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Abstract. We study average growth of the spectral function of the Lapla-
cian on a Riemannian manifold. Two types of averaging are considered: with
respect to the spectral parameter and with respect to a point on a manifold.
We obtain as well related estimates of the growth of the pointwise �-function
along vertical lines in the complex plane. Some examples and open problems
regarding almost periodic properties of the spectral function are also discussed.

1. Introduction

1.1. Notation. Throughout the paper, we use the following notation.

� C denotes various positive constants whose precise values are not impor-
tant for our purposes; dependence on various parameters is indicated by
lower indices.

� dx;y is the Riemannian distance between x and y.
� R+ := (0;+1).
� t; s; �; �; � 2 R and � 2 Rd.
� �+ := maxf�; 0g, d�e = minfn 2 Zj� 6 ng is the ceiling function and
b�c = maxfn 2 Zj� > ng is the 
oor function.

� f̂(�) = R f(x)e�ix� dx is the Fourier transform of f and (f)_ is the inverse

Fourier transform, so that (f̂)_ = f .
� � denotes the convolution on R.
� � is the gamma-function and

�
m
k

�
are the binomial coe�cients.

� J� is the Bessel function of the �rst kind of order �.

Let f and g be real-valued functions on R+, and let g > 0. We write

� f(�) = O(�p) if lim sup�!+1 ��p f(�) <1;
� f(�) = o(�p) if lim�!+1 ��p f(�) = 0;
� f(�) = O(��1) if �mf(�)! 0 as �! +1 for all m 2 R+ ;

� f(�) 6= o(g(�)) if there exists a sequence �n ! +1 such that jf(�n)j
g(�n)

>

C > 0 for all n;
� f(�)� g(�) if there exists �0 such that f(�) > C g(�) for all � > �0.
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1.2. Spectral function. Let M be a compact Riemannian n-dimensional man-
ifold and � be the Laplacian on M with the eigenvalues 0 = �0 < �21 6 �22 6
: : : �2j 6 : : : and the corresponding orthonormal basis of eigenfunctions f�j(x)g.
Let Nx;y(�) be the spectral function,

(1.2.1) Nx;y(�) :=
X

0<�j<�

�j(x)�j(y) ;

The spectral function Nx;y(�) is the integral kernel of the spectral projection of

the operator
p
� , corresponding to the interval (0; �) . This way the spectral

function could be de�ned in the non-compact case as well, see Example 1.3.1.
By the Weyl formulae,

(1.2.2) Nx;x(�) =
�n

(4�)
n
2�(n

2
+ 1)

+ O(�n�1)

and

(1.2.3) Nx;y(�) = O(�n�1)

for all x 6= y 2 M (see [Av, Le, Ho1]. The estimates (1.2.2) and (1.2.3) are
sharp and attained on a round sphere. However, the bounds can be improved to
o(�n�1) instead of O(�n�1), provided that the set of geodesic loops originating at
x and the set of geodesics joining x and y are of measure zero (see [S1] or [SV]).
The following condition is used to prove the lower bounds on the spectral

function (see subsection 5.1).

Condition 1.2.4. The points x and y are not conjugate along any shortest
geodesic segment joining them.

It follows immediately from [Mil, Corollary 18.2] that for each x 2 M , Con-
dition 1.2.4 is true for almost all y 2 M . As was shown in [JP, Theorem 1.1.3]
that Condition 1.2.4 implies

(1.2.5) Nx;y(�) 6= o
�
�
n�1
2

�
:

1.3. Discussion. Let �x;y(t) be de�ned by (�x;y(t))
_ =

P
j �j(x)�j(y) �(���j) :

By the spectral theorem, �x;y(t) coincides with the distributional kernel of the

operator exp(�itp�) or, in other words, with the fundamental solution of the
corresponding hyperbolic equation. Proofs of (1.2.2){(1.2.5) are based on the
study of singularities of the distribution �x;y(t), which is usually done by means
of Fourier integral operators (see, for example, [DG] or [SV]). It is well known that
these singularities lie in the set Lx;y of lengths of all geodesic segments x; y 2M .
In particular, �x;y(t) with y 6= x is in�nitely smooth in a neighbourhood of the
origin, whereas �x;x(t) has a strong singularity at t = 0 related to the main term
in the Weyl formula (1.2.2). If Condition 1.2.4 is ful�lled then the singularity at
t = dx;y can be explicitly described, which leads to the lower bound (1.2.5).
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The purpose of this paper is to study the average growth of Nx;y(�), where
averaging is considered either with respect to the spectral parameter � or with
respect to a point y. The following examples indicate that, while both estimates
(1.2.3) and (1.2.5) are sharp, the typical order of growth of the spectral function

is more likely to be �
n�1
2 rather than �n�1.

Example 1.3.1. (cf. [Pe, Example 4.1]) For the Laplacian in Rn the spectral
function is given by

Nx;y(�) =
1

(2�)n

Z
j�j6�

eihx�y;�i d� =
�n

(2�)n
�̂Bn(� (x� y))

where �Bn is the characteristic function of the unit ball. Taking into account
[Pe, formula (4.4)] and [GR, formula 3.771(8)], one gets Nx;y(�) = N (�; dx;y)
where

(1.3.2) N (�; dx;y) := (2�)�
n
2 d

�n
2

x;y �
n
2 Jn

2
(dx;y �)

and dx;y = jx� yj . Using [GR, formula 8.451(1)] we obtain for all x 6= y:

(1.3.3) N (�; dx;y) =
2�

n�1
2

(2�dx;y)
n+1
2

sin

�
� dx;y � (n� 1)�

4

�
+O

 
� (n�3)=2

d
(n+3)=2
x;y

!
:

Example 1.3.4. Let Sn be a round sphere of dimension n > 2. Given x 2 Sn,
denote by �x the diametrically opposite point. Then Nx;y(�) = O

�
�
n�1
2

�
for all

y 6= �x and Nx;�x(�) 6= o(�n�1).

1.4. Plan of the paper. The paper is organized as follows. In the next section
we present our main results. In Section 3 we discuss some examples and open
problems regarding almost periodic properties of the spectral function. In Section
4 we give proofs of the upper bounds formulated in the subsections 2.1{2.4.
Proofs of the lower bounds stated in the subsection 2.5 are given in Section 5.
All examples are justi�ed in Section 6. Finally, in Section 7 we establish the
estimates on the �-function presented in the subsection 2.6.

