can find β ∈ L(log L)a(∂Ω) so that the embedding W1,2(∂Ω) → L2(∂Ω, βd`) is not compact,
following the proof found in [GKL21, Example 3.19].

5. Further remarks and extensions

5.1. The Steklov problem with indefinite weight. Suppose for now that Ω is a surface with
smooth boundary, and given β : ∂Ω→ R consider the Steklov problem with an indefinite weight:{

∆u = 0 in Ω;

∂νu = βσu on ∂Ω.
(5.1)

Indefinite eigenvalue problems of this type have been considered in the literature, see e.g. [San55,
Sus99a, Sus99b, Agr06]. If 0 6≡ β ∈ L log L(∂Ω) changes sign on sets of positive measure in ∂Ω,
then the non-zero eigenvalues form two sequences

{
σ±k (Ω, β) : k ∈ N

}
consisting of the positive and
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negative eigenvalues, accumulating respectively at ±∞. To define the variational principle, let us
first denote

‖f‖2
W1,2
∂ (Ω;β)

=

ˆ
Ω
|∇f |2 dvg +

ˆ
∂Ω
f2 |β| d`g

and
W∂(Ω;β) :=

{
f : Ω→ R : f ∈ C∞(Ω) and ‖f‖

W1,2
∂ (Ω;β)

<∞
}
.

We denote by W1,2
∂ (Ω;β) the closure ofW∂(Ω;β) under the ‖·‖

W1,2
∂ (Ω;β)

norm, and X to be the subset

of W1,2
∂ (Ω;β) orthogonal to β. Following [BS80, Sus99b], the non-zero eigenvalues of problem (5.1)

satisfy the variational principle

±1

σ±k (Ω, β)
= min

Fk
max

u∈Fk\{0}
±
´
∂Ω u

2β d`g´
Ω |∇u|

2 dAg
,

where Fk is a codimension k − 1 subspace of X . Denoting by

N±(σ; Ω, β) := #
{
k : 0 < ±σ±k (Ω, β) < σ

}
the counting functions for each of those sequences, it follows from the work of Birman–Solomyak
[BS77, BS79] (see [Pon21, Theorem 6.1] for a modern proof, in English) that if β is smooth, then

N±(σ; Ω, β) =
σ

π

ˆ
∂Ω
β± d`+ o (σ) (5.2)

where β± = max {0,±β} are the positive and negative parts of β. This formula is valid whether
or not β takes both positive and negative values. Using the same methods as in Section 3 allows
us to extend this result to β ∈ L log L(∂Ω). We note that the results in Lemma 3.1 are in fact
proven in [BS80, Sus99b] for operators with both positive and negative spectrum, with the obvious
redefinition of the functions n±α and n±α .

When Ω has non-smooth boundary, we consider once again a conformal map ϕ : ΩC → Ω. If
the product ϕ∗β |dϕ| ∈ L log L(∂ΩC), then the proof of Proposition 1.10 carries through and ϕ

induces an isomorphism ϕ∗ between W1,2
∂ (Ω;β) and W1,2

∂ (ΩC ;ϕ
∗β). If both ϕ∗β and ϕ∗β |dϕ| are

in L log L(∂ΩC) then
W1,2

∂ (ΩC ;ϕ
∗β) ∼= W1,2

∂ (ΩC) ∼= W1,2
∂ (ΩC ;ϕ

∗β |dϕ|)
and as in Theorem 1.6 problem (5.1) is isospectral to{

∆u = 0 in ΩC

∂νu = |dϕ|ϕ∗βσu on ∂ΩC .

We see directly that a sufficient condition for having the Weyl law (5.2) is also that |dϕ|ϕ∗β ∈
L log L(∂ΩC). For any surface with Lipschitz boundary, we have that |dϕ| and |dϕ|−1 are in Lp

for some p > 1 with Hölder conjugate p′, see [BBL16, proof of Lemma 5.1]. Therefore, if ϕ∗β ∈
Lq(∂ΩC) for q > p′, the Weyl law (5.2) holds. Arguing as in [VU04, Theorem 4], see also [GU16,
Theorem 4], one can show that for q > p′ the map ϕ induces a bounded composition operator
ϕ∗ : L

qp
p−1 (∂Ω)→ Lq(∂ΩC). Therefore, a sufficient condition for the Weyl law to hold is β ∈ Lr(∂Ω),

for some r > p2/(p − 1)2. In particular, if Ω is a Lipschitz domain and β is in some Orlicz space
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contained in Lq(∂Ω) for any q < ∞, then the weighted Steklov problem, definite or not, satisfies
the Weyl law (5.2).

5.2. The Neumann problem. The methods developed in this paper can be also applied to the
Neumann problem {

−∆gu = λu in Ω

∂νu = 0 on ∂Ω.

In this case, the conformal map ϕ : ΩC → Ω gives rise to the variationally isospectral weighted
Neumann problem {

−∆gu = λ |dϕ|2 u in ΩC

∂νu = 0 on ∂ΩC .

If the boundary is regular enough, the Neumann spectrum is discrete and we aim for a Weyl law of
the form

NNeu(λ) =
Area(Ω)

4π
λ+ o (λ) . (5.3)

This problem is well studied, and, in particular, we already know that the Weyl élaw holds for a
large class of domains with rough boundary. For instance, it is shown in [NS05] that (5.3) for every
domain whose boundary is of the Hölder class C0,α for α > 1/2, see also [Net07] It is also shown in
[NS05] that domains with finite straight cusps of any speed satisfy (5.3). Moreover, sharp remainder
estimates have been obtained in many cases.

A straightforward adaptation of the methods developed in this paper yields an alternative proof
of (5.3) provided |dϕ|2 ∈ L log L(ΩC). This is shown in essentially the same way as Lemma 3.2.
While this approach does not give sharp remainder estimates, it is significantly more elementary.
Using (4.1), we note that the class of domains for which |dϕ|2 ∈ L log L(ΩC) includes any cusp of
polynomial speed.
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