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Abstract

We obtain asymptotic formulae for the Steklov eigenvalues and eigenfunctions of curvilinear polygons
in terms of their side lengths and angles. These formulae are quite precise: the errors tend to zero as the
spectral parameter tends to infinity. The Steklov problem on planar domains with corners is closely linked
to the classical sloshing and sloping beach problems in hydrodynamics; as we show it is also related to
quantum graphs. Somewhat surprisingly, the arithmetic properties of the angles of a curvilinear polygon
have a significant effect on the boundary behaviour of the Steklov eigenfunctions. Our proofs are based
on an explicit construction of quasimodes. We use a variety of methods, including ideas from spectral
geometry, layer potential analysis, and some new techniques tailored to our problem.
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4 Asymptotics of Steklov eigenvalues for curvilinear polygons

1. Introduction

1.1. Preliminaries. LetΩ ⊂ R2 be a bounded connected planar domain with connected Lipschitz boundary
∂Ω, and let |∂Ω| denote its perimeter. Consider the Steklov eigenvalue problem

∆u = 0 in Ω,
∂u

∂n
= λu on ∂Ω, (1.1)

with λ being the spectral parameter, and
∂u

∂n
being the exterior normal derivative. The spectral problem (1.1)

may be understood in the sense of the normalised quadratic form

∥ gradu∥2L2(Ω)

∥u∥2
L2(∂Ω)

, u ∈ H1(Ω).

Let
DΩ : H1/2(∂Ω) → H−1/2(∂Ω), DΩf :=

∂HΩf

∂n

∣∣∣∣
Ω

denote the Dirichlet-to-Neumann map, whereHΩf stands for the harmonic extension off toΩ. The spectrum
of DΩ coincides with that of the Steklov problem. The spectrum is discrete,

0 = λ1(Ω) < λ2(Ω) ≤ · · · ≤ λm(Ω) ≤ . . . ,

with the only limit point at+∞. The corresponding eigenfunctionsum have the property that their boundary
tracesum|∂Ω form an orthogonal basis inL2(∂Ω). If the boundary∂Ω is piecewiseC1, the Steklov eigenvalues
have the following asymptotics (see [Agr06]):

λm =
πm

|∂Ω|
+ o(m) asm→ +∞. (1.2)

Moreover, if the boundary is smooth, thenDΩ is a pseudodifferential operator of order one, and the remainder
estimate could be significantly improved [Roz86, Edw93]:

λ2m = λ2m+1 +O
(
m−∞) = 2πm

|∂Ω|
+O

(
m−∞) , m→ +∞ (1.3)

(see also [GPPS14] for the case of a disconnected ∂Ω).
The asymptotic formula (1.3) immediately implies

Proposition 1.1. Let ΩI and ΩII be two smooth simply connected planar domains of the same perimeter. Then

λm(ΩI)− λm(ΩII) = O(m−∞), (1.4)

For non-smooth domains such as polygons, formula (1.3) and Proposition 1.1 are no longer valid, see e.g.
[GiPo17, section 3]. Building upon the approach introduced in [LPPS21], in the present paper we develop the
techniques that allow to improve the asymptotic formula (1.2) significantly when Ω is a curvilinear polygon.
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1.2. Curvilinear polygons. Exceptional and special angles. To fix notation, letP = P(α, ℓ) be a (simply
connected) curvilinear polygon inR2 withn verticesV1, . . . , Vn numbered clock-wise, corresponding internal
angles 0 < αj < π at Vj , and smooth sides Ij of length ℓj joining Vj−1 and Vj . Here, α = (α1, . . . , αn) ∈
Πn, where

Π := (0, π),

ℓ = (ℓ1, . . . , ℓn) ∈ Rn
+, and we will use cyclic subscript identification n+ 1 ≡ 1. Our choice of orientation

ensures that an internal angle αj is measured from Ij to Ij+1 in the counter-clockwise direction, as in Figure
1. The perimeter of P is |∂P| = ℓ1 + · · ·+ ℓn.

Figure 1: A curvilinear polygon

In what follows we will have to distinguish the cases when some of the polygon’s angles belong to the sets
of exceptional and special angles.

Definition 1.2. Let α =
π

j
, j ∈ N. We say that the angle α is exceptional if j is even, and special if j is odd,

and denote the corresponding sets

E =
{ π
2k

∣∣∣ k ∈ N
}
, S =

{
π

2k + 1

∣∣∣∣ k ∈ N
}
.

We call an exceptional angle α =
π

2k
odd or even depending on whether k is odd or even, respectively, and

define its parity O(α) to be

O(α) := cos

(
π2

2α

)
= (−1)k.

Similarly, we call a special angle α =
π

2k + 1
odd or even depending on whether k is odd or even, respectively,

and define its parity O(α) to be

O(α) := sin

(
π2

2α

)
= (−1)k.

◁

Definition 1.3. A curvilinear polygon without any exceptional angles will be called a non-exceptional polygon,
otherwise it will be called an exceptional polygon. ◁
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1.3. Main results. The main purpose of this paper is to describe sharp asymptotic behaviour as m → ∞ of
the Steklov eigenvalues λm of a curvilinear polygon P = P(α, ℓ). More precisely, we show that the Steklov
spectrum can be approximated as m → ∞ by a sequence of quasi-eigenvalues σm, which are computable in
terms of side lengths ℓ and angles α.

The quasi-eigenvaluesσm can in fact be defined in several equivalent ways, each having its own merit. Orig-
inally they are defined in Section 2 in terms of the so called vertex and side transfer matrices, in two different
ways depending on the presence of exceptional angles. This is done according to Definitions 2.3 and 2.6 in the
non-exceptional case, and according to Definitions 2.10 and 2.13 in the exceptional case. This is the most natural
definition arising from the construction of corresponding quasimodes. Later, Theorems 2.16 and 2.17 state that
the quasi-eigenvalues can be found as roots of some explicit trigonometric polynomials which also depend only
upon the geometry of the curvilinear polygon. This approach is the most convenient computationally. Theo-
rem 2.24 states thatσm can be viewed alternatively as the square roots of the eigenvalues of a particular quantum
graph Laplacian. Here the metric graph is cyclic and is modelled on the boundary of P , while the matching
conditions at the vertices are determined by the angles. This interpretation allows us to relate to the well devel-
oped theory of quantum graphs, see [BeKu13] and references therein, and also [BoEn09, KoSm99, KuNo10].
It also leads to another one, variational, interpretation of quasi-eigenvalues, see Remark 2.23, and allows us an
easy proof of Theorem 2.16. We note that in a different but somewhat reminiscent setting of a periodic problem
involving Dirichlet-to-Neumann type maps, a relation to a quantum graph problem was already observed in
[KuKu02], see also [KuKu99]. We emphasise, however, that we do not directly use the quantum graph analogy
in the construction of our quasimodes, see Remark 2.26. Finally, yet another equivalent way to define the quasi-
eigenvalues is presented in subsections 5.6 and 5.7 in terms of the lifts of the vertex and side transfer matrices
acting on the universal cover Ĉ∗ of the punctured plane, see subsection 5.2. This definition is indispensable for
the delicate analysis required to establish the correct enumeration of quasi-eigenvalues and their monotonicity
properties.

With the definitions of quasi-eigenvalues in place our main result is

Theorem 1.4. Let P = P(α, ℓ) be a curvilinear polygon. Let {σm} denote the sequence of quasi-eigenvalues
ordered increasingly with account of multiplicities. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), the
Steklov eigenvalues of P satisfy

λm = σm +O(m−ε) asm→ ∞.

Remark 1.5. We give an explicit formula for ε0, depending only on the angles of P , in Remark 4.21. ◀

As an immediate consequence of Theorem 1.4, we obtain

Corollary 1.6. Let PI(α, ℓ) and PII(α, ℓ) be two curvilinear polygons with the same angles α and the same
side lengths ℓ. Then

λm(PI)− λm(PII) = O(m−ε) asm→ +∞.

We also describe the asymptotic behaviour of the Steklov eigenfunctions on the boundary. Up to a small
error, they are given by trigonometric functions of frequency σm along each edge.

Theorem 1.7. Fix δ > 0. Then there exists C > 0 such that for all m with σm−1 + δ ≤ σm ≤ σm+1 − δ,
there exist constants am,j and bm,j such that for all j,

∥(um|Ij )(sj)− am,j cos(σmsj)− bm,j sin(σmsj)∥L2(Ij) ≤ Cm−ε,

where sj is an arc length coordinate along Ij , and ε is as in Theorem 1.4.

Remark 1.8. The assumption on m is made only so that the theorem is easy to state, as it removes the possi-
bility of clustering of eigenvalues and quasi-eigenvalues. Theorem 4.31 is a more general version, without this
assumption. ◀
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Remark 1.9. The coefficients am,j and bm,j are related to each other by imposing matching conditions at the
vertices, and may be found explicitly in the same way as the quasi-eigenvalues. See Section 4.2 for details. ◀

1.4. Examples. The following examples give the flavour of the main results; they are further discussed in more
detail and illustrated by numerics in Section 9.

Example 1.10 (Each angle is either special or exceptional). Let P(α, ℓ) be a curvilinear n-gon in which each
angle is either special or exceptional in the sense of Definition 1.2. In this case we can use Theorem 1.4 together
with Definitions 2.3 and 2.10 directly without the use of trigonometric polynomials. We will distinguish two
cases.

(a) All angles are special, that is αj =
π

2kj + 1
, kj ∈ N, j = 1, . . . , n. In this case we have the quasi-

eigenvalues

σ1 = 0, σ2m = σ2m+1 =
2πm

|∂P|
, m ∈ N, if

n∑
j=1

kj is even,

σ2m−1 = σ2m =
2π
(
m− 1

2

)
|∂P|

, m ∈ N, if
n∑

j=1

kj is odd.
(1.5)

(b) Suppose that there are K exceptional angles αE
κ = αEκ = π

2kκ
, with kκ ∈ N, κ = 1, . . . ,K , 1 ≤

E1 < E2 < · · · < EK ≤ n, and all the other angles are special. We assume the cyclic enumeration
of exceptional angles EK+1 = E1. Let us denote also by Lκ the total length of the boundary pieces
between exceptional angles αE

κ−1 and αE
κ .

Let
Kodd :=

{
κ ∈ {1, . . . ,K} : O

(
αE
κ

)
̸= O

(
αE
κ−1

)}
,

be the set of indices κ such that kκ − kκ−1 is odd, and let

Keven :=
{
κ ∈ {1, . . . ,K} : O

(
αE
κ

)
= O

(
αE
κ−1

)}
.

Then σ = 0 is a quasi-eigenvalue of multiplicity #Kodd
2 , and the positive quasi-eigenvalues σ form the

set ( ⋃
κ∈Keven

{
π

Lκ

(
m− 1

2

)
| m ∈ N

})
∪

 ⋃
κ∈Kodd

{
π

Lκ
m | m ∈ N

} ,

with account of multiplicities.

Example 1.14 and Proposition 1.15 below also show strikingly different asymptotic behaviour of eigenfunctions
in these two cases.

As an illustration, we consider the following two particular cases of right-angled triangles (see also cases (a3)
and (b4) in Example 1.12 below, and Example 1.14):

(T1) The isosceles right-angled triangle T1 = P
((

π
4 ,

π
4 ,

π
2

)
,
(
1,
√
2, 1
))

. All angles are exceptional, two of
them even, and one odd. There is a single quasi-eigenvalue at σ = 0, a subsequence of quasi-eigenvalues
σ = πm,m ∈ N of multiplicity two, and a subsequence of single quasi-eigenvalues σ = π√

2

(
m− 1

2

)
,

m ∈ N.

(T2) The right-angled triangle T2 = P
((

π
3 ,

π
6 ,

π
2

)
,
(
1, 2,

√
3
))

. Two angles are odd exceptional and one is
odd special. There are two subsequences of single quasi-eigenvalues

σ =
π

3

(
m− 1

2

)
and σ =

π√
3

(
m− 1

2

)
, m ∈ N.
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◁

Remark 1.11. Note that even special angles do not affect the quasi-eigenvalues in both cases considered in Exam-
ple 1.10. In particular, in case (a) with all even special angles the quasi-eigenvaluesσ are the same as for a smooth
domain with the same perimeter, compare with (1.3). This remains true for any curvilinear polygon — a vertex
with an even special angle can be removed and the two adjacent sides treated as a single side without affecting
the quasi-eigenvalues. ◀

Example 1.12 (Quasi-regular curvilinear polygon). Consider a quasi-regular curvilinearn-gonP = Pn(α, ℓ),
namely, a curvilinear polygon whose angles are all equal to α and all sides have the same length ℓ. Its perimeter
is obviously |∂P| = nℓ. Then we have the following two cases depending on whether α is exceptional.

(a) α ̸∈ E . Then we have the following

Proposition 1.13. Let P = Pn(α, ℓ) be a quasi-regular curvilinear n-gon with a non-exceptional angle
α. Then the set of quasi-eigenvalues σ is given by± arccos

(
sin
(
π2

2α

)
cos
(
2πq
n

))
+ 2πm

ℓ
,m ∈ N ∪ {0}, q = 0, 1, . . . ,

[n
2

] ∩ [0,+∞)

(understood as a set of unique values without multiplicities). All the quasi-eigenvalues should be taken with
multiplicity two, except in the following cases when they are single:

(i) α is not special and q = 0.

(ii) α is not special, n is even, and q = n
2 .

(iii) α is even special, q = 0, andm = 0, which corresponds to the quasi-eigenvalue 0.

(iv) α is odd special, n is even, q = n
2 , andm = 0, which corresponds to the quasi-eigenvalue 0.

The proof of Proposition 1.13 is presented in Section 9.

(b) α ∈ E . This case is already covered by Example 1.10(b) withK = Keven = n: all the quasi-eigenvalues
have multiplicity n and are given by

ℓσn(m−1)+1 = ℓσn(m−1)+2 = · · · = ℓσnm = π

(
m− 1

2

)
, m ∈ N.

The following particular cases are illustrative:

(a1) P1 (α, 1), a one-gon (a droplet) with the angle α and perimeter one. Then the set of quasi-eigenvalues
is {

±
(
π

2
− π2

2α

)
+ 2πm,m ∈ N ∪ {0}

}
∩ [0,+∞).

The same formula works also in the case α ∈ E .

(a3) P3

(
π
3 , 1
)

, the equilateral triangle of side one (this case is also covered by Example 1.10(a) as all angles are
odd special). Then

σ2m−1 = σ2m =
(2m− 1)π

3
, m ∈ N.
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(b4) P4

(
π
2 , 1
)

, the square of side one (this case is also covered by Example 1.10(b) as all angles are even excep-
tional). Then

σ4m−3 = σ4m−2 = σ4m−1 = σ4m =

(
m− 1

2

)
π, m ∈ N.

(a5) P5

(
3π
5 , 1

)
, the regular pentagon of side one. Then there are four subsequences of quasi-eigenvalues of

multiplicity two,

σ = − arccos

(
±
√
5− 1

8

)
+ 2πm, m ∈ N,

σ = arccos

(
±
√
5− 1

8

)
+ 2πm, m ∈ N ∪ {0},

and two subsequences of quasi-eigenvalues of multiplicity one,

σ = −π
3
+ 2πm, m ∈ N,

σ =
π

3
+ 2πm, m ∈ N ∪ {0}.

The case (b4) agrees with the results of [GiPo17, Section 3] obtained by separation of variables. ◁

Example 1.14 (Eigenfunction behaviour). The cases of all-special and all-exceptional angles also illustrate the
dependence of the boundary behaviour of eigenfunctions on the arithmetic properties of the angles, via the
following

Proposition 1.15. Let P be a curvilinear polygon.

(a) If all angles are special, then the boundary eigenfunctions um|∂P are equidistributed in the sense that for
any arc I ⊆ ∂P , not necessarily a side,

lim
m→∞

∥um∥L2(I)

∥um∥L2(∂P)
=

|I|
|∂P|

.

(b) If all angles are exceptional, then the boundary traces of eigenfunctions, um|∂P , are not equidistributed in
the following sense. Pick δ > 0. Then for allm with

σm−1 + δ ≤ σm ≤ σm+1 − δ, (1.6)

there exists an edge IM(m) such that

∥um∥L2(∂P\IM(m))
= O

(
m−2ε

)
,

with an implied constant in the right-hand side depending upon δ.

For the proof of Proposition 1.15, see the end of Section 4.7.

Remark 1.16. There are other versions of Proposition 1.15(b) if some (at least two) but not all angles are excep-
tional. To state these versions we would need to use the language of exceptional components in Section 2.3, see
e.g. Theorem 4.31 and Corollary 4.32. ◀
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Remark 1.17. If all angles are exceptional and all lengths are pairwise incommensurable, then it is easy to show
that the proportion of quasi-eigenvalues σm which do not satisfy the hypothesis of (b) tends to zero as δ →
0. ◀

Remark 1.18. Condition (1.6) is essential in Proposition 1.15(b). Indeed, let P be a two-gon with two excep-
tional angles, and suppose that P is symmetric with respect to the line V1V2. Then each eigenfunction is ei-
ther symmetric or anti-symmetric with respect to this line and therefore cannot concentrate on one side. This
happens because each quasi-eigenvalue σ ̸= 0 has in this case multiplicity two. The boundary behaviour of
eigenfunctions of the right-angled isosceles triangle T1, shown below, gives another example demonstrating
this phenomenon. ◀

We illustrate Proposition 1.15 by showing, in Figures 2 and 3, the numerically computed boundary traces
um|∂P for the equilateral triangle P3 from Example 1.12(a3) (all angles are special) and for the right-angled
isosceles triangle T1 from Example 1.10 (all angles are exceptional); see Section 9.1 for details of the numerical
procedure. In both cases we plot two eigenfunctions u18 and u19. For the equilateral triangle, these eigenfunc-
tions correspond to the eigenvalues λ18 ≈ 17.8023 and λ19 ≈ 19.8968, which in turn correspond to the
quasi-eigenvalues σ18 = 17π

3 and σ19 = 19π
3 (both of which are in fact double, σ17 = σ18 and σ19 = σ20).

For the right-angled isosceles triangle, these eigenfunctions correspond to the eigenvalues λ18 ≈ 15.708 and
λ19 ≈ 16.6608, which in turn correspond to the quasi-eigenvalues σ18 = 5π (which is in fact double,
σ17 = σ18) and σ19 = 15π

2
√
2

(which is single).

Figure 2: Boundary traces of u18 and u19 for the equilateral triangle

It is easily seen that in the case of the equilateral triangle the eigenfunctions are more or less equally dis-
tributed on all sides, whereas in the exceptional case in Figure 3 the eigenfunction u18 is mostly concentrated
on the union of two sides (and not on one side, cf. Remark 1.18 and Corollary 4.32; note that the corresponding
quasi-eigenvalue is double), and the eigenfunction u19 is mostly concentrated on the hypothenuse. ◁



Michael Levitin, Leonid Parnovski, Iosif Polterovich, and David A. Sher 11

Figure 3: Boundary traces of u18 and u19 for the right-angled isosceles triangle

1.5. Plan of the paper and further directions. We begin in Section 2 by defining and studying the sequence
{σm} of quasi-eigenvalues which appears in Theorem 1.4. The quasi-eigenvalues and, importantly, their mul-
tiplicities are originally defined in terms of a combination of vertex transfer matrices A(αj) and side transfer
matrices B(ℓj), which play a central role throughout the paper; see Definitions 2.3, 2.6, 2.10, and 2.13. We then
give two alternative characterisations of this sequence. On one hand, the quasi-eigenvalues coincide with the
roots of certain trigonometric polynomials, see Theorems 2.16 and 2.17. On the other hand, the sequence of
quasi-eigenvalues is also the spectrum of a particular eigenvalue problem on the boundary of our polygon,
viewed as a quantum graph, see Theorem 2.24. Section 2 also contains statements of the results on Riesz means
and the heat trace, see Theorem 2.31 and Corollary 2.32, as well as a discussion of quasi-eigenvalues of auxiliary
zigzag domains.

The rest of the paper principally contains the proofs of the main results.
In Section 3, we recall from [LPPS21] the construction of the Peters solutions [Pet50] of sloping beach prob-

lems (that is, mixed Robin-Neumann and Robin-Dirichlet problems) in an infinite sector. These solutions are
then combined, via symmetry, to give so called scattering Peters solutions of a pure Robin problem, see Theorem
3.1. This naturally gives rise to the previously defined vertex transfer matrices A(α).

Section 4 describes the quasimode construction, and finally makes apparent the reasons for our definitions
of quasi-eigenvalues {σm}. We construct approximate Steklov eigenfunctions on a curvilinear polygon, first in
the straight boundary case, then in the partially curvilinear case (with boundary straight in a neighbourhood
of each corner), and finally in the fully curvilinear case. The arguments use the Peters solutions of Section 3
as building blocks. We conclude by proving that near each sufficiently large quasi-eigenvalue σm there exists a
distinct Steklov eigenvalue λim , see Theorem 4.1, and by stating and proving Theorem 4.31 on the boundary
behaviour of eigenfunctions.

In Section 5 we address the delicate issue of enumeration of quasi-eigenvalues, namely, by proving that we
may take im = m. Note that this does not follow from quantum graph or any previously discussed techniques
(see also Remark 2.26), and requires development of a new machinery. In Section 5 we concentrate on the
case of partially curvilinear polygons and prove that for such polygons |σm − λm| = o(1). A key element
of the proof is the lifting of vectors and matrices onto the universal cover Ĉ∗ of the punctured complex plane
and a construction based on the change of argument on Ĉ∗. The proof proceeds via a gluing construction:
we cut our polygon through its side into a union of zigzag domains, establish correct enumeration for each of
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those by comparison with eigenvalue asymptotics for the Steklov–Dirichlet and Steklov–Neumann problems
[LPPS21], see Definition 5.5 and Proposition 5.10, and then glue zigzag domains together via the Dirichlet–
Neumann bracketing. Note that cutting a polygon through the vertices rather than through the sides may
appear more natural. However, comparing the contribution from corners to the eigenvalue asymptotics for
mixed Steklov–Dirichlet and Steklov–Neumann problems, one can see that the bracketing in that case does
not yield accurate enough estimates.

Sections 6 and 7 explore various consequences of the alternative characterisations of {σm}. In the former,
we prove Theorem 2.17 by explicitly writing down the trigonometric polynomials whose roots are σm. In the
latter, we establish the quantum graph analogy, and use it to prove Theorem 2.16, as well as the results on the
Riesz means.

In Section 8, we extend our results to fully curvilinear polygons. This is done by taking advantage of the
well-known relationship between the Dirichlet-to-Neumann operator and layer potentials. A careful analysis
of the kernels of single- and double-layer potential operators on curvilinear polygons, inspired by the work of
Costabel [Cos83], allows us to show that a small change in the boundary curvature and its derivatives induces
only a small change in the Steklov spectrum. From there, we use a deformation argument to complete the
proof.

Finally, Section 9 contains some numerical calculations of the Steklov spectrum in specific examples, which
provide an illustration of our results and suggest further avenues for exploration.

We want to emphasise that the most crucial and novel points of this paper are the construction of the
scattering Peters solutions in Section 3, and the enumeration argument of Section 5 based on step-by-step com-
parison between zigzag problems and the sloshing problem of [LPPS21]. Sections 4.3–4.8 and 8 contain mostly
fine-tuned technical details and may be omitted in the first reading.

Remark 1.19. The present article is the second in a series of papers concerned with the study of Steklov-type
eigenvalue problems on planar domains with corners. Our preceding work [LPPS21] focused on spectral asymp-
totics for the sloshing problem. As was mentioned above, the methods and results of [LPPS21] have been in-
strumental for a number of arguments used in this article.

In a separate publication [KLPPS21], written jointly with S. Krymski, we apply the results of the present
article to the study of the inverse spectral problem for curvilinear polygons. In particular we show there that,
generically, the side lengths of a curvilinear polygon and some information about its angles can be reconstructed
from its Steklov spectrum. ◀

Remark 1.20. The results and most of the methods of this paper are specifically two-dimensional. For some
related recent advances in higher dimensions see [Ivr19, GLPS19]. ◀
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2. Quasi-eigenvalues. Definitions and further statements

2.1. Vertex and side transfer matrices. Given an angle α, set

µα :=
π2

2α
. (2.1)

For α ̸∈ E , set

a1(α) := cosecµα = cosec
π2

2α
, a2(α) := cotµα = cot

π2

2α
, (2.2)

and consider the matrix

A(α) :=

(
a1(α) −ia2(α)

ia2(α) a1(α)

)
=

(
cosec π2

2α −i cot π2

2α

i cot π2

2α cosec π2

2α

)
. (2.3)

For the reasons that will be explained later, the matrix A(α) is called a vertex transfer matrix at the corner with
angle α.
Remark 2.1. Note that

(a) for exceptional angles α ∈ E the vertex transfer matrix is not defined since its entries blow up;

(b) for a non-exceptional α ̸∈ E , det A(α) = 1, A∗(α) = A(α), and (A(α))−1 = A(α);

(c) for special angles α ∈ S the vertex transfer matrix is equal to O(α) Id, see Definition 1.2;

(d) the eigenvalues of A(α) are

η1(α) := a1(α)− a2(α) = tan
µα
2

= tan
π2

4α
,

η2(α) := a1(α) + a2(α) = cot
µα
2

= cot
π2

4α
=

1

η1(α)
,

(2.4)

and the corresponding eigenvectors do not depend on α, see Remark 2.9.

◀

Given a side of length ℓ, define the side transfer matrix

B(ℓ, σ) :=

(
exp(iℓσ) 0

0 exp(−iℓσ)

)
, (2.5)

where σ is a real parameter.
Remark 2.2. Similarly to Remark 2.1(b), we have, for any ℓ > 0 andσ ∈ R,det B(ℓ, σ) = 1, and (B(ℓ, σ))−1 =
B(ℓ, σ). ◀

Set

C(α, ℓ, σ) := A(α)B(ℓ, σ) =

cosec
(
π2

2α

)
exp(iℓσ) −i cot

(
π2

2α

)
exp(−iℓσ)

i cot
(
π2

2α

)
exp(iℓσ) cosec

(
π2

2α

)
exp(−iℓσ)

 . (2.6)

Given a non-exceptional polygon P(α, ℓ), we construct the matrix

T(α, ℓ, σ) := C(αn, ℓn, σ)C(αn−1, ℓn−1, σ) · · · C(α1, ℓ1, σ). (2.7)
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2.2. Quasi-eigenvalues, non-exceptional polygons.

Definition 2.3. Let P = P(α, ℓ) be a non-exceptional curvilinear polygon. A non-negative number σ is
called a quasi-eigenvalue of the Steklov problem on P if the matrix T(α, ℓ, σ) has an eigenvalue 1. ◁

Remark 2.4. We note that although the matrix T(α, ℓ, σ) depends upon our choice of an enumeration of
polygon vertices, it is easily checked that the definition of quasi-eigenvalues is invariant. ◀

The following result immediately follows from Remarks 2.1(b) and 2.2, and the equation (2.7).

Lemma 2.5.

(a) The matrix T = T(α, ℓ, σ) has eigenvalue 1 if and only if

Tr T = 2. (2.8)

(b) The eigenvalue 1 of T always has algebraic multiplicity two. It has geometric multiplicity two if and only
if T = Id.

(c) The corresponding eigenvector(s) may be chosen from

C2
conj :=

{(
c

c

)∣∣∣∣∣ c ∈ C

}
.

Definition 2.6. In the absence of exceptional angles, the multiplicity of a quasi-eigenvalue σ > 0 is defined
as the geometric multiplicity of the eigenvalue 1 of the matrix T(α, ℓ, σ). If σ = 0 is a quasi-eigenvalue, its
multiplicity is defined to be one. ◁

Remark 2.7. It follows immediately from Lemma 2.5 that a quasi-eigenvalue of a non-exceptional curvilinear
polygon has multiplicity at most two. ◀

2.3. Quasi-eigenvalues, exceptional polygons. For curvilinear polygons having exceptional angles the def-
inition of quasi-eigenvalues is more involved. Let P be a curvilinear n-gon with K exceptional angles αE

1 =
αE1 = π

2k1
, . . . , αE

K = αEK
= π

2kK
, where 1 ≤ K ≤ n, and 1 ≤ E1 < E2 < · · · < EK ≤ n. Without

loss of generality we can take EK = n and identify E0 with EK , and EK+1 with E1. These exceptional an-
gles split the boundary of the polygon intoK parts, which we will call exceptional (boundary) components, each
consisting of either one smooth side or more smooth sides joined at non-exceptional angles.

Let nκ = Eκ − Eκ−1, κ = 1, . . . ,K , denote the number of smooth boundary pieces between two
consecutive exceptional angles. Obviously, n1 + n2 + · · · + nK = n. Re-label the full sequence of angles
α1, . . . , αn as

α
(1)
1 , . . . , α

(1)
n1−1, α

(1)
n1

=: αE
1 ,

α
(2)
1 , . . . , α

(2)
n2−1, α

(2)
n2

=: αE
2 ,

. . .

α
(K−1)
1 , . . . , α

(K−1)
nK−1−1, α

(K−1)
nK−1

=: αE
K−1,

α
(K)
1 , . . . , α

(K)
nK−1, α

(K)
nK

=: αE
K .

The vertices of the polygon will be re-labeled in the same manner. We also re-label the full sequence of side
lengths ℓ1, . . . , ℓn (recall that the side Ij of length ℓj joins the vertices Vj−1 and Vj) as

ℓ
(1)
1 , . . . , ℓ(1)n1

, ℓ
(2)
1 , . . . , ℓ(2)n2

, . . . , ℓ
(K)
1 , . . . , ℓ(K)

nK
,



16 Asymptotics of Steklov eigenvalues for curvilinear polygons

•

•

Figure 4: An example of re-labelling for a pentagon with two exceptional angles and therefore two exceptional
boundary components, one exceptional component (solid lines) consisting of two pieces, and the other (dashed
lines) consisting of three pieces

so that the exceptional vertex V E
κ has adjoint sides of lengths ℓ(κ)nκ and ℓ(κ+1)

1 , see Figure 4 for an example.
Denote also, for κ = 1, . . . ,K ,

α′(κ) =
(
α
(κ)
1 , . . . , α

(κ)
nκ−1

)
,

α(κ) =
(
α
(κ)
1 , . . . , α

(κ)
nκ−1, α

E
κ

)
,

ℓ(κ) =
(
ℓ
(κ)
1 , . . . , ℓ

(κ)
nκ−1, ℓ

(κ)
nκ

)
.

We will be denoting an exceptional boundary component joining exceptional vertices V E
κ−1 and V E

κ by Yκ =

Y(α(κ), ℓ(κ)).
Set

U
(
α′(κ), ℓ(κ), σ

)
= B

(
ℓ(κ)nκ

, σ
)
A
(
α
(κ)
nκ−1

)
B
(
ℓ
(κ)
nκ−1, σ

)
· · · A

(
α
(κ)
1

)
B
(
ℓ
(κ)
1 , σ

)
. (2.9)

By (2.7) and (2.6),
U
(
α′(κ), ℓ(κ), σ

)
:= B

(
ℓ(κ)nκ

, σ
)
T
(
α′(κ), ℓ′

(κ)
, σ
)
, (2.10)

where ℓ′(κ) =
(
ℓ
(κ)
1 , . . . , ℓ

(κ)
nκ−1

)
.

Set also

Xeven =
1√
2

(
e−iπ/4

eiπ/4

)
, Xodd =

1√
2

(
eiπ/4

e−iπ/4

)
, (2.11)

and, for an exceptional angle α ∈ E ,

X(α) :=

{
Xeven if O(α) = 1,

Xodd if O(α) = −1.
(2.12)
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Remark 2.8. We note that

Xeven = Xodd, and Xeven ·Xodd = 0, (2.13)

and we therefore set

X⊥
even := Xodd, X⊥

odd := Xeven, X⊥(α) := (X(α))⊥ =

{
Xodd if O(α) = 1,

Xeven if O(α) = −1.
.

(2.14)
In (2.13), and throughout this paper, the dot product in C2 is understood in the usual sense:(

u1

u2

)
·

(
v1

v2

)
= u1v1 + u2v2.

◀

Remark 2.9. It is easily checked that Xodd and Xeven are eigenvectors of the matrix A(α) corresponding to
the eigenvalues η1(α) and η2(α), respectively, for any α ̸∈ E . ◀

Definition 2.10. Let P be a curvilinear polygon with exceptional angles αE1 = π
2k1

, . . . , αEK
= π

2kK
as

defined above. We say that σ ≥ 0 is a quasi-eigenvalue ofP if there exists 1 ≤ κ ≤ K , such that σ is a solution
of the equation

U
(
α′(κ), ℓ(κ), σ

)
X
(
αEκ−1

)
·X (αEκ) = 0. (2.15)

◁

Remark 2.11. Condition (2.15) can be equivalently restated as

U
(
α′(κ), ℓ(κ), σ

)
X
(
αEκ−1

)
is proportional to X⊥ (αEκ) . (2.16)

◀

Definition 2.12. We will call an exceptional boundary component Yκ which joins two exceptional angles
αEκ−1 and αEκ an even exceptional component if the parities O

(
αEκ−1

)
and O (αEκ) are equal, and an odd

exceptional component if these parities differ. ◁

Definition 2.13. In the presence of exceptional angles, the multiplicity of a quasi-eigenvalue σ > 0 is defined
as the number of distinct valuesκ for whichσ is a solution of (2.15). The multiplicity of quasi-eigenvalueσ = 0
is defined as half the number of sign changes in the cyclic sequence of exceptional angle parities O (αE1) , . . . ,
O (αEK

), O (αE1), or equivalently as half the number of odd exceptional boundary components (see Defini-
tion 2.12) joining the exceptional vertices. ◁

Remark 2.14. It is easy to see that the definition of multiplicity of a quasi-eigenvalue σ = 0 in the exceptional
case is consistent – it always produces an integer as there is always an even number of odd exceptional boundary
components. ◀

Remark 2.15. Let us compare Definitions 2.3 and 2.10. In the former, the quasi-eigenvalues are defined in the
terms of the whole boundary ∂P . In the latter, the exceptional angles split the boundary into a number of
exceptional boundary components, each producing its own independent sequence of quasi-eigenvalues. ◀
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2.4. Quasi-eigenvalues as roots of trigonometric polynomials. We can re-formulate the quasi-eigenvalue
equations (2.8) and (2.15) as the conditions that σ is a root of some explicit trigonometric polynomials. To
define these polynomials, we need to introduce some combinatorial notation. Let

Zn = {±1}n,

and for a vector ζ = (ζ1, . . . , ζn) ∈ Zn with cyclic identification ζn+1 ≡ ζ1, let

Ch(ζ) := {j ∈ {1, . . . , n} | ζj ̸= ζj+1} (2.17)

denote the set of indices of sign change in ζ, e.g.

Ch((1, 1, 1)) = ∅; Ch((−1,−1, 1, 1)) = {2, 4}.

Given a curvilinear polygon P(α, ℓ), we now define the following trigonometric polynomials in real vari-
able σ: firstly, we set

Feven(α, ℓ, σ) :=
∑
ζ∈Zn

ζ1=1

pζ cos(ℓ · ζσ), (2.18)

where

pζ = pζ(α) :=
∏

j∈Ch(ζ)

cos

(
π2

2αj

)
, (2.19)

and we assume the convention
∏
∅

= 1.

We further define

FP(α, ℓ, σ) := Feven(α, ℓ, σ)−
n∏

j=1

sin

(
π2

2αj

)
, (2.20)

which differs from (2.18) only in the constant term.
In either exceptional or non-exceptional case, we have the following

Theorem 2.16. Let P(α, ℓ) be a curvilinear polygon. Then σ ≥ 0 is a quasi-eigenvalue if and only if it is a
root of the trigonometric polynomial FP(α, ℓ, σ). The multiplicity of a quasi-eigenvalue σ > 0 coincides with
its multiplicity as a root of (2.20), and the multiplicity of the quasi-eigenvalue σ = 0 is half its multiplicity as a
root of (2.20).

The following result is more convenient for the actual computation of quasi-eigenvalues in the exceptional
case, and also simplifies the calculation of multiplicities.

Theorem 2.17.

(a) Let P(α, ℓ) be a non-exceptional curvilinear polygon. Then a root σ > 0 of (2.20) is a quasi-eigenvalue
of multiplicity two if additionally σ is a root of

Fodd(α, ℓ, σ) :=
∑
ζ∈Zn

ζ1=1

pζ sin(ℓ · ζσ), (2.21)

otherwise it has multiplicity one.
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(b) Let P(α, ℓ) be a curvilinear polygon with exceptional angles αE1 = π
2k1

, . . . , αEK
= π

2kK
. Then σ ≥ 0

is a quasi-eigenvalue if and only if it is a root of one of the trigonometric polynomials

Feven/odd

(
α(κ), ℓ(κ), σ

)
, κ = 1, . . . ,K, (2.22)

corresponding to an exceptional boundary component Y
(
α(κ), ℓ(κ)

)
. Here,Feven/odd stands forFeven if

the exceptional boundary component Y
(
α(κ), ℓ(κ)

)
is even (or equivalently if O

(
αEκ−1

)
= O (αEκ)),

and for Fodd if Y
(
α(κ), ℓ(κ)

)
is odd (or equivalently if O

(
αEκ−1

)
= −O (αEκ)), cf. Definition 2.12.

The multiplicity of σ > 0 is equal to the number of trigonometric polynomials (2.22) for which it is a root,
and the multiplicity of σ = 0 is equal to half the number of times Fodd is chosen in (2.22).

We prove Theorem 2.17 directly from the definitions of quasi-eigenvalues in Section 6; the proof of The-
orem 2.16, which uses the quantum graph analogy discussed below in subsection 2.5, is given in subsection
7.2.

Remark 2.18. According to the definition, the quasi-eigenvalue σ = 0 in the non-exceptional case always has
multiplicity one if present. Moreover, as will be seen from the proof of Theorem 2.24 in subsection 7.1, σ = 0
is a quasi-eigenvalue in the non-exceptional case if and only if

n∏
j=1

tan
π2

4αj
=

n∏
j=1

cot
π2

4αj
= 1.

◀

Remark 2.19. In the exceptional case, the set of roots of equations (2.22) can be equivalently re-written as a set
of roots of a single trigonometric equation∏

κ∈Keven

Feven(α
(κ), ℓ(κ);σ)×

∏
κ∈Kodd

Fodd(α
(κ), ℓ(κ);σ) = 0, (2.23)

where

Kodd :=
{
κ ∈ {1, . . . ,K} : O

(
αE
κ

)
= −O

(
αE
κ−1

)}
,

Keven :=
{
κ ∈ {1, . . . ,K} : O

(
αE
κ

)
= O

(
αE
κ−1

)}
The multiplicity of a positive quasi-eigenvalue is then equal to an algebraic multiplicity of it as a root of (2.23),
and the multiplicity of σ = 0 is #Kodd

2 . ◀

Since the multiplicities of quasi-eigenvalues are finite, Theorem 2.16 immediately implies the following

Proposition 2.20. The quasi-eigenvalues of a curvilinear polygon form a discrete set with the accumulation
points only at +∞.