2. Main results

2.1. Average over the manifold. The principal object of study in the present
paper is the rescaled spectral function

(2.1.1) ~Nx;y(�) := �
1�n
2 Nx;y(�)

on a compact n-dimensional Riemannian manifold M . Note that, by (1.3.3), in

the Euclidean case the rescaled spectral function ~N (�; dx;y) := �
1�n
2 N (�; dx;y)

is bounded for each �xed x 6= y . Our main result is
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Theorem 2.1.2. For any compact n-dimensional Riemannian manifold M there

exists a constant CM such that

(2.1.3)

Z
M

��� ~Nx;y(�)� ~N (�; dx;y)
���2 dy 6 CM ; 8x 2M ; 8� 2 R+ ;

where dx;y is the Riemannian distance between x; y 2M .

Remark 2.1.4. Note that ~Nx;x(�) � �
n+1
2 . We subtract the term ~N (�; dx;y) in

(2.1.3) in order to \regularize" the rescaled spectral function in a neighbourhood
of the diagonal. Geometrically this can be interpreted as follows. Consider a
normal coordinate system centred at x. In these coordinates the Riemannian
metric is Euclidean at the point x, and hence near x the geometric Laplacian
� can be viewed as a perturbation of the Euclidean Laplacian (a similar idea
was used in [Pol, Section 3] and goes back to [AK, Theorem 6.1]). We justify
the regularization using the Hadamard parametrix for the wave kernel, see the
subsection 4.3.

2.2. Spectral average. Theorem 2.1.2 implies a number of results. The �rst
one describes the growth of the spectral function on average with respect to �.

Theorem 2.2.1. For every �nite measure � on R+ and each �xed x 2M , there

exists a subset Mx;� �M of full measure such that

(2.2.2)

Z 1

0

j ~Nx;y(�)j2 d�(�) < 1 ; 8y 2Mx;� :

It should be emphasized that, generally speaking, the set Mx;� depends on the

choice of � . Otherwise (2.2.2) would mean that ~Nx;y(�) is bounded for almost
all y 2M , which is not always the case (see the next subsection).
In particular, taking d� = (�+1)�1 (ln�)�1�" d� and applying Theorem 2.2.1,

we see that

(2.2.3)

Z 1

0

��1 (ln�)�1�" j ~Nx;y(�)j2 d� < 1

for all " > 0, all x 2M and almost all y 2M .

Remark 2.2.4. This paper was inspired by [Ran], where the estimate (2.2.2) was
proved for surfaces of constant negative curvature under the assumption that
d�(�) = (�+1)�1�" d� with some " > 0. Randol's proof is based on the estimate
(2.6.4) for the pointwise �-function of the Laplacian and uses some results of
complex analysis obtained in [HIP]. We use a more direct approach that is
applicable in higher generality and gives better estimates. It also allows us to
improve the bounds for the �-function. Even though these estimates are not
needed in our proof, they seem to be of independent interest. We have included
them in Section 2.6, where we also explain the relation between Theorem 2.2.1
and properties of the �-function.
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2.3. Growth of the rescaled spectral function. Theorem 2.2.1 and Exam-
ple 1.3.4 suggest that ~Nx;y(�) = O(1) for almost all x; y 2 M on any manifold
M . However, this is not true. In particular, for any negatively curved manifold
M there exists a constant �M > 0 depending on certain dynamical properties of
the geodesic 
ow, such that ~Nx;y(�) 6= o ((ln�)�M ) for all x; y 2M (see [JP]). At
the same time, for �xed x and y on a negatively curved manifold, the sequence
of �-s yielding the logarithmic growth of the rescaled spectral function is very
scarce. This sequence is quite sensitive to the choice of the points x and y. In
particular, for �xed x and �, the set of points y, for which the function ~Nx;y(�)
has a logarithmic \peak", is expected to be very small.
The theorem below shows that a similar e�ect takes place on any manifold,

not necessarily negatively curved.

Theorem 2.3.1. There exists a constant C0 not depending onM , and a constant

CM depending on the geometry of M , such that for any C > C0, the measure of

the set

(2.3.2) 
x(�; �) := f y 2M : j ~Nx;y(�)j > C (�+ d
�n+1

2
x;y ) g

satis�es

meas(
x(�; �)) 6
CM

C2�2

for any point x 2M and any � 2 R+.

Corollary 2.3.3. Let f�kg and f�kg be positive increasing sequences converging

to +1. Then, for each �xed x 2M , the measure of the set of points y 2M such

that

(2.3.4) j ~Nx;y(�k)j � �k ; 8k = 1; 2; : : : ;

is equal to zero. Moreover, if
P

k �
�2
k <1 then

(2.3.5) lim sup
k!1

j��1k ~Nx;y(�k)j = 0

for almost all y 2M .

2.4. Weighted average over the manifold. Let us consider the average of the
rescaled spectral function over M with a weight given by a power of the distance
function dx;y.

Theorem 2.4.1. For all { > 0, x 2M and � 2 R+, we have

(2.4.2)

Z
M

d{x;y j ~Nx;y(�)j2 dy 6

(
C{;M (1 + �1�{); { 6= 1 ;

CM (1 + j ln�j) ; { = 1:

Note that
R
M
j ~Nx;y(�)j2 dy = �1�nNx;x(�) = C� + O(1) . Therefore the esti-

mate (2.4.2) with { = 0 is order sharp. We also remark that, as follows from the
proof of Theorem 2.4.1, the constant C{;M blows up as 1

j1�{j
when { ! 1.
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Corollary 2.4.3. Let u(x; y) be a function on M �M such that ju(x; y)j 6
C d{x;y with some nonnegative constants { and C, and let K� be the operator

de�ned by the integral kernel K�(x; y) := u(x; y) j ~Nx;y(�)j2 . Then K� maps

Lp(M) into Lp(M) and

kK�kLp!Lp 6

(
C{;M (1 + �1�{); { 6= 1 ;

CM (1 + j ln�j) ; { = 1:
8p 2 [1;1]:

In particular, Corollary 2.4.3 implies that the commutator of the operator given
by the integral kernel j ~Nx;y(�)j2 with the multiplication by a smooth function f
is bounded in Lp(M) and its norm is O (j ln�j) . Indeed, the integral kernel of this
commutator coincides with (f(x)� f(y)) j ~Nx;y(�)j2 , and jf(x)� f(y)j 6 C dx;y
with some C > 0.