Indeed, (2.20) is an analytic functions of a real variable σ, and zeros of analytic functions are isolated.

Remark 2.21. It is easily seen that the real roots σ of (2.20) are symmetric with respect to σ = 0, and therefore
the algebraic multiplicity of σ = 0 is always even. This, in principle, would also allow us to consider all
real quasi-eigenvalues in both non-exceptional and exceptional cases, and not just the non-negative ones as in
Definitions 2.3 and 2.10, cf. also Remark 2.40. Such an approach will be sometimes advantageous, and we will
make clear when we use it. ◀
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2.5. An eigenvalue problem on a quantum graph. Consider the boundary of the polygon P(α, ℓ) as a
cyclic metric graph G(ℓ) with n vertices V1, . . . , Vn and n edges Ij (joining Vj−1 and Vj , with V0 identified
with Vn) of length ℓj , j = 1, . . . , n. Let s be the arc-length parameter on G(ℓ) starting at V1 and going in the
clockwise direction, see Figure 5.

Figure 5: A quantum graph.

Consider the spectral problem for a quantum graph Laplacian on G (see [BeKu13] and references therein),

−d2f

ds2
= νf,

with matching conditions

sin

(
π2

4αj

)
f |Vj+0 = cos

(
π2

4αj

)
f |Vj−0,

cos

(
π2

4αj

)
f ′|Vj+0 = sin

(
π2

4αj

)
f ′|Vj−0.

(2.24)

Hereinafter at each vertex Vj , j = 1, . . . , n, g|Vj−0 and g|Vj+0 denote the limiting values of a quantity g(s)
as s approaches the vertex Vj from the left and from the right, respectively, in the direction of s.
Remark 2.22. For αj /∈ E , we can re-write the matching conditions as

f |Vj+0 = cot

(
π2

4αj

)
f |Vj−0,

f ′|Vj+0 = tan

(
π2

4αj

)
f ′|Vj−0,

(2.25)
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For αj ∈ E , the matching conditions are given by{
f |Vj−0 = f ′|Vj+0 = 0 if O(αj) = 1,

f |Vj+0 = f ′|Vj−0 = 0 if O(αj) = −1.
(2.26)

◀

We will denote the operator f 7→ −d2f
ds2

subject to matching conditions (2.24) by ∆G . It is easy to check
that ∆G is self-adjoint and non-negative. Therefore, its spectrum is given by a sequence of non-negative real
eigenvalues

0 ≤ ν1 ≤ ν2 ≤ . . . νm ≤ · · · ↗ +∞,

listed with the account of multiplicities.

Remark 2.23. The eigenvalues νm also satisfy a standard variational principle: if

Dom(QG) :=

f ∈
n⊕

j=1

H1(Ij) : sin

(
π2

4αj

)
f |Vj+0 = cos

(
π2

4αj

)
f |Vj−0


denotes the domain of the quadratic form

QG [f ] :=

n∑
j=1

∫
Ij

(f ′(s))2 ds

of ∆G , then

νm = inf
S⊂Dom(QG)
dimS=m

sup
0̸=f∈S

QG [f ]
n∑

j=1

∫
Ij
(f(s))2 ds

.

◀

It turns out the eigenvalues νm are precisely the squares of the quasi-eigenvalues of the Steklov problem on
the polygon P(α, ℓ) as defined by Definitions 2.3 and 2.10.

Theorem 2.24. Let σm,m ≥ 1, be the Steklov quasi-eigenvalues of a curvilinear polygon P(α, ℓ), and let νm,
m ≥ 1, be the eigenvalues of ∆G , in both cases ordered non-decreasingly with account of multiplicities. Then
σ2m = νm for allm ≥ 1.

Remark 2.25. Theorem 2.16 will be derived from Theorem 2.24: we will demonstrate in subsection 7.2 that the
quantum graph eigenvalues ν = νm are the roots of the graph secular equation (7.8), which is equivalent to
FP(α, ℓ,

√
ν) = 0. ◀

Remark 2.26. We would like to emphasise that the eigenfunctions of∆G are not the quasimodes of the Dirichlet-
to-Neumann map DΩ; moreover, they do not even belong to the domain of DΩ. What rather happens is
that each eigenfunction of DΩ carries enough information to construct a corresponding proper Dirichlet-to-
Neumann quasimode. Note also that we cannot deduce the completeness of the set of eigenfunctions of DΩ

corresponding to quasimodes directly from the completeness of the set of eigenfunctions of∆G . Indeed, while
the eigenfunctions of DΩ could in principle be viewed as perturbations of the eigenfunctions of ∆G , the er-
ror is too big to guarantee the completeness of the perturbed set via the standard Bary-Krein lemma [LPPS21,
Lemma 4.8]. ◀
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The proof of Theorem 2.24 is postponed until Section 7. It uses an alternative formulation of the quantum
graph problem which, although more complicated to state, is more closely related to the Steklov problem. We
consider the eigenvalue problem for the following Dirac-type operator on G(ℓ):

D =

(
−i dds 0

0 i dds

)
, (2.27)

acting on vector functions f(s) =

(
f1(s)

f2(s)

)
; here s is the arc-length coordinate on G(ℓ), see Figure 5. For

αj /∈ E , we impose matching conditions at Vj given by

f |Vj+0 = A(αj)f |Vj−0, (2.28)

where A(αj) is the vertex transfer matrix defined by (2.3). If αj ∈ E we set

f |Vj−0 is proportional to X(αj)
⊥

f |Vj+0 is proportional to X(αj),
(2.29)

where X(αj) is defined by (2.12).
We have the following

Proposition 2.27. The operatorD, with the domain consisting of vector-functions f(s) such that their restrictions
to the edge Ij are in (H1(Ij))

2 and they satisfy the matching conditions above, is self-adjoint in (L2(G))2. More-
over, with multiplicity, its eigenvalues are the real solutions of equation (2.8) (provided αj /∈ E , j = 1, . . . , n),
or of equation (2.15) if there exists αj ∈ E .

Proposition 2.27 will be proved in Section 7. Along with Theorem 2.24 it shows that the squares of the
eigenvalues of D are precisely the eigenvalues νm of our quantum graph Laplacian.

Remark 2.28. Note that in the case of a graph Dirac operator, we need to consider all solutions of the charac-
terstic equations, not just non-negative ones as in Definitions 2.3 and 2.10. Moreover, in view of Remark 2.21
and Definitions 2.6 and 2.13, the spectrum of D may be represented as {±σm}, with the same multiplicities
as for quasi-eigenvalues of P if σm > 0 and twice the multiplicity of an eigenvalue σm = 0. In other words,
the multiplicity of σ2 in the spectrum of D2 coincides with twice the multiplicity of σ as a quasi-eigenvalue of
P . ◀

2.6. Riesz mean and heat trace asymptotics. Let {sm}, m = 1, 2, . . . , be a non-decreasing sequence of
nonnegative real numbers.

Definition 2.29. The function N ({sm}; z) := #{m ∈ N | sm ≤ z} is called the counting function for the
sequence {sm}, and the function

R({sm}; z) = R1({sm}; z) :=
∫ z

0
N ({sm}; t) dt =

∞∑
m=1

(z − sm)+ (2.30)

is called the first Riesz mean (or simply the Riesz mean) of {sm}. Here z+ = max(z, 0). ◁

The asymptotics of the Riesz mean often captures more refined features of the distribution of the sequence
{sn} than the asymptotics of the counting function. In particular, it is a standard tool to study eigenvalue
asymptotics, see, for instance, [Saf87, HaLa20].
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Let NP(λ) := N ({λm};λ) and RP(λ) := R({λm};λ) be, respectively, the eigenvalue counting func-
tion and the Riesz mean for the Steklov eigenvalues on a curvilinear polygonP . We first prove a basic Weyl law.
Observe that due to Theorem 2.24, if N ({σm};σ) is the counting function for the quasi-eigenvalues σm, we
have by [BeKu13, Lemma 3.7.4] that

N ({σm};σ) = |∂P|
π

σ +O(1). (2.31)

This can be easily combined with Theorem 1.4 to yield the following Weyl law, which was proved in [LPPS21,
Corollary 1.11] but only for straight polygons.

Proposition 2.30. For any curvilinear polygon P with angles less than π,

NP(λ) =
|∂P|
π

λ+O(1) as λ→ +∞. (2.32)

As a consequence, one expects (see [Saf87]) that

RP(λ) =
|∂P|
2π

λ2 + c1λ+ o(λ) (2.33)

for some constant coefficient c1.

Theorem 2.31. Let P be a curvilinear polygon with n sides of lengths ℓ1, . . . ℓn. Let ε̃ ∈ (0, ε0) ∩
(
0, 1

2n+1

]
,

with ε0 as in Theorem 1.4. Then the Riesz mean for the Steklov eigenvalues of P satisfies the asymptotics

RP(λ) =
|∂P|
2π

λ2 +O(λ1−ε̃) as λ→ +∞. (2.34)

In particular, the formula (2.33) holds with the coefficient c1 = 0.

Theorem 2.31 immediately implies

Corollary 2.32. The Steklov heat trace on a curvilinear polygon P satisfies an asymptotic formula

∞∑
k=1

e−tλk =
|∂P|
π t

+O(tε̃) as t→ 0+. (2.35)

Indeed, this follows by a direct computation from a well-known relation between the heat trace and the
Riesz mean.

∞∑
k=1

e−tλk = t2
∫ ∞

0
R(λk; z) e

−zt dz.

Remark 2.33. It would be interesting to establish the existence of a complete asymptotic expansion for the
Steklov heat trace on a curvilinear polygon, similarly to the smooth case, see [PoSh15, formula (1.2.2)]. Formula
(2.35) implies that the first heat invariant is zero, since the constant term on the right-hand side of (2.35) vanishes.
Note that the same result holds for smooth planar domains, see [PoSh15, Remark 1.4.5]). The fact that the
constant term in the Steklov heat trace is the same for polygons and for smooth domains is somewhat surprising,
as it is not the case for the heat invariants arising from the boundary value problems for the Laplacian, see
[MaRo15, NRS19]. ◀

Remark 2.34. In view of Theorem 2.24, one could also deduce the expansion (2.35) from the heat asymptotics
for the eigenvalues of a quantum graph [Rue12] using the standard results relating the heat traces of an operator
and of its power via the zeta function (see [Gil80, GrSe96]). ◀
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2.7. Zigzags. The notation and results of this section may seem rather esoteric. Although they are auxiliary,
they are absolutely essential for proving the main Theorems of the paper.

Definition 2.35. Let n ∈ N, ℓ = (ℓ1, . . . , ℓn) ∈ Rn
+, and α = (α1, . . . , αn−1) ∈ Πn−1. A curvilinear

n piece zigzag Z = Z(α, ℓ) is a piecewise smooth continuous non-self-intersecting curve in R2 with vertices
V0,. . . ,Vn and smooth arcs Ij of length ℓj joining Vj−1 and Vj , j = 1, . . . , n. The arcs Ij and Ij+1 meet at
Vj at an angle αj (measured from Ij to Ij+1 counterclockwise), j = 1, . . . , n− 1, see Figure 6. The vertices
V0 and Vn will be called the start and end points of Z , respectively (or just endpoints if we do not need to
distinguish them).

Figure 6: A zigzag Z and a zigzag domain Ω

We will call a zigzag straight if its arcs I1, . . . , In, are straight-line intervals, and partially curvilinear if the
arcs are straight in a neighbourhood of each vertex.

We will call a zigzag non-exceptional or exceptional ifα ∈ (Π\E)n−1 or if there existsαj ∈ E , respectively.
◁

Definition 2.36. LetZ be a zigzag. AZ-zigzag domainΩ ⊂ R2 (or just a zigzag domain) is an open bounded
simply connected set whose boundary ∂Ω = Z ∪W , where a piecewise smooth non-self-ntersecting curve W
meets Z only at the start and end points of Z forming interior angles π

2 . ◁

Let Ω be a zigzag domain with boundary ∂Ω = Z ∪ W . We consider in Ω generalised mixed Dirichlet-
Neumann-sloshing eigenvalue problems of the type

∆u = 0 in Ω,
∂u

∂n
= λu on Z, u

∂u

∂n
= 0 on W, (2.36)

The last condition is understood in the following sense: we represent W as a closure of a finite union of non-
intersecting open arcs, and impose either Dirichlet or Neumann condition on each arc. We will write

DΩ,Z : u|Z 7→ ∂u

∂n

∣∣∣∣
Z

subject to ∆u = 0 in Ω, u
∂u

∂n
= 0 on W (2.37)

for the corresponding (partial) Dirichlet-to-Neumann map on Z .
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Each such generalised mixed Dirichlet-Neumann-sloshing problem has a discrete spectrum of eigenvalues
λ1 < λ2 ≤ . . . accumulating to +∞.

We will term (2.36) a Dirichlet–Dirichlet zigzag problem (orDD-zigzag for short) and refer to it as (2.36)DD

if the Dirichlet boundary condition is imposed onW in neighbourhoods of both start and end points ofZ , in-
dependently of the boundary conditions on the rest of W . Similarly, we will term (2.36) a Neumann–Dirichlet
zigzag problem (or ND-zigzag for short) and refer to it as (2.36)ND if the Neumann boundary condition is
imposed on W in a neighbourhood of the start point of Z , and the Dirichlet boundary condition in a neigh-
bourhood of the end point of Z . The DN -zigzags and NN -zigzags are defined analogously. In general, we
will writeℵℶ-zigzag, orZ(ℵℶ), withℵ,ℶ ∈ {D,N}, and refer to (2.36) as (2.36)ℵℶ to indicate the boundary
conditions imposed on W near the start and end point of Z(ℵℶ).

Define the vectors

N :=

(
1

1

)
, D :=

(
i

−i

)
. (2.38)

Note that the vectors N,D are orthogonal, and we will set N⊥ := D and D⊥ := N. We will writeℵ,ℶℶℶ
to indicate any of the vectors N,D.

Definition 2.37. Let Z = Z(α, ℓ) be a non-exceptional zigzag. Letℵ,ℶ ∈ {D,N}. A real number σ is
called a quasi-eigenvalue of theℵℶ-zigzag Z if σ is a solution of the equation

U (α, ℓ, σ)ℵ · ℶℶℶ⊥ = 0, (2.39)

where U is defined in (2.9). ◁

Remark 2.38. Condition (2.39) can be equivalently restated as

U (α, ℓ, σ)ℵ is proportional to ℶℶℶ, (2.40)

cf. Remark 2.11. ◀

The enumeration of zigzag quasi-eigenvalues is much more delicate than in the Steklov problem, but with
an appropriate choice of the so-called natural enumeration, see Section 5, we have

Theorem 2.39. Let Z be a partially curvilinear zigzag with all non-exceptional angles α1,. . . ,αn−1, and let Ω
be any Z-zigzag domain. For ℵ,ℶ ∈ {D,N}, let λ(ℵℶ)

m denote the eigenvalues of (2.36)ℵℶ enumerated in
increasing order with account of multiplicities, and let σ(ℵℶ)

m denote the quasi-eigenvalues of theℵℶ-zigzag Z
in the natural enumeration. Then

λ(ℵℶ)
m = σ(ℵℶ)

m + o(1) asm→ ∞.

Remark 2.40. There is a distinction between the quasi-eigenvalue Definitions 2.3 and 2.10 for polygons and
Definition 2.37 for zigzag domains — the former include only non-negative quasi-eigenvalues, whereas the latter
allow for all the real ones, cf. also Remark 2.21. This is not an oversight but a deliberate choice, although a forced
one. The reason for that is that the natural enumeration for zigzag domains mentioned above sometimes takes
into account some negative quasi-eigenvalues. ◀

An analog of Theorem 2.39 exists for exceptional zigzags, but we postpone the statement until Section 5.
There is also a quantum graph analogy of Proposition 2.27 for an ℵℶ-zigzag problem. Let us associate

with a non-exceptional zigzag Z(α, ℓ) a path L joining the vertex V0 to the vertex Vn through V1, . . . , Vn−1,
see Figure 7. The length of each edge Ij joining Vj−1 to Vj , j = 1, . . . , n, is taken to be ℓj , and let s be the
coordinate on L.
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Figure 7: A path L

Consider the Dirac operator (2.27) on L acting on vector functions f(s) with the matching conditions
(2.28) at internal vertices V1, . . . , Vn−1 and with the boundary conditions

f |V0+ · ℵ⊥ = f |Vn− · ℶ⊥ = 0. (2.41)

We have the following

Proposition 2.41. The operator D on the path L, with the domain consisting of vector-functions f(s) such that
their restrictions to the edge Ij are in (H1(Ij))

2 and they satisfy the matching and boundary conditions above, is
self-adjoint in (L2(L))2. Moreover, with multiplicity, its eigenvalues are the real solutions of equation (2.39).

The proof of Proposition 2.41 is almost identical to that of Proposition 2.27 and is omitted.
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3. Auxiliary problems in a sector. Peters solutions

3.1. Plane wave solutions in a sector. Let (x, y) be Cartesian coordinates in R2, let z = x + iy ∈ C,
and let (ρ, θ) denote polar coordinates so that z = ρeiθ. Consider the sector Sα = {−α < θ < 0},
where 0 < α ≤ π, and denote its boundary components by Iin = {θ = −α} and Iout = {θ = 0}. Let
I = {θ = −α/2} denote its bisector. Let us additionally introduce the natural coordinate s on Iin ∪ Iout so
that s is zero at the vertex, negative on Iin and positive on Iout, see Figure 8.

•

Figure 8: Sectors Sα and Sα/2.

Let, for t ∈ R,

e(t) :=

(
e−it

eit

)
. (3.1)

For any fixed vector h =

(
h1

h2

)
∈ C2, define the harmonic plane waves (which we will call outgoing and

incoming plane waves)

Wh
out,α(z) := ey(h · e(x)) = ey

(
h1e

ix + h2e
−ix
)
, Wh

in,α(z) :=Wh′
out,α(Mα(z)),

where h′ =

(
h2

h1

)
and Mα : (ρ, θ) 7→ (ρ, α − θ) is the operator of reflection across the bisector I . It is

important to observe that

Wh
out,α(z)

∣∣∣
Iout

= h · e(s), Wh
in,α(z)

∣∣∣
Iin

= h · e(s), (3.2)

and thatWh
out,α(z) andWh

in,α(z) are bounded inside the sector.
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Consider the Robin boundary value problem

∆Φ = 0 in Sα,
∂Φ

∂n
= Φ on ∂Sα (3.3)

in the sector Sα, cf. [Kha18, KOBP20]. We are interested in solutions of (3.3) which approximately behave as
a combination of an incoming and an outgoing plane wave, that is, as

Φ(z) = Φ(hin,hout)
α (z) :=Whout

out,α(z) +Whin
in,α(z) +Rhin,hout

α (z), (3.4)

with some vectors hin and hout ∈ C2, where the remainderR = Rhin,hout
α (z) is decreasing, together with its

gradient, away from the corner, in the sense that

|R(z)|+ ∥ρ∇(x,y)R(z)∥ ≤ C ρ−r (3.5)

for all z ∈ Sα with |z| sufficiently large, with some constant r > 0 depending on the angle α, and some
constant C > 0 which may additionally depend on ∥hin∥ and ∥hout∥. In particular, we are interested in
sufficient conditions on hin and hout for the existence of a solution (3.4). The next result, which is the main
statement of this section, shows that these sufficient conditions differ depending upon exceptionality of the
angle α.

Throughout the rest of this section, let

µ = µα/2 =
π

α
,

χN = χα/2,N =
π

4
(1− µ) =

π

4
− π2

4α
,

χD = χα/2,D =
π

4
(1 + µ) =

π

4
+
π2

4α
.

(3.6)

This notation is chosen to match [LPPS21].

Theorem 3.1. (a) Let α be non-exceptional, i.e. α /∈ E . Then for any vector hin ∈ C2, there exists a vector
hout ∈ C2 and a solution (3.4) of (3.3) satisfying (3.5) with r = µα/2 and C = Cα∥hin∥, where Cα > 0 is
some constant depending only on α.

Moreover, in this case
hout = A(α)hin, (3.7)

where A(α) is the matrix defined in (2.3).
(b) Ifα = αE is exceptional,α =

π

2k
∈ E , k ∈ N, then for any two vectorshin andhout ∈ C2 additionally

satisfying
hin ·X(α) = hout ·X⊥(α) = 0 (3.8)

(with X(α) defined by (2.12), see also (2.11) and (2.14)), there exists a solution (3.4) of (3.3) again satisfying (3.5)
with r = µα/2 andC = Cα(∥hin∥+ ∥hout∥), whereCα > 0 is some constant depending only on α.

Remark 3.2. In both the non-exceptional and exceptional angle cases, we obtain the existence of a solution
Φ
(hin,hout)
α by fixing two out of the four components of the vectors hin and hout. The difference is that in the

non-exceptional case we fix the two components of the same vector and find the other vector from (3.7) (it does
not in fact matter whether we fix either of the two vectors as A(α) is invertible), whereas in the exceptional case
we fix exactly one component of each of hin and hout, and recover the other ones from (3.8). ◀
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Remark 3.3. Conditions (3.8) can be equivalently rewritten as

hin ∈ Span
{
X⊥(α)

}
, hout ∈ Span {X(α)} .

◀

Remark 3.4. Note that our proof of Theorem 3.1 does not work for α ≥ π for reasons explained in [LPPS21,
Remark 2.4]. ◀

3.2. Sloping beach problems and Peters solutions. Consider, in the half sector Sα/2, a mixed Robin-
Neumann problem

∆Φ = 0 in Sα/2,

(
∂Φ

∂y
− Φ

)∣∣∣∣
Iout

= 0,
∂Φ

∂n

∣∣∣∣
I

= 0, (3.9)

and a similar mixed Robin-Dirichlet problem

∆Φ = 0 in Sα/2,

(
∂Φ

∂y
− Φ

)∣∣∣∣
Iout

= 0, Φ|I = 0, (3.10)

These two problems, called the sloping beach problems and arising in hydrodynamics, have special solutions,
originally due to Peters [Pet50] in the Neumann case, are written down, with some improvements on the re-
mainder terms, in [LPPS21, Theorem 2.1]. We now define two specific solutionsΦα,N andΦα,D of the problem
(3.3) in the full sector Sα, which we call the symmetric/anti-symmetric Peters solutions in Sα. To obtain Φα,N ,
we take the even (with respect to I) extension of Peters sloping beach solution of (3.9). To obtain Φα,D, we
take the odd (with respect to I) extension of Peters sloping beach solution of (3.10).

The key properties of Φα,N and Φα,D now follow quickly from [LPPS21, Theorem 2.1]:

Lemma 3.5. We have, forℵ ∈ {N,D},

Φα,ℵ(z) =W
gout,ℵ
out,α (z) +W

gin,ℵ
in,α (z) + R̃α,ℵ(z),

with

gout,N =
1

2

(
e−iχN

eiχN

)
, gin,N = gout,N ,

gout,D =
1

2

(
e−iχD

eiχD

)
, gin,D = −gout,D,

(3.11)

and the remainder termsR = R̃α,ℵ(z) satisfy (3.5) with some constantsC > 0 depending only on α, and with
r = µ in the caseℵ = N and r = 2µ in the caseℵ = D.

Proof. We prove this for the Neumann solution and for−α/2 ≤ θ ≤ 0. By [LPPS21, Theorem 2.1], the Peters
solution for (3.9) in Sα/2 is equal to

ey cos(x− χN ) +RN (x, y),

where R = RN satisfies (3.5) with r = µ. Converting the cosine term to a complex exponential, we obtain,
with account of (3.11),

ey cos(x− χN ) = ey
e−iχN eix + eiχN e−ix

2
= eygout,N · e(x),

which is preciselyW gout,N
out,α (z). The other term,W gin,N

in,α (z), decays exponentially in the distance from z to Iin.
In {−α ≤ θ ≤ 0}, this distance is bounded below by a positive multiple of ρ, so this term decays exponentially
in ρ and may therefore be absorbed into the remainder.

The case where −α ≤ θ ≤ −α/2 follows by symmetry, and the Dirichlet case is similar.
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3.3. Proof of Theorem 3.1. Now we consider arbitrary linear combinations of the symmetric and anti-symmetric
solutions.

Proposition 3.6. Consider, forF =

(
FN

FD

)
∈ C2, a linear combinationΦ(z) = FNΦα,N (z)+FDΦα,D(z).

Let

Gout(α) :=
1

2

(
e−iχN e−iχD

eiχN eiχD

)
, Gin(α) :=

1

2

(
eiχN −eiχD

e−iχN −e−iχD

)
,

hout = Gout(α)F, hin = Gin(α)F. (3.12)

Then we have
Φ(z) =W

hout,α

out,α (z) +W
hin,α

in,α (z) +Rα,F(z),

whereR = Rα,F satisfies (3.5) with r = µ andC = Cα∥F∥ with some constantCα depending only on α.

Proof. Since Wh
out,α and Wh

in,α are linear in h, the proof follows instantaneously from Lemma 3.5 and linear
algebra. Note that in the remainder estimate we obtain the weaker, Neumann, exponent for an arbitrary linear
combination.

We proceed to the proof of Theorem 3.1. At least in the caseα /∈ E , we would like to start with an arbitrary
hin ∈ C2 and apply Proposition 3.6 with

F = (Gin(α))
−1hin, hout = Gout(α)(Gin(α))

−1hin.

Indeed, this gives us everything we want, including the remainder estimate, as long as Gin(α) is invertible. By a
direct computation, we find

det Gout(α) = det Gin(α) =
i

2
sin

(
π2

2α

)
.

Therefore Gout(α) and Gin(α) are invertible if and only ifα is not exceptional. Observing that, again by a direct
calculation,

A(α) = Gout(α)(Gin(α))
−1,

leads to (3.7).
Now supposeα ∈ E . In this case, given hin and hout satisfying (3.8), we want to find F such that we have

(3.12). We will use

Lemma 3.7. Let α =
π

2k
∈ E . Consider Gout(α) and Gin(α) as linear mappings C2 → C2. Then

Range Gout(α) = SpanC {X(α)} , Range Gin(α) = SpanC

{
X⊥(α)

}
.

and
Ker Gout(α) = SpanC {K(α)} , Ker Gin(α) = SpanC

{
K⊥(α)

}
,

where

K(α) :=
1√
2

(
1

O(α)

)
=

1√
2

(
1

(−1)k

)
, K⊥(α) :=

1√
2

(
1

−O(α)

)
=

1√
2

(
1

(−1)k+1

)
.
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Proof of Lemma 3.7. We have in this case

Gout(α) = e−iπ/4eiπk/2

(
1 (−1)k

i(−1)k i

)
, Gin(α) = e−iπ/4eiπk/2

(
i(−1)k −i

1 −(−1)k

)
,

and the statement follows by a direct computation and comparison with (2.12), (2.11) and (2.14).

By Lemma 3.7, the conditions (3.8) (or their equivalent form, see Remark 3.3), are the necessary conditions
for the solvability of (3.12). We can now assume hin = hinX

⊥(α), hout = houtX(α) with some constants
hin, hout ∈ C. Taking now

F =
hin

Gin(α)K(α) ·X⊥(α)
K(α) +

hout
Gout(α)K⊥(α) ·X(α)

K⊥(α)

gives the desired result. Indeed, applying Lemma 3.7 again, we obtain

Gin(α)F ·X⊥(α) = hin = hin ·X⊥(α), Gout(α)F ·X(α) = hout = hout ·X(α),

and therefore (3.12).
We have now found a vector F with the desired properties, and moreover ∥F∥ ≤ Cα(∥hin∥ + ∥hout∥)

for some constantCα depending only on α. Applying Proposition 3.6 with this vector F completes the proof
of Theorem 3.1.

Remark 3.8. Conditions (3.7) or (3.8) are not just sufficient but also necessary for the existence of a solution
(3.4) of (3.3), see [LPPS21, Remark 2.2]. ◀

Remark 3.9. The effects observed in Theorem 3.1 are similar to scattering. In fact, if we define

Sc(α) :=

(
i cos π2

2α sin π2

2α

sin π2

2α i cos π2

2α

)
, (3.13)

then Sc(α) can be thought of as the scattering matrix for the Peters solutions: in the sense of Theorem 3.1, we
have (

hin,1

hout,2

)
= Sc(α)

(
hin,2

hout,1

)
.

Then at exceptional angles the scattering is fully reflective and at special angles there is no reflection at all. There-
fore, we will from now on call the solutions (3.4) the scattering Peters solutions. ◀
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4. Construction of quasimodes

4.1. General approach. The main purpose of this section is to prove the following theorem, which establishes
that the quasi-eigenvalues introduced in Definitions 2.3 and 2.10 are indeed approximate eigenvalues of the
Steklov problem (1.1).

Theorem 4.1. LetP be a curvilinear polygon, and let {σm} be its sequence of quasi-eigenvalues. Then there exists
a non-decreasing sequence {im} and a sequence of positive real numbers {εm} approaching zero such that

|σm − λim | ≤ εm for allm.

We will prove Theorem 4.1 by constructing an appropriate sequence of quasimodes which we first define
in a very general setting.

Let P be a curvilinear polygon with all angles in Π. Suppose that ∂P is decomposed in the union ∂SP ⊔
∂DP ⊔ ∂NP , where each of ∂SP , ∂DP and ∂NP are unions of the boundary arcs (and thus meet only at the
vertices), with ∂SP being non-empty.

Consider in P a mixed Steklov-Dirichlet-Neumann eigenvalue problem

∆u = 0 in P, ∂u

∂n
= λu on ∂SP, u = 0 on ∂DP,

∂u

∂n
= 0 on ∂NP, (4.1)

and denote its eigenvalues and the corresponding eigenvectors by λm, um, wherem = 1, 2, . . . , and

∥um∥L2(∂SP) = 1.

Remark 4.2. Zigzag problems (2.36) are just special cases of (4.1), and we can define the partial Dirichlet-to-
Neumann map DP,∂SP for (4.1) analogously to (2.37). ◀

Definition 4.3. A sequence of functions {vm} ⊂ H2(P) with ∥vm∥L2(∂SP) = 1, is called a sequence of
quasimodes corresponding to a monotonically converging to +∞ sequence of quasi-eigenvalues {σm} for the
problem (4.1) if the three non-negative number sequences ε(j)m , j = 1, 2, 3, defined by

ε(1)m :=

∥∥∥∥∂vm∂n − σmvm

∥∥∥∥
L2(∂SP)

,

ε(2)m :=

∥∥∥∥∂vm∂n
∥∥∥∥
L2(∂NP)

+ ∥vm∥H1(∂DP),

ε(3)m := (σm + 1)∥∆vm∥L2(P),

all converge to zero as m → ∞. Moreover, for δm a given sequence converging to zero, we say {vm} are
quasimodes of order δm if there exists a constantC > 0 independent ofm such that

ε(1)m + ε(2)m + ε(3)m ≤ Cδm.

◁

The point of this definition is the following approximation result:

Theorem 4.4. Suppose that there exist sequences of quasi-eigenvalues {σm} and quasimodes {vm}, of order δm,
for the problem (4.1). Then there exist a sequence {im} of non-negative integers and a sequence of functions {ũm}
such that

|σm − λim | ≤ Cδm and ∥vm − ũm∥L2(∂SP) ≤ C
√
δm,

withC > 0 a constant independent ofm, and with each ũm being a linear combination of eigenfunctions of (4.1)
with eigenvalues in the interval [σm − C

√
δm, σm + C

√
δm].
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Remark 4.5. Later on in sections 5 and 8 we will prove, for Steklov curvilinear polygons and zigzag domains,
that im = m under an appropriate choice of enumeration. ◀

Assuming that quasimodes have been constructed, Theorem 4.4 almost immediately implies Theorem 4.1.
The only detail that remains is to show that the sequence {im} may be chosen non-decreasing. This can be
done via the following manoeuvre: let

εm := sup
k≥m

Cδk,

with C as in Theorem 4.4. Observe that εm is now a decreasing sequence converging to zero. Now, for each
m, the interval (σm − εm, σm + εm) must contain at least one λi, and we redefine im by letting im be the
minimal index among such λi. We claim that {im}, defined in this way, is a non-decreasing sequence. Indeed
since {σm} is increasing thenσm−1−εm−1 ≤ σm−εm. Therefore, the interval (σm−εm, σm+εm) cannot
contain any λi which both fails to be an element of (σm−1− εm−1, σm−1+ εm−1) and which is smaller than
all λi in the latter interval. Thus im ≥ im−1, so {im} is non-decreasing.

The proof of Theorem 4.1 has thus been reduced to the proof of Theorem 4.4 and the construction of
quasimodes for P satisfying Definition 4.3.

4.2. Boundary quasimodes. Justification of quasi-eigenvalue definitions. Before proceeding to the proof
of Theorem 4.1, we give a semi-informal justification of the quasi-eigenvalue Definitions 2.3 and 2.10, in the case
of a purely Steklov polygon P = P (α, ℓ) with ∂DP = ∂NP = ∅.

We introduce on ∂P near each vertex Vj the local coordinate sj such that sj is zero at Vj , negative on the
side Ij , and positive on the side Ij+1. Note that on each side Ij joining Vj−1 and Vj we have effectively two
coordinates: the coordinate sj running from −ℓj to 0, and the coordinate sj−1 running from 0 to ℓj , related
as

sj = sj−1 − ℓj . (4.2)

•

•

•

Figure 9: A straight polygon with local coordinates

Let Vj be the orientation-preserving isometry of the complex plane which maps the sector Vj−1VjVj+1

into the sector Sαj with the vertex at the origin. We will seek the quasimode waves vσ(z) of our problem (1.1).
We first consider the situation when all angles are non-exceptional. Near each vertex Vj , vσ(z) will be

closely approximated by a specific scattering Peters solution constructed in Section 3. Specifically we will have,
for z in a neighbourhood of Vj ,

vσ(z) = Φ
(cj,in,cj,out)
αj (σVjz) + o(1) as σ → ∞, (4.3)
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where suitable values of the quasi-eigenvalues σ and the coefficients cj,in, cj,out ∈ C2 are to be determined.
By Theorem 3.1(a), the vectors cj,in, cj,out should be related by

cj,out := A(αj)cj,in (4.4)

to ensure the existence of the scattering Peters solutions. Note that these rescaled scattering Peters solutions
satisfy Steklov boundary conditions on the sides Ij and Ij+1 with parameter σ.

As a consequence of (3.2) and Theorem 3.1,

vσ|∂Ω = Ψ+ o(1) as σ → ∞,

where
Ψ|Ij (sj) =: Ψj(sj) = cj,in · e(σsj), (4.5)

or, alternatively, using the coordinate sj−1,

Ψj(sj−1) = cj−1,out · e(σsj−1). (4.6)

If we want (4.5) and (4.6) to match, we must have, with account of (4.2),

cj,in = B(ℓj , σ)cj−1,out, (4.7)

We call (4.5), or equivalently the vector cj,in, the boundary quasi-wave incoming into Vj (from Vj−1) and
(4.6), or equivalently the vector cj−1,out, the boundary quasi-wave outgoing from Vj−1 (towards Vj). In order
for our scattering Peters solutions on Ij to match, these must be related by (4.7).

This formulation allows us to think of our problem as a transfer problem. Consider a boundary quasi-wave
b := cn,out outgoing from the vertex Vn towards V1. It arrives at the vertex V1 as an incoming quasi-wave
c1,in = B(ℓ1, σ)b and, according to Section 3 and (4.3), leaves V1 towards V2 as an outgoing quasi-wave

c1,out = A(α1)c1,in = A(α1)B(ℓ1, σ)b.

It then arrives at V2 as an incoming quasi-wave

c2,in = B(ℓ2, σ)A(α1)B(ℓ1, σ)b,

and leaves V2 towards V3 as an outgoing quasi-wave

c2,out = A(α2)B(ℓ2, σ)A(α1)B(ℓ1, σ)b.

Continuing the process, we conclude that it arrives at Vn as an incoming quasi-wave

cn,in = B(ℓn, σ)

1∏
j=n−1

A(αj)B(ℓj , σ)b

and leaves Vn towards V1 as an outgoing quasi-wave

cn,out =
1∏

j=n

A(αj)B(ℓj , σ)b.

This must match the original outgoing quasi-wave b, which imposes a quantisation condition on σ:

T(α, ℓ, σ)b = b,



Michael Levitin, Leonid Parnovski, Iosif Polterovich, and David A. Sher 35

thus justifying Definition 2.3.
Let us now deal with the situation when there are K exceptional angles αE1 ,. . . , αEK

= αn. We will
seek the quasimodes again in the form (4.3). At an exceptional vertex VEκ , κ = 1, . . . ,K the incoming and
outgoing boundary quasi-waves must satisfy, according to Theorem 3.1, the conditions (3.8), see also Remark
3.3, which take the form

cEκ,in ⊥ SpanC {X (αEκ)} , cEκ,out ∈ SpanC {X (αEκ)} . (4.8)

Noting that the transfer along each exceptional boundary component joining VEκ−1 and VEκ leads, with ac-
count of re-labelling as in Section 2, to

cEκ,in = U(α′(κ), ℓ(κ), σ)cEκ−1,out,

we arrive at (2.15), thus justifying Definition 2.10.
Although this justification was done in case of an exact polygon P , it also gives the correct heuristics for a

curvilinear polygon. The construction of quasimodes is more difficult, but as we see in the next few sections,
it can be done.

In order to assist in this construction, we define some new notation. Observe that for each m ∈ N, the
quantisation condition gives a quasi-eigenvalue σm, and also a corresponding collection of vectors cj,in and
cj,out (which also depend onm) which satisfy the transfer conditions (4.7) along each side and either (4.4) or
(4.8) at each corner depending on whether or not the angle is exceptional. These vectors cj,in and cj,out are the
solutions of a system of linear equations, and if the multiplicity of σm is one then they are determined up to
an overall multiplicative constant. These define a boundary quasi-wave.

Definition 4.6. For each m ∈ N, let Ψ(m) be a boundary quasi-wave, defined by (4.5), associated to the
quasi-eigenvalue σm, normalised so that ∥Ψ(m)∥∂P = 1. The restrictions to Ij of each Ψ(m) are denoted by
Ψ

(m)
j . ◁

Observe this definition may also be applied if the multiplicity of σm is greater than one, as then the quasi-
waves form a linear space of dimension greater than one. In this situation we simply pick Ψ(m) to be any
boundary quasi-wave which is in that space, is normalised, and is orthogonal to all previous choices of boundary
quasi-waves for the same quasi-eigenvalue.
Remark 4.7. We note that all the vectors cj,in and cj,out may be chosen from C2

conj. In the non-exceptional
case, this is true for b := cn,out by Lemma 2.5(c), and for the rest of the vectors by the fact that matrices A(α)
and B(ℓ) preserve C2

conj. The exceptional case is similar. ◀

Remark 4.8. Using a similar scheme, we may also define quasi-frequenciesσm and boundary quasi-wavesΨ(m)

for the mixed problem (4.1). The quasi-wavesΨ(m) are supported on∂SP∪∂NP and vanish on∂DP . Suppose
for the moment that ∂SP is a single connected component, without loss of generality beginning at vertex V1
and ending at vertex Vk. We define Ψ(m) by specifying collections cj,in and cj,out as before and then using
(4.5). Along each side, we have the transfer conditions (4.7), and at each non-endpoint vertex we have either
(4.4) or (4.8) depending on whether or not the angle is exceptional.

However, at the endpoint vertices V1 and Vk, something different happens: our Ψ(m) must be chosen to
match the appropriate Peters sloping beach solution, either Dirichlet or Neumann. Note that these are slop-
ing beach solutions in a sector Sα rather than Sα/2, so the terminology in Lemma 3.5 needs to be adjusted.
Specifically, we consider the vectors obtained by taking (3.11) and replacing αwith 2α throughout. These are

gout,N,2α =

e−i(π
4
−π2

8α
)

ei(
π
4
−π2

8α
)

 , gout,D,2α =

e−i(π
4
+π2

8α
)

ei(
π
4
+π2

8α
)

 , (4.9)
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with, as in (3.11),
gin,N,2α = gout,N,2α, gin,D,2α = −gout,N,2α.

Now suppose that V1 ∈ ∂ℵP and Vk ∈ ∂ℶP , withℵ,ℶ ∈ {N,D}. We require

c1,out ∈ spanR(gout,ℵ,2α), ck,in ∈ spanR(gin,ℶ,2α). (4.10)

Imposing the conditions (4.10), in addition to all the conditions previously discussed for the sides and the non-
endpoint vertices, leads to a quantization condition for σ, which yields a sequence of quasi-eigenvalues σm,
each with an accompanying collection of cj,in and cj,out. These may then be used to define Ψ(m) as before.
In the event that ∂SP consists of multiple connected components, each component is treated separately and
independently. ◀

4.3. Proof of Theorem 4.4.

Lemma 4.9. Let P be a curvilinear polygon with all angles in Π and the same conditions as before: namely, that
∂P = ∂SP ⊔ ∂DP ⊔ ∂NP , where each of ∂SP , ∂DP and ∂NP are the unions of the boundary arcs (and thus
meet only at the vertices), with ∂SP being non-empty.

Then the under-determined problem
∆w = f1(z) on P,
∂w

∂n
= f2(z) on ∂NP,

w = f3(z) on ∂DP,

(4.11)

where f1 ∈ L2(P), f2 ∈ L2(∂NP), and f3 ∈ H1(∂DP), has a solution w(z) which satisfies the following
estimates on ∂SP ,

∥w∥H1(∂SP) ≤ C∥f1∥L2(P), (4.12)∥∥∥∥∂w∂n
∥∥∥∥
L2(∂SP)

≤ C
(
∥f1∥L2(P) + ∥f2∥L2(∂NP) + ∥f3∥H1(∂DP)

)
, (4.13)

whereC are constants depending only on P , ∂SP , ∂NP , and ∂DP . In fact the constant in (4.12) depends only on
the diameter of P .

Proof. Throughout we let C be various constants depending only on P , ∂SP , ∂NP , and ∂DP . The proof
proceeds by first dealing with f1(z), then with f2(z) and f3(z).

LetB be a large disk compactly containingP , and let f̃1(z) be the extension by zero of f1(z) to a function
on B. Then certainly ∥f̃1∥L2(B) = ∥f1∥L2(P). By the usual elliptic estimate for the solution of the Poisson
problem on a disk with Dirichlet boundary conditions, there exists a functionw1(z) ∈ H2(B) vanishing on
the boundary ∂B, with ∆w1(z) = f̃1(z) and

∥w1∥H2(B) ≤ C∥f1∥L2(P).

Now let G be any smooth non-self-intersecting arc in the interior of B. Let nG be a unit normal vector field
along G. Then let V be a vector field on B whose restriction to G is nG and which is bounded in the sense
that V : H2(B) → H1(B) is bounded. By the trace theorem,

∥w1∥H1(G)+

∥∥∥∥∂w1

∂n

∥∥∥∥
L2(G)

≤ C
(
∥w1∥H3/2(B) + ∥Vw1∥H1/2(B)

)
≤ C

(
∥w1∥H2(B) + ∥Vw1∥H1(B)

)
.
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Therefore, by the definition of Sobolev norms and the elliptic estimate above,

∥w1∥H1(G) +

∥∥∥∥∂w1

∂n

∥∥∥∥
L2(G)

≤ C∥f1∥L2(P). (4.14)

We note that (4.14) still holds ifG is a finite disjoint union of smooth non-self-intersecting arcsG1, . . . , Gi, and
we interpretH1(G) as the direct sumH1(G1)⊕ · · · ⊕H1(Gi). This applies, in particular, withG = ∂SP ,
∂NP , and ∂DP , so by combining all three estimates we certainly have

∥w1∥H1(∂P) +

∥∥∥∥∂w1

∂n

∥∥∥∥
L2(∂P)

≤ C∥f1∥L2(P). (4.15)

Now we would like to find a functionw2 on P satisfying

∆w2 = 0 on P,
∂w2

∂n
= f4(z) := f2(z)−

∂w1

∂n
(z) on ∂NP,

w2 = f5(z) := f3(z)− w1(z) on ∂DP,
w2 = 0 on ∂SP.

(4.16)

Assuming such a function exists, w = w1 + w2 solves (4.11) and w = w1 on S, and we will see that this w
satisfies (4.12) and (4.13).

To construct w2, we can use the theory of boundary value problems on Lipschitz domains developed by
Brown [Bro94]. We have Dirichlet data on ∂DP ∪∂SP and Neumann datum on ∂NP , so our assumption on
vertex angles tells us that the angles between components with Dirichlet data and components with Neumann
data are less than π. This is precisely what is needed for the estimates in [Bro94] to hold. Specifically, since
∂SP ∪ ∂DP , the Dirichlet portion of the boundary, is nonempty, the problem (4.16) has a unique solution
[Bro94, Theorem 2.1]. Moreover, by the same theorem and the discussion after [Bro94, formula (2.12)], we
have the estimate

∥∇w2∥2L2(∂P) ≤ C
(
∥f4∥2L2(∂NP) + ∥∇tanf5∥2L2(∂DP)) + ∥f5∥2L2(∂DP)

)
,

where ∇tan denotes a tangential derivative along ∂NP . Note that we have omitted the portion of this esti-
mate involving ∂SP because our Dirichlet datum on ∂SP is trivial. Using the definition of theH1 norm, and
restricting to ∂SP ⊂ ∂P on the left hand side, we obtain∥∥∥∥∂w2

∂n

∥∥∥∥2
L2(∂SP)

≤ C
(
∥f4∥2L2(∂NP) + ∥f5∥2H1(∂DP)

)
. (4.17)

This translates to ∥∥∥∥∂w2

∂n

∥∥∥∥2
L2(∂SP)

≤ C

(∥∥∥∥f2 − ∂w1

∂n

∥∥∥∥2
L2(∂NP)

+ ∥f3 − w1∥2H1(∂DP)

)
. (4.18)

Removing the squares, using
√
a2 + b2 ≤ a+ b, gives∥∥∥∥∂w2

∂n

∥∥∥∥
L2(∂SP)

≤ C

(
∥f2∥L2(∂NP) +

∥∥∥∥∂w1

∂n

∥∥∥∥
L2(∂NP)

+ ∥f3∥H1(∂DP) + ∥w1(z)∥H1(∂DP)

)
.
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Applying (4.14) withG = ∂NP andG = ∂DP gives∥∥∥∥∂w2

∂n

∥∥∥∥
L2(∂SP)

≤ C
(
∥f2∥L2(∂NP) + ∥f3∥H1(∂DP) + ∥f1∥L2(P)

)
. (4.19)

Sincew = w1 on ∂SP , (4.12) is instantaneous from (4.15). And (4.13) follows fromw = w1 + w2, (4.15), and
(4.19). This completes the proof of Lemma 4.9.

Now we prove Theorem 4.4.

Proof of Theorem 4.4. The idea is to take a sequence of quasimodes, use Lemma 4.9 to correct them to har-
monic functions, then use some general linear algebra for the mixed Dirichlet-to-Neumann operator developed
in [LPPS21] to prove existence of nearby eigenvalues and eigenfunctions of (4.1).

So let {vm} be a sequence of quasimodes of order δm for the problem (4.1), with the usual assumptions on
P . For eachmwe use Lemma 4.9 to produce a functionwm with ∆wm = −∆vm on P , ∂

∂nwm = − ∂
∂nvm

on ∂NP , andwm = −vm on ∂DP . As a result, the functions

ṽm := vm + wm

are harmonic onP , satisfy Neumann boundary conditions on∂NP , and satisfy Dirichlet boundary conditions
on ∂DP . Therefore, if we let ϕm = ṽm|∂SP , we have

DP,∂SPϕm =
∂ṽm
∂n

.

By direct computation, on ∂SP ,

DP,∂SPϕm − σmϕm =
∂ṽm
∂n

− σmϕm =

(
∂vm
∂n

− σmvm

)
+
∂wm

∂n
− σmwm.

Using the triangle inequality,

∥DP,∂SPϕm − σmϕm∥L2(∂SP) ≤
∥∥∥∥∂vm∂n − σmvm

∥∥∥∥
L2(∂SP)

+ ∥∂wm

∂n
∥L2(∂SP) + ∥σmwm∥L2(∂SP).

We can apply the estimates of Lemma 4.9 to bound the second and third terms on the right-hand side. Using
(4.13) and (4.12) respectively, along with the definition ofwm, yields

∥DP,∂SPϕm − σmϕm∥L2(∂SP) ≤
∥∥∥∥∂vm∂n − σmvm

∥∥∥∥
L2(∂SP)

+C

(
||∆vm||L2(P) +

∥∥∥∥∂vm∂n
∥∥∥∥
L2(∂NP)

+ ∥vm∥H1(∂DP)

)
+Cσm∥∆vm∥L2(P).

(4.20)

But {vm} are quasimodes of order δm. So, using the terminology of Definition 4.3, we have

∥DP,∂SPϕm − σmϕm∥L2(∂SP) ≤ ε(1)m + C
(
ε(3)m + ε(2)m

)
+ Cε(3)m ≤ Cδm.

Since δm approaches zero as m → ∞, we may apply [LPPS21, Theorem 4.1], which gives the existence of
sequences {im} and {ũm}, with satisfying the eigenvalue bounds in Theorem 4.4. As we are applying that
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theorem to ϕm rather than to vm directly, the obtained eigenfunction bound appears slightly different from
the one we want. We know

∥ϕm − ũm∥L2(∂SP) ≤ C
√
δm.

We want to replace ϕm with vm. However, (4.12) in Lemma 4.9 shows that

∥vm − ϕm∥L2(∂SP) = ∥wm∥L2(∂SP) ≤ ∥wm∥H1(∂SP) ≤ C∥∆vm∥L2(P) ≤ Cε(3)m ≤ Cδm ≤ C
√
δm.

Combining these last two equations using the triangle inequality yields the eigenfunction bound, and with it
Theorem 4.4.

Remark 4.10. We can also consider “keyhole domains”P , that is, domains which have all the same requirements
on the angles but for which some components of ∂P coincide with each other, with opposite orientations. An
example is an annulus with a single, straight cut from the outside to the inside. For these domains we may
define quasimodes as in Definition 4.3. We claim that Theorem 4.4 and Theorem 4.1 still hold in this setting.
Indeed, the only difficulty is in the proof of Lemma 4.9, which cannot be repeated verbatim as the argument
with the larger disk does not make sense. However, a keyhole domain P may be conformally mapped to a non-
keyhole domain, with a conformal factor bounded above and below on P . In the case of an annulus with a
single straight cut along the negative real axis, this conformal map can be chosen to be the inverse of the map
z 7→ z2. Applying Lemma 4.9 to the conformally related problem there and then pulling the solution back
to P , absorbing the various conformal factors by possibly increasing the constant C , yields the result. The
remainder of the arguments in this section, and in the proof of Theorem 4.1, apply to keyhole and ordinary
domains alike. ◀

4.4. Quasimodes near a curved boundary. In this section we construct functions that will be used to ap-
proximate our Steklov eigenfunctions away from the corners but near a curved boundary.

Consider a domainΩ ⊂ R2 with a boundary parametrised by arc length. Assume for the moment that the
boundary is smooth. Consider a patch (s, t) of boundary orthogonal coordinates, where s is the coordinate
along the boundary and t is the normal coordinate, positive into the interior. Ideally, we would like to find
functionswσ(s, t) that are harmonic, satisfy the Steklov boundary condition with parameter σ, and for which
wσ(s, 0) = eσis (see Figure 10). Our ansatz will be of the form

wσ(s, t) = eσω(s,t),

where ω(s, t) is a complex-valued function with ω(s, 0) = is. By immediate computation, under these as-
sumptions, the Steklov boundary condition with parameter σ is precisely

∂ω

∂t
(s, 0) = −1. (4.21)

Now we write out the Laplacian. Let γ(s) be the signed curvature of the boundary. Set

Γ(s, t) := 1 + tγ(s).

Then from [DEŠ95], the expression for the Laplacian in our orthogonal coordinates is

∆ := Γ−1/2

(
− ∂

∂s
Γ−2 ∂

∂s
− ∂2

∂t2

)
Γ1/2 − γ2

4Γ2
+
tγ′′

2Γ3
− 5t2(γ′)2

4Γ4
.
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Figure 10: Boundary orthogonal coordinates for a curvilinear boundary.

By direct computation, collecting powers of σ,

∆wσ = −σ2
((

∂ω

∂t

)2

+ Γ−2

(
∂ω

∂s

)2
)
wσ

−σ
(
∂2ω

∂t2
+ Γ−1∂ω

∂t

∂Γ

∂t
+ Γ−2∂

2ω

∂s2
− Γ−3∂ω

∂s

∂Γ

∂s

)
wσ.

This may be rewritten in a “factorised” form:

∆wσ = −σ2
(
∂ω

∂t
+ iΓ−1∂ω

∂s

)(
∂ω

∂t
− iΓ−1∂ω

∂s

)
wσ

− σ

(
∂

∂t
+ iΓ−1 ∂

∂s
+ Γ−1∂Γ

∂t

)(
∂ω

∂t
− iΓ−1∂ω

∂s

)
wσ.

(4.22)

Therefore,wσ(s, t) is harmonic for all σ if and only if
(
∂ω

∂t
+ iΓ−1∂ω

∂s

)(
∂ω

∂t
− iΓ−1∂ω

∂s

)
= 0;(

∂

∂t
+ iΓ−1 ∂

∂s
+ Γ−1∂Γ

∂t

)(
∂ω

∂t
− iΓ−1∂ω

∂s

)
= 0.

(4.23)

Proposition 4.11. Suppose that ω(s, t) satisfies the initial value problem
∂ω

∂t
= iΓ−1∂ω

∂s
,

ω(s, 0) = is,
(4.24)

in a patch with coordinates (s, t). Thenwσ(s, t) = eσiω(s,t) is harmonic for all σ and satisfies a Steklov bound-
ary condition with parameter σ.

Proof. The Steklov boundary condition (4.21) is automatic from (4.24) and the fact that Γ(s, 0) = 1, and
(4.23) follows instantly from (4.24) as well.

Now consider the problem (4.24). In the setting where the boundary is analytic, then the curvature γ(s) is
analytic, and hence Γ(s, t) is analytic. By the Cauchy–Kovalevskaya theorem the problem (4.24) has a unique
solution in that setting, and the coefficients of its power series in t may be determined recursively. However,
if the curvature γ(s) is only assumed C∞ or less, the problem may have no solution; there is always a power
series expansion, but it may not converge for any positive t.
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Nevertheless, approximate solutions may be constructed by truncation of the formal power series expan-
sion. Define a set of functions {ω̃j(s)} recursively by

ω̃0(s) := is; ω̃j(s) :=
i

j
ω̃′
j−1(s)−

j − 1

j
γ(s)ω̃j−1(s) for j ≥ 1. (4.25)

Note that this process works to produce ω̃M (s) for an integer M ≥ 0 as long as γ(s) is (M − 2) times
differentiable, that is, as long as the boundary isCM . Then set

ωM (s, t) :=

M∑
j=0

ω̃j(s)t
j and ω̂M (s) :=Mω̃M (s)− iω̃′

M (s), (4.26)

with the latter definition making sense as long as γ(s) is (M − 1) times differentiable. If additionally γ(s) is
CM−1, that is, the boundary isCM+1, then ω̂M (s) is a continuous function of s.

Proposition 4.12. Suppose the curvature γ(s) is (M − 1) times differentiable. Then the function ωM (s, t)
defined by (4.26) satisfies (

∂ω

∂t
− iΓ−1∂ω

∂s

)
ωM (s, t) = Γ−1ω̂M (s)tM

and thus may be interpreted as an order-M approximate solution of (4.24).

Proof. We compute, multiplying by Γ (bounded above and below in a neighbourhood of the boundary) for
convenience:

Γ

(
∂

∂t
− iΓ−1 ∂

∂s

) M∑
j=0

ω̃j(s)t
j =

M∑
j=1

jω̃j(s)(1 + tγ(s))tj−1 −
M∑
j=0

iω̃′
j(s)t

j .

Rearranging and re-labeling,

Γ

(
∂

∂t
− iΓ−1 ∂

∂s

) M∑
j=0

ω̃j(s)t
j =

M−1∑
j=0

(j + 1)ω̃j+1(s)t
j +

M∑
j=1

jω̃j(s)γ(s)t
j −

M∑
j=0

iω̃′
j(s)t

j .

We may as well add j = 0 to the second sum, since it is zero. Rearranging yet again, we see that the recursion
relation causes most of the terms to cancel, yielding

Γ

(
∂ω

∂t
− iΓ−1∂ω

∂s

)
ωM (s, t) =Mω̃M (s)γ(s)tM − iω̃′

M (s)tM . (4.27)

The proposition then follows from the definition of ω̂M (s).

Now, formally, assuming that γ(s) is (M − 2) times differentiable, we set

wσ,M (s, t) = eσωM (s,t). (4.28)

This function immediately satisfies a Steklov boundary condition with parameter σ, and further:

Proposition 4.13. There exist constants C < ∞ and c > 0, and a sufficiently small t0, such that in our patch
(s, t) with t < t0,

|wσ,M (s, t)| ≤ Ce−σct. (4.29)
If γ(s) is (M − 1) times differentiable, we have similar constants such that

|∇wσ,M (s, t)| ≤ Cσe−σct. (4.30)

Finally if γ(s) is M times differentiable with M ≥ 1, then also wσ,M is approximately harmonic in the sense
that

|∆wσ,M (s, t)| ≤ C
(
σ2tM + σtM−1

)
e−σct. (4.31)
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Proof. The estimate on |wσ,M | is immediate sinceωM is simply a polynomial in twith the leading terms (is−
t). Indeed, with a sufficiently small neighbourhood, c andC may be chosen arbitrarily close to one.

Taking a derivative in s or t multiplies wσ,M by σ times the appropriate derivative of ωM (s, t). That
derivative is again a polynomial in twith coefficients that may depend on, now, (M−1)derivatives of curvature.
Its leading term is either i for an s-derivative or −1 for a t-derivative. The result follows.

To compute ∆wσ,M (s, t), we use (4.22) and Proposition 4.12 to obtain

∆wσ,M (s, t)

wσ,M (s, t)
= −σ2

(
∂ω

∂t
+ iΓ−1∂ω

∂s

)
Γ−1ω̂M (s)tM

−σ
(
∂

∂t
+ iΓ−1 ∂

∂s
+ Γ−1∂Γ

∂t

)
Γ−1ω̂M (s)tM .

(4.32)

When computed, each term is a fraction with denominator some power of m and numerator a polynomial
in t with coefficients depending on curvature. The number of derivatives of curvature that appear is at most
max{1,M}, the M from taking ω̂′

M (s) and the 1 from taking ∂Γ
∂s . The leading order terms are σ2tM and

σtM−1, yielding the result.

4.5. Quasimodes for a partially curvilinear polygon or zigzag. We recall that a polygon or a zigzag is called
partially curvilinear if all the sides are straight in some neighbourhoods of the vertices. In this subsection we
construct quasimodes for partially curvilinear polygons, proving the following theorem:

Theorem 4.14. Let P be a partially curvilinear polygon, and consider the mixed Steklov-Dirichlet-Neumann
problem (4.1). Assume additionally that ∂SP ≠ ∅, and that the curvature of each side in ∂SP is M times
differentiable withM ≥ 3. Finally, assume δ > 1, where

δ = min

({
π

αk
: Vk /∈ (∂DP ∪ ∂NP)

}
∪
{

π

2αk
: Vk ∈ (∂SP) ∩ (∂DP ∪ ∂NP), αk ̸= π/2

}
∪
{
M − 3

2

})
.

(4.33)

Then there exists a sequence of quasimodes {vm} for the problem (4.1), of order σ−δ+1
m .

Remark 4.15. The condition thatδ > 1 is implied by the following: all Steklov-Dirichlet and Steklov-Neumann
angles are less than or equal to π/2, and each side with a Steklov boundary condition has at leastC5 regularity.
Sides in ∂DP ∪ ∂NP need only be differentiable. ◀

Remark 4.16. This theorem covers the case of zigzag domains. ◀

Using Theorem 4.4, and applying the same argument as in the proof of Theorem 4.1, see the paragraph
after Theorem 4.4, we immediately obtain as a consequence:

Corollary 4.17. For a partially curvilinear polygon P that satisfies the assumptions of Theorem 4.14, there is a
non-decreasing sequence {im} and a constantC > 0 such that

|σm − λim | ≤ Cσ−δ+1
m for allm ∈ N,

where the λim are eigenvalues of the problem (4.1). There is also a sequence of ũm as in Theorem 4.4, with δm =
σ−δ+1
m .

To begin the quasimode construction for P , first define a partition of unity

1 = χV (z) + χI(z) + χ0(z),

such that (see Figure 11)
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• χV is supported in a union of pairwise disjoint neighbourhoods of each vertex in which P is isometric
to an exact wedge;

• χI is supported in a union of pairwise disjoint neighbourhoods of the portion of each edge away from
the vertices;

• χ0 has support compactly contained in the interior of P ;

• ∇χV (and therefore ∇χI ) is perpendicular to the normal vector n on the boundary ∂P , that is, each of
our cut-off functions has zero normal derivative on ∂P .

Figure 11: Partition of unity and boundary coordinates in a neighbourhood of Vj

A partition of unity with the required properties can be constructed, for example, in the following manner.
First, let χ(x) be a standard smooth nonnegative cut-off function defined on [0,+∞) such that

χ(x) = 1 or x ∈ [0, 1], χ(x) = 0 for x ∈ [2,∞). (4.34)

Then, working in local polar coordinates (ρj , θj) in the vicinity of each vertexVj , setχVj = χ(ρj/εj), choos-
ing the parameters εj > 0 in such a way that suppχVj does not intersect the curved part of the boundary, and
that suppχVj ∩ suppχVk

= ∅ for k ̸= j, and define

χV :=
n∑

j=1

χVj .

Further, working in the vicinity of each side Ij in local coordinates (sj , tj), as shown in Figure 11, set χIj =
χ(tj/δj)(1− χV ) and

χI :=

n∑
j=1

χIj ,

again choosing the parameters δj > 0 in order to make sure that suppχIj ∩suppχIk = ∅ for k ̸= j. Finally,
set

χ0 := 1− χV − χI .
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Now, for eachm ∈ N, recall that we have an eigenvalue σm and a boundary quasi-wave Ψ(m)(s). We use
these data to define two functions vm,V (z) and vm,I(z) which are supported on the supports of χV and χI

respectively. To define vm,V (z), we need to prescribe its value for z in a neighbourhood of each vertexVj . So fix
a j and suppose that z is in a small neighbourhood of Vj . The boundary quasi-wave Ψ(m)(s) gives coefficients
cj,in and cj,out which satisfy the appropriate transfer conditions at Vj . We may therefore let, as in (4.3),

vm,V (z) := Φ
(cj,in,cj,out)
αj (σmVjz). (4.35)

Putting these together for each j gives a full definition of vm,V (z).
To define vm,I(z), we localise to the edge Ij . We assume without loss of generality that the boundary

orthogonal coordinates (sj , tj) are valid on the connected component of the support of χI which intersects
Ij (if not, take χI supported closer to the boundary). In this neighbourhood we expect vm,I(sj , 0) to equal
Ψ

(m)
j (sj). So we use a solution of the form (4.28), namely, for someM to be chosen later,

vm,I(z) := Re(wσm,M (sj + β, tj)),

where the shift β is chosen so that

Re(wσm,M (sj + β, 0)) = Ψ
(m)
j (sj).

Our overall quasimode is obtained by gluing these together in the obvious way:

vm(z) := χV (z)vm,V (z) + χI(z)vm,I(z).

We now claim that {vm} is a sequence of quasimodes for (4.1), of order σ−δ+1
m . Indeed, using the terminology

of Definition 4.3, we see that ε(2)m = 0, as because ∇χV and ∇χI are perpendicular to the normal to the
boundary, the functions {vm} satisfy all Dirichlet and Neumann conditions of (4.1). Moreover, for the same
reason, together with the fact that vm,V (z) and vm,I(z) both satisfy the Steklov conditions of (4.1) on ∂SP ,
with frequency σm, we have ε(1)m (z) = 0. Thus the only issue is ε(3)m and indeed this is nonzero, as vm may not
be harmonic. We may compute its Laplacian and use the fact that vm,V (z) is harmonic to obtain

∆vm(z) = 2∇vm,V (z) · ∇χV (z) + vm,V (z)∆χV (z) + ∆vm,I(z)χI(z)

+ 2∇vm,I(z) · ∇χI(z) + vm,I(z)∆χI(z).
(4.36)

The third term of (4.36) is nonzero on the support of χI(z). However, by Proposition 4.13, we have

|∆vm,I(z)| ≤ C(σ2mt
M + σmt

M−1)e−σmct.

By a direct calculation, the L2 norm of this term over the support of χI(z), indeed all the way out to t = ∞,
is bounded by a universal constantC times σ3/2−M

m , and thus byCσ−δ
m .

Thus we may turn our attention to estimating the other four terms of (4.36), which are only nonzero on the
transition regions where the gradients of some elements of the partition of unity are nonzero. These regions
have two types: the ones contained in the support of χ0(z), and the ones where only χV (z) and χI(z) are
nonzero. We consider each in turn.

First consider the support of χ0(z), which is compactly contained in the interior of P . By Proposition
4.13, the fourth and fifth terms of (4.36) decay uniformly exponentially in m on this region. As for the first
two terms, recall (4.35), which identifies vm(z) with a function Φ. The function Φ is a linear combination
of plane waves with frequency σm and remainder terms R(σmVjz), with R(z) satisfying (3.5) for various
values of r depending on the boundary conditions. On the support ofχ0(z), the plane waves decay uniformly
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exponentially inm as well (and are zero away from neighbourhoods of each vertex, as thereχV (z) is zero). The
decay of the remainder terms can be computed using the chain rule, scaling, and (3.5). Using these and the fact
that d(z, Vj) is bounded uniformly above and below on these regions, we have that on the support of χ0(z),

|R(σmVjz)|+ |∇zR(σmVjz)| ≤ Cσ−r
m . (4.37)

The same estimate therefore applies to theL2 norm of each term. Not that the constantC a priori may depend
on Ψ(m), in particular on the norms of various Ψ(m)

j . However, the normalisation condition on Ψ(m) implies
that these norms are universally bounded independent ofm, and thusC may be taken independent ofm.

As for the exponent r, it depends on the angle. If Vj /∈ (∂DP ∪ ∂NP), we have a Steklov-Steklov corner
and we extract r = µαj/2 = π/αj . If Vj ∈ ∂SP ∩ ∂DP or Vj ∈ ∂SP ∩ ∂NP , we get r = µαj = π/(2αj),
unless αj = π/2, in which case the remainder term vanishes, since a sloping beach Peters solution in this case
is a pure plane wave. If Vj /∈ ∂SP , then vm(z) is identically zero and we do not care about it. Overall, from
our observations and (4.37), we obtain precisely that

∥∆vm(z)∥L2(suppχ0) ≤ Cσ−δ
m ,

where δ is given by (4.33).
Finally, consider the first, second, fourth, and fifth terms of (4.36) in a region where χV (z) and χI(z) are

nonzero — specifically assume we are along some edge Ij , without loss of generality near a vertex Vj rather
than Vj−1. By our geometric assumptions, in this region, the boundary is a straight line. Therefore, vm,I(z) is
equal to a plane wave with frequencyσm and boundary phaseΨ(m)

j . Moreover, by (4.35), vm,V (z) is a solution
Φ which equals a plane wave along Ij with phase cj,in, plus a plane wave along Ij+1 with phase cj,out, plus a
remainder term R(σmVj(z)) for some j. By definition of Ψ(m)

j , the plane wave along Ij is exactly vm,I(z).
We also observe that ∇χI(z) = −∇χV (z) and ∆χI(z) = −∆χV (z). This allows us to combine the first,
second, fourth, and fifth terms of (4.36) as

2∇R(σmVj(z)) · ∇χI(z) +R(σmVj(z))∆χV (z), (4.38)

plus two further terms from the plane wave along Ij+1, which both decay exponentially, uniformly on our
region. Estimating theR terms may now be handled precisely as it was on the support ofχ0, and theL2 norm
here is no worse thanCσ−δ

m .
Overall, putting everything together, we have proven that for some constantC independent ofm,

∥∆vm(z)∥L2(P) ≤ Cσ−δ
m .

This shows that we may take ε(m)
3 = C(σm + 1)σ−δ

m ≤ Cσ−δ+1
m in Definition 4.3, which completes the

proof of the results in this section.
There is an important special case in which we get enumeration as well.

Corollary 4.18. Suppose that P is a partially curvilinear polygon satisfying the conditions of Theorem 4.14, with
M ≥ 4 (so that the boundary is C6). Suppose further that ∂SP is a single boundary arc, and that the angle at
each end is π/2. Then there exists a constantC > 0 such that for allm,

|σm − λm| ≤ Cσ
−M+ 5

2
m .

Proof. First observe that Theorem 4.14 applies with δ = M − 3
2 , in particular with δ > 2. Consider our

quasimodes vm. Since the two angles at each end of ∂SP are π/2, the sloping beach Peters solutions are exact
plane waves and the remaindersR(z) are all zero. By construction, in this case, the restrictions ϕm = vm|∂SP
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are exact trigonometric functions, of frequency σm, satisfying Dirichlet or Neumann conditions at each end.
Moreover, again by direct calculation, {σm} are precisely the eigenvalues, and {ϕm} the eigenfunctions, of the
one-dimensional Laplacian∆∂SP with Dirichlet or Neumann boundary conditions at each end as appropriate.
Each σm is simple and a (half-)integer multiple of π/L, and they form an arithmetic progression.

Consider the set {ũm} given by Corollary 4.17. Each ũm is a linear combination of true eigenfunctions of

(4.1), with eigenvalues withinCσ(−M+ 5
2
)/2

m of σm, and we also have

∥ũm − ϕm∥L2(∂SP) ≤ Cσ
(−M+ 5

2
)/2

m .

SinceM ≥ 4, the sequence ∥ũm − ϕm∥L2(∂SP) is square summable. Hence, there is anM0 such that

∞∑
k=M0+1

∥ũk − ϕk∥2L2(∂SP) < 1.

Additionally, since σm+1 − σm is bounded away from zero, at some point the intervals

Em :=
[
σm − Cσ−δ+1

m , σm + Cσ−δ+1
m

]
,

whereC and δ are as in Corollary 4.17, become disjoint from all preceding intervals. In other words, there exists
M1 ∈ N such thatm ≥M1 implies

Em ∩ Ek = ∅ (4.39)

for all k ∈ N, k ̸= m. For thatM1, all the functions ũm,m ≥M1, are linear combinations of eigenfunctions
of (4.1) corresponding to non-intersecting spectral windows, and therefore are mutually orthogonal. Now let
M2 = max{M0,M1}, pick anym such thatm ≥M2, and consider the two subspaces

span{ϕm+1, ϕm+2, . . .} and span{ũm+1, ũm+2, . . .}.

By the version of the Bary–Krein lemma given in [LPPS21, Lemma 4.8], and the fact thatm ≥M0, these two
subspaces have the same codimension. Since {ϕm} are the eigenfunctions of a one-dimensional problem, they
form a complete orthonormal basis ofL2(∂SP), and hence

codim(span{ũm+1, ũm+2, . . .}) = codim(span{ϕm+1, ϕm+2, . . .}) = m.

This means in particular that at most finitely many ũj can be linear combinations of more than one eigenfunc-
tion of (4.1), otherwise the codimension would be infinite. So there existsM3 ≥M2 such that j ≥M3 implies
that ũj is a pure eigenfunction of (4.1), that is, ũj = uΛ(j) for some functionΛ : {M3+1,M3+2, . . .} → N.
As a consequence of (4.39), this function is strictly increasing, and the complement of its range has M3 el-
ements. So the complement of its range has a largest element, and beyond that we must have Λ(j) = j.
Therefore, for sufficiently largem, ũm = um.

Thus the eigenvalue λm is within C√σm of σm for sufficiently large m, and is a bounded distance away
from each other σm. Therefore in Corollary 4.17 we have to have im = m for large enoughm. Since any finite
set of indices is irrelevant, Corollary 4.18 follows.
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4.6. Quasimodes for a fully curvilinear polygon. Here we generalise and construct quasimodes for a curvi-
linear polygon, not necessarily straight near the corners. However, we are now only interested in the fully
Steklov problem rather than the mixed problem.

Theorem 4.19. Let P be a curvilinear polygon which is piecewiseC5. Let

δ = min

({
π

αk
: k ∈ {1, . . . , n}

}
∪
{
3

2

})
, (4.40)

and observe that δ > 1. Then there is a sequence {vm} of quasimodes for the Steklov problem onP , corresponding
to the previously constructed sequence of quasi-eigenvalues {σm}, such that they are of order σ−δ̃+1

m for any δ̃ < δ.

Remark 4.20. In this case, as opposed to the partially curvilinear case, it is not possible to increase the 3
2 in

(4.40) by increasing the smoothness of the boundary arcs. This term is due to the influence of the curvature at
the corners. ◀

Remark 4.21. With δ as defined here, Theorem 1.4 holds with ε0 := 1
2(δ − 1). ◀

As in the previous subsection, there is the usual corollary, with an identical proof:

Corollary 4.22. For a curvilinear polygon P with any δ̃ < δ, there is an non-decreasing sequence {im} and a
constantC > 0 such that

|σm − λim | ≤ Cσ−δ̃+1
m for allm ∈ N,

where the λim are Steklov eigenvalues of P . There is also a sequence of ũm as in Theorem 4.4, with δm = σ−δ̃+1
m .

Our quasimode construction in this section will proceed by “straightening out" a neighbourhood of each
corner with a conformal map, then applying a partition of unity argument as in the previous subsection. One
subtlety is that we only use the conformal map to modify the remainders in the scattering Peters solutions,
rather than the solutions themselves. So, rather than the sum of two plane waves and a remainder, our models
near each vertex will be the sum of the curved boundary models along each adjacent side, plus a conformally
mapped remainder.

For each j, we use the Riemann mapping theorem to define a conformal map Θj from a small neigh-
bourhoodUj of Vj into a small neighbourhood of the origin in Sαj , with Vj mapped to the origin, and with
|DΘj(Vj)| = 1. By [PePu14], no matter what our choice ofΘj , the mapΘj is in the Hölder classC1,γ for any
γ < 1. So DΘj is a continuous function, and thus in a sufficiently small neighbourhood of Vj (without loss
of generality,Uj), we have |DΘj | ≥ 2/3 and in the image of that neighbourhood we have |DΘ−1

j | ≥ 1/2.
Now we define a partition of unity 1 = χV + χI + χ0 precisely as in the previous section, with the

property that eachχVj (z) is supported in a compact subset ofUj , and with the gradient of each cutoff function
perpendicular to n at every point of ∂P . We will define two functions vm,V (z) and vm,I(z). In fact, the
definition of vm,I(z) is identical to the one in the previous subsection: near the edge Ij we have

vm,Ij (z) := Re(wσm,M (sj + β, tj)),

where the shift β is chosen so that the restriction to the boundary of vm,I(z) isΨ(m)
j (sj). Then vm,I(z) is the

sum of these over j. To define vm,V (z) we have to work a little harder. We would like to use (4.35) but cannot
because the sector is not straight. Instead, we use Proposition 3.6 to write

Φ
(cj,in,cj,out)
αj (z) =W

cj,in
out,αj

(z) +W
cj,in
in,αj

(z) +Rj(z), (4.41)

where theW terms are pure plane waves andRj(z) is the remainder. We define

vm,Vj (z) := vm,Ij (z) + vm,Ij+1(z) +Rj(σmΘj(z)). (4.42)
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The first two terms here are the curvilinear, approximately harmonic functions along the incoming and outgo-
ing edges fromVj respectively (again, without loss of generality we assume thatUj is a small enough neighbour-
hood so these are defined). The third term is the remainder term in the appropriate scattering Peters solution,
pulled back. As before, we let vm,V (z) be the sum of these over all j, and then set, in full,

vm(z) := vm,V (z)χV (z) + vm,I(z)χI(z).

We need to prove that these are quasimodes. This requires estimating ε(i)m , i = 1, 2, 3, in Definition 4.3.
Since ∂NP = ∂DP = ∅, we may take ε(2)m = 0. To address ε(3)m , we use a very similar argument to that in
the previous subsection. The formula (4.36) still holds, and the analysis proceeds analogously, with the plane
waves replaced byvm,Ij (z) andvm,Ij−1(z) and the remaindersR(σmVj(z)) replaced byRj(σmΘj(z)). Since
Θj(z) has derivative bounded away from zero onUj , the analogue of the decay estimate (4.37), with the above
replacement, still holds away from the vertices. Moreover, the functions vm,Ij (z) decay exponentially in σm
away from Ij . This allows the argument to proceed unchanged, and we may as before take ε(m)

3 ≤ Cσ−δ+1
m ,

which is enough.
It remains only to estimate ε(1)m . To do this we introduce a new piece of terminology: for a family of func-

tions ṽm(z) on P , we define their “Steklov defect" to be the functions on the boundary given by

SD(vm)(z) :=
∂vm
∂n

(z)− σmvm(z).

Our goal is to find an upper bound for theL2 norms of SD(vm)(z). Since all cutoff functions have zero normal
derivative at the boundary, and the functions vm,I(z) satisfy an exact Steklov boundary condition,

SD(vm)(z) = SD(vm,V )(z)χV (z) + SD(vm,I)(z)χI(z) = SD(vm,V )(z)χV (z).

This is supported in a union of 2n regions, one on each side of each vertex, and we can consider the L2 norm
over each separately. So fix j, and consider a short segment along Ij+1 in which χV,j(z)|Ij+1 is supported.
Note that sj+1 is the coordinate here, and this segment is contained in [0, ε] for some ε > 0. So we need to
bound

∥SD(vm,Vj )∥L2[0,ε].