2.5. Lower bounds. The following theorem shows that our upper estimates
cannot be signi�cantly improved.

Theorem 2.5.1. If Condition 1.2.4 is ful�lled then

(2.5.2) ��q�1
Z �

0

�q j ~Nx;y(�)jp d� � 1 ; 8q > 0 ; p > 1 :

In particular, ��1
R �
0
j ~Nx;y(�)j d�� 1 .

Corollary 2.5.3. Let Condition 1.2.4 be ful�lled, and let f be a positive function

on R+ . If there exists a constant q > 0 such that

(2.5.4) lim sup
�!+1

�
�q+1 inf

�6�

�
��qf(�)

��
> 0

then
R
f(�) j ~Nx;y(�)jp d� =1 for all p > 1. In particular, we have

(2.5.5)

Z 1

0

��1 j ~Nx;y(�)jp d� = 1 ; 8p > 1 ;

and

(2.5.6)
X
k

��1k

Z �k

�k�1

j ~Nx;y(�)jp d� = 1 ; 8p > 1 ;

for every increasing sequence �k ! +1.

As follows from (2.5.5) with p = 2, Theorem 2.2.1 fails for d�(�) = (�+1)�1d�
on any manifold M .

Remark 2.5.7. Theorem 2.5.1 improves upon [JP, Theorem 1.1.3]. It is quite
possible that Condition 1.2.4 in this theorem can be removed: our proof works
whenever �x;y(t) has a su�ciently strong singularity. It is hard to imagine the
situation where this does not happen; we are not aware of any counterexamples.
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2.6. The �-function. The function Zx;y of complex variable z = t+ is de�ned
by

(2.6.1) Zx;y(z) :=

Z 1

0

��z dNx;y(�) = z

Z 1

0

��z�1Nx;y(�) d�

is said to be the pointwise �-function of the Laplacian. It is the integral kernel
of the pseudodi�erential operator �� z

2 . It is well known that Zx;y(z) is an entire
function on C for all �xed x 6= y (see, for example, [Sh, Theorem 12.1]).

Remark 2.6.2. Further on we call Zx;y(z) simply the �-function. Note that Zx;y(z)
should not be confused with the function Z(z) = Tr�� z

2 that is usually referred
to as the �-function of the Laplacian.

The second equality in (2.6.1) implies that Zx;y(z) = z (MNx;y)(�z) where
M is the Mellin transform, (Mf)(z) :=

R1
0
�z�1 f(�) d� . Recall that, for each

t 2 R, the Mellin transform (Mf)(t + is) of a distribution f on R+ coincides
with the inverse Fourier transform of the distribution et�f(e�) on R modulo the
factor (2�)�1. The inversion formula reads

f(�) = (2�i)�1
Z t+i1

t�i1

��z(Mf)(z) dz ;

where the integral is understood in the sense of distributions.
Obviously, et�f(e�) 2 L2(R) if and only if �t�

1
2f(�) 2 L2(R+) . Therefore

(t + is)�1 Zx;y(t + is) 2 L2(R) if and only if ��t�
1
2Nx;y(�) 2 L2(R+) for each

�xed t, and

(2.6.3) Nx;y(�) = (2�i)�1
Z t+i1

t�i1

�z z�1Zx;y(z) dz

in the sense of distributions. In particular, if (t0+ is)
�1 Zx;y(t0+ is) 2 L2(R) for

some t0 2 R then (t+ is)�1 Zx;y(t+ is) 2 L2(R) for all t > t0 .
In [Ran], for a surface of constant negative curvature, it was shown that

(2.6.4) (t+ i �)�1Zx;y(t+ i �) 2 L2(R) ; 8t > n� 1

2
;

almost everywhere. By the above, this inclusion is equivalent to Theorem 2.2.1
with d� = (�+ 1)�1�" d� .
Let hsi := (1 + jsj2)1=2. In the last section we shall prove the following two

theorems.

Theorem 2.6.5. jZx;y(t+ is) j 6

8><
>:
Ct ; if n < t ;

Ct

�jsjn�t + d t�nx;y

�
; if n

2
6 t < n ;

Ct

�jsjn�t + d t�nx;y hsi
n
2
�t
�
; if t < n

2
:
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Theorem 2.6.6. For all x 2M and all " > 0 , we have

(2.6.7)

Z
M

jZx;y(t+ is)j2
d 2t�n�"
x;y + 1

dy 6 Ct;"

�hsin�2t + 1
�
; 8t 6= n

2
:

In view of Fubini's theorem, (2.6.7) immediately implies (2.6.4) for all x and
almost all y. However, even the improved estimate (2.6.7) does not seem to be
su�cient to obtain our upper bounds for the spectral function.

Remark 2.6.8. It is quite possible that Theorems 2.6.5 and 2.6.6 remain valid for
t = n and t = n

2
, but our proof does not work in these cases.

2.7. Possible generalizations. All the above results can easily be extended to
an elliptic self-adjoint pseudodi�erential operator A acting on a compact manifold
without boundary. For such an operator, one has to consider trajectories of the
Hamiltonian 
ow generated by its principal symbol instead of geodesics, and to
use Fourier integral operators or the global parametrix constructed in [SV] instead
of the Hadamard representation (4.3.1) for the study of singularities of �x;y(t) .
Note that some of our estimates do not require the spectrum to be discrete.

In particular, it may well be possible to extend the results that do not involve
integration over M to the case of noncompact manifolds. For instance, the func-
tions

R
�1(� � �) dNx;y(�) and

R j�1(� � �)j2 dNx;y(�) are the integral kernels
of the operators �1(� � A) and j�1(� � A)j2 , where A is the restriction ofp
� to the subspace spanned by the eigenfunctions �1; �2; : : :. Therefore the

key equality (4.2.1) is easily obtained by rewriting the obvious operator identity
(�1(�� A))� �1(�� A) = j�1(�� A)j2 in terms of integral kernels.
It would be also interesting to extend our results to an elliptic self-adjoint

di�erential operator on a manifold with boundary, subject to suitable boundary
conditions. In this case the role of geodesics is played by Hamiltonian billiards.
One has to consider interior points x and y and to make appropriate assumptions
to avoid problems with the so-called grazing and dead-end trajectories (see [SV]).