We will do this via comparison with a non-curvilinear case. Our function vm,Vj (z) is given by (4.42). If
the sides were straight near the corner, then we would instead have the function ṽm,Vj (z) given by:

ṽm,Vj (z) =W
cj,in
in,αj

(σmz) +W
cj,out
out,αj

(σmz) +Rj(σmz). (4.43)

Of course, the values of z in (4.42) and (4.43) do not have the same domain. Nevertheless, we can compare the
Steklov defects of these two functions, as sj+1 is a legitimate coordinate along the boundary of each. Moreover,
the Steklov defect of ṽm,Vj (z) is zero since it is an exact (scaled) scattering Peters solution. Thus it suffices to
bound

∥SD(vm,Vj )− SD(ṽm,Vj )∥L2[0,ε].

This involves comparing (4.42) and (4.43) term by term. Observe that since we are along Ij+1 rather than Ij ,
the Steklov defect of vm,Ij+1(z) is zero by the observation before Proposition 4.13. The Steklov defect of the
outgoing plane wave W cj,out

out,αj
(σmz) is also zero. So we just need to compare the first and third terms, and it

suffices to bound

∥SD(vm,Ij )− SD(W cj,in
in,αj

(σmz))∥L2[0,ε] + ∥SD(Rj(σmΘj(z)))− SD(Rj(σmz))∥L2[0,ε]. (4.44)



Michael Levitin, Leonid Parnovski, Iosif Polterovich, and David A. Sher 49

Both of these can be handled with direct calculations. In all we claim that the expression (4.44) is bounded by
Cσ1−δ̃ . Assuming this claim, we can take ε(1)m = ε

(3)
m = Cσ1−δ̃

m in Definition 4.3, which proves Theorem
4.19. It therefore remains only to prove the needed bounds on (4.44).

We begin by analysing the remainder term of (4.44). Recall thatRj(z) is a remainder term in a scattering
Peters solution, defined on an infinite sector. For x ∈ [0,∞), define

f(x) := Rj(x, 0); g(x) :=
∂Rj

∂y
(x, 0).

Bounds on these functions and on their x-derivatives, for both large x and small x, may be extracted from
[LPPS21, Theorem 2.1] and the usual angle-doubling reflection argument. Note that our normalisation condi-
tion ensures that the constants C may be chosen independent of m. The bounds we obtain, with µ = π/αj

(note that µ ≥ δ > 1), are:

2|f(x)| ≤ C(1 + x)−µ; |f ′(x)| ≤ C(1 + x)−µ−1;

|g(x)| ≤ C(1 + x)−µ−1; |g′(x)| ≤ Cmin
{
xµ−2, x−µ−2

}
.

(4.45)

Now let θ be the restriction of Θ to the edge Ij+1, in the coordinate sj+1. Observe that θ′(0) = 1 and
both θ and θ−1 have derivatives bounded below by 1/2 and above by 2 on [0, ε]. Moreover by [PePu14], θ is
C1,γ and θ′ isC0,γ for every γ < 1. The remainder term of (4.44) is, with all this terminology,

∥(σm|θ′(sj+1)|g(σmθ(sj+1))−σmf(σmθ(sj+1)))− (σmg(σmsj+1)−σmf(σmsj+1))∥L2[0,ε]. (4.46)

We bound the differences of the g terms and the f terms separately. For the difference of f terms, we write

|σm(f(σmsj+1)− f(σmθ(sj+1))| ≤ σm max
x∈[σmsj+1,σmθ(sj+1)]

|f ′(x)| · |σmsj+1 − σmθ(sj+1)|

≤ σ2m|sj+1 − θ(sj+1)| max
x∈[σmsj+1/2,2σmsj+1]

|f ′(x)|.

The function sj+1 − θ(sj+1) is C1,γ for all γ < 1, and both the function and its derivative are zero at
sj+1 = 0, so in fact |sj+1 − θ(sj+1)| ≤ Cs1+γ

j+1 for all γ < 1. As for |f ′(x)|, since x ∈ σmsj+1[1/2, 2], we
can bound it using (4.45). In all we conclude

|σm(f(σmsj+1)− f(σmθ(sj+1)))| ≤ Cσ2ms
1+γ
j+1 (1 + σmsj+1)

−µ−1.

The square of theL2 norm of the right-hand side, using the substitutionw = σmsj+1, is

Cσ1−2γ
m

∫ σmε

0
w2+2γ(1 + w)−2µ−2 dw ≤ Cσ1−2γ

m

∫ σmε

0
(1 + w)−2µ+2γ dw. (4.47)

Using µ ≥ δ, as long as we avoid choosing γ = µ− 1
2 , this is bounded by

Cσ1−2γ
m |σ−2δ+2γ+1

m + 1| ≤ Cσ1−2γ
m + Cσ2−2δ

m .

Taking square roots to get theL2 norm and using
√
a+ b ≤

√
a+

√
b, we have

∥|σm(f(σmsj+1)− f(σmθ(sj+1))∥L2[0,ε] ≤ Cσ
1
2
−γ

m + Cσ1−δ
m .

Since δ̃ < δ ≤ 3/2, we can choose γ sufficiently close to 1 so that both terms are bounded by Cσ1−δ̃
m , as

desired.
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Now for the difference of g terms. By adding and subtracting σmg(σmθ(sj+1)) we can write it as

σm(|θ′(sj+1)| − 1)g(σmθ(sj+1)) + σm(g(σmθ(sj+1))− g(σmsj+1)). (4.48)

The first of these two terms, again using Hölder continuity of θ, (4.45), and sj+1/2 ≤ θ(sj+1) ≤ 2sj+1, is
bounded by

Cσms
γ
j+1(1 + σmsj+1)

−µ−1.

Using the exact same argument as for the f terms we can show that the square of theL2 norm of this quantity
is bounded by (4.47), except with (1+w)−2µ+2γ−2 instead of (1+w)−2µ+2γ . This makes the integral smaller
rather than larger, so the sameCσ1−δ̃

m bound holds. As for the second of the two terms, by similar arguments
as before, it is less than

σm max
x∈[σmsj+1/2,2σmsj+1]

|g′(x)|·|σmθ(sj+1)−σmsj+1| ≤ Cσ2ms
1+γ
j+1 min

{
(σmsj+1)

−µ−2, (σmsj+1)
µ−2)

}
.

TheL2 norm squared is thus bounded, using the substitutionw = σmsj+1 again, along with µ ≥ δ, by

Cσ1−2γ
m

(∫ 1

0
w2+2γw2µ−4 dw +

∫ σmε

1
w2+2γw−2δ−4 dw

)
.

Since µ > 1, for γ sufficiently close to 1, the exponent in the first term is positive and the integral is bounded
by 1. For the second term, we have (without the pre-factor) a bound of Cσ2γ−2δ−1

m . After incorporating the
prefactor and taking square roots, theL2 norm is bounded by

Cσ
1
2
−γ

m + Cσ−δ
m ,

which as before is bounded by Cσ1−δ̃
m for γ sufficiently close to 1. This proves the necessary bound for the

remainder term of (4.44).
It remains only to analyse the first term in (4.44). To do this, let (s, t) = (sj+1, t) be the curvilinear

coordinates along Ij+1, and let (s̃, t̃) be the curvilinear coordinates along the adjacent edge Ij , so that s̃ =
Lj − sj . For the exact sector of angle α = αj , we have, for some shift β depending on cj,in,

W
cj,in
in,αj

(σ(s̃, t̃)) = Re(eσ(i(s̃+β)−t̃))),

and for a curvilinear sector, we have, for the same β,

vm,Ij (s̃, t̃) = Re(eσfM (s̃,t̃)) = Re(eσ(i(s̃+β)−t̃+O(t̃2))).

We need to compute the Steklov defects of each of these functions in the coordinates along Ij+1. To do this,
first compute the gradients of each:

∇vm,Ij (s̃, t̃) = σRe

(
(i +O(t̃2))eσ(i(s̃+β)−t̃+O(t̃2))

(−1 +O(t̃))eσ(i(s̃+β)−t̃+O(t̃2))

)
, (4.49)

with the same expression, without the error terms, for ∇W .
We will need to take L2 norms in s, so we need to discuss how the coordinates are related. For an exact

sector, we have

(
s̃

t̃

)
=

(
s cosα

s sinα

)
, and the normal vector n to the opposite edge Ij , as a function of s, is

n(s) =

(
sinα

− cosα

)
. For the curvilinear sector, we have errors of the following types:

(
s̃

t̃

)
=

(
s cosα

s sinα

)
+O(s2); n(s) =

(
sinα

− cosα

)
+O(s).
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So the difference of Steklov defects we need to consider is

σRe
(
(eσ(i(s cosα+β)−s sinα))

)
− Re

(
eσ(i(s cosα+β)−s sinα+O(s2))))

)
−

((
sinα

− cosα

)
· ∇W cj,in

in,αj
(σ(s̃(s), t̃(s))

)

−

((
sinα

− cosα

)
+O(s)) · ∇vm,Ij (s̃(s), t̃(s))

)
.

(4.50)

Consider first the difference of terms without gradients in (4.50) and take its absolute value. It is∣∣∣−σRe(eσ(i(s cosα+β)−s sinα)
)(

eσO(s2) − 1
)∣∣∣ ≤ σeσ(−s sinα)

(
eCσs2 − 1

)
. (4.51)

Use the fact that ex − 1 ≤ xex, then use the fact that sinα > 0, to see that there exists c > 0 such that for s
sufficiently small, this is bounded by

Cσ2s2e−cσs.

The L2 norm of this function can be computed directly via the usual change of variables w = σs, and is
bounded byCσ−1/2. Since δ̃ < 3/2 this is bounded byCσ1−δ̃ as desired.

Now analyse the gradient terms in (4.50). First examine the O(s) term in (4.50). Using (4.49), and the
equivalence of the ℓ2 and ℓ1 norms on R2, a bound for the absolute value of this term is

Cσs
(
(1 +O(s2))e−σs sinα+O(s2) + (1 +O(s))e−σs sinα+O(s2)

)
.

As with the terms without gradients, there exists c > 0 such that this is bounded byCσse−cσs, and then the
sameL2 norm computation gives the same bound. The remainder of the terms are given by

−

(
sinα

− cosα

)
·
(
∇W cj,in

in,αj
(σs̃(s), σt̃(s))−∇vm,Ij (s̃(s), t̃(s))

)
.

Using (4.49) again and the usual adding/subtracting trick, we have a bound of

Cσ
(
O(s)e−σs sinα+O(s2)

)
+ Cσ

(
e−σs sinα+O(s2) − e−σs sinα

)
.

The first term is again bounded by Cσse−cσs and may be taken care of as before. The second term satisfies
the bound (4.51) and therefore can be treated the same way as well. This shows that all terms are bounded by
Cσ1−δ̃

m , completing the proof of Theorem 4.19.
For later use we also record a corollary:

Corollary 4.23. Asm→ ∞, the quasimodes vm on the boundary, as well as the corresponding linear combina-
tions ũm of Steklov eigenfunctions, get closer to Ψ(m) in the sense that

∥vm −Ψ(m)∥L2(∂Ω) = O(m−1/2), ∥ũm −Ψ(m)∥L2(∂Ω) = O(m
1
2
(1−δ̃)). (4.52)

Proof. First consider vm, for which the difference is zero off the support of χV . On the support of χV , near
a vertex Vj , the restriction of the term vm,Ij+1(z) to the edge Ij+1 is precisely Ψ(m). The other two terms
in (4.42) both have L2 norms which go to zero as m → ∞ and do so, via a scaling argument and direct
integration, at orderσ−1/2

m . An analogous argument works along the edge Ij , and adding up the contributions
from the finitely many vertices completes the proof for vm. The statement for ũm follows immediately from
the statement for vm and Corollary 4.22.
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4.7. Almost orthogonality and its consequences. In statements such as Theorem 4.1 we showed that near
each quasi-eigenvalue σm there exists a true eigenvalue λim . We did not, however, show that there is a distinct
true eigenvalue near each quasi-eigenvalue. That is, we did not show the map m 7→ im is injective. We now
remedy this, but at a small cost.

Theorem 4.24. Let P be a curvilinear polygon with all angles less than π. Let 1 < δ̃ < δ, where δ is defined
by (4.40). Then there exists a map j : N → N which is strictly increasing for large arguments, and there exists a
constantC , such that

|σm − λj(m)| ≤ Cm
1
2
(1−δ̃).

Remark 4.25. The cost is simply the extra factor of 1
2 in the exponent. This shows up as a consequence of

an abstract linear algebra result [LPPS21, Theorem 4.1]. It may be able to be removed in our setting, but for
simplicity we have not done so. ◀

To begin the proof, first we show that the boundary plane waves Ψ(m) are nearly orthogonal. We do this
by taking advantage of the relationship between Ψ(m) and the eigenfunctions of the quantum graph Dirac
operator D defined in (2.27). Although Ψ(m) turn out not to be orthonormal in L2(G), inner products of
distinct boundary plane waves are nevertheless small.

Proposition 4.26. There exists a constantC such that for allm, l ∈ N withm ̸= l,

|⟨Ψ(m),Ψ(l)⟩| ≤ C(σm + σl)
−1.

Proof. Recall from Proposition 2.27 thatD, with the matching conditions (2.24), is self-adjoint and that its set
of non-negative eigenvalues is precisely {σm} \ {0}. As a consequence of self-adjointness, its basis eigenfunc-

tions fm,± =

(
fm,±,1

fm,±,2

)
corresponding to eigenvalues ±σm can be chosen to be orthonormal in (L2(G))2.

We note that the eigenfunctions can be chosen in the form

fm,±|Ij =

(
dm,j,±,1e

±iσms

dm,j,∓,2e
∓iσms

)
,

with some constants dm,j,±,p ∈ C, p = 1, 2. Moreover, by the same reasoning as in Remark 4.7 we can choose

dm,j,±,2 = dm,j,±,1.

We will be mostly interested in eigenfunctions fm,± from now now. Comparing these eigenfunctions with
the boundary quasi-waves Ψ(m),of the Steklov problem and their restrictions Ψ(m)

j on Ij , see Definition 4.6
and equation (4.5), we immediately conclude that up to a scaling factor

Ψ
(m)
j = fm,+,1 + fm,+,2|Ij = 2Re (fm,+,1)|Ij ,

and therefore we may write

⟨Ψ(m),Ψ(l)⟩ = ⟨fm,+,1, fl,+,1⟩+ ⟨fm,+,2, fl,+,2⟩+ ⟨fm,+,1, fl,+,2⟩+ ⟨fm,+,2, fl,+,1⟩.

Since we have m ̸= l, and the basis eigenfunctions fm,+ are orthonormal in (L2(G))2, the first two terms of
this sum add to zero, leaving only the last two terms to estimate.



Michael Levitin, Leonid Parnovski, Iosif Polterovich, and David A. Sher 53

Thus, remembering that we have a complex conjugate on the second entry in our inner product, and setting
dm,j := dm,j,+,1, we have

⟨fm,+,1, fl,+,2⟩ =
n∑

j=1

∫
Ij

dm,je
iσmsdl,je

iσls ds =

n∑
j=1

dm,jdl,j

∫
Ij

ei(σm+σl)s ds,

where n is the number of vertices. By explicit integration by parts, each such integral, in absolute value, is
bounded by 2(σm + σl)

−1. Thus,

|⟨fm,+,1, fl,+,2⟩| ≤ 2(σm + σl)
−1

n∑
j=1

|dm,jdl,j | ≤ 2(σm + σl)
−1

 n∑
j=1

|dm,j |2
1/2 n∑

j=1

|dl,j |2
1/2

,

which by normalisation of the Dirac eigenfunctions is 2(σm + σl)
−1. A similar analysis works for the other

nonzero term, showing that in fact

|⟨Ψ(m),Ψ(l)⟩| ≤ 4(σm + σl)
−1,

proving Proposition 4.26.

Corollary 4.27. For any ε > 0 there existsM ∈ N such thatm, l ≥M withm ̸= l implies |⟨ũm, ũl⟩| < ε.

Proof. This is an immediate consequence of Proposition 4.26 and Corollary 4.23.

Corollary 4.28. Pick any N ∈ N. There exists M ∈ N such that any N of the functions {ũm}m≥M form a
linearly independent set.

Proof. Asm→ ∞, ∥ũm∥ → 1 by Corollary 4.23, and all inner products go to zero by Corollary 4.27. So there
is anM such that ifm, l ≥ M withm ̸= l, ∥ũm∥ ≥

√
1
2 and |⟨ũm, ũl⟩| ≤ 1

2N . Now selectN of the {ũm}
— call them ũm1 , . . . , ũmN — with allmj ≥M . Suppose for contradiction they are not linearly independent;
then there exists a nontrivial relation among them, which without loss of generality may be written

ũm1 = a2ũm2 + . . .+ aN ũmN ,

with all |ai| ≤ 1. Now take inner products with ũm1 and use the triangle inequality, obtaining

∥ũm1∥2 ≤
N∑
i=2

|⟨ũmi , ũm1⟩|.

But this means 1
2 ≤ N−1

2N , a contradiction which completes the proof.

Now we complete the argument. By Corollary 4.22, for eachm, ũm is a linear combination of eigenfunc-
tions with eigenvalues in the interval

Im :=
(
σm − Cm

1
2
(1−δ̃), σm + Cm

1
2
(1−δ̃)

)
.

Proposition 4.29. There exists anN > 0 such that no more thanN of the intervals Im overlap (that is, have a
connected union).
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Proof. By Theorem 2.24, the quasi-eigenvalues σm are the square roots of the eigenvalues of a quantum graph
Laplacian with non-Robin boundary conditions [BeKu13], and as such, obey a Weyl law with bounded remain-
der [BeKu13, Lemma 3.7.4]. This means that there exists anN0 > 0 such that the number ofσm in any interval
of length 1 is less than N0. As a result, the sequence {σm} cannot go N0 terms without a gap of size at least
1/N0. Now the length |Im| → 0 as m → ∞, so for sufficiently large m, each gap of size 1/N0 will cause⋃
Im to be disconnected. Thus for sufficiently largem, at mostN0 intervals Im may overlap.

Now let Ck be the k-th connected component of
⋃
Im, let Nk be the number of quasi-eigenvalues it

contains, and let σmk
be the smallest quasi-eigenvalue it contains. By our work to this point we have 1 ≤

Nk ≤ N and thus k ≤ mk ≤ Nk. Further, the length of Ck is at most N |Imk
| = 2CNm

1
2
(1−δ̃)

k . For
sufficiently large k, by Corollary 4.28, the functions ũm associated to each of the Nk quasi-eigenvalues in Ck
are linearly independent. Since each of them is a linear combination of eigenfunctions with eigenvalues in
Ck, we see that Ck must contain (at least) Nk eigenvalues. We construct j(m) for m ∈ Ck by listing these in
increasing order. As a result the mapm 7→ j(m) is injective on Ck. Further, if σm ∈ Ck,

|σm − λj(m)| ≤ ℓ(Ck) = 2CNm
1
2
(1−δ̃)

k ≤ 4CNm
1
2
(1−δ̃),

where we have used that m
1
2
(1−δ̃)

k ≤ 2m
1
2
(1−δ̃) for large enough k and m ∈ Ck. This proves Theorem

4.24.
Additionally, we observe that the natural analogue of Theorem 4.24 holds for a zigzag as well, by precisely

the same arguments, see (4.33).

Theorem 4.30. Let Z be a partially curvilinear zigzag domain such that δ > 1, where δ is defined by (4.33).
Then there exists a map j : N → N which is strictly increasing beyond a certain point (i.e. for m greater than
some threshold value), and there exists a constantC , such that

|σm − λj(m)| ≤ Cm
1
2
(1−δ).

This is proved in an almost identical way, using Corollary 4.17 as the replacement for Corollary 4.22. There
is still a self-adjoint Dirac operator on a quantum pathLwhose eigenvalues coincide with the quasi-eigenvalues
of Z , see Proposition 2.41. We cannot use Proposition 4.29 at this stage because the square of this Dirac op-
erator cannot be decomposed as a direct sum of two quantum graph (non-Robin) Laplacians, but we can use
Proposition 5.37 instead. In addition, the analogue of Corollary 4.23 still holds for a zigzag, by an even easier
argument.

4.8. Asymptotics of eigenfunctions. We note that we have not yet proved Theorem 1.4 stating in particular
that each true eigenvalue corresponds to a quasi-eigenvalue. Assume, however, for the rest of this section that
it holds. We can deduce the following generalisation of Theorem 1.7.

Theorem 4.31. For any curvilinear polygon P , there existsC > 0 such that the restrictions of the eigenfunctions
um to the boundary ∂P satisfy

∥um|∂P − Ψ̃(m)∥ = O(m−ε), (4.53)

where Ψ̃(m) is a linear combination of the functions Ψ(l) corresponding to quasi-eigenvalues σl in the interval
[σm − Cm−ε, σm + Cm−ε].

Note that Theorem 4.31 immediately implies Theorem 1.7, since under the assumptions of the latter we
must have Ψ̃(m) equal to a multiple of Ψ(m) itself, and Ψ(m) is a trigonometric polynomial of frequency σm
along each edge. It also implies the following slight variation:
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Corollary 4.32. Suppose that a curvilinear polygonP hasK ≥ 2 exceptional angles (and thereforeK exceptional
boundary components Yκ, κ = 1, . . . ,K). LetC be as in Theorem 4.31, let σm be a quasi-eigenvalue, and let

Km :=
⋃
κ

Yκ,

where the union is taken over all κ such that (2.22) has a root σ in the interval [σm − Cm−ε, σm + Cm−ε].
Then

∥um|∂P\Km
∥ = O(m−ε).

In other words, Corollary 4.32 states that in the exceptional case the boundary values of Steklov eigenfunc-
tions are asymptotically concentrated on the unions of exceptional components contributing to the particular
clusters of eigenvalues.

Proof of Theorem 4.31. By the clustering argument above, the quasi-eigenvalues {σm} separate into clusters of
width bounded byCm−ε. By Theorem 1.4, the same is true for the eigenvalues {λm}. At the cost of possibly
increasingC , we may assume the clusters for both the eigenvalues and quasi-eigenvalues are the same.

Now pick a cluster Ck with Nk eigenvalues and Nk quasi-eigenvalues, with indices from m = a to m =
b = a+Nk − 1. For eachmwith σm ∈ Ck, by Corollary 4.23, Ψ(m) is withinCm−ε of a linear combination
ũm of eigenfunctions with eigenvalues in Ck. Note that Ψ(m) has norm 1 and therefore each ũm has norm
within Cm−ε of 1 (and is therefore within Cm−ε of its normalised version). This shows that there exist two
Nk-by-Nk matricesGk andHk for which

ũa
...
ũb

 = Gk


Ψ(a)

...
Ψ(b)

+O(m−ε),


ũa

...
ũb

 = Hk


ua

...
ub

+O(m−ε).

However, by Corollary 4.28, Hk is invertible for sufficiently large k, and by Corollary 4.27 its inverse is uni-
formly bounded. We deduce 

ua
...
ub

 = H−1
k Gk


Ψ(a)

...
Ψ(b)

+O(m−ε),

which is precisely Theorem 4.31.

We also prove Proposition 1.15, which now becomes very simple.

Proof of Proposition 1.15. If all angles are special, the quasi-eigenvalues are given by (1.5), with each nonzero
eigenvalue having multiplicity two. The corresponding Ψ(m) may be taken to be√

2

|∂P|
sin(σms),

√
2

|∂P|
cos(σms),

where s is an arc length coordinate along the boundary; note that these functions are orthogonal for each m.
Therefore the functions Ψ̃(m) are linear combinations of Ψ(m), and each has norm 1 + O(m−ε) by (4.53).
An immediate calculation shows that these are equidistributed and in fact that the error is O(m−ε). On the
other hand, if all angles are exceptional, for allmwe may chooseΨ(m) to have support on just one side. If σm is
isolated in the sense of Proposition 1.15, then for sufficiently largem we have Ψ̃(m) = Ψ(m) + O(m−ε), thus
um = Ψ(m) +O(m−ε), from which the result follows.
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5. Enumeration of quasi-eigenvalues

5.1. Matrix groups. Let α be a non-exceptional angle and let A := A(α) and B := B(ℓ, σ) be the vertex and
side transfer matrices defined by equations (2.3) and (2.5), see also (2.1), (2.2) and Remarks 2.1, 2.2, and 2.9.

Define

M1 =

{
M =

(
p q

q p

)∣∣∣∣∣ p, q ∈ C, det M = |p|2 − |q|2 = 1

}
,

M1,A =

{
M =

(
p −ir

ir p

)∣∣∣∣∣ p, r ∈ R, det M = p2 − r2 = 1

}
⊂ M1,

M1,B =

{
M =

(
p 0

0 p

)∣∣∣∣∣ p ∈ C, det M = |p|2 = 1

}
⊂ M1,

It is easy to check that M1 is a group with respect to matrix multiplication, M1,A and M1,B are subgroups of
M1, and that A(α) ∈ M1,A for any α ̸∈ E , and B(ℓ, σ) ∈ M1,B for any real ℓ and σ. It is also easy to check
that any matrix fromM1 maps the (real) linear subspaceC2

conj ofC2 onto itself. Therefore, this is also true for
the matrices T and U defined by (2.7) and (2.9) respectively.

5.2. Representation of vectors and matrices on the universal cover. We can naturally identify vectors

b =

(
b

b

)
∈ C2

conj with vectors b♯ =

(
Re b

Im b

)
considered as elements of R2 (or just elements b of C). As an

illustration, the vectors N and D defined in (2.38) give rise to

N♯ =

(
1

0

)
, D♯ =

(
0

1

)
. (5.1)

The mapping R2 → C2
conj is defined by b = Jb♯, with

J =

(
1 i

1 −i

)
, (5.2)

Matrices M ∈ M1 therefore act on R2 as

(Mb)♯ = J−1Mb = J−1MJb♯,

where

J−1 =
1

2

(
1 1

−i i

)
,

and we set
M♯ := J−1MJ.

It is straightforward to check that the mapping M 7→ M♯ sends M1 into the space M♯
1 of all real 2 × 2

matrices with determinant one. Moreover, it maps the subgroup M1,A ⊂ M1 into the subgroup S♯ ⊂ M♯
1

of all symmetric real2×2matrices with determinant one and equal diagonal entries, and the subgroupM1,B ⊂
M1 into the subgroup R♯ ⊂ M♯

1 of all real 2× 2 rotation matrices.
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The matrices in R♯ are characterised by a single parameter, the angle of rotation, and we will denote them
by

R♯(ψ) :=

(
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

)
∈ R♯.

In particular, we have
(B(ℓ, σ))♯ = R♯(σℓ).

The matrices in S♯ always have normalised eigenvectors

X♯
even =

1√
2

(
1

−1

)
, X♯

odd =
1√
2

(
1

1

)
.

Thus, anyS♯ ∈ S♯ may be characterised by one eigenvalue τ (the other eigenvalue being 1
τ ) and a corresponding

normalised eigenvector w♯ ∈
{
±X♯

even,±X♯
odd

}
, and we will write

S♯ = S♯(τ,w♯).

This representation is not unique:

S♯(τ,w♯) = S♯(τ,−w♯) = S♯(1/τ, (w♯)⊥) = S♯(1/τ,−(w♯)⊥),

where (w♯)⊥ is a normalised eigenvector perpendicular to w♯.

In particular, for A(α) =

(
a1(α) −ia2(α)

ia2(α) a1(α)

)
with eigenvalues ηj(α) defined in (2.4), we have

A♯(α) := (A(α))♯ =

(
a1(α) −a2(α)
−a2(α) a1(α)

)
= S♯

(
η1(α),X

♯
odd

)
= S♯

(
η1(α),−X♯

odd

)
= S♯

(
η2(α),X

♯
even

)
= S♯

(
η2(α),−X♯

even

)
,

(5.3)

The matrix A♯(α) is positive or negative depending on the sign of sin(µα).
Throughout this section it will be useful to deal, instead of vectors b ∈ C2

conj \ {0} or b♯ ∈ R2 \ {0},
with vectors b̂ on the universal cover Ĉ∗ of the punctured complex plane, that is, of the logarithmic surface.
The elements b̂ ∈ Ĉ∗ have positive moduli and arguments arg b̂ ∈ (−∞,+∞). Let Π : Ĉ∗ → R2 \ {0}
be the projection which preserves the modulus but takes argument modulo 2π in such a way that arg(Πb̂) ∈
(−π, π]. Any element b̂ ∈ Ĉ∗ such that Πb̂ = b♯ ∈ R2 \ {0} will be called a lift of b♯ onto Ĉ∗. We will
distinguish the principal lift Π−1 : R2 \ {0} → Ĉ∗ such that arg(Π−1b♯) ∈ (−π, π]. This allows us to lift
previously defined vectors to the universal cover:

N̂ = Π−1N♯, D̂ = Π−1D♯, X̂even = Π−1X♯
even, X̂odd = Π−1X♯

odd. (5.4)

We now need to define the analogues of matrices M♯ ∈ R♯ and M♯ ∈ S♯ acting on the universal cover.
They will be maps M̂ from Ĉ∗ to Ĉ∗, which we will call lifted matrices, defined in the following way. Firstly, we
require, for any b̂ ∈ Ĉ∗,

Π
(
M̂b̂
)
:= M♯Πb̂ = M♯b♯. (5.5)
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The relation (5.5) defines the modulus of M̂b̂ uniquely, and its argument modulo 2π. We prescribe the exact
value of arg M̂b̂ in two distinct ways depending on whether M♯ ∈ R♯ or M♯ ∈ S♯.

In the former case M♯ = R♯(ψ), we set

arg
(
R̂(ψ)b̂

)
:= arg b̂+ ψ.

We remark that although the matrix-valued function R♯(ψ) is 2π-periodic in ψ ∈ R, the maps R̂(ψ) and
R̂(ψ+2π) are different, and therefore R̂(ψ) should not be viewed as a “lift” of R♯(ψ) onto the universal cover,
but rather as an independent object depending on the parameter ψ.

In the latter case, we note that any M♯ = S♯(τ,w♯) ∈ S♯ is either positive definite or negative definite, and
we deal first with the positive ones, requesting that, for any b̂ ∈ Ĉ∗,∣∣∣arg (Ŝb̂)− arg b̂

∣∣∣ < π

2
. (5.6)

The conditions (5.5) and (5.6) define Ŝb̂ uniquely. A more explicit formula for arg
(
Ŝb̂
)

is given below in
Lemma 5.1.

If S♯ is negative, we choose
arg
(
Ŝb̂
)
= arg

(
(̂−S)b̂

)
+ π. (5.7)

If S♯ = S♯(τ,w♯) ∈ S♯, and ŵ is any lift of w♯, we will denote the corresponding map on the universal
cover as Ŝ = Ŝ(τ, ŵ) and call ŵ an eigenvector of Ŝ corresponding to the eigenvalue τ . Of course such a
representation is not unique. We will say that Ŝ is positive or negative if the corresponding S♯ (or τ ) is positive
or negative, respectively.

Let us introduce the set

X̂ :=
{
ŵ ∈ Ĉ∗ : Πŵ ∈

{
±X♯

even,±X♯
odd

}}
=
{
ŵ ∈ Ĉ∗ : |ŵ| = 1, arg ŵ =

π

4
(mod

π

2
)
}
.

(5.8)
The set X̂ consists of all the lifts onto the universal cover of all normalised eigenvectors of matrices S♯. The
elements of X̂ divide Ĉ∗ into quadrants of argument width π

2 : for any b̂ ∈ Ĉ∗ there exist the elements
ŵ1, ŵ2 ∈ X̂ (which depend on b̂) such that

arg ŵ1 ≤ arg b̂ < arg ŵ2 = arg ŵ1 + π/2.

The following lemma gives an explicit expression for arg Ŝb̂ in terms of arg b̂ and arg ŵ1.

Lemma 5.1. Let S♯ ∈ S♯ be positive, let b̂ ∈ Ĉ∗, and let ŵj ∈ X̂ , j = 1, 2 and Ŝ = Ŝ(τ, ŵ1) as above. Then

arg
(
Ŝb̂
)
= arg ŵ1 + arctan

(
1

τ2
tan

(
arg b̂− arg ŵ1

))
(5.9)

Proof. Let b♯ = Πb̂ and w♯
j = Πŵj , j = 1, 2. Write b♯ in the basis w♯

1, w♯
2: b♯ = c1w

♯
1 + c2w

♯
2. Then

S♯b♯ = c1τw
♯
1 + c2τ

−1w♯
2. The result then follows by some elementary trigonometry and by lifting S♯b♯

back to Ŝb̂ with account of (5.6).

We have the following important monotonicity result.

Lemma 5.2. Let ξ̂1, ξ̂2 ∈ Ĉ∗ with arg ξ̂1 < arg ξ̂2. Then for any Ŝ = Ŝ(τ, ŵ) ∈ Ŝ we have

arg
(
Ŝξ̂1

)
< arg

(
Ŝξ̂2

)
. (5.10)
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Proof. Without loss of generality we can assume Ŝ to be positive (that is, take τ > 0) , otherwise we just consider
−Ŝ and add π to both arguments in (5.10). If ξ̂1, ξ̂2 lie in different quadrants with respect to eigenvectors ±ŵ,
±ŵ⊥ of Ŝ, the result is immediate by our definition of the action of Ŝ on Ĉ∗. Suppose they lie in the same
quadrant

arg ŵ1 ≤ arg ξ̂1 < arg ξ̂2 ≤ arg ŵ2 = arg ŵ1 +
π

2
,

where ŵ1, ŵ2 are two orthogonal eigenvectors of Ŝ corresponding to eigenvalues τ > 0 and 1/τ respectively.
Then the result follows from (5.9) applied to b̂ = ξ̂i as both tan and arctan are monotone increasing on
(0, π/2), (0,+∞), respectively.

Let n ≥ 1, α = (α1, . . . , αn), α′ = (α1, . . . , αn−1), ℓ = (ℓ1, . . . , ℓn), and consider now the matrices
T = T(α, ℓ, σ) defined by (2.7) and U = U(α′, ℓ, σ) defined by (2.9). When acting on Ĉ∗ they become

T̂ = T̂(α, ℓ, σ) = Â(αn)R̂(σℓn) · · · Â(α1)R̂(σℓ1),

and
Û = Û(α′, ℓ, σ) = R̂(σℓn)Â(αn−1)R̂(σℓn−1) · · · Â(α1)R̂(σℓ1),

and we have

Lemma 5.3. Let ξ̂1, ξ̂2 ∈ Ĉ∗ with arg ξ̂1 < arg ξ̂2. Then

arg
(
T̂(α, ℓ, σ)ξ̂1

)
< arg

(
T̂(α, ℓ, σ)ξ̂2

)
for any σ, (5.11)

and for any σ1 < σ2,

arg
(
T̂(α, ℓ, σ1)ξ̂

)
< arg

(
T̂(α, ℓ, σ2)ξ̂

)
for any ξ ∈ Ĉ∗. (5.12)

Moreover, arg
(
T̂(α, ℓ, σ)ξ̂

)
is continuous in σ for any ξ ∈ Ĉ∗.

All these statements remain true if T̂(α, ℓ, σ) is replaced by Û(α′, ℓ, σ).

Proof. To prove (5.11) we just notice that any rotation matrix increases the argument by the same amount,
and apply Lemma 5.2 when acting by each matrix Â(αj). To prove (5.12) we notice that the rotation matrices
increase the arguments of vectors they act upon monotonically in σ, and the matrices Â are σ-independent.
The continuity statement is obvious.

5.3. Enumeration of quasi-eigenvalues for non-exceptional zigzags. Let Z = Z(ℵℶ) = Z(ℵℶ)(α, ℓ)

be a non-exceptional zigzag and let ÛZ(σ) := Û(α, ℓ, σ) be the corresponding zigzag matrix acting on the
universal cover Ĉ∗. Recall that the quasi-eigenvalues of Z are defined by equation (2.39), see also (2.40). Let us
give an equivalent definition in terms of the action of the matrix ÛZ on the vectors ℵ̂, ℶ̂ℶℶ ∈ {N̂, D̂}.

Remark 5.4. For the rest of this section we will assume that all the matrices ÛZ(0) (which are products of
symmetric matrices) are positive. If this is not the case, we can just formally replace ÛZ(σ) by−ÛZ(σ), and the
vector ℶ̂ℶℶ by −ℶ̂ℶℶ throughout. (Similarly to (5.7), we understand −ℶ̂ℶℶ as R̂(π)ℶ̂ℶℶ, so that −(−ℶ̂ℶℶ) is ℶ̂ℶℶ rotated by
2π rather than ℶ̂ℶℶ.) ◀
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A real number σ is a quasi-egenvalue of aℵℶ-zigzag Z if and only if

arg
(
ÛZ(σ) ℵ̂

)
= arg ℶ̂ℶℶ (mod π), (5.13)

which should be used together with (5.4). Equivalently, (5.13) may be re-stated as

− arg
(
Û−1
Z (σ) ℶ̂ℶℶ

)
= − arg ℵ̂ (mod π), (5.14)

or, if we set

φZ(σ) = φZ(ℵℶ)(σ) :=
arg
(
ÛZ(σ) ℵ̂

)
− arg ℶ̂ℶℶ

π
,

φ̃Z(σ) = φ̃Z(ℵℶ)(σ) :=
− arg

(
Û−1
Z (σ) ℶ̂ℶℶ

)
+ arg ℵ̂

π
,

(5.15)

as
φZ(σ) ∈ Z or φ̃Z(σ) ∈ Z. (5.16)

Similarly to Proposition 2.20, one can show that the solutions of any of the equations (5.13) form a discrete
set. Therefore, the set of such solutions could be viewed as a sequence of real numbers {σ(ℵℶ)

m }+∞
m=−∞ which

is monotone increasing with m. In order to fix enumeration of this sequence we need to specify the element
σ
(ℵℶ)
1 . Alternatively, we can prescribe the definitions of zigzag quasi-eigenvalue counting functions

N q

Z(ℵℶ)(σ) = #{m ∈ N | σ(ℵℶ)
m ≤ σ},

which are only defined a priori modulo addition of an integer. This is done according to the following

Definition 5.5. The natural enumeration of the quasi-eigenvalues of a zigzag Z(ℵℶ) is defined by setting

N q

Z(ℵℶ)(σ) :=

{
[φZ(ℵℶ)(σ)] + 1, if ℵ = N,

[φZ(ℵℶ)(σ)] , if ℵ = D,

where [·] denotes the integer part. ◁

In order to reformulate Definition 5.5 in terms of specifying the elementσ(ℵℶ)
1 , we need to look at the values

of φZ(ℵℶ)(0). We recall that the corresponding zigzag matrix Û(0) is just a product of symmetric matrices
Â(αn−1) · · · Â(α1) and therefore has eigenvectors±X̂even and±X̂odd whose arguments are odd multiples of
π
4 . Thus, applying definition (5.6) and (5.7), and recalling Remark 5.4 we deduce that

arg
(
ÛZ(0) N̂

)
∈
(
−π
4
,
π

4

)
and arg

(
ÛZ(0) D̂

)
∈
(
π

4
,
3π

4

)
.

We now consider four zigzag problems separately.

Proposition 5.6.

(i) For an NN -zigzag, if arg
(
ÛZ(0) N̂

)
≥ 0, then σ(NN)

1 is the first non-positive quasi-eigenvalue (i.e.,

the non-positive quasi-eigenvalue with the smallest absolute value), otherwise σ(NN)
1 is the first positive

quasi-eigenvalue.
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(ii) For anND-zigzag, σ(ND)
1 is the first positive quasi-eigenvalue.

(iii) For aDN -zigzag, σ(DN)
1 is the first positive quasi-eigenvalue.

(iv) For a DD-zigzag, if arg
(
ÛZ(0) D̂

)
≥ π

2 , then σ(DD)
1 is the first positive quasi-eigenvalue, otherwise

σ
(DD)
1 is the second positive quasi-eigenvalue.

Proof. It is sufficient to check that the counting functions induced by the choice of σ1 in the statements
matches Definition 5.5 at one value of σ, say, σ = 0.

(i) For anNN -zigzag, the formula (5.15) and Definition 5.5 yield

N q

Z(NN)(0) =

1, if arg
(
ÛZ(0) N̂

)
≥ 0,

0, if arg
(
ÛZ(0) N̂

)
< 0,

implying the result.

(ii) For anND-zigzag, by (5.15) and Definition 5.5,

N q

Z(ND)(0) = 0,

hence the result.

(iii) Similarly, for aDN -zigzag,
N q

Z(DN)(0) = 0.

(iv) For aDD-zigzag, again by formula (5.15) and Definition 5.5,

N q

Z(DD)(0) =

0, if arg
(
ÛZ(0) D̂

)
≥ π

2 ,

−1, if arg
(
ÛZ(0) D̂

)
< π

2 ,

implying the result.

The following result will be useful for expressing the quasi-eigenvalues counting functions in terms of
φZ(σ).

Lemma 5.7. Consider a zigzag Z(ℵℶ). Then for all σ ∈ R,

[φ̃Z(ℵℶ)(σ)] = [φZ(ℵℶ)(σ)] .

Proof. By (5.16), the two expressions may differ only by an integer as they have jumps at the same points. There-
fore it is enough to check the equality for σ = 0. This is done exactly in the same manner as in the proof of
Proposition 5.6.

In general, the functionsφZ(ℵℶ)(σ) and φ̃Z(ℵℶ)(σ) are not the same, although their integer parts coincide.
It is easy to check that both functions are smooth. Moreover, they are strictly monotone with the derivatives
bounded away from zero. Namely, we have the following result which strengthens Lemma 5.2.

Lemma 5.8. There exist constantsC1, C2 > 0 such thatC1 ≤ φ′
Z(ℵℶ)(σ) < C2 andC1 < φ̃′

Z(ℵℶ)(σ) < C2

for all σ > 0.
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Proof. We will work with the function φZ(ℵℶ)(σ); the reasoning for φ̃Z(ℵℶ)(σ) will be similar. In view of
the definition of the matrix Û, the function φZ(ℵℶ)(σ) is equal to the cumulative changes of the argument
under the action of rotation matrices R̂(σℓi) and symmetric matrices belonging to Ŝ which are independent
of σ. The rotation matrices increase the argument linearly in σ. Now apply formula (5.9) with Ŝ = Â(α1) and
b̂ = R̂(σℓ1)ℵ̂ together with the chain rule. This leads to the bound

C1,1 ≤
d

dσ
arg
(
Â(α1)R̂(σℓ1)ℵ̂

)
< C1,2

for some constants 0 < C1,1 < C1,2. Applying this observation iteratively to the matrices arising in the
representation of Û we obtain the desired inequalities.

We immediately have

Corollary 5.9. The difference σm+1 − σm for a non-exceptional zigzag is bounded away from zero.

Our next goal is to prove Theorem 2.39. The result follows from the following two propositions.

Proposition 5.10. Theorem 2.39 holds for partially curvilinear zigzags with one side and for straight zigzags with
two equal sides.

Proposition 5.11. Let Z := Z
(ℵℶ)
PQ be a partially curvilinear zigzag with endpoints P andQ, and letW ∈ Z

be a point which is not a vertex and such that the zigzag Z is straight in some neighbourhood ofW . The pointW
splits Z into two partially curvilinear zigzags ZPW , starting at P and ending atW , and ZWQ, starting atW
and ending atQ. Impose a boundary conditionℸ ∈ {D,N} atW . If Theorem 2.39 holds for bothZI := Z(ℵℸ)

PW

and ZII := Z(ℸℶ)
WQ then it also holds for Z(ℵℶ)

PQ .

To prove Theorem 2.39 for an arbitrary partially curvilinear zigzag it remains simply to note that any par-
tially curvilinear zigzag can be represented as a union of partially curvilinear zigzags with one side and straight
zigzags with two equal sides, see Figure 12.

5.4. Proof of Proposition 5.10. Consider first a zigzagZ1 consisting of one side of length ℓ. The correspond-
ing matrix is given by

ÛZ1 = R̂(ℓσ),

and therefore
φZ(ℵℶ)

1

(σ) = ℓσ + arg ℵ̂− arg ℶ̂ℶℶ,

leading, by Definition 5.5, to

N q

Z(NN)
1

(σ) = [ℓσ] + 1, N q

Z(DD)
1

(σ) = [ℓσ], N q

Z(ND)
1

(σ) = N q

Z(DN)
1

(σ) =

[
ℓσ +

1

2

]
. (5.17)

At the same time, it follows from Corollary 4.18 (which is applicable since, according to Definition 2.36, zigzag
domains always have angles π/2 at the ends of the corresponding zigzag, see Figure 6) that λ(ℵℶ)

m − σ
(ℵℶ)
m =

o(1), where

ℓσ(NN)
m = π(m− 1), ℓσ(DD)

m = πm, ℓσ(ND)
m = ℓσ(DN)

m = π

(
m− 1

2

)
, m ∈ N,

which is in agreement with (5.17). This proves Proposition 5.10 for a one-sided zigzag.
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•

•

•

•

Figure 12: Decomposition of a three-arc partially curvilinear zigzag into the union of two two-piece straight
zigzags with equal sides (solid lines) and three partially curvilinear one-piece zigzags (dashed lines)

Consider now a zigzag Z2 := Z((α), (ℓ, ℓ)) with two equal straight sides of length ℓ and the angle α
between them. The corresponding zigzag matrix is given by

ÛZ2(σ) = R̂(ℓσ)Â(α)R̂(ℓσ),

and a direct calculation gives

ÛZ2(σ)N̂ = cosec(µα)

(
cos(2ℓσ)

− cos(µα) + sin(2ℓσ)

)
(5.18)

and

ÛZ2(σ)D̂ = cosec(µα)

(
− cos(µα)− sin(2ℓσ)

cos(2ℓσ)

)
. (5.19)

We note additionally that

arg
(
ÛZ2(0)N̂

)
= arg

(
cosec(µα)

− cot(µα)

)
(mod π).

and therefore

arg
(
ÛZ2(0)N̂

)
∈
[
0,
π

4

)
⇐⇒ µα ∈

[
π

2
,
3π

2

]
(mod 2π) ⇐⇒

{µα
2π

}
∈
[
1

4
,
3

4

]
, (5.20)

where {·} denotes the fractional part. Similarly,

arg
(
ÛZ2(0)D̂

)
= arg

(
− cot(µα)

cosec(µα)

)
(mod π).
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and therefore

arg
(
ÛZ2(0)D̂

)
∈
(π
4
,
π

2

)
⇐⇒ µα ∈

(
π

2
,
3π

2

)
(mod 2π) ⇐⇒

{µα
2π

}
∈
(
1

4
,
3

4

)
. (5.21)

Consider first the Neumann–Neumann case. By (5.18), a real σ is a quasi-eigenvalue whenever

− cos(µα) + sin(2ℓσ) = 0,

that is, when

2σℓ ∈
{
2πm− 3π

2
± µα | m ∈ Z

}
. (5.22)

At the same time, symmetrising the zigzagZ2 along the bisector, one can represent the eigenvalue problem
on a corresponding zigzag domain as the union of two mixed Steklov–Neumann and Steklov–Neumann–
Dirichlet eigenvalue problems (with either Neumann or Dirichlet condition imposed on the bisector, see Figure
13). The eigenvalue asymptotics for these problems are known due to the results of [LPPS21, Propositions 1.3
and 1.13]: the quasi-eigenvalues are given by

2σℓ ∈
{
2πm− 3π

2
± µα | m ∈ N

}
. (5.23)

Figure 13: Symmetric decomposition of Steklov–Neumann symmetric zigzag domain. Solid lines denote
Steklov conditions, dashed lines — Neumann conditions, and dot-dashed lines — Dirichlet conditions

We need to show that for sufficiently largeσ the enumeration defined by (5.23) and the natural enumeration
of (5.22) are the same. The natural enumeration of (5.22) means starting counting fromm± =

[
3
4 ∓ µα

2π

]
+1

instead of starting counting from 1, giving the total loss of[
3

4
+
µα
2π

]
+

[
3

4
− µα

2π

]
=

{
1, if

{µα

2π

}
∈
[
1
4 ,

3
4

]
,

0, otherwise.
(5.24)

Therefore, if the condition
{µα

2π

}
∈
[
1
4 ,

3
4

]
is satisfied, we must start counting from the first non-positive

quasi-eigenvalue to ensure correct enumeration. But this is exactly the condition (5.20), which with account of
Proposition 5.6(i) guarantees that the enumeration imposed by Definition 5.5 is correct, thus proving Theorem
2.39 for a symmetric straightNN -zigzag with two sides.

Consider now the case of the Dirichlet-Dirichlet boundary conditions. By (5.19), a realσ is a quasi-eigenvalue
whenever

− cos(µα)− sin(2ℓσ) = 0,
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that is, when
2σℓ ∈

{
2πm− π

2
± µα | m ∈ Z

}
. (5.25)

Symmetrising as above (see Figure 14) and using [LPPS21, Propositions 1.8 and 1.13] we know that the quasi-
eigenvalues will be correctly enumerated if we count overm ∈ N in (5.25).

Figure 14: Symmetric decomposition of Steklov–Dirichlet symmetric zigzag domain. Solid lines denote Steklov
conditions, dashed lines — Neumann conditions, and dot-dashed lines — Dirichlet conditions

Similarly to the Neumann–Neumann case we compare this to counting only positive quasi-eigenvalues in
(5.25). In the latter case, the total loss is now given (after some simplifications) by[

1

4
+
µα
2π

]
+

[
1

4
− µα

2π

]
=

{
−1, if

{µα

2π

}
∈
(
1
4 ,

3
4

)
,

0, otherwise.
(5.26)

Comparing with (5.21) and using Proposition 5.6(iv) guarantees that the enumeration imposed by Definition
5.5 is correct, thus proving Theorem 2.39 for a symmetric straightDD-zigzag with two sides.

Finally, consider the Neumann–Dirichlet or Dirichlet–Neumann boundary conditions on the zigzag Z2.
In either case, the set of real quasi-eigenvalues is given by

2σℓ ∈
{
−π
2
+ πm | m ∈ Z

}
,

see (5.18) and (5.19). However, the boundary conditions are no longer symmetric with respect to the bisector,
therefore a direct comparison to a sloshing problem is impossible, and a different approach is needed. We will
use the following isospectrality result. Let ABC = Z2 = Z((α), (ℓ, ℓ)) be a zigzag with two equal straight
sidesAB andBC of length ℓ joined at an angle α, and letABCF be aND-zigzag domain, with the straight
line intervals FA and FC being orthogonal to AB and BC , respectively. Also, let A′C ′F ′ be an isosceles
triangle with the baseA′C ′ of length 2ℓ and angles α/2 between the base and the sides, see Figure 15.

Lemma 5.12. The Steklov–Neumann–Dirichlet eigenvalue problem

−∆u = 0 inABCF,
(
∂u

∂n
− λu

)∣∣∣∣
ABC

= 0,
∂u

∂n

∣∣∣∣
AF

= 0, u|CF = 0

is isospectral to the Steklov–Neumann–Dirichlet eigenvalue problem

−∆u = 0 inA′C ′F ′,

(
∂u

∂n
− λu

)∣∣∣∣
A′C′

= 0,
∂u

∂n

∣∣∣∣
A′F ′

= 0, u|C′F ′ = 0.
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Figure 15: Two isospectral Steklov–Neumann–Dirichlet problems. Solid lines denote Steklov conditions,
dashed lines — Neumann conditions, and dot-dashed lines — Dirichlet conditions

Proof of Lemma 5.12. The lemma follows from a direct application of the transplantation argument of [LPP06,
Theorem 3.1]. In our case, the construction blockK is the triangleABF , the line a is the sideAF , and the line
b isBF . Note that although [LPP06, Theorem 3.1] is stated for the Laplacian with mixed Dirichlet-Neumann
boundary conditions, its proof applies verbatim in our case, see also [GHW21].

Using Lemma 5.12 and applying [LPPS21, Proposition 1.13] to the isosceles triangle constructed in the
lemma, we immediately obtain that

2ℓσ(ND)
m = −π

2
+ πk,m = 1, 2, . . . ,

and therefore σ(ND)
1 is the first positive quasi-eigenvalue as prescribed by Definition 5.5. Exactly the same ar-

gument works for σ(DN)
1 . This completes the proof of Proposition 5.10.

5.5. Proof of Proposition 5.11. The proof is based on the Dirichlet–Neumann bracketing. Given some
boundary conditions ℵ and ℶ at the points P and Q, respectively, we impose the Dirichlet or Neumann
boundary condition ℸ at the point W and use the assumption that Theorem 2.39 holds for two parts ZI :=

Z(ℵℸ)
PW andZII := Z(ℸℶ)

WQ ofZ withℸ ∈ {D,N}. We then show that the only enumeration of eigenvalues on
the big zigzag Z(ℵℶ) that agrees with the Dirichlet–Neumann bracketing is the one given by Definition 5.5.

Indeed, letNZ(σ),NZI
(σ),NZII

(σ)be the eigenvalue counting functions (i.e. the number of eigenvalues
less or equal than σ) for the zigzags Z , ZI and ZII with given boundary conditions at the end points. Similarly,
let N q

Z(σ), N q
ZI
(σ), N q

ZII
(σ) be the corresponding quasi-eigenvalue counting functions, where the quasi-

eigenvalues are enumerated according to Definition 5.5. The following key lemma holds.

Lemma 5.13. Fix ℵ,ℶ,ℸ ∈ {D,N}. There exists δ > 0 such that for any M > 0 there exists an interval
IMh ⊂ (M,+∞) of length δ such that

N q

Z(ℵℸ)
I

(σ) +N q

Z(ℸℶ)
II

(σ) = N q

Z(ℵℶ)(σ) for any σ ∈ IM . (5.27)

Before proving Lemma 5.13 let us show first how it implies Proposition 5.11.

Proof of Proposition 5.11. Consider a zigzag domain corresponding to the zigzag Z . It can be represented as a
union of two zigzag domains corresponding to the zigzags ZI, ZII. By Dirichlet-Neumann bracketing, for all
σ > 0 we have

NZ(ℵD)
I

(σ) +NZ(Dℶ)
II

(σ) ≤ NZ(ℵℶ)(σ) ≤ NZ(ℵN)
I

(σ) +NZ(Nℶ)
II

(σ). (5.28)



Michael Levitin, Leonid Parnovski, Iosif Polterovich, and David A. Sher 67

At the same time, by our assumption, the natural enumeration holds for the zigzagsZI andZII. Therefore, the
eigenvalue counting functions and the corresponding quasimode counting functions of these zigzags coincide
away from a union of intervals of lengths tending to zero. Let us combine this observation with Lemma 5.13 and
formula (5.28). We deduce that there exists a positive number δ′ such that for anyM > 0 there exist intervals
IN
M , ID

M ⊂ (M,+∞) of length δ′ on which the following inequalities hold:

NZ(ℵℶ)(σ) ≤ N q

Z(ℵℶ)(σ), σ ∈ IN
M ;

NZ(ℵℶ)(σ) ≥ N q

Z(ℵℶ)(σ), σ ∈ ID
M .

(5.29)

At the same time, it follows from Theorem 4.30 that there exists a limit (possibly equal to +∞)

lim
σ→∞
σ/∈S

(
NZ(ℵℶ)(σ)−N q

Z(ℵℶ)(σ)
)
, (5.30)

whereS is a union of intervals of lengths tending to zero. In fact this also follows directly from Corollaries 4.17
and 5.9. Clearly, (5.30) implies that both inequalities in (5.29) are equalities. Therefore, the natural enumeration
holds for the zigzag Z(ℵℶ) which completes the proof of Proposition 5.11.

It remains to prove Lemma 5.13. The following abstract proposition will be used in the proof of the lemma.

Proposition 5.14. Let φ1, φ2 ∈ C1(R) be two monotone increasing functions such that 0 < C1 < φ′
1, φ

′
2 <

C2 for some constants C1, C2 > 0. Then there exists δ > 0 such that for any M ∈ N there exist intervals
I, I ′ ⊂ (M,+∞) of length δ such that

[φ1(σ)] + [φ2(σ)] + 1 = [φ1(σ) + φ2(σ)], σ ∈ I. (5.31)

[φ1(σ)] + [φ2(σ)] = [φ1(σ) + φ2(σ)], σ ∈ I ′. (5.32)

We postpone the proof of Proposition 5.14 and proceed with the proof of Lemma 5.13.

Proof of Lemma 5.13. We start by making the following observation: σ is a quasi-eigenvalue of Z(ℵℶ) if and
only if

φZ(ℵℸ)
I

(σ) + φ̃Z(ℸℶ)
II

(σ) ∈ Z, ℸ ∈ {D,N}, (5.33)

Indeed, for σ to be a quasi-eigenvalue we must have

UZII
(σ) UZI

(σ)ℵ is proportional to ℶℶℶ
⇕

arg (UZI
(σ)ℵ) = arg

(
U−1
ZII

(σ)ℶℶℶ
)

(mod π)

⇕

arg (UZI
(σ)ℵ)− arg(ℸℸℸ) + arg(ℸℸℸ)− arg

(
U−1
ZII

(σ)ℶℶℶ
)
= 0 (mod π),

and then recall the definitions (5.15) giving us (5.33).
Therefore the quasi-eigenvalue counting function N q

Z(ℵℶ)(σ) may only differ from the integer part of the
left-hand side of (5.33) by addition of an integer m0 independent of σ. To find m0 it is enough to consider
σ = 0.

We further assert that for anyℵ,ℶ,ℸ ∈ {D,N} we have

[φZ(ℵℶ)(0)] =
[
φZ(ℵℸ)

I

(0) + φ̃Z(ℸℶ)
II

(0)
]
. (5.34)
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We prove (5.34) in the caseℵ = ℶ = ℸ = N . Recall that all matrices U(0) are symmetric and we can therefore
write UZI

(0) = Ŝ
(
1/τI, X̂even

)
and UZII

(0) = Ŝ
(
1/τII, X̂even

)
with some τI, τII ∈ R. Using (5.15) and

(5.9) we obtain

[φZ(NN)(0)] =

[
arctan

(
τ2I τ

2
II

)
π

− 1

4

]
=

{
−1, if τ2I τ

2
II < 1,

0, if τ2I τ
2
II ≥ 1.

(5.35)

On the other hand,

[
φZ(NN)

I

(0) + φ̃Z(NN)
II

(0)
]
=

[
arctan

(
τ2I
)
− arctan

(
τ−2
II

)
π

]
,

thus coinciding with the right-hand side of (5.35) and proving (5.34) in the caseℵ = ℶ = ℸ = N . The other
cases of (5.34) are treated similarly.

But now the combination of (5.34), Definition 5.5, and Lemma 5.7 allows us to find the integerm0 in each
case. We arrive at the following table:

ℵ ℶ ℸ N q

Z(ℵℶ)(σ) N q

Z(ℵℸ)
I

(σ) N q

Z(ℸℶ)
II

(σ)

N N N
[
φZ(NN)

I

(σ) + φ̃Z(NN)
II

(σ)
]
+ 1

[
φZ(NN)

I

(σ)
]
+ 1

[
φ̃Z(NN)

II

(σ)
]
+ 1

N N D
[
φZ(NN)

I

(σ) + φ̃Z(DN)
II

(σ)
]
+ 1

[
φZ(ND)

I

(σ)
]
+ 1

[
φ̃Z(DN)

II

(σ)
]

N D N
[
φZ(NN)

I

(σ) + φ̃Z(ND)
II

(σ)
]
+ 1

[
φZ(NN)

I

(σ)
]
+ 1

[
φ̃Z(ND)

II

(σ)
]
+ 1

N D D
[
φZ(ND)

I

(σ) + φ̃Z(DD)
II

(σ)
]
+ 1

[
φZ(ND)

I

(σ)
]
+ 1

[
φ̃Z(DD)

II

(σ)
]

D N N
[
φZ(DN)

I

(σ) + φ̃Z(NN)
II

(σ)
] [

φZ(DN)
I

(σ)
] [

φ̃Z(NN)
II

(σ)
]
+ 1

D N D
[
φZ(DD)

I

(σ) + φ̃Z(DN)
II

(σ)
] [

φZ(DD)
I

(σ)
] [

φ̃Z(DN)
II

(σ)
]

D D N
[
φZ(DN)

I

(σ) + φ̃Z(ND)
II

(σ)
] [

φZ(DN)
I

(σ)
] [

φ̃Z(ND)
II

(σ)
]
+ 1

D D D
[
φZ(DD)

I

(σ) + φ̃Z(DD)
II

(σ)
] [

φZ(DD)
I

(σ)
] [

φ̃Z(DD)
II

(σ)
]

Recalling Lemma 5.8, the proof of Lemma 5.13 now follows by the application of Proposition 5.14, which
applies in all eight of these cases.

We conclude this subsection by the proof of Proposition 5.14.

Proof of Proposition 5.14. Assume without loss of generality that C2 = C and C1 = 1/C , for some C > 1.
Let us first prove the assertion (5.31). Let ω1(σ) = {φ1(σ)} , ω2(σ) = {φ2(σ)} denote the fractional parts
of φ1(σ), φ2(σ), respectively. Note that the equality in (5.31) is equivalent to the inequality

ω1(σ) + ω2(σ) ≥ 1. (5.36)

Choose an integer number N > M and let s be the value for which φ1(s) + φ2(s) = N . If ω1(s) =
ω2(s) = 0 then the result trivially follows for the interval (s− δ, s) and δ = 1

2C . Therefore, we may suppose
thatω1(s)+ω2(s) = 1, and assume without loss of generality thatω2(s) ≥ 1

2 ≥ ω1(s). There are two cases.
Suppose first that ω1(s) ≤ 1

3C2 . Then since φ′
1 >

1
C , there exists (precisely one) s′ ∈ (s − 1

3C , s) for
whichω1(s

′) = 0. On the other hand, sinceφ′
2 < C ,φ2(s

′) ≥ φ2(s)− 1
3 , and sinceω2(s) ≥ 1− 1

3C2 ≥ 2
3 ,
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we must have ω2(s
′) ≥ 1

3 . Therefore (ω1 + ω2)(s
′) ≥ 1

3 . Our inequality (5.36) then holds on the interval
(s′ − 1

6C , s
′), which is a subset of (s− 2

3C , s).
On the other hand suppose thatω1(s) >

1
3C2 . Thenω2(s) < 1− 1

3C2 , and so on the interval (s, s+ 1
3C3 ),

ω2 remains less than 1, as does ω1. Since both are still increasing, (5.36) holds on the interval (s, s+ 1
3C3 ).

In either case, the interval (s− 2
3C , s+

2
3C ) contains an interval of length at least 1

6C3 where (5.36) holds.
Since there are infinitely many values of s, (5.31) follows.

The relation (5.32) is proved in a similar manner.

5.6. Enumeration of quasi-eigenvalues for non-exceptional polygons. Let P := P(α, ℓ) be a partially
curvilinear non-exceptional polygon and let T̂(σ) := T̂(α, ℓ, σ) be the lifted corresponding matrix defined
in subsection 5.1 acting on the universal cover Ĉ∗. Recall that a real number σ ≥ 0 is a quasi-eigenvalue of
the polygon P if the matrix T(α, ℓ, σ) has eigenvalue one. Equivalently, this means that there exists a vector
0 ̸= ξ̂ ∈ Ĉ∗ such that |ξ̂| = |T̂(σ)ξ̂| and

arg
(
T̂(σ)ξ̂

)
= arg ξ̂ (mod 2π). (5.37)

Let us for the moment switch back to the representation of vectors and matrices onR2. Given thatdet(T♯(σ)) =
1, for each σ there exist two linearly independent vectors t♯1 = t♯1(T

♯(σ)) and t♯2 = t♯2(T
♯(σ)) such that∣∣∣T♯(σ)t♯j∣∣∣ = ∣∣∣t♯j∣∣∣ , j = 1, 2.

Indeed, by polar decomposition the matrix T♯(σ) could be represented as a product of a symmetric matrix
and a rotation; the latter does not change length, and for a symmetric matrix the statement is easy to check.
(Interestingly, the problem of finding the vectors whose length is preserved under the action of a given matrix
has other unexpected applications, see [Tol21].) Moreover, the vectors t♯1 and t♯2 are uniquely defined up to
multiplication by a constant or up to a swap, unless T♯(σ) is a pure rotation, in which case one could take any
pair of linearly independent vectors. To fix the argument, we shall assume that

0 ≤ arg t♯j < π, j = 1, 2. (5.38)

Set now
t̂j := Π−1t♯j , j = 1, 2,

and
dj(T̂(σ)) := arg

(
T̂(σ)̂tj

)
− arg

(
t̂j

)
, j = 1, 2. (5.39)

Note that dj(T̂(σ)) is always well-defined: if T̂(σ) is a rotation by an angle ψ, then dj(T̂(σ)) = ψ for any
choice of t̂j . The following proposition is an immediate consequence of Definition 2.3.

Proposition 5.15. A number σ ≥ 0 is a quasi-eigenvalue of the polygon P if and only if dj(T̂(σ)) = 0
(mod 2π) for either j = 1 or j = 2. If σ > 0 and dj(T̂(σ)) = 0 (mod 2π) for both j = 1, 2, then σ
is a quasi-eigenvalue of multiplicity two.

Remark 5.16. The matrix T̂(σ) corresponding to a polygon P is defined up to similarity: it depends on the
choice of enumeration of vertices of the polygon P . As a consequence, the vectors t̂j and the functions dj(σ),
j = 1, 2, depend on this choice as well. To simplify notation, in what follows we write t̂j(σ) := t̂j(T̂(σ)) and
dj(σ) := dj(T̂(σ)), when the choice of the matrix T̂ is clear from the context. Note also that by Proposition
5.15, the values of σ such that dj(T̂(σ)) = 0 (mod 2π) depend only on the polygon P but not on the choice
of the matrix T̂, cf. Remark 2.4. ◀
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The following regularity properties of the functionsdj(T̂(σ)), j = 1, 2may be deduced from the structure
of the matrices T̂(σ).

Lemma 5.17. The functiondj(T̂(σ)) is a continuous function inσ, j = 1, 2. Moreover, if T̂(σ0) is not a rotation,
then dj(T̂(σ)) is differentiable at σ = σ0; otherwise, left and right derivatives at σ = σ0 exist.

Proof. Let us write down the polar decomposition for T̂(σ) explicitly. First, observe by a direct computation
that Ŝ(τ, ŵ)R̂(ψ) = R̂(ψ)Ŝ(τ, R̂(−ψ)ŵ), where Ŝ is a symmetric matrix and R̂ is a rotation as defined in
subsection 5.2. Iterating this relation and taking into account (5.3) we obtain

T̂(σ) = T̂(α, ℓ, σ) = R̂(Lσ)Ŝn(σ)Ŝn−1(σ) · · · Ŝ1(σ), (5.40)

whereLj =
∑j

k=1 ℓk,L = Ln, and

Ŝj(σ) = Ŝ(a1(αj)− a2(αj), R̂(−Ljσ)X̂odd).

It follows from (5.40) that T̂(σ) is a rotation if and only if

Ŝn(σ)Ŝn−1(σ) · · · Ŝ1(σ) = ±Îd. (5.41)

Moreover, note that the entries of T̂(σ) are real analytic functions of σ. Hence, for a given σ = σ0 there are
three possibilities:

(i) T̂(σ) is not a rotation in some neighbourhood of σ0. Then the vectors t̂j(σ), j = 1, 2, are uniquely
defined for each σ in this neighbourhood and dj(σ) depends smoothly on σ.

(ii) T̂(σ) is a rotation in some neighbourhood of σ0. Then dj(σ) is a linear function in σ in this neighbour-
hood.

(iii) T̂(σ0) is a rotation, but T (σ) is not a rotation in some punctured neighbourhood of σ0. In this case
σ = σ0 corresponds to a double eigenvalue. However, we claim the left and right derivatives of dj(σ),
which are defined a priori only for σ ̸= σ0, in fact exist at σ = σ0. Indeed, this follows from a standard
perturbation theory result of Rellich [Rel54]. The matrix Ŝn(σ) . . . Ŝ1(σ) is a symmetric matrix, all of
whose coefficients have analytic dependence on σ. By [Rel54, Theorem 1, p. 42], its eigenvalues and
eigenvectors may be chosen to have analytic dependence on σ in a neighbourhood of σ = σ0, with σ =
σ0 corresponding to an intersection of analytic branches. By a direct calculation, the unit vectors whose
length is preserved by Ŝn(σ) . . . Ŝ1(σ) have analytic dependence on the eigenvalues and eigenvectors,
and hence themselves depend analytically on σ. However, by (5.40), these vectors are precisely t̂j(σ),
j = 1, 2. The result follows.

This completes the proof of the lemma.

The next proposition is important for our analysis.

Proposition 5.18. The functions dj(T̂(σ)) are monotone increasing in σ and

0 < C1 ≤
d± dj(T̂(σ))

dσ
≤ C2,

where d±

dσ denotes one-sided derivatives.
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Proof. We consider separately the cases (i)-(iii) above. Consider first case (i). Then dj(T̂σ) depends smoothly
on σ and

d dj(T̂(σ))

dσ

∣∣∣∣∣
σ=σ0

=
d

dσ

∣∣∣∣
σ=σ0

arg(T̂(σ))̂tj(σ)−
d

dσ

∣∣∣∣
σ=σ0

arg t̂j(σ)

=
d

dσ

∣∣∣∣
σ=σ0

arg(T̂(σ))̂tj(σ0)

+

(
d

dσ

∣∣∣∣
σ=σ0

arg(T̂(σ0))̂tj(σ)−
d

dσ

∣∣∣∣
σ=σ0

arg t̂j(σ)

)
.

Set
D1(σ) =

d

dσ

∣∣∣∣
σ=σ0

arg(T̂(σ))̂tj(σ0)

and
D2(σ) =

d

dσ

∣∣∣∣
σ=σ0

arg(T̂(σ0))̂tj(σ)−
d

dσ

∣∣∣∣
σ=σ0

arg t̂j(σ)

Arguing in the same way as in the proof of of Lemma 5.8 one can check that there exist constantsC1, C2 > 0
such thatC1 ≤ D1(σ) ≤ C2. The proof of Proposition 5.18 in case (i) then follows from the following claim:

D2(σ) = 0. (5.42)

To prove (5.42), let us assume without loss of generality that j = 1 and |̂t1(σ0)| = 1. For σ close to σ0, let

t̂1(σ) = t̂1(σ0) + (σ − σ0)v̂1 + (σ − σ0)v̂
⊥
1 + o(σ − σ0),

where v̂1 is a vector in the same direction as t̂1(σ0) and the angle between v̂1 and v̂
⊥
1 is equal to π/2. It is easy

to see that
d

dσ

∣∣∣∣
σ=σ0

arg t̂1(σ) =
∣∣∣v̂⊥

1

∣∣∣ . (5.43)

Let ŵ′
1 = T̂(σ0)v̂1 and ŵ

′′
1 = T̂(σ0)v̂

⊥
1 . By definition of t̂1(σ0) we have |T̂(σ0)̂t1(σ0)| = |̂t1(σ0)| and

therefore
∣∣∣ŵ′

1

∣∣∣ = ∣∣∣v̂1

∣∣∣. At the same time, det T̂(σ0) = 1, and therefore the areas of the parallelograms gener-

ated by the pairs of vectors (v̂1, v̂
⊥
1 ) and (ŵ

′
1, ŵ

′′
1) are the same. Hence the projection of ŵ′′

1 on (ŵ
′
1)

⊥ has
the same length as v̂⊥

1 . One can check that the length of this projection is equal to d
dσ

∣∣
σ=σ0

arg(T̂(σ0))̂t1(σ).
Hence, taking into account (5.43), one obtains (5.42).

This completes the proof of Proposition 5.18 in case (i). In case (iii) the argument is exactly the same with
the derivative replaced by one-sided derivatives. Consider now the remaining case (ii). Then, as follows from
(5.40) and (5.41), the function dj(T̂σ) is linear in σ and its derivative is equal to L, which immediately implies
the proposition.

Let us now define the natural enumeration for polygons. Let now {σm(P)},m ∈ Z, be the sequence of
all real quasi-eigenvalues of the polygonP repeated with multiplicities, which is monotone increasing withm,
see Remark 2.21. Recall that a quasi-eigenvalue σ has multiplicity two if dj(T̂(σ)) = 0 (mod 2π) for both
j = 1, 2.

Definition 5.19. The first quasi-eigenvalue σ1(P) is defined as the first non-negative element the sequence
{σm(P)}. Moreover, if σ1(P) = 0 then σ2(P) > 0, i.e., a zero quasi-eigenvalue is counted only once. ◁
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We can now state the main result of this subsection that the natural enumeration of quasi-eigenvalues yields
the correct enumeration of Steklov eigenvalues for partially curvilinear polygons without exceptional angles.

Theorem 5.20. Theorem 1.4 holds for partially curvilinear non-exceptional polygons.

Proof. LetP be a partially curvilinear polygon. Take any pointV0 on a straight piece of the boundary and make
a straight cut perpendicular to∂P at this point into the interior ofP ; at the top of the cut we add another small
circular cut, see Figure 16.

Figure 16: A polygon with a cut

Imposing Neumann or Dirichlet conditions on the cut we may consider the polygon with a cut as a zigzag
domain Pcut corresponding to the zigzag Z = ZP = ∂P with the same start and end point V0. The assump-
tions of Lemma 4.9 are satisfied for this zigzag domain (note that the circular cut was added precisely to avoid
having an angle greater than π at the top of the vertical cut), and therefore the quasimode construction applies.
Denote by NP(σ) the eigenvalue counting function on a polygon, and by NZ(DD)(σ) and NZ(NN)(σ) the
eigenvalue counting functions of zigzagZ with, respectively, the Dirichlet and Neumann condition on the cut.
Denote also by N q

P(σ), N q

Z(DD)(σ) and N q

Z(NN)(σ) the corresponding quasi-eigenvalue counting functions.
By the Dirichlet–Neumann bracketing we have for all positive σ

NZ(DD)(σ) ≤ NP(σ) ≤ NZ(NN)(σ). (5.44)

In view of Remark 5.16, we need to fix the choice of the matrix T̂ corresponding to the polygonP . From now on,
we choose it to be the matrix corresponding to the zigzag ZP . This could be done by introducing an auxiliary
vertex at V0 with the angle equal to π , and use this vertex as the starting point for enumeration of the vertices
of P . Note that the vertex transfer matrix at V0 is equal to identity and therefore does not affect T̂.

Consider the functions

ψj(σ) =
dj(σ)

2π
, j = 1, 2. (5.45)

Remark 5.21. In what follows we shall assume that T̂(0) is a positive matrix. If T̂(0) is negative, the proof follows
along the same lines with minor modifications which will be indicated later. ◀
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Lemma 5.22. The following formula holds:

N q
P(σ) = [ψ1(σ)] + [ψ2(σ)] + 1.

Proof. We first note that the right-hand side is a step function that has discontinuities precisely at the quasi-
eigenvalues. Moreover, the jump at a discontinuity is equal to one if the corresponding quasi-eigenvalue is
simple, and is equal to two if the corresponding quasi-eigenvalue is double. Therefore, it remains to check the
equality for σ = 0.

Note that the vectors t̂1(0) and t̂2(0) can be chosen to be symmetric reflections of each other about one
of the eigenvectors of the matrix T̂(0). Moreover, one can easily check that T̂(0)̂t1(0) and T̂(0)̂t2(0) remain
symmetric with respect to the same vector. Therefore, either dj(0), j = 1, 2, have opposite signs, or d1(0) =
d2(0) = 0. In both cases the equality

N q
P(0) = [ψ1(0)] + [ψ2(0)] + 1

follows from Definitions 2.3 and 2.6. This completes the proof of the lemma.

Let us go back to the proof of Theorem 5.20. We recall that by Definition 5.5,

N q

Z(NN)(σ) = [φZ(NN)(σ)] + 1, N q

Z(DD)(σ) = [φZ(DD)(σ)] .

where by (5.15)

φZ(NN)(σ) =
arg
(
T̂(σ)N̂

)
π

, φZ(DD)(σ) =
arg
(
T̂(σ)D̂

)
π

− 1

2
. (5.46)

By Theorem 2.39 applied to the Z , we have that

NZ(NN)(σ) = N q

Z(NN)(σ) and NZ(DD)(σ) = N q

Z(DD)(σ)

for allσ except some intervals of lengths tending to zero asσ → ∞. Using Theorem 4.24 to obtain an analogue
of (5.30), we may argue as in the proof of Proposition 5.11. We need to show that for σ belonging to some
intervals of lengths bounded below and located arbitrarily far away on the real line,

N q
P(σ) = N q

Z(NN)(σ), (5.47)

and for another collection of intervals with the same properties,

N q
P(σ) = N q

Z(DD)(σ). (5.48)

In order to prove (5.47) we will need the following proposition.

Proposition 5.23. Letℵ ∈ {D,N} and j ∈ {1, 2}. There exists ε > 0 such that for all σ > 0,

|2ψj(σ)− φZ(ℵℵ)(σ)| ≤ 1− ε. (5.49)

Let us postpone the proof of the proposition and proceed with the proof of (5.47) for σ belonging to
intervals of length bounded below located arbitrary far on the real line. In view of Lemma 5.22 we need to
show that for such σ

[ψ1(σ)] + [ψ2(σ)] + 1 = [φZ(NN)(σ)] ; (5.50)

similarly, (5.48) is equivalent to

[ψ1(σ)] + [ψ2(σ)] = [φZ(DD)(σ)] . (5.51)
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Let us prove (5.50) first. For any k ∈ N, choose σ̃k so that φZ(NN)(σ̃k) = 2k + 1. This is possible to
achieve sinceφZ(NN) has a positive derivative bounded away from zero, see Lemma 5.8. By Proposition 5.23 we
have

|2ψj(σ̃k)− φZ(NN)(σ̃k)| ≤ 1− ε, j = 1, 2.