3. Almost periodic properties of the spectral function

3.1. Besicovitch almost periodic functions. Let p > 1 . Recall that, for a
measurable function f on R+, its Besicovitch seminorm jjf jjBp is de�ned by

(3.1.1) jjf jjBp := lim sup
T!1

�
1

T

Z T

0

jf(�)jp d�
�1=p

The space Bp of Besicovitch almost periodic functions is de�ned as the completion
of the linear space of all �nite trigonometric sums

PN
k=1 ake

i�kx with ak 2 C and
�k 2 R with respect to the Besicovitch seminorm. Clearly, Bp1 � Bp2 and
kfkBp2 6 kfkBp1 for all p1 > p2 .
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For each real-valued function f 2 Bp , there exists a sequence of real numbers
�k called the frequencies of f , such that

(3.1.2) lim
N!1

jjf �
NX
k=1

ak sin(�kx+ �k)jjBp = 0;

where the coe�cients ak 2 R and the phase shifts �k 2 R are some constants
(see, for example, [Bes]). If (3.1.2) holds, we shall write f �P ak sin(�kx+�k).
Theorem 2.2.1 motivates the following

Conjecture 3.1.3. On any compact Riemannian manifold M , k ~Nx;y(�)kB2 <1
for each �xed x 2M and almost all y 2M .

Conjecture 3.1.3 holds for round spheres and 
at 2-tori. In fact, in Examples
3.2.4 and 3.2.7 we prove more than �niteness of the Besicovitch seminorm: it
is shown that the rescaled spectral function on these manifolds is B2{almost
periodic for each �xed x and almost all y, which implies the �niteness of the
Besicovitch seminorm. In both cases, the set of frequencies coincides with the set
Lx;y of lengths of all geodesic segments joining x and y.

Remark 3.1.4. It was proved in [Bl1] and [KMS] that the rescaled error term
in Weyl's law has an almost periodic expansion in B2 on surfaces of revolution
and in B1 on Liouville tori. On Zoll manifolds, the rescaled Weyl remainder
(albeit with a di�erent order of rescaling) has an almost periodic expansion in
B2 [Sch]. The frequencies of these expansions are the lengths of closed geodesics.
The spectral function, similarly to the Weyl remainder, has oscillatory behaviour,
and hence it is natural to study it in the context of almost periodic functions.
Moreover, as indicated by Theorem 2.2.1, the order of rescaling in this case could
be chosen universally for all manifolds of a given dimension. As was mentioned in
Section 1.3, the lengths of geodesic segments joining x and y are the singularities
of the distribution �x;y(t), and hence play the same role for the spectral function
as the lengths of closed geodesics for the Weyl remainder. The link between the
spectral function and the set of lengths Lx;y has a natural interpretation from
the viewpoint of the quantum{classical correspondence.

3.2. Spectral function on spheres and tori. Let us start with a toy example
| the spectral function on the unit circle S1:

(3.2.1) ~Nx;y(�) = Nx;y(�) =
1

�

X
16n<�

cos(n dx;y) = � 1

2�
+

1

2�

sin((d�e � 1
2
)dx;y)

sin(dx;y
2
)

Note that in dimension one no rescaling occurs, and the constant term (2�)�1

is subtracted, because the eigenfunction corresponding to the zero eigenvalue is
excluded in the de�nition (1.2.1). In higher dimensions the contribution of the
constant term to ~Nx;y(�) is negligible in B

p due to the rescaling.
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Example 3.2.2. IfM is the unit circle then the spectral function Nx;y(�) is B
2{

almost periodic for all x 6= y with the set of frequencies Lx;y = fjdx;y+2�kj gk2Z ,
and

(3.2.3) Nx;y(�) � � 1

2�
+

+1X
�1

1

�jdx;y + 2�kj sin(�jdx;y + 2�kj):

The next two examples generalize Example 3.2.2 to round spheres and 
at two
dimensional tori.

Example 3.2.4. On a 
at square 2-torus T2 = R
2=(2�Z)2, the rescaled spectral

function is B2{almost periodic for all x 6= y and

(3.2.5) ~Nx;y(�) �
X
�2Z2

2 sin
�
� jx� y + 2��j � �

4

�
(2�)3=2 jx� y + 2��j3=2 :

Here j � j denotes the length of a vector in R2. A similar formula holds on 
at tori
corresponding to arbitrary lattices.

Remark 3.2.6. In dimensions n > 3 the situation is signi�cantly more compli-
cated. For example, following the argument of [Pet, Corollary 1.4] one could
show that jj ~Nx;y(�)jjB2 = 1 on a 
at n-torus Tn = R

n=(2�Z)n if the vector
��1(x � y) is rational. This happens due to unbounded multiplicities in the set
Lx;y. However, it does not contradict Conjecture 3.1.3 because for each �xed
x 2 Tn, the vector ��1(x� y) has rationally independent coordinates for almost
all y 2 Tn.

Recall that the Morse index of a geodesic segment joining x and y is the number
of points on the segment that are conjugate to x, counted with multiplicities (see
[Mil, Theorem 15.1]). Let H(x) be the \reversed" Heaviside function: H(x) = 0
if x > 0 and H(x) = 1 if x < 0.

Example 3.2.7. Let M be the unit round sphere Sn of dimension n > 2, and
let x 6= y 2 Sn be any two non-opposite points. Then ~Nx;y(�) 2 B2, and

(3.2.8) ~Nx;y(�) �
+1X

k=�1

2 sin
�
� jdx;y + 2�kj � (n�1+2!k)�

4

�
(2�)

n+1
2 (sin dx;y)

n�1
2 jdx;y + 2�kj

where !k = (n� 1) (2 jkj �H(k)) is the Morse index of the geodesic segment of
length jdx;y + 2�kj .
Note that, unlike (3.2.5), the phase shifts in the expansion (3.2.8) depend on

the number of conjugate points on the geodesic segments.
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3.3. An open problem. In this section we describe a possible route for gener-
alizing Examples 3.2.4 and 3.2.7. Let M be an arbitrary compact n-dimensional
Riemannian manifold. Let �x;y be the set of all geodesic segments joining x and
y. For every 
 2 �x;y, let l(
) be its length and !(
) be its Morse index. As be-
fore, set Lx;y = fl(
)j 
 2 �x;yg. Along each geodesic segment 
 2 �x;y, consider
the matrix Jacobi equation A00 + RA = 0, where the coe�cient R is de�ned in
terms of the Riemann curvature tensor and the parallel transport along 
 (see
[Ch1, p. 104]). We assume that 
 is naturally parametrized, and A satis�es the
initial conditions A(0; �
) = 0, A0(0; �
) = 1, where �
 is the unit tangent vector
to 
 at the point x. Set a(
) = j detA(l(
); �
)j. For example, a(
) = l(
)n�1 on
a 
at square n-torus and a(
) = j sin l(
)jn�1 on a round n-sphere. In dimension
two, a(
) = jJ(l(
))j, where J(t) is the orthogonal Jacobi �eld along 
 with the
initial conditions J(0) = 0 and J 0(0) = 1.