Therefore,
k +

ε

2
≤ ψj(σ̃k) ≤ k + 1− ε

2
, j = 1, 2. (5.52)

Since the derivatives of ψj(σ) and φZ(NN)(σ) are uniformly bounded, there exists an interval I(NN)
k =

(σ̃k, σ̃
′
k) of length uniformly bounded away from zero such that [ψj(σ)] = k and [φZ(NN)((σ)] = 2k + 1

for all σ ∈ I(NN)
k and j = 1, 2. This proves (5.50).

Equality (5.51) is obtained using a similar argument. As above, choose σ̃k such thatφZ(DD)(σ̃k) = 2k+1
and use again Proposition 5.23 to obtain (5.52). In view of the uniform boundedness of the derivatives ofψj(σ)

and φZ(DD)(σ) we deduce that there exist intervals I(DD)
k = (σ̃′′k , σ̃k) of length uniformly bounded below

such that for any σ ∈ I(DD)
k , [ψj(σ)] = k, j = 1, 2, and [φZ(DD)(σ)] = 2k. This implies (5.51), completing

the proof of Theorem 5.20 modulo the proof of Proposition 5.23.
Let us now prove Proposition 5.23. We will need the following elementary linear algebra lemma.

Lemma 5.24. There exists a constantC > 0 such that

| arg(T̂(σ)v̂1)− arg(T̂(σ)v̂2)| < C| arg v̂1 − arg v̂2|

for any v̂1, v̂2 ∈ Ĉ∗ and any σ ≥ 0.

Proof. The matrices T̂(σ) are products of rotations depending onσ and symmetric matrices independent ofσ.
The rotations preserve the angles and could be therefore ignored. It is therefore sufficient to verify the statement
of the lemma for a single symmetric matrix of determinant one. Changing coordinates, we may assume that
the matrix is symmetric with eigenvalues τ and 1/τ . The result then follows from an explicit computation that
is left to the reader.

It remains to prove Proposition 5.23.

Proof of Proposition 5.23. It suffices to prove the inequality (5.49) for j = 1 and ℵ = N , all other cases are
proved similarly. Choose ε > 0 small enough so that

ε <
1

C + 2
, (5.53)

whereC is from Lemma 5.24. For brevity we will denote in this proof

α(σ) := arg(̂t1(σ)), β(σ) := arg(T̂(σ)̂t1(σ)), γ(σ) := arg(T̂(σ)N̂);

then
ψ(σ) =

β(σ)− α(σ)

2π
, φZ(NN)(σ) =

γ(σ)

π
. (5.54)

We recall also that by assumption (5.38),
0 ≤ α(σ) < π. (5.55)

By Lemma 5.2, the matrix T̂(σ) preserves the order of vectors in terms of their arguments. Re-write (5.55)
as

arg(N̂) ≤ α(σ) < arg(−N̂),
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then by this monotonicity
γ(σ) ≤ β(σ) < γ(σ) + π.

Subtractingα(σ) + γ(σ) from these inequalities, dividing by π and re-arranging with account of (5.54) yields

−α(σ)
π

≤ 2ψ(σ)− φZ(NN)(σ) < 1− α(σ)

π
,

which implies (5.49) assuming

ε ≤ α(σ)

π
≤ 1− ε. (5.56)

To finish the proof we need to consider the situation when (5.56) is not satisfied. Suppose that 0 ≤ α(σ) <

πε. Applying Lemma 5.24 with v̂1 = t̂1(σ) and v̂2 = N̂, we obtain

−Cεπ < β(σ)− γ(σ) < Cεπ,

or, equivalently, subtracting α(σ), dividing by π, and using (5.54),

−(C + 1)ε < −Cε− α(σ)

π
< 2ψ(σ)− φZ(NN)(σ) < Cε− α(σ)

π
≤ Cε,

and (5.49) then follows since we have chosen ε satisfying (5.53).
The case 1 − πε < α(σ) < π is dealt with in the same way, the only difference being that v̂2 = −N̂ is

used when applying Lemma 5.24.

We have therefore proved Theorem 5.20 under the assumption that the matrix T̂(0) is positive, see Remark
5.21. If T̂(0) is negative the argument is analogous. Indeed, as follows from Remark 5.4, we need to account for
an additional rotation by the angle π and thus subtract −1/2 from each of the two functions ψ1(σ), ψ2(σ),
and −1 from φZ(ℵℵ)(σ) in order to get the analogue of Lemma 5.22. The rest of the argument remains the
same. This completes the proof of Theorem 5.20.

We conclude this subsection with two corollaries of the results obtained above. We present their proofs
assuming thatP andP ′ are non-exceptional. The proof for exceptional polygons could be obtained by a simple
modification of this argument using the results of subsection 5.7 and is left to the reader.

The first corollary provides a way to control the Steklov quasi-eigenvalues under perturbations of side
lengths, provided all the angles remain the same. Note that this result is used in the proof of Theorem 2.31.

Corollary 5.25. Let P(α, ℓ) and P ′(α, ℓ′) be two curvilinear n-gons with the same respective angles and side
lengths satisfying |ℓi − ℓ′i| ≤ ε for all i = 1, . . . , n and some ε > 0. Let σm and σ′m, m = 1, 2, . . . , be the
quasi-eigenvalues of P and P ′, respectively. There exists a constantC > 0 depending only on α such that for all
σm < 1

ε ,
|σm − σ′m| ≤ Cσmε. (5.57)

Proof. Assume first that |ℓ1 − ℓ′1| ≤ ε and ℓi = ℓ′i, i = 2, . . . , n. Without loss of generality we may also
assume that ℓ′1 ≥ ℓ1. Let V ′ be a point on the side I ′1 of the curvilinear polygon P ′ which is at the distance
ℓ1 from V1. Let T̂(σ) be the lifted matrix corresponding to the polygon P with the starting point at V1, and
T̂′(σ) be the similar matrix for P ′ with the starting point at V ′ (which could be viewed as an auxiliary vertex
with angle π). Then it is immediate that T̂′(σ) = R̂((l′1 − l1)σ) T̂(σ). Therefore, one may choose the vectors
t̂j(σ) and t̂

′
j(σ), j = 1, 2, for the polygons P and P ′ in such a way that t̂j(σ) = t̂

′
j(σ), j = 1, 2, for all

σ > 0. Moreover, for any σm < 1/εwe have:

|dP ′
j (σm)− 2πk| = σ(l′1 − l1) ≤ σmε, (5.58)
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for some k ∈ N, where dP ′
j (σ) is the function defined by formula (5.39) corresponding to the polygon P ′.

Therefore, applying Propositions 5.15 and 5.18 we conclude that there is a quasi-eigenvalue σ′M of P ′ such that
dP

′
j (σ′M ) = 2πk and |σm − σ′M | ≤ Cσkε. At the same time, since σmε < 1 < π, the index M is

uniquely defined, and there there is a natural one-to-one correspondence between the solutions of the equations
dP

′
j (σ) = 0 (mod 2π) and dPj (σ) = 0 (mod 2π). Therefore, m = M , and we arrive at (5.57). The fact

that the constantC on the right-hand side of (5.57) depends only on α follows by inspection of the proofs of
Proposition 5.18 and Lemma 5.8.

Consider now the general case, and choose a sequence of polygons P(k)(α, ℓ(k)), k = 1, . . . , n, such
that ℓ(k) = (ℓ′1, . . . ℓ

′
k, ℓk+1, . . . , ℓn). Note that P(n) = P ′. The result then follows by induction in k.

Indeed, the argument above implies (5.57) for k = 1. The inductive step from k to k+1 follows from a simple
observation that we may always reorder the vertices so that the (k + 1)-st side is counted first, and choose
the starting point V ′(k) appropriately so that the corresponding matrices T̂(k)(σ) and T̂(k+1)(σ) differ by a
composition with rotation as before. This completes the proof of the corollary.

The second corollary could be viewed as domain monotonicity for Steklov quasi-eigenvalues with respect
to the side lengths of curvilinear polygons.

Corollary 5.26. Let P(α, ℓ) and P ′(α, ℓ′) be two curvilinear polygons with the same respective angles and side
lengths satisfying ℓi ≤ ℓ′i for all i = 1, . . . , n. Then σm ≥ σ′m, m = 1, 2, . . . , where σm and σ′m are the
quasi-eigenvalues of P and P ′, respectively.

Proof. Using the same inductive argument as in the proof of Corollary 5.25, it suffices to prove the result if
ℓ1 ≤ ℓ′1 and ℓi = ℓ′i, i = 2, . . . , n. As above, we choose the matrices T̂(σ) and T̂′(σ) corresponding to the
polygons P and P ′ in such a way that T̂′(σ) = R̂((l′1 − l1)σ) T̂(σ). It then follows that dP ′

j (σ) ≥ dPj (σ) for
all σ > 0, j = 1, 2. The result then immediately follows from Propositions 5.15 and 5.18.

5.7. Enumeration of quasi-eigenvalues for exceptional polygons and zigzags. In this subsection we ex-
plain how to modify the arguments of subsection 5.6 to the case of polygons and zigzags with exceptional angles.
We will follow the same outline: decompose a polygon into zigzag domains, establish natural enumeration for
“basic” zigzags and show that natural enumeration is preserved under gluing.

In order to proceed with this scheme, we first need to define the quasi-eigenvalues of an exceptional zigzag.
Let Z(ℵℶ) be a zigzag with endpoints P , Q and exceptional angles at the vertices V E

1 = VE1 , . . . , V
E
K =

VEK
. This zigzag can be represented as a union of exceptional components Yκ = Yκ

(
α(κ), ℓ(κ)

)
, κ =

2, . . . ,K , joining the exceptional vertices V E
κ−1 and V E

κ (see subsection 2.3 for notation), and two endpoint
exceptional components Y(ℵE)

1 = Y(ℵE)
1 (α(1), ℓ(1)) and Y(Eℶ)

K+1 = Y(Eℶ)
K+1(α

(K+1), ℓ(K+1)), joining P to
V E
1 and V E

K toQ, respectively, with the boundary conditionℵ, ℶ imposed atP ,Q, respectively. Here, ℓ(1) =(
ℓ
(1)
1 , . . . , ℓ

(1)
n1

)
is the vector ofn1 lengths of curvilinear pieces betweenP andV E

1 ,α′(1) =
(
α
(1)
1 , . . . , α

(1)
n1−1

)
is the vector of n1 − 1 non-exceptional angles between these pieces, and α(1) =

(
α
(1)
1 , . . . , α

(1)
n1−1, α

E
1

)
.

Similarly, ℓ(K+1) =
(
ℓ
(K+1)
1 , . . . , ℓ

(K+1)
nK+1

)
are the nK+1 lengths of curvilinear pieces between V E

K and Q,

α′(K+1) =
(
α
(K+1)
1 , . . . , α

(K+1)
nK+1−1

)
is the vector ofnK+1−1 non-exceptional angles between these pieces,

and α(K+1) =
(
αE
K , α

(K+1)
1 , . . . , α

(K+1)
nK+1−1

)
.

We have already, in essence, defined by equation (2.15) the subsequences of quasi-eigenvalues “generated”
by the exceptional components Yκ, κ = 2, . . . ,K . We need now to define the quasi-eigenvalues generated by
endpoint exceptional components Y1 and YK+1.

Consider the equations
U(α′(1), ℓ(1), σ)ℵ ·X(αE

1 ) = 0, (5.59)
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and
U(α′(K+1)

, ℓ(K+1), σ)X(αE
K) · ℶℶℶ⊥ = 0, (5.60)

where X(αE) depends on the parity of αE and is defined by (2.12).

Definition 5.27. A number σ ≥ 0 is called a quasi-eigenvalue of an exceptional zigzag if σ is a solution of
an equation (2.15) with κ = 2, . . . ,K , corresponding to one of the exceptional components, or the equation
(5.59) corresponding to the endpoint exceptional component Y1, or the equation (5.60) corresponding to the
endpoint exceptional component YK+1. ◁

Let us rewrite equations (2.15), (5.59), and (5.60) in terms of the matrices acting on the universal cover Ĉ∗.
By analogy with (5.13), σ ≥ 0 is a quasi-eigenvalue of an exceptional zigzag Z(ℵℶ) if it is a solution of one of
the equations

arg
(
Û(α′(1), ℓ(1), σ)ℵ̂

)
= arg(X̂⊥(αE

1 )) (mod π), (5.61)

arg
(
Û(α′(κ), ℓ(κ), σ)X̂(αE

κ−1)
)
= arg(X̂⊥(αE

κ)) (mod π), κ = 2, . . . ,K, (5.62)

arg
(
Û(α′(K+1)

, ℓ(K+1), σ)X̂(αE
K)
)
= arg(ℶ̂) (mod π). (5.63)

In order to define the natural enumeration for exceptional zigzags, let us introduce the functions

φY(ℵE)
1

(σ) :=
arg
(
Û(α′(1), ℓ(1), σ)ℵ̂

)
− arg(X̂⊥(αE

1 ))

π
, (5.64)

φYκ(σ) :=
arg
(
Û(α′(κ), ℓ(κ), σ)X̂(αE

κ−1)
)
− arg(X̂⊥(αE

κ))

π
, κ = 2, . . . ,K, (5.65)

φY(Eℶ)
K+1

(σ) :=
arg
(
Û(α′(K+1), ℓ(K+1), σ)X̂(αE

K)
)
− arg(ℶ̂)

π
. (5.66)

Obviously, the functions (5.64)–(5.66) experience jumps at those and only those real values of σ which solve
(5.61)–(5.63), respectively. In order to define the natural enumeration of quasi-eigenvalues for the whole zigzag,
we first introduce below the natural enumeration of quasi-eigenvalues for exceptional and endpoint excep-
tional components. We want to emphasise that this will be done for auxiliary purposes only. While the quasi-
eigenvalues of an exceptional or an endpoint exceptional component are well-defined (they are the real solutions
of one of the equations (5.61)–(5.63)), one cannot associate true eigenvalues to such components. Indeed, ex-
ceptional and endpoint components are not zigzags, as they do not correspond to any zigzag domain.

Definition 5.28. The quasi-eigenvalue counting functions of exceptional and endpoint exceptional compo-
nents are defined by setting

N q
Yκ

(σ) :=


[φYκ(σ)], if both αE

κ−1 and αE
κ are odd,

[φYκ(σ)] +
1
2 , if αE

κ−1 and αE
κ are of different parity,

[φYκ(σ)] + 1, if both αE
κ−1 and αE

κ are even,
(5.67)

for κ = 2, . . . ,K ,

N q

Y(ℵE)
1

(σ) :=



[φY(ℵE)
1

(σ)]− 1
2 , ifℵ = D and αE

κ is odd,

[φY(ℵE)
1

(σ)], ifℵ = D and αE
κ is even,

[φY(ℵE)
1

(σ)] + 1
2 , ifℵ = N and αE

κ is odd,

[φY(ℵE)
1

(σ)] + 1, ifℵ = N and αE
κ is even,

(5.68)
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and

N q

Y(Eℶ)
K+1

(σ) :=

[φY(Eℶ)
K+1

(σ)] + 1
2 , if αE

κ is odd,

[φY(Eℶ)
K+1

(σ)] + 1, if αE
κ is even,

(5.69)

(where in (5.69) the formulae are the same forℵ = D,N ). ◁

Remark 5.29. In view of Definition 5.28, the quasi-eigenvalue counting functions could be interpreted similarly
to Proposition 5.6 in the following way. For an exceptional component Yκ, we count all positive solutions of
(5.62) ifαE

κ−1 andαE
κ−1 are of the same parity, and all positive solutions plus a half if the parity is different. For

the endpoint exceptional components Y(ℵE)
1 and Y(Eℶ)

K+1, we count all positive solutions of (5.61) and (5.63),
respectively, if the exceptional vertex is even, all positive solutions plus a half if the exceptional vertex is odd and
the boundary condition at the other end is Neumann, and all positive solutions minus a half if the exceptional
vertex is odd and the boundary condition at the other end is Dirichlet. This is checked directly by evaluating
the quasi-eigenvalue counting functions at σ = 0. ◀

We can now define the natural enumeration for an exceptional zigzag.

Definition 5.30. The natural enumeration of the quasi-eigenvalues of a zigzag Z(ℵℶ) with K exceptional
angles is defined by setting

N q

Z(ℵℶ)(σ) := N q

Y(ℵE)
1

(σ) +
K∑

κ=2

N q

Yκ

(σ) +N q

Y(Eℶ)
K+1

(σ).

◁

The following analogue of Theorem 2.39 holds.

Theorem 5.31. Let Z be a partially curvilinear exceptional zigzag, and let Ω be any Z-zigzag domain. For
ℵ,ℶ ∈ {D,N}, let λ(ℵℶ)

m denote the eigenvalues of the mixed eigenvalue problem (2.36)ℵℶ enumerated in
increasing order with account of multiplicities, and let σ(ℵℶ)

m denote the quasi-eigenvalues of theℵℶ-zigzag Z
in the natural enumeration given by Definition 5.30. Then

λ(ℵℶ)
m = σ(ℵℶ)

m + o(1) asm→ ∞.

Proof. Theorem 5.31 is proved similarly to Theorem 2.39, see subsection 5.3. Below we outline the main steps
of the argument and leave the details to the reader.

We start with

Proposition 5.32. Theorem 5.31 holds for zigzags consisting of two equal straight sides and an exceptional angle
between them.

Proof. Proposition 5.32 is proved similarly to Proposition 5.10. The problem is reduced to counting mixed
Steklov-Neumann and Steklov-Dirichlet eigenvalues using either symmetry with respect to the bisector or the
isospectral transformation described in Lemma 5.12. The result then follows by explicitly computing the total
loss of quasi-eigenvalues as in the proof of Proposition 5.10 using the results of [LPPS21].

The following two propositions are proved using a straightforward adaptation of the proof of Proposi-
tion 5.13.
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Proposition 5.33. Let Yκ be an exceptional component joining vertices V E
κ−1 and V E

κ of a partially curvilinear
zigzag Z with exceptional angles, and letW ∈ Yκ be a point which is not a vertex and such that the zigzag Z is
straight in some neighbourhood of W . Let the boundary condition ℸ ∈ {D,N} be imposed at W , which splits
the exceptional component Yκ into two endpoint exceptional components: Y(Eℸ)

κ,I starting at V E
κ−1 and ending at

W , and Y(ℸE)
κ,II starting atW and ending at V E

κ .
Then there exists δ > 0 such that for anyM > 0 there exists an interval IM ⊂ (M,+∞) of length δ such

that
N q

Y(Eℸ)
κ,I

(σ) +N q

Y(ℸE)
κ,II

(σ) = N q
Yκ

(σ)

for any σ ∈ IM .

Proposition 5.34. LetY(ℵE)
1 be the endpoint exceptional component joining the verticesP andV E

1 of a partially
curvilinear exceptional zigzag Z , with the boundary condition ℵ ∈ {D,N} imposed at its start point P . Let
W ∈ Y(ℵE)

1 be a point which is not a vertex and such that the zigzag Z is straight in some neighbourhood of
X . Let the boundary condition ℸ ∈ {D,N} be imposed at W , which splits the endpoint exceptional component
Y(ℵE)
1 into the zigzag Z(ℵℸ)

1,I starting at P and ending at W and the endpoint exceptional component Y(ℸE)
1,II

starting atW and ending at V E
1 .

Then there exists δ > 0 such that for anyM > 0 there exists an interval Iℵ,ℸ
M ⊂ (M,+∞) of length δ such

that
N q

Z(ℵℸ)
1,I

(σ) +N q

Y(ℸE)
1,II

(σ) = N q

Y(ℵE)
1

(σ)

for any σ ∈ Iℵ,ℸ
M . An analogous result holds for the endpoint exceptional component Y(Eℶ)

K+1.

Propositions 5.33 and 5.34 imply the analogue of Proposition 5.11 for partially curvilinear zigzags with excep-
tional angles. This result combined with Proposition 5.32 yields Theorem 5.31 in the same way as Propositions
5.10 and 5.11 yield Theorem 2.39.

We can now prove the main result of this subsection.

Theorem 5.35. Theorem 1.4 holds for partially curvilinear exceptional polygons.

Proof. Let P be a partially curvilinear exceptional polygon as defined in subsection 2.3. In view of Definitions
2.10 and 2.13, the quasi-eigenvalue counting function for the polygon P is given by

N q
P(σ) =

K∑
κ=1

NYκ(σ), (5.70)

where Yκ are the exceptional boundary components of P .
Let us make a cut inside the polygon precisely as in the proof of Theorem 5.20 (see Figure 16). As before, the

cut produces a zigzag domain with exceptional angles and identified endpoints at some point V0 on a straight
part of the boundary ∂P . Imposing either Dirichlet or Neumann boundary condition atV0 and arguing in the
same way as in the proof of Theorem 5.20, we observe that the result follows by Dirichlet-Neumann bracketing
from an analogue of equalities (5.47) relating the quasi-eigenvalue counting functions of P and of the corre-
sponding zigzags. Such an analogue can be easily deduced from Proposition 5.33, Definition 5.30 and formula
(5.70). This completes the proof of the theorem.

Remark 5.36. Recall that new tools were required to deduce Theorem 1.4 from Theorem 2.39, see subsection
5.6. The reason is that the quasi-eigenvalue condition (5.37) for non-exceptional polygons is a vector-valued
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condition, unlike the Dirichlet and Neumann boundary conditions for zigzags. On the other hand, the quasi-
eigenvalue condition (5.70) for an exceptional polygon is scalar and very closely related to the condition (5.62)
for an exceptional zigzag. This explains why Theorem 5.35 is much easier to prove, essentially a direct corollary
of Theorem 5.31. ◀

Results of this subsection, together with Corollary 5.9, also imply the following analogue of Proposition
4.29.

Proposition 5.37. There exists a d > 0 and anN > 0 such that any interval of the real line of length d contains
not more thanN quasi-eigenvalues of a zigzag.
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6. Quasi-eigenvalues as roots of trigonometric polynomials

6.1. Explicit expressions for the entries of T(α, ℓ, σ). In this section we will prove Theorem 2.17; we start,
however, by finding explicit expressions for the matrices T(α, ℓ, σ).

We recall that for a binary vector ζ = (ζ1, . . . , ζn) ∈ Zn = {±1}n with cyclic identification ζn+1 ≡ ζ1,
we let

Ch(ζ) := {j ∈ {1, . . . , n} | ζj ̸= ζj+1} (6.1)

denote the set of indices of sign change in ζ.
Let additionally

C̃h(ζ) := Ch((ζ1, . . . , ζn,−1)) ∩ {1, . . . , n}. (6.2)

To clarify, in order to obtain C̃h(ζ), we pad ζ by adding an additional component −1, compute the set of
sign changes for the resulting vector, and drop n+ 1 from the result if present (i.e. if ζ1 = 1).

Let n ≥ 1, let α = (α1, . . . , αn) ∈ (Π \ E)n be a vector of non-exceptional angles, and let ℓ =
(ℓ1, . . . , ℓn) ∈ Rn

+ be a vector of lengths. We have already established in Section 5.1 that the matrix Tn :=
T(α, ℓ, σ) belongs to the class M1, and therefore we have

Tn =

pn(α, ℓ, σ) qn(α, ℓ, σ)

qn(α, ℓ, σ) pn(α, ℓ, σ)

 (6.3)

for some functions pn and qn such that |pn|2 − |qn|2 = 1; we use subscript n to emphasise the dependance
upon the length of vectors α and ℓ.

Theorem 6.1. We have

pn(α, ℓ, σ) =
1

n∏
j=1

sin
(

π2

2αj

) ∑
ζ∈Zn

ζ1=1

pζ exp(iℓ · ζσ), (6.4)

and

qn(α, ℓ, σ) =
−i

n∏
j=1

sin
(

π2

2αj

) ∑
ζ∈Zn

ζ1=1

qζ exp(−iℓ · ζσ), (6.5)

where

pζ = pζ(α) :=
∏

j∈Ch(ζ)

cos

(
π2

2αj

)

is already defined in (2.19), and we additionally set

qζ = qζ(α) :=
∏

j∈C̃h(ζ)

cos

(
π2

2αj

)
, (6.6)

assuming the convention
∏
∅

= 1.
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Proof. We remark, first of all, that the functions pn and qn obey the recurrence relations

p1 =
1

sin
(

π2

2α1

) exp(iℓ1σ), q1 =
−i

sin
(

π2

2α1

) cos

(
π2

2α1

)
exp(−iℓ1σ), (6.7)

pn+1 =
1

sin
(

π2

2αn+1

) (exp(iℓn+1σ)pn − i cos

(
π2

2αn+1

)
exp(−iℓn+1σ)qn

)
, (6.8)

qn+1 =
1

sin
(

π2

2αn+1

) (exp(iℓn+1σ)qn − i cos

(
π2

2αn+1

)
exp(−iℓn+1σ)pn

)
, (6.9)

which follows immediately by re-writing (2.6) and (2.7) as(
pn+1 qn+1

qn+1 pn+1

)

=
1

sin
(

π2

2α1

)
 exp(iℓn+1σ) −i cos

(
π2

2αn+1

)
exp(−iℓn+1σ)

i cos
(

π2

2αn+1

)
exp(iℓn+1σ) exp(−iℓn+1σ)

(pn qn

qn pn

)
.

We now prove (6.4)–(6.5) by induction in n.
For n = 1, the only vector in Z1 with the first (and only) positive coordinate is (1), with Ch((1)) = ∅

and C̃h((1)) = {1}. Thus p(1) = 1 and q(1) = cos
(

π2

2α1

)
, and the statement of the Theorem matches

(6.7).
Assume that the statements hold for somen ≥ 1. Denote ℓ∗ = (ℓ, ℓn+1) ∈ Rn+1

+ and ζ∗ = (ζ, ζn+1) ∈
Zn+1. Then by (6.8),

pn+1

n+1∏
j=1

sin

(
π2

2αj

)

=
∑
ζ∈Zn

ζ1=1

pζ exp(iℓ · ζσ + iℓn+1σ) + cos

(
π2

2αn+1

) ∑
ζ∈Zn

ζ1=1

qζ exp(iℓ · ζσ − iℓn+1σ)

=
∑

ζ∗∈Zn+1

ζ1=ζn+1=1

pζ exp(iℓ
∗ · ζ∗σ) + cos

(
π2

2αn+1

) ∑
ζ∈Zn

ζ1=−ζn+1=1

qζ exp(iℓ
∗ · ζ∗σ).

A careful analysis of definitions (6.1) and (6.2) shows that we have

pζ∗ =

{
pζ if ζ1 = ζn+1 = 1,

cos
(

π2

2αn+1

)
qζ if ζ1 = −ζn+1 = 1,

and therefore

pn+1

n+1∏
j=1

sin

(
π2

2αj

)
=

∑
ζ∗∈Zn+1

ζ1=1

pζ∗ exp(iℓ∗ · ζ∗σ),

thus proving (6.4).
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Similarly by (6.9),

qn+1

n+1∏
j=1

sin

(
π2

2αj

)

= −i
∑
ζ∈Zn

ζ1=1

qζ exp(−iℓ · ζσ + iℓn+1σ)− i cos

(
π2

2αn+1

) ∑
ζ∈Zn

ζ1=1

pζ exp(−iℓ · ζσ − iℓn+1σ)

= −i
∑

ζ∗∈Zn+1

ζ1=−ζn+1=1

qζ exp(−iℓ∗ · ζ∗σ)− i cos

(
π2

2αn+1

) ∑
ζ∈Zn

ζ1=ζn+1=1

pζ exp(−iℓ∗ · ζ∗σ).

Once more, an analysis of definitions (6.1) and (6.2) gives

qζ∗ =

{
cos
(

π2

2αn+1

)
pζ if ζ1 = ζn+1 = 1,

qζ if ζ1 = −ζn+1 = 1,

and therefore

qn+1

n+1∏
j=1

sin

(
π2

2αj

)
= −i

∑
ζ∗∈Zn+1

ζ1=1

qζ∗ exp(−iℓ∗ · ζ∗σ),

thus proving (6.5).

6.2. Proof of Theorem 2.17(a). We start by making the following simple observation, which follows imme-
diately by comparing (2.18), (2.21), and (6.4).

Proposition 6.2. Let n ≥ 1, let α = (α1, . . . , αn) ∈ (Π \ E)n be a vector of non-exceptional angles, let
ℓ = (ℓ1, . . . , ℓn) ∈ Rn

+, and let the matrix T = Tn := T(α, ℓ, σ) be written in the form (6.3). Then

pn(α, ℓ, σ)

n∏
j=1

sin

(
π2

2αj

)
= Feven(α, ℓ, σ) + iFodd(α, ℓ, σ).

Theorem 2.17(a) now follows easily. Indeed, Definition 2.3 and Lemma 2.5(a) imply that σ is a quasi-
eigenvalue if and only if Tr Tn = 2Re pn = 2 which is equivalent to σ being a root of (2.20). Moreover,
in this case, by Definition 2.6 and Lemma 2.5(b), σ > 0 is a double quasi-eigenvalue if and only if Im pn = 0,
and therefore (2.21) holds.

6.3. Proof of Theorem 2.17(b). Before proceeding to the actual proof of Theorem 2.17(b), we introduce
some extra notation. Let n ≥ 1, and let α ∈ Πn, ℓ ∈ Rn

+. We set, using (2.18) and (2.21),

Fn(α, ℓ, σ) := Feven(α, ℓ, σ) + iFodd(α, ℓ, σ) =
∑
ζ∈Zn

ζ1=1

pζ(α) exp(iℓ · ζσ) (6.10)

using the subscript to emphasise the dependence upon the length n of vectors α, ℓ. We also introduce, by
analogy with (6.10), the function

F̃n(α, ℓ, σ) := −i
∑
ζ∈Zn

ζ1=1

qζ(α) exp(−iℓ · ζσ), (6.11)
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and set additionally
F0 := 1, F̃0 := 0.

We note that if α does not contain any exceptional angles, then by Theorem 6.1 and Proposition 6.2,

Fn(α, ℓ, σ) = pn(α, ℓ, σ)

n∏
j=1

sin

(
π2

2αj

)
, F̃n(α, ℓ, σ) = qn(α, ℓ, σ)

n∏
j=1

sin

(
π2

2αj

)
. (6.12)

However, unlike pn and qn, the functions Fn and F̃n are defined in the presence of exceptional angles as well,
and we have the following generalisation of recurrence relations (6.8) and (6.9), with the identical proof:

Proposition 6.3. Let n ≥ 1, let α = (α1, . . . , αn) ∈ Πn, ℓ = (ℓ1, . . . , ℓn) ∈ Rn
+, and let additionally

α′ = (α1, . . . , αn−1) ∈ Πn−1, ℓ′ = (ℓ1, . . . , ℓn−1) ∈ Rn−1
+ (or both empty if n = 1). Then

Fn(α, ℓ, σ) = exp(iℓnσ)Fn−1(α
′, ℓ′, σ)− i cos

(
π2

2αn

)
exp(−iℓnσ)F̃n−1(α′, ℓ′, σ), (6.13)

F̃n(α, ℓ, σ) = exp(iℓnσ)F̃n−1(α
′, ℓ′, σ)− i cos

(
π2

2αn

)
exp(−iℓnσ)Fn−1(α′, ℓ′, σ), (6.14)

We can now proceed with the proof of Theorem 2.17(b) proper. Assume the notation of Proposition 6.3,
and consider one exceptional boundary component consisting of n ≥ 1 smooth pieces joining exceptional
angles α0 and αn; the n− 1 non-exceptional angles between the pieces are collected in the vector α′. We need
to show that

U
(
α′, ℓ, σ

)
X (α0) ·X (αn) = 0 ⇐⇒ Feven/odd (α, ℓ, σ) = 0, (6.15)

where
U
(
α′, ℓ, σ

)
:= B (ℓn, σ) T

(
α′, ℓ′, σ

)
, (6.16)

cf. (2.10), X(α) is defined by (2.12) and (2.11), and

Feven/odd (α, ℓ, σ) =

{
Feven (α, ℓ, σ) = Re (Fn (α, ℓ, σ)) if O(α0) = O(αn),

Fodd (α, ℓ, σ) = Im (Fn (α, ℓ, σ)) if O(α0) ̸= O(αn).

Using (6.16), (2.5), (6.3), and (6.12), we re-write the left equation in (6.15) as

1
n−1∏
j=1

sin
(

π2

2αj

)
 exp(iℓnσ)Fn−1(α

′, ℓ′, σ) exp(iℓnσ)F̃n−1(α
′, ℓ′, σ)

exp(−iℓnσ)F̃n−1(α′, ℓ′, σ) exp(−iℓnσ)Fn−1(α′, ℓ′, σ)

X (α0) ·X (αn) = 0,

(6.17)
and drop the non-zero product in the denominator from now on.

We now have to consider four cases:

(i) α0 even, αn even;

(ii) α0 even, αn odd;

(iii) α0 odd, αn even;

(iv) α0 odd, αn odd.
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In cases (i), (ii) we substitute X(α0) = Xeven = e−iπ/4
√
2

(
1

i

)
into (6.17) to get

e−iπ/4

√
2

 exp(iℓnσ)Fn−1(α
′, ℓ′, σ) + i exp(iℓnσ)F̃n−1(α

′, ℓ′, σ)

exp(−iℓnσ)F̃n−1(α′, ℓ′, σ) + i exp(−iℓnσ)Fn−1(α′, ℓ′, σ)

 ·X (αn) = 0. (6.18)

In case (i), substituting further X(αn) = Xeven = e−iπ/4
√
2

(
1

i

)
(and recalling that our definition of the

dot product involves complex conjugation of the second argument) we obtain, after minimal simplifications,

Re
(
exp(iℓnσ)Fn−1(α

′, ℓ′, σ)− i exp(−iℓnσ)F̃n−1(α′, ℓ′, σ)
)
= 0.

Using now (6.13) with account of cos
(

π2

2αn

)
= O(αn) = 1, we arrive at the required equivalent equation

Re(Fn(α, ℓ, σ)) = 0, thus proving (6.15) in case (i).

Similarly, in case (ii), substituting X(αn) = Xodd = eiπ/4
√
2

(
1

−i

)
into (6.18), we obtain after simplifica-

tions

Im
(
exp(iℓnσ)Fn−1(α

′, ℓ′, σ) + i exp(−iℓnσ)F̃n−1(α′, ℓ′, σ)
)
= Im(Fn(α, ℓ, σ)) = 0,

(where we again used (6.13) but now with cos
(

π2

2αn

)
= O(αn) = −1), proving (6.15) in case (ii).

The cases (iii) and (iv) are similar and are left to the reader.

6.4. Zigzag quasi-eigenvalues as roots of trigonometric polynomials. In this subsection we briefly dis-
cuss trigonometric equations whose roots give the quasi-eigenvalues of zigzags and zigzag domains.

Let n ≥ 1, let α = α′ = (α1, . . . , αn−1) ∈ (Π \ E)n−1, let ℓ = (ℓ1, . . . , ℓn) ∈ Rn
+, and let

Z = Z(α, ℓ) be a curvilinear n piece zigzag (domain). The quasi-eigenvalues of a correspondingℵℶ-zigzag
Z(ℵℶ) are prescribed by Definition 2.37. Set additionally ℓ′ = (ℓ1, . . . , ℓn−1) ∈ Rn−1

+ .

Theorem 6.4. The quasi-eigenvalues of a ℵℶ-zigzag Z(ℵℶ), ℵ,ℶ ∈ {N,D}, are the non-negative roots of
the trigonometric polynomials∑

ζ∈Zn−1

ζ1=1

pζ(α
′) sin

(
(ℓ′ · ζ + ℓn)σ

)
− qζ(α

′) cos
(
(ℓ′ · ζ − ℓn)σ

)
if ℵ = N,ℶ = N,

∑
ζ∈Zn−1

ζ1=1

pζ(α
′) cos

(
(ℓ′ · ζ + ℓn)σ

)
− qζ(α

′) cos
(
(ℓ′ · ζ − ℓn)σ

)
if ℵ = N,ℶ = D,

∑
ζ∈Zn−1

ζ1=1

pζ(α
′) cos

(
(ℓ′ · ζ + ℓn)σ

)
+ qζ(α

′) cos
(
(ℓ′ · ζ − ℓn)σ

)
if ℵ = D,ℶ = N,

∑
ζ∈Zn−1

ζ1=1

pζ(α
′) sin

(
(ℓ′ · ζ + ℓn)σ

)
+ qζ(α

′) cos
(
(ℓ′ · ζ − ℓn)σ

)
if ℵ = D,ℶ = D

(6.19)

where pζ and qζ are defined by (2.19) and (6.6).
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Proof. We act as in the proof of Theorem 2.17(b): we first use (6.16) and then arrive at the analogue of (6.17),
in which X(α0) and X(αn) should be replaced byℵ and ℶℶℶ⊥, respectively. Polynomials (6.19) are obtained
directly from there after substituting in the expressions (6.10) and (6.11), and some elementary manipulations.
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7. A quantum graph interpretation of quasi-eigenvalues and the Riesz mean

7.1. Proof of Theorem 2.24. We begin by proving Proposition 2.27.

Proof of Proposition 2.27. We give the proof in the case when there are no exceptional angles; the exceptional
case is treated similarly, cf. Section 4.2. We first check that D is symmetric by the following direct calculation
for f and g in the domain of D, using integration by parts, matching conditions (2.28), and the properties of

matrices A(α) from Remark 2.1, and denoting D =

(
1 0

0 −1

)
= D∗, yielding

(Df ,g)(L2(G))2 − (f ,Dg)(L2(G))2 = −i

n∑
j=1

Df · g|Vj+1−0
Vj+0

= i
n∑

j=1

(DA(αj)f · A(αj)g − Df · g)|Vj−0

= i
n∑

j=1

(A(αj)DA(αj)− D) f · g|Vj−0 = 0

(since A(αj)DA(αj) = D). The self-adjointness of D now follows by standard techniques similar to [BeKu13].
To prove the second part of the statement, suppose that σ is an eigenvalue of D; then a restriction of the

corresponding eigenfunction f(s) to an edge Ij has the form

(
dj,1e

iσs

dj,2e
−iσs

)
with some constants dj,1, dj,2 ∈ C

(which can be chosen so that dj,2 = dj,1, cf. Remark 4.7 and the discussion in the proof of Proposition 4.26).
Set

cj := f(s)|Vj+0 .

Then it is easily checked that the vectors cj satisfy

cj+1 = A(αj)B(σℓj)cj .

Repeating now word by word the arguments of Section 4.2 we see that the eigenvalues σ of D are indeed the
roots of (2.8).

We now proceed to the proof of Theorem 2.24. Note that the vectors Xodd and Xeven defined by (2.11)
are the eigenvectors of the matrix A(α) with the eigenvalues η1(α) = tan

(
π2

4α

)
and η2(α) = cot

(
π2

4α

)
,

respectively. Therefore, the matrix A(α) in the basis{
1√
2
Xodd,

1√
2
Xeven

}
takes the diagonal form tan

(
π2

4α

)
0

0 cot
(
π2

4α

) .

Let us calculate the operator D in the same basis. The transition matrix is given by

W =
1

2

(
1 + i 1− i

1− i 1 + i

)
,
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and therefore the operator D in the new basis is given by the matrix

W−1DW =

(
0 − d

ds
d
ds 0

)
.

and its square D2 by the matrix

W−1D2W =

(
− d2

ds2
0

0 − d2

ds2

)
.

Now, every f ∈ (L2(G))2 can be uniquely written as

f = foddXodd + fevenXeven,

with fodd, feven ∈ L2(G). In other words, we have a direct sum decomposition,

(L2(G))2 = L2
odd(G)⊕ L2

even(G),

where
L2
odd(G) := XoddL

2(G), L2
even(G) := XevenL

2(G).

It is easily seen that both spaces L2
odd/even(G) are invariant for the operator D2, and therefore the spectrum of

D2 is the union of the spectra of
D2

odd/even := D2
∣∣
L2
odd/even

(G) .

We claim that the spectra of D2
odd and D2

even are the same, and both coincide with the spectrum of ∆G .
Obviously, foddXodd is in the domain of D2 if and only if both it and D(foddXodd) are in the domain of
D. A straightforward calculation shows that this happens exactly when conditions (2.24) are satisfied with
f = fodd, and we then have

D2
odd (foddXodd) = (∆Gfodd)Xodd.

Thus, the spectrum of D2
odd coincides with the spectrum of ∆G .

A similar argument shows that the domain ofD2
even consists of vector functions fevenXeven satisfying the

“dual” matching conditions

cos

(
π2

4αj

)
f |Vj+0 = sin

(
π2

4αj

)
f |Vj−0,

sin

(
π2

4αj

)
f ′|Vj+0 = cos

(
π2

4αj

)
f ′|Vj−0

(7.1)

(with f = feven); these conditions are obtained from (2.24) by simply swapping sines and cosines. Denoting
the quantum graph Laplacian subject to matching conditions (7.1) by ∆G′ , we conclude that

D2
even (fevenXeven) = (∆G′feven)Xeven,

and the spectrum of D2
even coincides with the spectrum of ∆G′ .

It remains to show that the spectra of ∆G and ∆G′ coincide. It is easy to see that if f(s) is an eigenfunc-
tion of ∆G corresponding to a non-zero eigenvalue (and therefore not a piecewise constant) then f ′(s) is an
eigenfunction of ∆G′ corresponding to the same eigenvalue. The same also holds the other way round. It is
now enough to show that the multiplicities of eigenvalue zero coincide.
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By the variational principle, see Remark 2.23, and its analogue for ∆G′ , the only possible eigenfunctions
corresponding to eigenvalue zero are piecewise constants. In the non-exceptional case, it is easily checked from
matching conditions (2.26) or (7.1) that zero is in the spectrum of either operator if and only if

n∏
j=1

tan

(
π2

4αj

)
=

n∏
j=1

cot

(
π2

4αj

)
= 1,

and then it is a simple eigenvalue of either ∆G or ∆G′ . In the exceptional case, as follows from (2.26) and (7.1),
the only exceptional components Yκ which have the Neumann conditions at either end are those for which
O
(
αE
κ−1

)
= −O

(
αE
κ

)
= 1 in the case of ∆G and O

(
αE
κ−1

)
= −O

(
αE
κ

)
= −1 in the case of ∆G′ . In

both cases the number of such components, and therefore the multiplicity of eigenvalue zero, is #Kodd
2 , see also

Remark 2.19.
This completes the proof of Theorem 2.24.

7.2. Proof of Theorem 2.16. As mentioned in Remark 2.25, we prove Theorem 2.16 by explicitly construct-
ing the secular equation for the eigenvalues of the quantum graph G and invoking Theorem 2.24. The method
we use is standard, and we mostly follows [KoSm99, KuNo10, BeKu13, Ber17] and a private communication
from P. Kurasov.

Suppose that ν = σ2 > 0 is an eigenvalue of ∆G . We write a corresponding eigenfunction f(s) on the
edges Ij and Ij+1 adjacent to the vertex Vj , j = 1, . . . , n, using the local coordinate sj such that sj |Vj = 0
(the coordinates near adjacent vertices are related by (4.2); cf. Figure 9):

f |Ij (sj) = a
(j)
1 eiσsj + b

(j)
1 e−iσsj , (7.2)

f |Ij+1(sj) = b
(j)
2 eiσsj + a

(j)
2 e−iσsj , (7.3)

with some constants a(j)k , b
(j)
k ∈ C, k = 1, 2. Substituting (7.2)–(7.3) into matching conditions (2.24),

resolving with respect to a(j)1 , a
(j)
2 , and combining the results for j = 1, . . . , n, shows that the vectors

a :=



a
(1)
1

a
(1)
2
...

a
(n)
1

a
(n)
2


∈ C2n and b :=



b
(1)
1

b
(1)
2
...

b
(n)
1

b
(n)
2


∈ C2n

are related by the vertex scattering matrix

Scv
G = Scv

G(α) :=



− cos π2

2α1
sin π2

2α1

sin π2

2α1
cos π2

2α1

− cos π2

2α2
sin π2

2α2

sin π2

2α2
cos π2

2α2

. . .

− cos π2

2αn
sin π2

2αn

sin π2

2αn
cos π2

2αn


(7.4)

as
a = Scv

Gb. (7.5)
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We note that Scv
G is unitary and that det Scv

G = (−1)n. Note also that the blocks of the vertex scattering
matrix (7.4) differ from the Peters solution scattering matrix (3.13) due to the change of basis given by W.

We now re-write (7.2) in the variable sj−1 using (4.2):

f |Ij = b
(j−1)
2 eiσsj−1 + a

(j−1)
2 e−iσsj−1 = b

(j−1)
2 eiσℓjeiσsj + a

(j−1)
2 e−iσℓje−iσsj .

Comparing this with (7.2), resolving the resulting equations with respect to b(j−1)
2 , b(j)1 , and again combining

the results for j = 1, . . . , n gives a relation
b = Sce

Ga, (7.6)

where Sce
G is the edge scattering matrix

Sce
G = Sce

G(ℓ) :=



0 e−iσℓ1

0 e−iσℓ2

e−iσℓ2 0
. . .

0 e−iσℓn

e−iσℓn 0

e−iσℓ1 0


. (7.7)

Note that Sce
G is also unitary.

Combining (7.5) and (7.6), we arrive at the secular equation for the quantum graph G,

det(Scv
GSc

e
G − Id) = 0. (7.8)

It is well known, see references above, that the positive roots of (7.8) are equal to the square roots of the positive
eigenvalues of ∆G ; moreover, the multiplicity of σ > 0 as a root of (7.8) coincides with the multiplicity of
ν = σ2 as an eigenvalue of ∆G .

We now proceed with evaluating the determinant in (7.8). We remark that due to unitarity of Scv
G and the

fact that it is Hermitian, we have

det(Scv
GSc

e
G − Id) =

det
(
Sce

G − (Scv
G)

−1
)

det
(
(Scv

G)
−1
) = (−1)n det

(
Scv

G − Sce
G
)
. (7.9)

The matrix Scv
G − Sce

G is a tridiagonal circulant 2n × 2n matrix, and determinants of such matrices can be
evaluated using, for example, [Mol08, formula (1)], which in our case after some simplifications reads

det
(
Scv

G − Sce
G
)

= (−1)ne−iσ
∑n

j=1 ℓj

−2
n∏

j=1

sin
π2

2αj
+Tr

(
C̃(αn, ℓn, σ)C̃(αn−1, ℓn−1, σ) · · · C̃(α1, ℓ1, σ)

) ,

(7.10)

where the matrices

C̃(α, ℓ, σ) :=

(
exp(iℓσ) −i cos π2

2α exp(−iℓσ)

i cos π2

2α exp(iℓσ) exp(−iℓσ)

)
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are related to the matrices C(α, ℓ, σ) defined in (2.6) by

C(α, ℓ, σ) =
1

sin π2

2α

C̃(α, ℓ, σ).

Repeating now word by word the proofs of Theorem 6.1 and Proposition 6.2 and dropping the sine factors in
denominators gives

Tr
(
C̃(αn, ℓn, σ)C̃(αn−1, ℓn−1, σ) · · · C̃(α1, ℓ1, σ)

)
= 2Feven(α, ℓ, σ),

and (7.9) becomes, with account of (7.10),

det(Scv
GSc

e
G − Id) = 2e−iσ

∑n
j=1 ℓj

Feven(α, ℓ, σ)−
n∏

j=1

sin
π2

2αj

 = 2e−iσ
∑n

j=1 ℓjFP(α, ℓ, σ).

The first two statements of Theorem 2.16 now follow by dropping the non-zero factor 2e−iσ
∑n

j=1 ℓj and using
Theorem 2.24.

To prove the last statement of Theorem 2.16 concerning the multiplicity of the quasi-eigenvalue σ = 0, we
again use Theorem 2.24 and [FKW07, Corollary 23] which states that the algebraic multiplicity Ñ of σ = 0 as
a root of the secular equation (7.8) and the multiplicityN0 of ν = 0 as an eigenvalue of ∆G are related by

Ñ = 2N0 − |E|+D,

where |E| is the number of edges of the graph, andD is the number of Dirichlet conditions. Since in our case
|E| = D = n, the result follows immediately.

7.3. Proof of Theorem 2.31. First, note that for any ε < ε0,

RP(λ)−Rq
P(λ) = O(λ1−ε), (7.11)

where Rq
P(λ) := R({σm};λ) denotes the first Riesz mean for the sequence {σm} quasi-eigenvalues of P .

Indeed, by Theorem 1.4 we have the estimate |σm − λm| = O(m−ε). At the same time, by Weyl’s law (2.32),
there are O(λ) terms in the sums on the right-hand side of (2.30) for either RP(λ) or Rq

P(λ), and moreover
O(m−ε) is equivalent toO(λ−ε

m ). Putting this all together we get (7.11). Therefore, it suffices to prove that

Rq
P(λ) =

|∂P|
2π

λ2 +O(λ
2n

2n+1 ). (7.12)

Let us assume first that all the side lengths of the curvilinear polygon P are (rationally) commensurable.
Then it follows from equations (2.20) and (2.23) that the sequence σm is periodic: there exist T,M > 0
such that σm+M = σm + T for allm ≥ 1 (in what follows, we refer to T as the period of the sequence σm).
Moreover, in view of Remark 2.21, the roots of equations (2.20) and (2.23) are symmetric with respect toσ = 0.
The algebraic multiplicity ofσ = 0 is always even, and according to Definitions 2.6 and 2.13 exactly half of these
zeros are counted as quasi-eigenvalues. This leads to the following observation: on any interval [jT, (j+1)T ],
j = 0, 1, 2, . . . , the quasi-eigenvalues are located symmetrically with respect to the center of the interval, i.e.
the midpoint of the period. Therefore, the sum of all the quasi-eigenvalues on each such interval is equal to
(2j+1)MT

2 . Note that if jT , j ≥ 1, is a quasi-eigenvalue of some multiplicity (which is necessarily even in view
of the observation above regarding the multiplicity of σ = 0), then we assume that half of these eigenvalues
contribute to the interval [(j − 1), jT ] and the other half to the interval [jT, (j + 1)T ].
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Assume that λ = kT for some k ∈ N. Then the previous discussion implies that

Rq
P(kT ) =MT

k−1∑
j=0

2j + 1

2
=
MTk2

2
=
M

2T
λ2, (7.13)

which proves (7.12) in this case. Note that the equality πM
T = |∂P| can be easily deduced from Weyl’s law

(2.32).
Suppose now that λ = kT + ε for some 0 < ε < T . Then we have:

Rq
P(λ) =

∫ kT

0
N ({σm}; t) dt+

∫ λ

KT
N ({σm}; t) dt = MTk2

2
+

∫ λ

KT

M

T
t dt+O(T ) =

M

2T
λ2+O(T ).

Here we have used (7.13) as well as (2.32) to obtain the second equality. This completes the proof of (7.12) (in
fact, in this case the remainder isO(T )), and thus of (2.34) if all ℓ1, . . . , ℓn are commensurable.

Next, suppose that ℓ1, . . . , ℓn are arbitrary real numbers. By the simultaneous version of Dirichlet’s ap-
proximation theorem (in the form obtained via Minkowski’s theorem, see [Mat02]), for any real d > 1 there
exist a ζ = ζ(d) ∈ N ∩ (d, 4d), and ξj ∈ N, j = 1, . . . , n, such that with ℓ′j :=

ξj
ζ we have

|ℓj − ℓ′j | <
1

d
1
n ζ

<
1

d
n+1
n

, j = 1, . . . , n. (7.14)

Later on, we will choose d depending on the parameter λ and will write d = d(λ).
Denote by σ′m the quasi-eigenvalues of a curvilinear polygon P ′ with the side lengths ℓ′1, . . . , ℓ′n and the

same respective angles as P . Assume
d(λ)

n+1
n > λ. (7.15)

Applying Corollary 5.25 we have ∣∣σm − σ′m
∣∣ < Cλ

d(λ)
n+1
n

. (7.16)

for all σm < λ and some constantC > 0.
Inequality (7.16) together with Weyl’s law (2.32) implies that

Rq
P(λ) =

∑
σm≤λ

(λ− σ′m) + (σ′m − σm) = Rq
P ′(λ) +O

(
λ2

d(λ)
n+1
n

)
. (7.17)

At the same time, consider the polygon P ′. The lengths of all its sides are rational numbers with the common
denominator ζ < 4d(λ). LetT ′ be the period of the sequenceσ′m. It is easy to check from equations (2.20) and
(2.23) that T ′ = O(d(λ)). Therefore, by the result that we have already established for curvilinear polygons
with rationally commensurable sides,

Rq
P ′(λ) =

|∂P ′|
2π

λ2 +O(d(λ)) =
|∂P|
2π

λ2 +O

(
λ2

d(λ)
n+1
n

)
+O(d(λ)), (7.18)

where the last equality follows from (7.14). Combining (7.17) and (7.18) we get

Rq
P(λ) =

|∂P|
2π

λ2 +O

(
λ2

d(λ)
n+1
n

)
+O(d(λ)). (7.19)

Let us now balance the error terms by choosing d(λ) = λ
2n

2n+1 , which satisfies (7.15). Substituting this into
(7.19) we obtain

Rq
P(λ) =

|∂P|
2π

λ2 +O
(
λ

2n
2n+1

)
.

With account of (7.11), this completes the proof of Theorem 2.31.
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8. Layer Potentials

8.1. Layer potential operators. The aim of section 8 is to extend the results obtained so far for partially
curvilinear polygons to the fully curvilinear case. Throughout this section we assume that Ω0, Ω, and Ω̃ are
curvilinear polygons, all with the same angles in Π and the same side lengths in the same order. We also assume
that Ω0 is partially curvilinear. The boundaries of all three domains are thus homeomorphic to the circle of
length L, denoted S1L, where L is the common perimeter of Ω0, Ω, and Ω̃. In this section, with a slight abuse
of notation, we identify the sides Ij of Ω0 of length ℓj , j = 1, . . . , n, with their images Ij ⊂ S1L (which are
arcs of length ℓj) under the above homeomorphism. Since the sides of Ω and Ω̃ are of the same length as the
sides of Ω0, the intervals Ij of S1L correspond to the sides of these curvilinear polygons as well.

Let s be a common arc length parameter, with the same orientation and with s = 0 at the same vertex, on
all three boundaries ∂Ω0, ∂Ω, and ∂Ω̃. Let q0(s), q(s), and q̃(s) be clockwise arc length parametrisations of
the three boundaries, with outward unit normals n0(s), n(s), and ñ(s). Also let γ0(s), γ(s), and γ̃(s) be the
three (signed) curvatures. Our assumptions thus mean that γ0 vanishes in a neighbourhood of each vertex. We
will be interested in a situation when q and q̃ (and thus γ and γ̃) are close to each other in someC l norm. The
outward normals and curvatures are defined at all points except the finitely many vertices.

We will be comparing the Steklov spectra of these polygons, so let D0, D, and D̃ be the Dirichlet-to-
Neumann operators on each, with eigenvalues {λ0,m}, {λm}, and {λ̃m}. We will assume, as we can, that
all these operators act in the same Hilbert spaceL2(S1L). Throughout, we write Ck or Ck(S1L), with k = 0 or
k = 1, for the direct sumCk(I1)⊕· · ·⊕Ck(In); in particular, a function in C0(S1L) need not be continuous
at the ends of the intervals Ij . At the same time, the Sobolev spaceH1(S1L) is defined in the usual manner.

Theorem 8.1. Fix a domain Ω of the type described above and let Ω̃ vary within that class. Then there exist
constantsC, δ > 0, depending only on the geometry of Ω, such that if Ω̃ satisfies the condition

∥γ − γ̃∥C1(S1L)
≤ δ, (8.1)

then D − D̃ is bounded as an operatorL2(S1L) → L2(S1L) and further

∥D − D̃∥L2→L2 ≤ C∥γ − γ̃∥C1 .

Remark 8.2. This theorem states that within each class of curvilinear polygons we consider here, the depen-
dence of the Dirichlet-to-Neumann operator (with respect to the operator norm) on the curvature of the
boundary (with respect to theC1 norm) is locally Lipschitz continuous. ◀

Remark 8.3. Repeated applications of Theorem 8.1 imply that even without assumption (8.1), D − D̃ is still
bounded fromL2(S1L) toL2(S1L). ◀

The proof of this theorem will occupy the remainder of the section. But first we explain how to use this
Theorem to extend the results proved in previous sections for partially curvilinear polygons to the fully curvi-
linear case. The following proposition can be viewed as a sort of a bootstrap argument.

Proposition 8.4. Suppose that Ω and Ω̃ are curvilinear polygons as described above. Suppose further that ∥D −
D̃∥ < π/(6L), and let δ̃ > 1 be as in Corollary 4.22. Then |σm − λm| = o(1) implies |σm − λ̃m| =

O
(
m

1
2
(1−δ̃)

)
.

Proof. The proof begins with the observation that the sequence {σm} must have repeated spectral gaps of size
greater than π/2L. Indeed, if this is not the case, then for all sufficiently large λ, the counting function for
{σm} would be at least 2L

π λ, contradicting the Weyl law [BeKu13, Lemma 3.7.4]. Now partition the sequence
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{σm} into clusters {σak , . . . , σbk}, ending each cluster at the first new gap of size greater thanπ/(2L), so that
ak+1 = bk + 1 and σak+1

− σbk > π/(2L). Since |σm − λm| → 0, the disjoint intervals(
σak −

π

12L
, σbk +

π

12L

)
,

must eventually contain λak , . . . , λbk , and no other eigenvalues of D. On the other hand, ∥D − D̃∥ < π
6L .

So every element of {λ̃m} must be within a distance π
6L of some element of {λm}, which means that, for

sufficiently large k, the intervals (
σak −

π

4L
, σbk +

π

4L

)
,

which are still disjoint, must contain λ̃ak , . . . , λ̃bk , and no other eigenvalues of D̃.
We also note that, by Theorem 4.24, there is a map j : N → N which is eventually strictly increasing and

for which
∣∣∣σm − λ̃j(m)

∣∣∣ ≤ Cm
1
2
(1−δ̃) → 0. These two observations imply that j(m) = m for sufficiently

largem.

Now we deduce the correct enumeration for anyΩ from the correct enumeration forΩ0 using a continuity
argument. The key is the following Proposition.

Proposition 8.5. Let Ω be a fully curvilinear polygon. There exists a continuous family of curvilinear polygons
Ωt, t ∈ [0, 1], all with the same angles and side lengths, with Ω1 = Ω, and Ω0 being partially curvilinear.

Proof. We proceed in three steps. First, we build a familyΩ′
t with all the required properties except possibly for

the preservation of the side lengths. This is easy to do by working locally in a neighbourhood of each vertex:
assume that a vertex is at the origin, and that Ω in the vicinity of the vertex coincides with

{(x, y) : x > 0, y1,−(x) < y < y1,+(x)} ,

where y±(0) = 0, see Figure 17.
Let χ(x) denote a smooth nonnegative cut-off function satisfying (4.34). We now set, with ε > 0 small

enough,
y0,±(x) := χ(x/ε)y′1,±(0)x+ (1− χ(x/ε))y1,±(x)

(so that these functions are linear near the origin), and choose Ω′
0 to coincide locally with

{(x, y) : x > 0, y0,−(x) < y < y0,+(x)}

(so its partially curvilinear), and Ω′
t, t ∈ [0, 1], to coincide locally with

{(x, y) : x > 0, (1− t)y0,−(x) + ty1,−(x) < y < (1− t)y0,+(x) + ty1,+(x)} .

On the second step, let ρt be the maximum ratio of the corresponding side lengths of Ω′
t and Ω = Ω′

1,

ρt := max

{
ℓ1(Ω

′
t)

ℓ1(Ω)
, . . . ,

ℓn(Ω
′
t)

ℓn(Ω)

}
,

with ρ1 = 1. We now construct the continuous family of curvilinear polygons Ω′′
t as copies of Ω′

t scaled by a
linear factor ρ−1

t ; this ensures that each side length ℓj(Ω′′
t ) of the resulting family is less than or equal to the

corresponding side length ℓj(Ω).
Finally, we adjust the domains Ω′′

t to increase, if required, the side lengths ℓj(Ω′′
t ) = ρ−1

t ℓj(Ω
′
t) back

to ℓj(Ω) for all j, while leaving a neighbourhood of each vertex unchanged. This may be done, for example,
by adding smooth oscillations with the appropriate t-dependent amplitude and frequency to each side away
from the corners. The result is a continuous family Ωt of curvilinear polygons with Ω1 = Ω, and Ω0 partially
curvilinear, all Ωt having the same angles and side lengths as Ω.
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Figure 17: A family Ω′
t (dotted boundary) near a vertex, with the original fully curvilinear polygon Ω = Ω′

1

(solid boundary) and a constructed partially curvilinear Ω′
0 (dashed boundary; the black dots indicate the ends

of the straight parts of the boundary)

Along such a family Ωt, the curvature depends continuously on t in the C1-norm, and therefore by The-
orem 8.1, the operator Dt depends continuously on t in the L2 norm. Since t ∈ [0, 1] and [0, 1] is com-
pact, this dependence is uniformly continuous, so there exists ε > 0 such that |t − t′| ≤ ε implies that
∥D − D̃∥ < π/(6L). Finally, by Theorem 1.4 for the partially curvilinear polygon Ω0, which we proved in
Section 5, we know that for Ω0, |σm − λm(Ω0)| = o(1). So by one use of Proposition 8.4, we conclude that
for all t ∈ [0, ε],

|σm − λm(Ωt)| = O(m(−δ̃+1)/2).

But then a second use gets us the same for all t ∈ [0, 2ε], and so on until we reach 1 in finitely many steps.
Therefore, we have

Theorem 8.6. For any curvilinear polygon Ω,

|σm − λm| = O(m(−δ̃+1)/2),

where δ̃ is defined as in Corollary 4.22.

Our approach uses the theory of layer potentials. So we let SL and DL be the single- and double-layer po-
tential operators on the boundary of our domainΩ. Throughout, we use S̃L, SL0, and analogous expressions
to denote the same operators on Ω̃ and Ω0 respectively. Recall that these operators are defined as follows:

SL(f)(s) =

∫
S1L
KSL(s, s

′)f(s′) ds′; DL(f)(s) =

∫
S1L

(
∂

∂n(s′)
KSL(s, s

′)

)
f(s′) ds′,

KSL(s, s
′) =

1

2π
log |q(s)− q(s′)|,

where n(s′) is the outward unit normal and the integral for DL is a principal value integral.
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We now collect some basic facts about these operators. First, we have the Calderon jump relations, stated
in [Tay96, Chapter 7, (11.35)] in the smooth context but also true in the general setting of Lipschitz domains
(see for example [Agr11]):

SLD = −1

2
(Id−DL). (8.2)

Now we give some information about the boundedness properties of these operators, which again hold for
Lipschitz domains. Although we cite [PePu14], some of these results are originally due to Verchota [Ver84].

Proposition 8.7 ([PePu14, Section 2 and Lemma 3.1]). The operators

SL : L2(∂Ω) → H1(∂Ω), DL : L2(∂Ω) → L2(∂Ω), DL : H1(∂Ω) → H1(∂Ω)

are all bounded. Moreover, SL is invertible as long as the capacity of the domain Ω is not equal to one.

Remark 8.8. The capacity of a domain (also called the logarithmic capacity) scales linearly with the domain
itself, and is bounded below by the inradius. We may thus safely assume that the capacity of each of our domains
is greater than one. If not, to prove a theorem such as Theorem 8.1, we simply scale up the domain(s) so that
all inradii and thus all capacities are greater than one, apply the result there, and transform back. Since D is
homogeneous under scaling, the result follows for all domains. This allows us to make the assumption, which
we do throughout, that our single-layer operators SL, SL0, and S̃L are all invertible. ◀

8.2. Proof of Theorem 8.1. Our first goal is to reduce the proof of Theorem 8.1 to the proof of the following
lemma, which gives bounds on the differences of the single- and double-layer potential operators acting on
different domains.

Lemma 8.9. There exist constantsC and δ depending only on the geometry of Ω such that if

∥γ(s)− γ̃(s)∥C1 ≤ δ,

then

1. SL− S̃L is bounded fromH−1(S1L) → H1(S1L), and ∥SL− S̃L∥H−1→H1 ≤ C∥γ − γ̃∥C1 .

2. DL− D̃L is bounded fromL2(S1L) → H1(S1L), and ∥DL− D̃L∥L2→H1 ≤ C∥γ − γ̃∥C1 .

We defer the proof of this Lemma to future subsections and now give the proof of Theorem 8.1.

Proof of Theorem 8.1. The point is that the Calderon jump relations (8.2) for Ω and Ω̃ allow us to write D−D̃
in terms of SL − S̃L and DL − D̃L. Specifically, since we assume SL is invertible, subtracting the jump
relation for Ω̃ from that for Ω and rearranging yields

D − D̃ = SL−1

(
1

2
(DL− D̃L)− (SL− S̃L)D̃

)
. (8.3)

We want the only tildes on the right to be in the differences of layer potential operators, and so a little more
rearrangement yields the following formal expression:

D − D̃ =
(
I − SL−1(SL− S̃L)

)−1
SL−1

(
1

2
(DL− D̃L)− (SL− S̃L)D

)
. (8.4)

This formal expression can now be justified. First, by Proposition 8.7 and the bounded inverse theorem, SL−1

is bounded fromH1 to L2. By the same proposition, 1
2(Id−DL) is bounded fromH1 to itself, and thus by
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the Calderon jump relation, D is bounded fromH1 toL2. By self-adjointness and duality, D is also bounded
fromL2 toH−1. By Lemma 8.9, the operator

SL−1((DL− D̃L)− (SL− S̃L)D)

is bounded from L2 to L2. Further, its operator norm is bounded by ∥γ − γ̃∥C1 times a constant depending
only on the geometry of Ω (this absorbs the norms of D and SL−1, both of which depend only on Ω).

Finally, as long as δ is chosen smaller than
(
2C∥SL−1∥H1→L2

)−1, which depends only on the geometry
of Ω, we have that ∥∥∥SL−1(SL− S̃L)

∥∥∥
L2→L2

≤
∥∥∥SL−1(SL− S̃L)

∥∥∥
H−1→L2

≤ 1

2
.

Therefore I − SL−1(SL − S̃L) is invertible on L2, with inverse bounded by 2. The required statement for
D − D̃ now follows immediately from (8.4), and the proof of Theorem 8.1 is complete.

8.3. Proof of Lemma 8.9. The proof proceeds via a careful analysis of the Schwartz kernels of the operators
SL− S̃L and DL− D̃L. These kernels areK

SL−S̃L
andK

DL−D̃L
respectively and of course the difference

of kernels is the kernel of the difference. Each of these operators therefore has an extremely explicit Schwartz
kernel which is conducive to direct analysis.

Our Schwartz kernels live on S1L × S1L, and have input and output variables which we denote s and s′
respectively. We decompose S1L × S1L as a union of rectangles of the form Ij × Ik and analyse each kernel on
each rectangle separately. The critical results we need are as follows.

Lemma 8.10. There exist constantsC and δ depending only on the geometry ofΩ so that if ||γ− γ̃||C1 ≤ δ, then
the three operators with Schwartz kernels

K
SL−S̃L

, ∂s′KSL−S̃L
, K

DL−D̃L

have the following properties:

1. For each j and k, each operator is bounded from L2(Ik) → H1(Ij), with the norm bounded by C∥γ −
γ̃∥C1 ;

2. For each j and k, each operator kernel is bounded on the rectangle Ij × Ik .

3. For each j, each operator kernel is continuous on Ij×S1L, with the possible exception of the two pointsV ×V
where V is an endpoint of Ij . In particular, as long as the first variable s is in the interior of Ij , none of
these kernels have a jump discontinuity as the second variable s′ crosses a corner.

Now we complete the proof of Lemma 8.9, given Lemma 8.10.

Proof. First, we claim that each of the three operators in Lemma 8.10 in fact defines a bounded operator from
L2(Ik) → H1(S1L) for each k, with norm bounded by C∥γ − γ̃∥C1 . Each of these operators is the direct
sum of the corresponding operators from L2(Ik) to H1(Ij). The output of such an operator may not be in
H1(S1L) a priori, as it might not be continuous at the vertices. However, we claim that for any input inL2(Ik),
the output is continuous at the vertices. Assuming this continuity, theH1(S1L) norm of the output is the sum
of theH1(Ij) norms of each piece, which is enough.

Indeed, the continuity follows from Lemma 8.10. Let g(s) be any function in L2(Ik). The output is∫
Ik
K(s, s′)g(s′) ds′, and its continuity is a real analysis exercise. Specifically, break this integral into a small

ball around each endpoint and a large middle section. The middle integral is continuous since, by part 3 of
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Lemma 8.10, K(s, s′) is continuous for all values of s′ not at the endpoints. And since K(s, s′) is bounded
by part 2 of the Lemma, the endpoint integrals are small, so a standard ε/3 argument completes the proof of
continuity.

It is now immediate that each of the three operators in fact is bounded fromL2(S1L) → H1(S1L) with the
same norm bounds (up to a factor ofn), as their output is simply the sum of the outputs of the operators from
L2(Ik) → H1(S1L). This proves the second statement in Lemma 8.9.

For the first statement in Lemma 8.9, part 1 of Lemma 8.10 shows that it is sufficient to prove that

∥SL− S̃L∥H−1→H1 ≤ C(∥K
SL−S̃L

∥L2→H1 + ∥∂s′KSL−S̃L
∥L2→H1), (8.5)

withC a constant depending only on the geometry ofΩ, and where the norms on the right-hand side are, in an
abuse of notation, the operator norms of the operators with those kernels (so that, in particular, the operator
denoted byK

SL−S̃L
in the right-hand side is the same as SL− S̃L in the left-hand side).

To this end, let M be a Fourier multiplier operator on S1L, multiplying each basis element e2πims/L by
1+|m|. Then, up to a factor ofLwhich we ignore as it can be absorbed intoC ,M is an isometric isomorphism
fromL2 toH−1. Thus

∥SL− S̃L∥H−1→H1 = ∥(SL− S̃L)M∥L2→H1 = sup
f∈L2,∥f∥=1

∥∥∥∥∥
∫
S1L
K

SL−S̃L
(s, s′)(Mf)(s′) ds′

∥∥∥∥∥
H1

.

Write out the Fourier expansions ofK
SL−S̃L

(s, s′) and of f(s′), ignoring all normalisation constants (which
can be absorbed):

K
SL−S̃L

(s, s′) =
∑
m∈Z

cm(s)eims′ , f(s′) =
∑
m∈Z

dmeims′ .

Then by a direct calculation,

∥∥∥SL− S̃L
∥∥∥
H−1→H1

= sup
dm:

∑
d2m=1

∥∥∥∥∥∑
m∈Z

(1 + |m|)d−mcm(s)

∥∥∥∥∥
H1

≤ sup
dm:

∑
d2m=1

∥∥∥∥∥∑
m∈Z

d−mcm(s)

∥∥∥∥∥
H1

+ sup
dm:

∑
d2m=1

∥∥∥∥∥∑
m∈Z

|m|d−mcm(s)

∥∥∥∥∥
H1

.

(8.6)

But also by direct calculations,

∥∥∥KSL−S̃L

∥∥∥
L2→H1

= sup
dm:

∑
d2m=1

∥∥∥∥∥∑
m∈Z

d−mcm(s)

∥∥∥∥∥
H1

,

∥∥∥∂s′KSL−S̃L

∥∥∥
L2→H1

= sup
dm:

∑
d2m=1

∥∥∥∥∥∑
m∈Z

(−m)d−mcm(s)

∥∥∥∥∥
H1

.

Although it does not initially look identical, this second norm is the same as the second term of (8.6), as the
signs of the coefficients dm may be multiplied by−1 times sgnm. The equation (8.5) follows immediately, and
with it Lemma 8.9.
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8.4. Proof of Lemma 8.10: kernel expressions. The starting point for our proof of Lemma 8.10 is work of
Costabel [Cos83]. Costabel analyses kernels of operators of the form SL− SL0 and DL−DL0, comparing
a curvilinear polygon to a polygon with straight edges near the corners. From [Cos83], one extracts that each
of the three operator kernels in Lemma 8.10 is continuous on Ij × Ik, except when k = j ± 1, in which case
there is a singularity at V ×V . Costabel carefully analyses the asymptotics of the kernels at each singular point
and in fact, from his work one can deduce boundedness of each kernel in this singular case as well (we will also
see it directly). By writing SL − S̃L = (SL − SL0) − (S̃L − SL0), this proves part 2 of Lemma 8.10. As
for part 3, this almost follows from Costabel, except that we need to prove the following:

Proposition 8.11. If s is a vertex and s′ is not, then the kernels K
SL−S̃L

, ∂s′KSL−S̃L
, and K

DL−D̃L
are

continuous at (s, s′).

This will follow from our explicit expressions for the kernels and therefore we postpone the proof for the
moment, but once it is done, part 3 of Lemma 8.10 follows immediately.

To prove part 1, and also complete the proof of Proposition 8.11, we must analyse the kernels directly. In
order to show part 1 we take advantage of the definition of the H1 norm, and observe that it suffices to show
the following six kernels induce bounded operators from L2(Ik) → L2(Ij) for each j and k, with norms
bounded byC∥γ − γ̃∥C1 :

K
SL−S̃L

, ∂s′KSL−S̃L
, ∂sKSL−S̃L

, ∂s∂s′KSL−S̃L
, K

DL−D̃L
, ∂sKDL−D̃L

.

We will do this by showing explicitly that the absolute value of each of these kernels is bounded by ∥γ − γ̃∥C1

times a simple function which induces a bounded operator fromL2(Ik) → L2(Ij). In the case whenk ̸= j±1
this function may be chosen to be a constant, but if k = j ± 1 we must choose this function to be (mildly)
singular at V × V .

In order to do this, we write out the six kernels in question. Up to normalizing constants which we ignore
as they are not relevant to the argument,

KSL(s, s
′) = log |q(s)− q(s′)|; (8.7)

∂sKSL(s, s
′) =

(q(s)− q(s′)) · q̇(s)
|q(s)− q(s′)|2

; (8.8)

∂s′KSL(s, s
′) = −(q(s)− q(s′)) · q̇(s′)

|q(s)− q(s′)|2
; (8.9)

∂s∂s′KSL(s, s
′) = − q̇(s) · q̇(s′)

|q(s)− q(s′)|2
+

2((q(s)− q(s′)) · q̇(s))((q(s)− q(s′)) · q̇(s′))
|q(s)− q(s′)|4

; (8.10)

KDL(s, s
′) = −(q(s)− q(s′)) · n(s′)

|q(s)− q(s′)|2
; (8.11)

∂sKDL(s, s
′) = − q̇(s) · n(s′)

|q(s)− q(s′)|2
+

2((q(s)− q(s′)) · q̇(s))((q(s)− q(s′)) · n(s′))
|q(s)− q(s′)|4

. (8.12)

The six kernels we need are these expressions minus the corresponding expressions with tildes. All dots denote
derivatives. Note that here n(s′) is a 90-degree rotation of q̇(s′) (the sign is usually irrelevant) and that q̇(s)
and q̇(s′) are unit vectors since we have an arc length parametrisation.

We begin by proving Proposition 8.11. In fact this is easy because the kernels themselves are separately
continuous, so their differences are continuous as well. At a point (s, s′) where s is a vertex and s′ is not, the
functions q(s), q(s′) and q̇(s′) are all continuous, though q̇(s) is not (it has a jump discontinuity at the vertex).
By rotation, n(s′) is also continuous. Moreover |q(s) − q(s′)| is continuous and nonzero. The same is true
for all expressions with tildes. From this it is easy to see that the three expressions (8.7), (8.9), and (8.11) are all
continuous, as are their analogues with tildes. This completes the proof of Proposition 8.11, leaving only the
need to prove part 1 of Lemma 8.10, which will be done with a direct but lengthy calculation.
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8.5. Geometric preliminaries. As a reminder, we have a fixed domain Ω and a domain Ω̃ which is among
the class of domains for which ∥γ − γ̃∥C1 is bounded by some yet to be chosen small geometric constant δ,
depending only on the geometry of Ω. We will, throughout, write

Γ := ∥γ − γ̃∥C0 ; Γ1 := ∥γ − γ̃∥C1 ,

and our restriction on Ω̃ is precisely that Γ ≤ Γ1 ≤ δ for some δ to be chosen later. Throughout we useC to
denote a constant depending only on the geometry of Ω (and in particular not on the geometry of Ω̃).

Note that all six kernels (8.7)–(8.12) are independent of rotation and translation of the domain Ω̃ in R2.
This allows us a degree of freedom of choice, and we will usually take advantage of this to ensure that ˙̃q(s0) =
q̇(s0) for some specific value s0, chosen conveniently. Of course we cannot ensure this for more than one point
at a time, but that will not be necessary.

Our bounds on the kernels (8.7)–(8.12) are all based on the basic fact that the curvature γ(s) is related to
q̈(s) by

q̈(s) = γ(s) · Rot(q̇(s)) = γ(s)n(s), (8.13)

where Rot is counterclockwise rotation by π/2. In particular we have q̈(s) ⊥ q̇(s). The equation (8.13) may
be used to estimate expressions involving q and q̇ because by the fundamental theorem of calculus,

q(s) = q(s′) + (s− s′)q̇(s′) +

∫ s

s′

∫ t

s′
q̈(u) dudt, (8.14)

q̇(s) = q̇(s′) +

∫ s

s′
q̈(u) du, (8.15)

with identical expressions for q̃(s) and its derivative. Note that (8.14) and (8.15) hold only when s and s′ are
on the same side; otherwise there is a jump discontinuity in q̇, which modifies the expressions in the way one
would expect.