Problem 3.3.1. Let M be a compact n-dimensional Riemannian manifold. Is

it true that for all x 2 M and almost all y 2 M the rescaled spectral function
~Nx;y(�) has an almost periodic expansion

(3.3.2) ~Nx;y(�) � 2

(2�)
n+1
2

X

2�x;y

sin(�l(
)� (n�1)�
4

� !(
)�
2
)

l(
)
p
a(
)

in Bp for some p > 1?

Let us show that the expansion (3.3.2) is well-de�ned if the points x; y 2 M
are not conjugate along any geodesic joining them (by [Mil, Corollary 18.2], this
condition is satis�ed for any �xed x 2 M and almost all y 2 M). Indeed, if
the points x; y are not conjugate along any geodesic, a(
) 6= 0 for any 
, the set
of lengths Lx;y is discrete, and each element has �nite multiplicity, i.e. appears
in Lx;y at most a �nite number of times [Mil, Theorem 16.3]. This implies, in
particular, that the set Lx;y is in�nite, because for any two points on a compact
manifold there exists an in�nite number of geodesic segments joining them [Ser].
If M has no conjugate points, it is easy to check that (3.3.2) agrees with [JP,
formula (5.1.3)].

Remark 3.3.3. If (3.3.2) does hold for some p > 1 on a given manifold, it would
be interesting to determine the maximal possible value of p . For instance, it
is quite likely that for round spheres one can take any p > 1. Note that if the
almost periodic expansion is valid for some p > 1, then the Fourier coe�cients
of (3.3.2) lie in lq for q = max(2; p

p�1
) ([ABI, section 4]). This can be viewed as

a dynamical condition on the manifold (see [Pat, Section 3.1] for some related
results), and it is not clear whether it always holds. At the same time, even for
p = 1, a positive answer to Problem 3.3.1 provides a lot of useful information
about the spectral function; in particular, it implies that the rescaled spectral
function has a limit distribution (see [KMS, Appendix II]). Understanding the
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properties of this distribution on a given manifold is a problem of independent
interest.

4. Proofs of the upper bounds

4.1. Auxiliary functions. Let us �x a real-valued even rapidly decreasing func-
tion � 2 C1(R) satisfying the following condition.

Condition 4.1.1. �̂ 2 C1
0 (R) , �̂ � 1 in a neighbourhood of the origin and

supp �̂ � (��; �) for some � > 0 .

Condition 4.1.1 implies that
R1
0
�(�) d� = 1

2
and

R1
0
� k �(�) d� = 0 for all

k = 1; 2; : : : Let �1(�) := sign �
R1
j� j
�(�) d� if � 6= 0 , and �1(0) := �1

2
. The

function �1 is rapidly decreasing, odd and in�nitely di�erentiable outside the
origin � = 0, so that d

d�
�1(�) = ��(�) for all � 6= 0 . It has a jump at the origin;

in view of Condition 4.1.1, �1(0) = �1(�0) = ��1(+0) = �1
2
.

Let

(4.1.2) Nx;y;0 := � �Nx;y ; Nx;y;1 := Nx;y � Nx;y;0 :

The following elementary lemma is a slight variation of [S2, Lemma 1.2].

Lemma 4.1.3. Nx;y;1(�) =
R
�1(�� �) dNx;y(�) for all � 2 R.

Proof. If � is not an eigenvalue then, integrating by parts, we immediately obtainZ
�1(�� �) dNx;y(�) =

Z �

�1

�1(�� �) dNx;y(�) +

Z 1

�

�1(�� �) dNx;y(�)

= (�1(+0)� �1(�0))Nx;y(�)�
Z
�(�� �)Nx;y(�) d� ;

where the right hand side coincides with Nx;y;1(�). If � = �j then the same
equality holds for the function

N (j)
x;y(�) := Nx;y(�)� (Nx;y(�j + 0)�Nx;y(�j � 0)) �j(�) ;

where �j(�) is the characteristic function of the interval (�j;1) . SinceZ
�1(�j � �) d�j(�) = �1(0) = �1(�0) = �

Z 1

0

�(�) d�

= �
Z
�(�j � �)�j(�) d� = �(�j)�

Z
�(�j � �)�j(�) d� ;

the lemma remains valid when � is an eigenvalue.

Remark 4.1.4. The above lemma turns out to be very useful for obtaining esti-
mates of the spectral and counting functions. Usually, the singularities of �x;y(t)
for small values of t can be described explicitly. Then, taking the inverse Fourier
transform, one obtains full asymptotic expansion of Nx;y;0(�) . The asymptotic
behaviour of Nx;y;1(�) is determined by nonzero singularities of �x;y(t) , which are
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much more di�cult to study. According to Lemma 4.1.3, the function Nx;y;1(�)
can also be written as a convolution. The main technical problem is that the
function �1 has a jump, and therefore the straightforward integration by parts
does not yield any new results. However, as we shall see in the next subsection,
this jump disappears when we square Nx;y;1(�) and integrate over y . Note also
that j�1j is estimated by a smooth function whose Fourier transform has a com-
pact support. This observation allows one to simplify and re�ne the well known
Fourier Tauberian Theorems (see [S2]).

4.2. Upper bounds for Nx;y;1(�) . Since the eigenfunction �j are orthogonal
in L2(M), Lemma 4.1.3 implies that

(4.2.1)

Z
M

jNx;y;1(�)j2 dy =

Z
M

j
Z
�1(�� �) dNx;y(�)j2 dy

=

Z
M

ZZ
�1(���) �1(���) dNx;y(�) dNx;y(�) dy =

Z
j�1(���)j2 dNx;x(�)

(an operator interpretation of this equality has been given in the subsection 2.7).
The function j�1(�)j2 is continuous and in�nitely di�erentiable outside the origin.
Integrating by parts and changing variables in the right hand side, we obtainZ

M

jNx;y;1(�)j2 dy =
Z
j�1(�� �)j2 dNx;x(�) =

Z
~�1(�)Nx;x(�� �) d� ;

where ~�1(�) :=
d
d�
j�1(�)j2 is a rapidly decreasing odd function. Since ~�1 is odd,Z

~�1(�)Nx;x(�� �) d� =

Z 1

0

~�1(�) (Nx;x(�� �)�Nx;x(�+ �)) d� :

Substituting (1.2.2) in the right hand side and estimating

j(�� �)n � (�+ �)nj 6 C (j�j�n�1 + j�jn) ; j�� �jn�1 6 C (�n�1 + j�jn�1) ;
we see that

(4.2.2)

Z
M

jNx;y;1(�)j2 dy 6 C (�n�1 + 1) ; 8� > 0 ;

where the constant C depends only on the dimension, the remainder term in the
Weyl formula (1.2.2) and the auxiliary function �.