The following proposition reflects the fact that if the curvatures of ∂Ω̃ and ∂Ω are close to one another,
then their boundaries change direction in similar ways.

Proposition 8.12. Suppose that Ω̃ additionally satisfies the condition that there exists s0 for which ˙̃q(s0) =
q̇(s0). Then the following hold:

|( ˙̃q(s)− q̇(s))− ( ˙̃q(s′)− q̇(s′))| ≤ CΓ|s− s′|; (8.16)

|¨̃q(s)− q̈(s)| ≤ CΓ; (8.17)

|
...
q̃ (s)− ...

q (s)| ≤ CΓ1. (8.18)

Remark 8.13. In fact (8.16) holds without that condition on Ω̃, as the left-hand side of (8.16) is invariant under
rotation of Ω̃. The others do not. ◀

Proof. Take (8.15) for q̇ and subtract it from the same for ˙̃q, then plug in (8.13) to obtain

( ˙̃q(s)− q̇(s))− ( ˙̃q(s′)− q̇(s′)) =

∫ s

s′

∫ s

s′
(γ̃(u)Rot( ˙̃q(u))− γ(u)Rot(q̇(u))) du.

This holds for all s and s′, not just those in the same boundary component; as the angles are the same, the jump
discontinuities that are added to (8.15) are the same for both Ω and Ω̃ and therefore cancel. We estimate the
integral using the usual analysis trick of adding and subtracting γ(u)Rot( ˙̃q(u)) inside the integral. Observe
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also that rotation does not change the norm of a vector. Write F (s) = ˙̃q(s) − q̇(s) and Gs′(s) = |F (s) −
F (s′)|, so that the left-hand side of (8.16) isGs′s, and we obtain

Gs′(s) ≤
∫ s

s′
(|γ̃(u)− γ(u)| · | ˙̃q(u)|+ |γ(u)| · |F (u)|) du.

However ˙̃q is a unit vector, so the first term is bounded by Γ|s− s′|. And |γ(u)| is the curvature of Ω and thus
bounded byC , so adding and subtracting F (s) inside the second term gives

Gs′(s) ≤ Γ|s− s′|+ C

∫ s

s′
|F (u)− F (s′) + F (s′)| du ≤ (Γ + C|F (s′)|)|s− s′|+

∫ s

s′
CGs′(u) du.

Since F (s) is continuous so is Gs′(s). We may therefore use the integral form of Grönwall’s inequality to
obtain a bound forGs′(s):

Gs′(s) ≤ (Γ + C|F (s′)|)|s− s′|+
∫ s

s′
(Γ + C|F (s′)|)|u− s′| · C · exp

(∫ s

u
C du′

)
du.

A straightforward estimate gives

Gs′(s) ≤ (Γ + C|F (s′)|)(|s− s′|+ C|s− s′|2 exp[C|s− s′|]). (8.19)

Now, in (8.19), substitute s0 for s′ and notice that by our assumptionF (s0) = 0. The observation that |s−s′|
is universally bounded by a constantC (namelyC = L) yields a very crude bound for |F (s)|:

|F (s)| = Gs0(s) ≤ Γ|s− s0|+ CΓ|s− s0|2eC|s−s0| ≤ CΓ.

However, plugging this crude bound back into (8.19) and again using |s− s′| ≤ L on some (but not all) of the
|s− s′| terms gives a bound ofCΓ|s− s′| forGs′(s). This is (8.16).

To get (8.17), use (8.13) and estimate the resulting difference as with the interior of the integral in the previ-
ous paragraph, by adding and subtracting γ(s) · Rot( ˙̃q(s)):

|¨̃q(s)− q̈(s)| ≤ |γ̃(s) · Rot( ˙̃q(s))− γ(s) · Rot( ˙̃q(s))|+ |γ(s) · Rot( ˙̃q(s))− γ(s) · Rot(q̇(s))|
≤ Γ + |γ(s)| · |Rot( ˙̃q(s))− Rot(q̇(s))| ≤ Γ + C| ˙̃q(s)− q̇(s)|.

(8.20)

By our assumption, ˙̃q(s)− q̇(s) equals zero for s = s0. So (8.16) demonstrates that

| ˙̃q(s)− q̇(s)| ≤ CΓ|s− s0|,

which is crudely bounded byCΓ. This gives (8.17).
Finally, (8.18) is obtained by differentiating both sides of (8.13) and subtracting the non-tilde version from

the tilde version, which yields

|
...
q̃(s)− ...

q (s)| ≤ | ˙̃γ(s)− γ̇(s)| · |Rot(q̇(s))|+ |γ(s)| · |Rot(¨̃q(s))− Rot(q̈(s))|.

The first term is bounded byΓ1 as the second factor is a unit vector. For the second term, note that |γ(s)| ≤ C

and that the rotation ¨̃q(s)− q̈(s), by (8.17), is bounded in absolute value byCΓ. So the second term is bounded
byCΓ overall. Since of course Γ ≤ Γ1, (8.18) follows.
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8.6. On-diagonal rectangles. We now consider the on-diagonal rectangles, that is, each rectangle of the form
Ij×Ij for fixed j. It is a well-known fact (see e.g. [Cos83]) that althoughKSL andK

S̃L
both have logarithmic

singularities at the diagonal {s = s′}, the difference does not, and is actually smooth if the boundary curve Ij
is smooth. This also will follow from our analysis. The kernelKDL is actually smooth as well if the boundary
is smooth.

We begin by analysing the differences of single layer kernels and their derivatives.

Proposition 8.14. There exists δ > 0 depending only on Ω such that if Γ1 ≤ δ, then for all s, s′ ∈ Ij , we have∣∣∣KSL−S̃L
(s, s′)

∣∣∣ ≤ CΓ1|s− s′|2; (8.21)

∣∣∣∂s′KSL−S̃L

∣∣∣ ≤ CΓ1|s− s′|; (8.22)∣∣∣∂sKSL−S̃L

∣∣∣ ≤ CΓ1|s− s′|; (8.23)∣∣∣∂s∂s′KSL−S̃L

∣∣∣ ≤ CΓ1. (8.24)

Observe that since |s − s′| is bounded this immediately implies that all such kernels are bounded by a
constant timesΓ1, and thus induce operators fromL2(Ij) toL2(Ij)with norms bounded by a constant times
Γ1, as desired.

Proof. First we fix an s′. As discussed, the kernels are invariant under a Euclidean motion of Ω̃, so we assume
without loss of generality that ˙̃q(s′) = q̇(s′), which also allows us to use Proposition 8.12.

To begin, observe that by (8.14), which holds since s, s′ are on the same side:

|q(s)− q(s′)|2 = (s− s′)2 + 2(s− s′)

∫ s

s′

∫ t

s′
q̇(s′) · q̈(u) dudt+

∣∣∣∣∫ s

s′

∫ t

s′
q̈(u) dudt

∣∣∣∣2 .
Write q̈(u) = q̈(s′) +

∫ u
s′

...
q (v) dv; then since q̈(s′) and q̇(s′) are orthogonal we have

|q(s)− q(s′)|2 = (s− s′)2 + 2(s− s′)

∫ s

s′

∫ t

s′

∫ u

s′
q̇(s′) · ...

q (v) dv dudt+

∣∣∣∣∫ s

s′

∫ t

s′
q̈(u) dudt

∣∣∣∣2 .
The same expression holds with tildes, and we can subtract the two to estimate the difference of distances-
squared. The first terms are the same for each and thus cancel. The second terms’ difference, since q̇(s′) =
˙̃q(s′), is

2(s− s′)

∫ s

s′

∫ t

s′

∫ u

s′
q̇(s′) · ( ...

q (v)−
...
q̃ (v)) dv dudt.

By (8.18), and the fact that |q̇(s′)| = 1, this expression is bounded byCΓ1|s−s′|4. Finally, we need to estimate
the difference of the last terms with and without tildes. By the usual add/subtract trick this difference of last
terms is (∫ s

s′

∫ t

s′
q̈(u) dudt

)
·
(∫ s

s′

∫ t

s′
(q̈(u)− ¨̃q(u)) dudt

)
+

(∫ s

s′

∫ t

s′
(q̈(u)− ¨̃q(u)) dudt

)
·
(∫ s

s′

∫ t

s′

¨̃q(u) du dt

)
.
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Each piece of this can be estimated. For the first factor, |q̈(u)| = |γ(u)|, which is bounded by C and so the
first term is bounded byC|s−s′|2. The second factor is bounded using (8.17) byCΓ|s−s′|2. The third factor
is the same. And the fourth factor has

|¨̃q(u)| ≤ |q̈(u)|+ |¨̃q(u)− q̈(u)| ≤ C + Γ ≤ C + 1 ≤ C,

as long as we choose δ ≤ 1. So overall the difference of last terms is bounded by CΓ|s − s′|4. Thus, overall,
we have

||q(s)− q(s′)|2 − |q̃(s)− q̃(s′)|2| ≤ CΓ1|s− s′|4. (8.25)

Now observe that for some c > 0 depending only on the geometry of Ω, |q(s) − q(s′)| ≥ c|s − s′|,
because all interior angles are positive and the boundary does not intersect itself. So |q(s)−q(s′)| ≤ |s−s′| ≤
C|q(s)− q(s′)|. Therefore, manipulating (8.25) leads to∣∣∣∣1− |q̃(s)− q̃(s′)|2

|q(s)− q(s′)|2

∣∣∣∣ ≤ CΓ1|s− s′|2. (8.26)

Taking logarithms, as long as Γ1 is sufficiently small, yields (8.21).
Before we analyse the difference of derivatives of single layer kernels, a brief proposition.

Proposition 8.15. For all s, s′ ∈ Ij ,

|¨̃q(s) · ˙̃q(s′)− q̈(s) · q̇(s′)| ≤ CΓ|s− s′|. (8.27)

Proof. Fix s′. As before, we may assume that ˙̃q(s′) = q̇(s′). Use (8.13) and the usual add/subtract trick to
bound the left-hand side of (8.27) by

|(γ(s)− γ̃(s))Rot(q̇(s)) · q̇(s′)|+ |γ̃(s)(Rot(q̇(s)) · q̇(s′)− Rot( ˙̃q(s)) · ˙̃q(s′))|.

For the first term, the first factor is bounded by Γ. The second factor Rot(q̇(s)) · q̇(s′) is zero when s = s′

and has s-derivative equal to Rot(q̈(s)) · q̇(s′), which has absolute value bounded by |γ(s)| ≤ C ; thus the
second factor is bounded byC|s− s′|. All together the first term is bounded byCΓ|s− s′|. As for the second
term, the first factor |γ̃(s)| is bounded by C (assuming that δ ≤ 1). For the second factor, ˙̃q(s′) = q̇(s′), so
the second factor is

|(Rot(q̇(s))− Rot( ˙̃q(s))) · q̇(s′)| ≤ |q̇(s)− ˙̃q(s)|.

But q̇(s)− ˙̃q(s) is zero when s = s′ and has s-derivative bounded in absolute value by |q̈(s)− ¨̃q(s)|, which by
(8.17) is bounded byCΓ. We therefore get a bound ofCΓ|s− s′| here as well. This completes the proof.

We use this to prove (8.22). The kernel of ∂s′KSL−S̃L
is

−(q(s)− q(s′)) · q̇(s′)
|q(s)− q(s′)|2

+
(q̃(s)− q̃(s′)) · ˙̃q(s′)

|q̃(s)− q̃(s′)|2
.

Since |q(s)− q(s′)|−1 ≤ C|s− s′|−1 as before, this is bounded in absolute value by

C|s− s′|−2|(q(s)− q(s′)) · q̇(s′)− |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2
(q̃(s)− q̃(s′)) · ˙̃q(s′)|.

That ratio of squares is very close to 1, so we add and subtract 1 from it. In addition, taking the dot product of
(8.14) with q̇(s′) yields

(q(s)− q(s′)) · q̇(s′) = s− s′ +

∫ s

s′

∫ t

s′
q̈(u) · q̇(s′) dudt,
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and the same is true with tildes. When we plug all this in, the main s − s′ terms cancel, and we get an upper
bound for ∂s′KSL−S̃L

of

C|s− s′|−2

·
∣∣∣∣∫ s

s′

∫ t

s′
(q̈(u) · q̇(s′)− ¨̃q(u) · ˙̃q(s′)) dudt+

(
1− |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2

)
(q̃(s)− q̃(s′)) · ˙̃q(s′)

∣∣∣∣ . (8.28)

The first of these two terms (including the pre-factor), by Proposition 8.15, is bounded byC|s−s′|−2 ·CΓ|s−
s′|3 = CΓ|s − s′|. As for the second, the factor of 1 minus the fraction can be estimated with (8.26) and is
bounded by CΓ1|s − s′|2. The other factors are bounded by |s − s′| and 1 respectively. So including the
pre-factor we get a boound ofCΓ1|s− s′| here as well. This proves (8.22).

Since the single layer kernels are symmetric, we also get (8.23).
Now we tackle the second derivatives of the single layer kernels. The kernel∂s∂s′KSL−S̃L

is given by (8.10)
minus the analogous expression with tildes. We consider the differences of the first and second terms of (8.10)
respectively.

The difference of the first terms can be handled nearly identically to the proof of (8.22). Following the first
few steps of that proof, it has absolute value bounded by

C|s− s|−2

∣∣∣∣q̇(s) · q̇(s′)− |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2
˙̃q(s) · ˙̃q(s′)

∣∣∣∣ .
From (8.15) we get

q̇(s) · q̇(s′) = 1 +

∫ s

s′
q̈(u) · q(s′) du.

And the same trick of adding and subtracting 1 from the ratio of squares gives an upper bound of

C|s− s′|−2

∣∣∣∣∫ s

s′
(q̈(u) · q̇(s′)− ¨̃q(u) · ˙̃q(s′)) du+

(
1− |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2

)
˙̃q(s) · ˙̃q(s′)

∣∣∣∣ . (8.29)

The same estimates as before, namely Proposition 8.15 and (8.26), show that this is bounded, overall, by CΓ1

as desired.
For the difference of the second terms of (8.10), observe that the second term is precisely−2∂sKSL∂s′KSL.

So the difference of second terms is this minus the version with tildes, and we can use the usual add/subtract
trick to bound this difference by∣∣∣∂sKSL∂s′KSL−S̃L

∣∣∣+ ∣∣∣∂sKSL−S̃L
∂s′KS̃L

∣∣∣ . (8.30)

But by direct calculation, regardless of the parametrisations,

|∂sKSL| ≤ |s− s′|−1;
∣∣∂s′KS̃L

∣∣ ≤ |s− s′|−1.

Putting this together with (8.22) and (8.23) gives an overall bound of CΓ1, and we have proven (8.24). This
completes the proof of Proposition 8.14.

We have dealt with the single layer potentials and their derivatives. Now we analyse the double layer poten-
tials.

Proposition 8.16. There exists δ > 0 depending only on Ω such that if Γ1 ≤ δ, then for all s, s′ ∈ Ij , we have∣∣∣KDL−D̃L
(s, s′)

∣∣∣ ≤ CΓ1; (8.31)∣∣∣∂sKDL−D̃L
(s, s′)

∣∣∣ ≤ CΓ1. (8.32)
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Once this is proven, we have completed the proof of part 1 of Lemma 8.10 in the diagonal, j = k case, as
all six kernels will be bounded byCΓ1 and thus will induce operators fromL2(Ij) → L2(Ij) with norm less
than or equal toCΓ1.

Proof. As usual fix an s′ and assume ˙̃q(s′) = q̇(s′). Using (8.11) and (8.14), along with the fact that q̇(s′) ·
n(s′) = 0, we get

KDL(s, s
′) = −|q(s)− q(s′)|−2

(∫ s

s′

∫ t

s′
q̈(u) · n(s′) du dt

)
.

Let us rewrite this using q̈(u) = q̈(s′) +
∫ u
s′

...
q (v) dv and the fact that q̈(s′) = γ(s′)n(s′):

KDL(s, s
′) = −|q(s)− q(s′)|−2

(
1

2
|s− s′|2γ(s′) +

∫ s

s′

∫ t

s′

∫ u

s′

...
q (v) · n(s′) dv dudt

)
. (8.33)

We can use this, and the adding/subtracting 1 trick, to write an expression for the difference:

K
DL−D̃L

(s, s′) =− 1

2

|s− s′|2

|q(s)− q(s′)|2

(
(γ(s′)− γ̃(s′)) + γ̃(s′)(1− |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2
)

)
− 1

|q(s)− q(s′)|2

(∫ s

s′

∫ t

s′

∫ u

s′
(

...
q (v) · n(s′)−

...
q̃ (v) · ñ(s′)) dv dudt

)
− 1

|q(s)− q(s′)|2

(
1− |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2

)∫ s

s′

∫ t

s′

∫ u

s′

...
q̃ (v) · ñ(s′) dv dudt.

(8.34)

It remains to bound this and its s-derivative, in absolute value, byCΓ1. We do this for each of the three terms
separately.

Consider the first line of (8.34). The pre-factor is a C1 function of s and s′ on the rectangle Ij and is
independent of Ω̃, so itsC1 norm is uniformly bounded by a constantC . The second factor is bounded, using
(8.26), by Γ + (C + Γ)(CΓ1|s− s′|), which is less than or equal toCΓ1. As for the derivative of the second
factor, by a direct calculation with logarithmic differentiation, we see that it is

γ̃(s′)
(
−2∂sKSL−S̃L

) |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2
. (8.35)

By (8.26) and (8.23), this is bounded by

(C + Γ)(CΓ1|s− s′|)(1 + CΓ1|s− s′|2) ≤ CΓ1.

This is enough to bound the first line of (8.34) and its s-derivative byCΓ1.
Now consider the second line. The pre-factor is bounded byC|s−s′|−2, and the integrand, sincen(s′) =

ñ(s′), is bounded in absolute value by Γ1. Thus the second line itself is bounded by CΓ1|s − s′|. As for its
derivative, there are two terms. If the s-derivative hits the pre-factor we get 2|q(s)− q(s′)|−4(q(s)− q(s′)) ·
q̇(s), which is bounded in absolute value byC|s−s′|−3, yielding an overall bound ofCΓ1. If it hits the integral,
it removes one of the integrals, so the bound on the integral becomes CΓ1|s − s′|2 instead of CΓ1|s − s′|3.
Multiplied byC|s− s′|−2 this still yieldsCΓ1.

Finally, examine the third line. The first two factors are bounded by C|s − s′|−2 and CΓ1|s − s′|2 re-
spectively, as a consequence of (8.26). For the integral we evaluate the inner integral and get a double integral
of ¨̃q(u) − ¨̃q(s′) dotted with a unit vector. But |¨̃q(u)| = |γ̃(u)| ≤ C + Γ, so that integral is less than
2(C + Γ)12 |s− s′|2. Putting all three together, the third line is bounded byCΓ1|s− s′|2, which is certainly
bounded byCΓ1. As for the s-derivative, it can hit three different factors. If it hits the first factor it produces
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an extra factor of |q(s) − q(s′)|−2(q(s) − q(s′)) · q̇(s), which is bounded by C|s − s′|−1. If it hits the
second factor, the second factor turns into (8.35) and thus the bound of CΓ1|s − s′|2 becomes CΓ1|s − s′|
instead. And if it hits the integral, one of the integrals disappears and the bound again loses a factor of |s− s′|.
But the s-derivative is still bounded byCΓ1|s− s′|, which is more than enough. This completes the proof of
Proposition 8.16, and with it the j = k case of part 1 of Lemma 8.10.

8.7. Off-diagonal rectangles. Now we assume k ̸= j. We claim it is enough to consider the case where
k = j − 1. Indeed, the k = j + 1 case is identical. For the other values of k, the geometric situation is the
same as if we take the k = j − 1 case and restrict the input to lie in a sub-interval of Ij−1 away from the
intersection Vj = Ij ∩ Ij−1, so the analysis here will cover those values of k as well. In this k = j − 1 case,
the diagonal singularity is not an issue, so all of our kernels are smooth in the interior of Ij × Ik. But there
is a singularity at the point Vj × Vj , and as indicated in [Cos83], it has a more substantial effect than in the
on-diagonal rectangles. Indeed not all of our kernels will be bounded near Vj × Vj . However, we will be able
to bound them, in absolute value, by a kernel which induces a bounded operator fromL2(Ik) toL2(Ij).

So let s and s′ be the usual arc length coordinates, and assume without loss of generality that s = 0 at
the vertex Vj . Thus we have s ≥ 0 on Ij , and s′ ≤ 0 on Ik = Ij−1. Assume without loss of generality that
q(0) = q̃(0) = 0 and that for both ∂Ω and ∂Ω̃, Ij−1 is tangent to the x-axis at Vj , with Ij making an angleα
with the x-axis for both. Now we define two vector-valued functions β−(s′) and β+(s) by the equations

q(s′) = s′

(
−1

0

)
+ β−(s

′); q(s) = s

(
cosα

sinα

)
+ β+(s).

Define analogues with tildes the same way.

Proposition 8.17. The following are true:

1. The function β−(s′) is as smooth as q(s′) (at leastC3), isO
(
(s′)2

)
, and its Taylor coefficient of (s′)2 at

s′ = 0 is perpendicular to Ij−1. Similar statements hold for β+, and the analogues with tildes also hold.

2. We have β̈+(s) = q̈(s), β̈−(s′) = q̈(s′), and the same are true for tildes and third derivatives.

3. We have the estimates∥∥∥β̈± − ¨̃
β±

∥∥∥
L∞

≤ CΓ;
∥∥∥ ...
β± −

...
β̃±

∥∥∥
L∞

≤ CΓ1;∣∣∣β̇+(s)− ˙̃
β+(s)

∣∣∣ ≤ CΓs;
∣∣∣β̇−(s′)− ˙̃

β−(s
′)
∣∣∣ ≤ CΓ|s′|;∣∣∣β+(s)− β̃+(s)

∣∣∣ ≤ 1

2
CΓs2;

∣∣∣β−(s′)− β̃−(s
′)
∣∣∣ ≤ 1

2
CΓ(s′)2.

(8.36)

Proof. The first statement is obvious except for the orthogonality, but that follows from the fact that since q(s′)
is an arc length parametrization, the vectors q̈(0) and q̇(0) are orthogonal. The second statement is clear. The
first two estimates in the third statement follow from (8.17) and (8.18), and the others follow from integration
and the fact that β±(0) = β̃±(0) and β̇±(0) =

˙̃
β±(0).

Now define, as in [Cos83],

r(s, s′) :=

∣∣∣∣∣s
(
cosα

sinα

)
− s′

(
−1

0

)∣∣∣∣∣ .
Its utility is the following
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Proposition 8.18. The kernel r−1(s, s′) defines an operator which is bounded fromL2(Ij−1) toL2(Ij).

Proof. This is a consequence of [Cos83] and is essentially proved there. Specifically, apply the second statement
in [Cos83, Theorem 4.2] with s = 0 and j = −1, noting that H̃0 = H0 = L2. The kernel r−1 is an example
of one of Costabel’s kernels Kj with homogeneity j = −1. If χ is a cutoff function localizing near Vj , then
by [Cos83, Theorem 4.2], χ(s)r−1χ(s′) is bounded fromL2 toL2. On the other hand, 1−χ(s)r−1χ(s′) is
bounded on Ij × Ij−1 and is also bounded fromL2 toL2. Adding them completes the proof.

The point of this is that we have the following proposition:

Proposition 8.19. There exists δ > 0 depending only on Ω such that if Γ1 ≤ δ, then for all s ∈ Ij and
s′ ∈ Ij−1, we have

|K
SL−S̃L

(s, s′)| ≤ CΓr; (8.37)

|∂s′KSL−S̃L
| ≤ CΓ; (8.38)

|∂sKSL−S̃L
| ≤ CΓ; (8.39)

|∂s∂s′KSL−S̃L
| ≤ CΓ1r

−1; (8.40)

|K
DL−D̃L

(s, s′)| ≤ CΓ1; (8.41)

|∂sKDL−D̃L
(s, s′)| ≤ CΓ1r

−1. (8.42)

Once we have proven this proposition, all of our kernels on Ij × Ij−1 will be bounded in absolute value
by Γ1 times a kernel which defines a bounded operator fromL2 → L2. This proves part 1 of Lemma 8.10 and
thereby completes the proof of the results in this section. It remains only to prove Proposition 8.19.

Proof. First we note that r is a good approximation to |q(s)− q(s′)| in the sense that

C−1r ≤ |q(s)− q(s′)| ≤ Cr. (8.43)

In fact the ratio of |q(s)−q(s′)| and r actually approaches 1 as s, s′ → 0, since the deviations of q(s) and q(s′)
from straight lines are quadratic, and if the deviations β± were identically zero then we would have r(s, s′) =
|q(s)− q(s′)|.

Now we claim:∣∣ |q(s)− q(s′)| − |q̃(s)− q̃(s′)|
∣∣ ≤ |q(s)− q̃(s)|+ |q(s′)− q̃(s′)|

= |β+(s)− β̃+(s)|+ |β−(s′)− β̃−(s
′)|

≤ 1

2
CΓ(s2 + (s′)2) ≤ CΓr2 ≤ CΓr|q(s)− q(s′)|.

Indeed this follows from the definition of β, estimates (8.36), the fact that the ratio r2(s, s′)/(s2 + (s′)2) is
bounded byC , and (8.43). As a consequence,∣∣∣∣1− |q̃(s)− q̃(s′)|

|q(s)− q(s′)|

∣∣∣∣ ≤ CΓr, (8.44)

and so as long as Γ is sufficiently small,

|K
SL−S̃L

(s, s′)| =
∣∣∣∣log |q̃(s)− q̃(s′)|

|q(s)− q(s′)|

∣∣∣∣ ≤ CΓr,

which proves (8.37).
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To go after derivatives of the single layer potential, observe that, after doing the usual add and subtract 1
trick, the kernel of ∂sKSL−S̃L

is

|q(s)− q(s′)|−2

(
((q(s)− q(s′)) · q̇(s)− (q̃(s)− q̃(s′)) · ˙̃q(s))

+

(
1− |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2

)
(q̃(s)− q̃(s′)) · ˙̃q(s)

)
.

(8.45)

The pre-factor is bounded byCr−2, so we need to show the sum of two terms is bounded byCΓr2. The first
of these terms, using an add-subtract trick, is bounded by

C
(
|(q(s)− q(s′)) · (q̇(s)− ˙̃q(s))|+ |((q(s)− q(s′))− (q̃(s)− q̃(s′))) · ˙̃q(s)|

)
.

By (8.43) and rearrangement, this is bounded by

Cr|q̇(s)− ˙̃q(s)|+ |(q(s)− q̃(s)) + (q(s′)− q̃(s′))|.

Switching from q to β±, then applying (8.36), yields an upper bound of

CrΓs+
1

2
Γ(s2 + (s′)2),

which is at mostCΓr2, as s ≤ |s− s′| ≤ Cr. Now the second of the two terms in (8.45) is bounded by

C

∣∣∣∣1− |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2

∣∣∣∣ · |q̃(s)− q̃(s′)|.

By (8.44), for sufficiently small Γ, the first factor is bounded by CΓr. By (8.44) and (8.43), the second term
is bounded by Cr. Putting these together gives what we want and proves (8.39). Since our geometric setup is
symmetric with respect to interchange of s and s′, we also get (8.38).

For the second derivative of the single layer potential, as with the diagonal case, we consider the differences
between the tilde and non-tilde versions of the first and second terms of (8.10) separately. The first two terms
have difference which is bounded by

Cr−2

(∣∣∣q̇(s) · q̇(s′)− ˙̃q(s) · ˙̃q(s′)
∣∣∣+ ∣∣∣∣(1− |q(s)− q(s′)|2

|q̃(s)− q̃(s′)|2

)
˙̃q(s) · ˙̃q(s′)

∣∣∣∣) .
The right-most portion of this is bounded by CΓr, so with the pre-factor, that gives CΓr−1 as desired. The
left-most term is bounded, using an add-subtract trick, by

|q̇(s) · (q̇(s′)− ˙̃q(s′))|+ |(q̇(s)− ˙̃q(s)) · ˙̃q(s′)| = |β̇−(s′)−
˙̃
β−(s

′)|+ |β̇+(s)−
˙̃
β+(s)|,

and by (8.36) this is bounded byCΓ(s− s′) ≤ CΓr. So the first terms of (8.10) differ byCΓr−1. As for the
second terms of (8.10), the same trick as on the diagonal yields a bound of (8.30), and by (8.39) and (8.38) this
is bounded by

CΓ(|∂sKSL(s, s
′)|+ |∂s′KS̃L

(s, s′)|).

But each of the terms in brackets, by (8.8) and (8.9), is bounded by C|q(s) − q(s′)|−1, which by (8.43) is
bounded byCr−1, yielding an overall bound ofCΓr−1. This proves (8.40).

For the double layer potential, the kernelK
DL−D̃L

(s, s′) is (8.45) but with all q̇(s) replaced byn(s), same
for the tildes. Most of the analysis is identical, except that now we need to replace the bound |q̇(s)− ˙̃q(s)| ≤
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Cσswith the same bound for |n(s)− ñ(s)|. But this is just a 90-degree rotation, which leaves the magnitude
unchanged, so the same bound applies, proving (8.41).

Finally we need to analyse ∂sKDL(s, s
′) and do so by dealing with the first and second terms of (8.12)

separately. For the first terms, the proof is precisely analogous to the proof of (8.40), with the same replacement
of q̇(s) by n(s), and the rotation trick we just used in the previous paragraph. For the second terms, observe
that the second term of (8.12) is precisely −2(∂sKSL)KDL. By the same trick as usual, the difference of terms
is bounded by

|∂sKSL(s, s
′)K

DL−D̃L
(s, s′)|+ |∂sKSL−S̃L

(s, s′)K
D̃L

(s, s′)|.

Using (8.39) and (8.41), this is bounded by

CΓ(|∂sKSL(s, s
′)|+ |K

D̃L
(s, s′)|).

By direct calculation, the first term is bounded by |q(s)− q(s′)|−1, and the second by the same with tildes. By
(8.43) and (8.44) both of these are bounded byCr−1, yielding (8.42). This completes the proof of Proposition
8.19, and with it all the results in this section.
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9. Further examples and numerics

9.1. General setup and benchmarking. The examples in this Section extend those in subsection 1.4. In most
cases, the Steklov eigenvalues are computed using the Finite Element package FreeFEM (earlier versions known
as FreeFem++), see [Hec12] and short notes [Lev19]. In most cases, we choose a uniform mesh with 300 mesh
points per unit length on the boundary. Roots of trigonometric polynomials are found using Mathematica
operating with double precision.

In order to benchmark the performance of the finite element solver, we compare the numerically computed
Steklov eigenvalues λnum of the unit square P4

(
π
2 , 1
)

with the exact eigenvalues [GiPo17, section 3.1]

λ ∈ {0, 2} ∪ {2t tanh t | tan t = − tanh t or tan t = coth t, t > 0}
∪ {2t coth t | tan t = tanh t or tan t = − coth t, t > 0} .

,

We also compare the numerically computed Steklov eigenvalues and the exact eigenvaluesσ2m = σ2m+1 = m
for the unit disk D1. Figure 18 shows the relative numerical error

εnumm :=

∣∣∣∣λnumm

λm
− 1

∣∣∣∣
for the square and the disk, and also the relative asymptotic error

εasym :=

∣∣∣∣σmλm − 1

∣∣∣∣
for the disk.

Figure 18: Relative FEM errors for the disk and the square, and asymptotics error for the square

One can see that with the chosen mesh size, the relative error εnumm does not exceed approximately 10−6

for the eigenvalues λm, m = 2, . . . , 100. Although it is well known that adaptive FEM are better suited for
Steklov eigenvalue problems, see e.g. [GaMo11], they are processor-time costly and harder to implement. As
we conduct the numerical experiments purely for illustrative purposes in order to demonstrate the practical
effectiveness of the asymptotics, the use of uniform meshes already gives very good results as shown above.
For an alternative method of calculating Steklov or mixed Steklov-Dirichlet-Neumann eigenvalues, see, e.g.,
[ABIN20, AIN20].
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As in the examples which follow the exact eigenvalues are not known, we redefine from now on the relative
asymptotic error as

εasym :=

∣∣∣∣ σmλnumm

− 1

∣∣∣∣
and use these quantities for all illustrations.

9.2. Example 1.10 revisited. Before proceeding to concrete examples, we fist demonstrate formulae (1.5)
when all angles are special. Recalling Definition 2.3, formula (2.7) and Remark 2.1(c), we get in this case

T(α, ℓ, σ) =
n∏

j=1

O(αj)

(
ei|∂P|σ 0

0 e−i|∂P|σ

)
,

and so

Tr T = 2 cos (|∂P|σ)
n∏

j=1

O(αj) = 2

with σ ≥ 0 if and only if (1.5) holds. The statement on multiplicities, as well as the statement in case (b) of
Example 1.10 when some exceptional angles are present, are easily checked.

Switching to particular examples, we consider, in addition to right-angled triangles T1 and T2, a family
of curvilinear triangles T (α) constructed according to Figure 19. For each α ∈

(
0, π3

)
, the vertices of T (α)

coincide with the vertices of an equilateral triangle of side one, two sides are straight, and the third (curved)
side is given by the equation shown in Figure 19. Thus T (α) = P

((
π
3 ,

π
3 , α

)
, (1, 1, ℓα)

)
, where the length

ℓα of the curved side has to be found numerically. We consider further two particular cases T3 = T
(
π
5

)
(two

angles are odd special and one is even special) and T4 = T
(
π
7

)
(all three angles are odd special), for which

ℓπ
5
≈ 1.0130 and ℓπ

7
≈ 1.0296, respectively.

Figure 19: Family T (α) of curvilinear triangles

The asymptotic accuracy for T1, T2, T3, and T4 is plotted in Figure 20.
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Figure 20: Asymptotic accuracy for T1, T2, T3, and T4

9.3. Example 1.12 revisited. We start with the proof of Proposition 1.13. For a quasi-regular n-gon Pn(α, ℓ)
with a non-exceptional angle α, we have, by (2.7),

T(α, ℓ, σ) = C(α, ℓ, σ)n,

where C is given by (2.6). Thus T will have an eigenvalue one if and only if C(α, ℓ, σ) has an eigenvalue c equal
to one of the complex n-roots of one, e2iq/n, q ∈ Z. As det C = 1, the other eigenvalue of C is 1

c , therefore to
cover all the distinct cases we need to take q = 0, . . . ,

[
n
2

]
; moreover, the condition can be then equivalently

re-written as
Tr C(α, ℓ, σ) = 2 cosec

(
π2

2α

)
cos(ℓσ) = c+ 1/c = 2 cos

(
2q

n

)
. (9.1)

Solving (9.1) for non-negative σ gives the expressions for quasi-eigenvalues in the statement of Proposition 1.13.
To prove the statement on multiplicities, we remark that if c ̸= ±1, the matrix C(α, ℓ, σ) has two linearly

independent eigenvectors, and so does T(α, ℓ, σ). The rest of the statement follows from the careful analysis
of the dimension of the eigenspace of C(α, ℓ, σ) coresponding to eigenvalues c = ±1 when σ is a root of (9.1).

As an illustration, we present numerical data for the equilateral triangle P3 = P3

(
π
3 , 1
)

, the regular pen-
tagon P5 = P5

(
3π
5 , 1

)
, the regular hexagon P6 = P6

(
2π
3 , 1

)
, and a Reuleaux triangle R = P3

(
2π
3 ,

π
3

)
(whose boundary is the union of three arcs constructed on the sides of an equilateral triangle of side one as
chords, with centres at the opposite vertices), see Figure 21.

Additionally, we consider a family of (non-symmetric) one-angled droplets Dα = P1(α, ℓα) shown in
Figure 22; the perimeter ℓα needs to be calculated numerically. The quasi-eigenvalues σ are listed in Example
1.12(a1).

Asymptotic accuracy for a selection of droplets is shown in Figure 23.
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Figure 21: Asymptotic accuracy for P3, P5, P6, and R

Figure 22: A family of one-gons (droplets) Dα

9.4. Discussion, and going beyond the theorems. When analysing the numerical data presented in Figures
20, 21, and 23, one should exercise caution in interpreting the results. For example, the asymptotic accuracy
curves for T1 and T2 in Figure 20, and forP3 in Figure 21, sharply bend upwards aroundm ≈ 20. This means
that for higher eigenvalues the errors of numerical computations exceed asymptotic errors (with the asymptotics
in these cases converging rather rapidly), and the results become unreliable.

We make the following empirical observations on the speed of convergence of quasi-eigenvalues σm to the
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Figure 23: Asymptotic accuracy for droplets Dα, α ∈
{
π
5 ,

π
3 ,

3π
7 ,

5π
8

}

actual eigenvalues λm asm→ ∞ based on numerical results:

• convergence is more rapid for straight polygons compared to (partially) curvilinear polygons, for which
it is in turn faster than for fully curvilinear polygons;

• the rate of convergence becomes somewhat slower as the number of vertices increases.

Remark 9.1. In view of the results of [Dav74, Urs74] for the sloshing problem, one could suggest that the
curvature at the corner points may contribute to lower order terms in the spectral asymptotics. In particular,
for fully curvilinear polygons, it is likely that λm − σm = O

(
1
m

)
, and that this estimate cannot be improved

in general. At the same time, one can show using the methods of Section 4 and [LPPS21, Section 3], that for the
triangles T1, T2 and P3 with all angles being special or exceptional, the error term in the spectral asymptotics
decays superpolynomially (and, in fact, similar behaviour is expected for any partially curvilinear polygon with
all the angles which are either special or exceptional). ◀

We also emphasise that all our theoretical results are only applicable to curvilinear polygons with angles less
than π, see Remark 3.4. Consider, however, the family of sectors

Sα = {z = ρeiθ, 0 < r < 1, 0 < θ < α} = P
((
α,
π

2
,
π

2

)
, (1, 1, α)

)
.

For α < π, Theorem 2.17(b) is applicable, giving three series of simple quasi-eigenvalues

σ =



π

α

(
m− 1

2

)
,

1

2
arccos

(
cos

(
π2

2α

))
+ 2π(m− 1),

− 1

2
arccos

(
cos

(
π2

2α

))
+ 2πm,

m ∈ N. (9.2)

Numerical experiments indicate, however, that formulae (9.2) give good approximations of eigenvalues
even when α > π, see Figure 24. Together with further numerical experiments (we omit the details) this gives
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Figure 24: Asymptotic accuracy for sectors Sα, α ∈
{
3π
4 , π,

3π
2 ,

11π
6

}

a good indication that Theorem 2.17 may be applicable (possibly with worsened remainder estimates) to all
curvilinear polygons with angles less than 2π.

Finally, we note that it is straightforward to extend our results to not necessarily simply connected domains
Ω for which all boundary components are either smooth curves or curvilinear polygons with interior (with
respect to Ω) angles less than π: the set of quasi-eigenvalues for such a domain is just a union of the sets of
quasi-eigenvalues generated by individual boundary components taken with multiplicities, cf. [GPPS14].
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