4.3. Upper bounds for Nx;y;0(�) . Since
d
d�
Nx;y;0(�) =

R
�(���) dNx;y(�) andZ

�(�� �) dNx;y(�) = � �N 0
x;y(�) = (�̂ �x;y)

_ (�) ;

Condition 4.1.1 implies that the asymptotic behaviour of Nx;y;0(�) for large �
is determined by the singularities of �x;y on supp �̂ . For second order di�er-
ential operators, it is slightly more convenient to deal with the cosine Fourier
transform ex;y(t) :=

R
cos(t�) dNx;y(�) . The distribution ex;y coincides with the
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fundamental solution of the wave equation. For all su�ciently small t, it admits
the following Hadamard representation

(4.3.1) ex;y(t) = jtj
1X
j=0

uj(x; y)
(t2 � d 2

x;y)
j�n+1

2
+

�(j � n+1
2

+ 1)
mod C1

where uj(x; y) are some smooth functions (see [Ba] or [Ber, Proposition 27]). Let
us assume that � in Condition 4.1.1 is small enough so that (4.3.1) holds on the
interval (��; �) (and, consequently, on supp �̂ ).
Denote 	x;y(�) := Nx;y(�) � Nx;y(��) . Changing variables and taking into

account that the function � is even, we see that

� �	x;y(�) = Nx;y;0(�)�Nx;y;0(��) :
Since Nx;y(�) = 0 for � < 0 and � is a rapidly decreasing function, Nx;y;0(��)
vanishes faster than any power of � as �! +1. Thus we have

(4.3.2) Nx;y;0(�) = � �	x;y(�) + o(��m) ; 8m 2 R+ :

Integrating by parts, we obtain

(4.3.3) ex;y(t) = t

Z
sin(t�)Nx;y(�) d� = �(2i)�1 t 	̂x;y(t) :

In view of (4.3.1) and (4.3.3),

(4.3.4) 	̂x;y(t) = �2i sign t
1X
j=0

uj(x; y)
(t2 � d 2

x;y)
j�n+1

2
+

�(j � n+1
2

+ 1)
mod C1

on supp �̂ . We have

(4.3.5)

Z
jtj>dx;y

eit� sign t
(t2 � d2x;y)

p� 1
2

�
�
p+ 1

2

� dt = 2i

Z 1

dx;y

sin(t�)
(t2 � d 2

x;y)
p� 1

2

�
�
p+ 1

2

� dt

= i
p
�

�
2 dx;y
�

�p

J�p(dx;y�) ;

(see, for example, [GR, formula 3.771(7)] or [GS, Chapter II, Section 2.5]). There-
fore, taking the inverse Fourier transform of each term in the right-hand side of
(4.3.4), we obtain an asymptotic series

(4.3.6)
1X
j=0

wj(x; y) d
j�n

2
x;y �

n
2
�j Jn

2
�j (dx;y �)

with some bounded functions wj(x; y). Let 	0;x;y(�) be an arbitrary function such

that 	0;x;y(�) �
P1

j=0wj(x; y) d
j�n

2
x;y �

n
2
�j Jn

2
�j (dx;y �) as � ! +1 uniformly

with respect to x; y 2M . By the above,

(4.3.7) � �	x;y(�)� � �	0;x;y(�) = O(��1) :
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Recall that the Bessel function Jp(�) is estimated by C � p in a neighbourhood

of the origin and does not exceed C ��
1
2 for large � (see [GR, 8.440 and 8.451(1)]).

Therefore

(4.3.8) jd�px;y �
1
2 Jp (dx;y �) j 6

(
C �p+

1
2 ; � 6 d�1x;y ;

C d
�p� 1

2
x;y ; � > d�1x;y ;

8p 2 R :

The inequalities (4.3.8) imply that the terms in the expansion (4.3.6) are bounded

by Cj d
j�n+1

2
x;y �

n�1
2

�j for � > d�1x;y and are estimated by Cj �
n�2j for � 2 ("; d�1x;y ) ,

where " is an arbitrary positive constant. Thus, if � > " then���wj(x; y) d
j�n

2
x;y �

n
2
�j Jn

2
�j (dx;y �)

��� 6 Cj

�
d
j�n+1

2
x;y + 1

�
�
n�1
2

�j

for all j = 0; 1; 2; : : : and, consequently,

(4.3.9)
���	0;x;y(�)� w0(x; y) d

�n
2

x;y �
n
2 Jn

2
(dx;y �)

��� 6 C
�
d

1�n
2

x;y + 1
�
�
n�3
2 :

By direct calculation, w0(x; y) = 2�
n
2 ��

1
2u0(x; y) . We have

u0(x; y) = �
1�n
2 (detfgjk(x; y)g)�1=4 ;

where fgjk(x; y)g is the metric tensor in geodesic normal coordinates with origin
x ([JP, formula (3.1.1)]), so that w0(x; y) = (2�)�

n
2 +O(d 2

x;y) (see [Ros, p. 101]).
From this estimate and (4.3.9) it follows thatZ

M

���	0;x;y(�)� (2�)�
n
2 d

�n
2

x;y �
n
2 Jn

2
(dx;y �)

���2 dy 6 C" �
n�3

Z
M

�
d 1�n
x;y + 1

�
dy

for all � > ", where " is an arbitrary positive number and C" is a constant
depending only on ", the auxiliary function � and the geometry of M . Finally,
since the function � is rapidly decreasing, the above inequality, (4.3.2) and (4.3.7)
imply that

(4.3.10)

Z
M

���Nx;y;0(�)� (2�)�
n
2 d

�n
2

x;y �
n
2 Jn

2
(dx;y �)

���2 dy
6 C" �

n�3

Z
M

�
d 1�n
x;y + 1

�
dy ; 8� > " > 0 ;

where C" is another constant depending only on ", � and the geometry of M .

Remark 4.3.11. The above proof is a slight modi�cation of arguments in [Ba].

4.4. Proof of Theorem 2.1.2. The theorem follows from (4.3.10), (4.2.2) and
(1.3.2).
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4.5. Proof of Theorem 2.3.1. By (4.3.8), there exists a constant C1 such that���d�n
2

x;y �
1
2 Jn

2
(dx;y �)

��� 6 C1 d
�n+1

2
x;y :

If C >
p
2C1 then the above inequality and (2.1.3) imply that

2CM > 2

Z

x(�;�)

��� ~Nx;y(�)� d
�n

2
x;y �

1
2 Jn

2
(dx;y �)

���2 dy
>

Z

x(�;�)

�
j ~Nx;y(�)j2 � 2C2

1 d
�n�1
x;y

�
dy

>

Z

x(�;�)

�
C2 �2 + (C2 � 2C2

1) d
�n�1
x;y

�
dy > C2 �2

Z

x(�;�)

dy :

4.6. Proof of Corollary 2.3.3. If y 6= x then the inequalities (2.3.4) imply
that y 2 Tk>N 
x(�k; (2C)

�1�k) for all su�ciently large N . By Theorem 2.3.1,
the measure of this intersection is zero.
If
P

k �
�2
k <1 then, according to Theorem 2.3.1, the sum of measures of the

sets 
x(�k; t�k) is �nite for all t > 0. By the Borel{Cantelli lemma, in this case
almost every point y 2 M belongs only to �nitely many sets 
x(�k; t�k) . This

implies that lim supk!1

�
��1k

~Nx;y(�k)
�
< t almost everywhere. Letting t! 0 ,

we obtain (2.3.5).

4.7. Proof of Theorem 2.4.1. Let dM := diamM . We haveZ
M

d{x;y

���d�n
2

x;y �
1
2 Jn

2
(dx;y �)

���2 dy 6 C �

Z
M

d{�nx;y J2
n
2
(dx;y �) dy

6 C �

Z dM

0

r {�1 J2
n
2
(r �) dr = C �1�{

Z � dM

0

r {�1 J2
n
2
(r) dr :

Even if spherical coordinates centred at x do not exist globally on M , it is still
possible to use the pull-back of the metric under the exponential map to change
the integration variable to r. Since the Bessel function Jn

2
is bounded by C r

n
2

in a neighbourhood of the origin and does not exceed C r�
1
2 for large r , the

right hand side is estimated by C �1�{
�
(n+ {)�1 +

R � dM
1

r {�2 dr
�
if � dM > 1.

Thus we obtainZ
M

d{x;y

���w0(x; y) d
�n

2
x;y �

1
2 Jn

2
(dx;y �)

���2 dy 6
(
C{ (�

1�{ + d{�1M ) ; { 6= 1 ;

C j ln�j ; { = 1 :

with C{ = Cj{� 1j�1. This estimate together with (2.1.3) (multiplied by d{M on
both sides) imply (2.4.2) by triangle inequality.
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4.8. Proof of Corollary 2.4.3. Let g{(�) := C{;M (1 + �1�{) if { 6= 1 and
g1(�) := CM(1 + j ln�j). By (2.4.2),

j
Z
M

K�(x; y)u(y) dy j 6 g{(�) kukL1

for all u 2 L1(M) andZ
M

����
Z
M

K�(x; y) v(y) dy

���� dx 6
Z
M

�Z
M

K�(x; y) dx

�
jv(y)j dy 6 g{(�) kvkL1

for all v 2 L1(M) . These estimates imply the required result for p =1 and p = 1
respectively. For other values of p the result follows from the Riesz interpolation
theorem (see [So, Theorem 0.1.13]).

4.9. Proof of Theorem 2.2.1. If { > 1 then, in view of (2.4.2),Z 1

0

Z
M

d{x;y j ~Nx;y(�)j2 dy d�(�) < 1 :

Therefore, by Fubini's theorem, the integral
R1
0
j ~Nx;y(�)j2 d�(�) is �nite for al-

most all y 2M .

5. Proofs of the lower bounds

5.1. Proof of Theorem 2.5.1. Let the points x; y 2M be not conjugate along
any shortest geodesic segment joining them. Then, as follows from [Mil, Theorem
16.2], the number of shortest geodesic segments joining x and y is �nite, and there
exists " > 0 such that (dx;y�"; dx;y+")\Lx;y = dx;y. Set  (�) = exp(i� dx;y) �(�),

where � satis�es Condition 4.1.1. Then  ̂(dx;y) = 1, and one could choose � in

such a way that supp  ̂ � (dx;y � "; dx;y + "). By [LSV, Theorem 4.2] (see also
[JP, Proposition 3.3.6]) we have:

(5.1.1)
�
 ̂ �x;y

�_
(�) =

Z
 (���) dNx;y(�) = C e�i (dx;y�+�) �

n�1
2 +O

�
�
n�3
2

�
;

where � is the phase shift depending only on dimension of M (note that the
Morse index of any shortest geodesic is zero). SinceZ
j 0(�� �)j jNx;y(�)j d� > j

Z
 0(�� �)Nx;y(�) d� j = j

Z
 (�� �) dNx;y(�)j ;

(5.1.1) implies thatZ
�q j 0(�� �)j jNx;y(�)j d� > C �

n�1
2

+q +O
�
�
n�3
2

+q
�
; 8q � 0 :

The rest of the proof is similar to that of [Sar, Lemma 5.1] Integrating the
above inequality and taking into account the estimate

(5.1.2)

Z �
2

0

�
n�1
2

+q d� � �
n+1
2

+q ;
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we obtain

(5.1.3)

Z
~ (�; �) jNx;y(�)j d� > C �

n+1
2

+q +O
�
�
n�1
2

+q
�
;

where ~ (�; �) :=
R �

2

0
�q j 0(� � �)jd� . Since  0 is a rapidly decreasing function,

we have

~ (�; �) 6 C

Z �
2

0

(� q + j�� � jq) j 0(�� �)jd� 6 C (� q + 1) ; 8� 2 R+ ;

and ~ (�; �) 6 Cj (� j�� � j)�j for all � > � and j = 1; 2; : : : These estimates
imply, respectively, that

(5.1.4)

Z �

0

~ (�; �) jNx;y(�)j d� 6 C

Z �

0

� q jNx;y(�)j d�
and

(5.1.5)

Z 1

�

~ (�; �) jNx;y(�)j d� 6 C

Z 1

�

~ (�; �) �n d� = O(1) :

Putting together (5.1.3){(5.1.5), we see that

��q�1
Z �

0

� q j ~Nx;y(�)j d� � ��
n+1
2

�q

Z �

0

� q jNx;y(�)j d� � 1 :

Now (2.5.2) with p > 1 follows from Jensen's inequality.

Remark 5.1.6. The inequality (5.1.1) holds for Nx;x(�) under the assumption that
x is not conjugate to itself along any shortest geodesic loop. Therefore, similar
lower bounds can be proved for the oscillatory error term Rosc

x (�) introduced in
[JP, section 1.2]. Note that in dimension two this term coincides with the usual
pointwise remainder in Weyl's law.

5.2. Proof of Corollary 2.5.3. Condition (2.5.4) implies that there is a se-
quence of points �k ! +1 and a positive constant C such that

�q+1k ��qf(�) > C ; 8� 6 �k :

Let �k(�) be the characteristic functions of the intervals (0; �k] , k = 1; 2; : : : By
the above, the functions gk(�) := ��q�1k �k(�)�

q (f(�))�1 are uniformly bounded
by a constant. Obviously, gk(�)! 0 as k !1 for each �xed �. If the integralR
f(�) jNx;y(�)jp d� were �nite then, by the Lebesgue dominated convergence

theorem, we would have

��q�1k

Z �k

0

�q jNx;y(�)jp d� =

Z
gk(�) f(�) jNx;y(�)jp d� ! 0 ; k !1 :

However, this contradicts to (2.5.2).
The estimates (2.5.5) and (2.5.6) are obtained by taking f(�) := ��1 and

f(�) := ��1k (�k(�)� �k�1(�)) respectively.
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6. Examples

6.1. Circle and 2-tori. In this subsection we justify Examples 3.2.2 and 3.2.4.
Let n = 1; 2 and let � be a lattice in Rn. Consider the 
at torus Tn = R

n=�. If
n = 1 one can assume that � = 2�Z, and thus T1 �= S

1. We have

Nx;y(�) =
1

Vol(�)

X
�2��

e2�ihx�y;�i �Bn(2��=�)

where �Bn is the characteristic function of the unit ball, Vol(�) is the volume of
the torus and �� = f� 2 Rn : (�; �) 2 Z ; 8� 2 �g is the dual lattice (see [Ch2,
p. 29]. We are slightly abusing notation here, since we added to the spectral
function the constant term corresponding to � = 0. Note that Nx;y = Nx�y;0 ,
hence we can assume without loss of generality that y = 0 .
Let w(�) 2 C1

0 (Rn) be a nonnegative function depending only on j�j, such
that

R
w(�) d� = 1 . Denote w"(�) := "�nw("�1�) for " > 0. By the Poisson

summation formula,

N
(")
x;0(�) :=

1

Vol(�)

X
�2��

e2�ihx;�i(w" � �Bn)(2��=�)

=
X
�2�

Z
Rn

e2�ihx+�;�i(w" � �Bn)(2��=�) d�

=
�n

(2�)n

X
�2�

ŵ("�(x+ �)) �̂Bn(�(x+ �)) :

In what follows we set " = (�T )�1. Applying the asymptotic formula (1.3.3) for
�̂Bn , one gets

�n

(2�)n
�̂Bn(�(x+�)) =

2�(n�1)=2 sin
�
� jx+ �j � (n�1)�

4

�
(2�)(n+1)=2 jx+ �j(n+1)=2 +O

�
�(n�3)=2

jx+ �j(n+3)=2
�
:

Using the formulae above, let us show that ~Nx;0(�) 2 B2 and

(6.1.1) ~Nx;0(�) �
X
�2�

2 sin
�
� jx+ �j � (n�1)�

4

�
(2�)(n+1)=2 jx+ �j(n+1)=2 :

The proof of (6.1.1) follows closely [Bl2, section 3] and is split into four lemmas.

Lemma 6.1.2.Z T

1

�����
X
�2��

e2�ihx;�i
�
�Bn(2��=�)� w(�T )�1 � �Bn(2��=�)

������
2
d�

�n�1
= O(1):
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Proof. Set

f�(�) = �Bn(2��=�)� w(�T )�1 � �Bn(2��=�) = ��Bn(2��)� wT�1 � ��Bn(2��);

where �Bn is a ball of radius �. Since by de�nition
R
wT�1(�)d� = 1 and

wT�1 2 C1
0 , it follows that f�(�) is supported on an interval of size O(T�1)

centred at � = 2�j�j. By a result of [Col], we have

#f� 2 ��; j�j < Rg =
CnR

n

Vol(�)
+O(Rn�2+ 2

n+1 ) ; 8n = 1; 2; : : :

Therefore, counting lattice points in an annulus of exterior radius j�j + O(T�1)
and interior radius j�j �O(T�1) we get

(6.1.3) #f� 2 ��; supp f�(�) \ supp f�(�) 6= ?g = O(T�1j�jn�1 + j�jn�2+ 2
n+1 ):

This gives us an estimate on the number of non-vanishing cross-terms in the ex-
pression under the integral in Lemma 6.1.2. Since all the terms in this expression
are bounded by a constant, taking into account (6.1.3) and the size of the support
of f�(�), we obtain

Z T

1

�����
X
�2��

e2�ihx;�i
�
�Bn(2��=�)� w(�T )�1 � �Bn(2��=�)

������
2
d�

�n�1

6 CT�1
X

2�j�j6T

(T�1 + j�j�3+2=(n+1)) = O(1) :

Note that it is essential for the �nal equality that n < 3.

Lemma 6.1.4. Z T

1

�����
X
�2�

jŵ(T�1 (x+ �))j
� jx+ �j(n+3)=2

�����
2

d� = O(1) :

Proof. Indeed,

Z T

1

�����
X
�2�

jŵ(T�1 (x+ �))j
� jx+ �j(n+3)=2

�����
2

d� 6

 X
�2�

jŵ(T�1(x+ �))j
jx+ �j(n+3)=2

!2

6

 X
�2�

1

jx+ �j(n+3)=2
!2

= O(1):

Here the �rst inequality holds since
R T
1
��2d� 6 1, the second inequality is true

because jŵ(x)j = j R e�ihx;�iw(�) d�j 6 R w(�) d� = 1 , and in the last step we use
that n < 3.

In the lemmas below all the summations are also taken over elements � 2 �.
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Lemma 6.1.5.

lim
Q!+1

lim
T!+1

1

T

Z T

1

������
X
j�j>Q

ŵ(T�1(x+ �))

jx+ �j(n+1)=2 sin

�
� jx+ �j � (n� 1)�

4

�������
2

d� = 0

The proof of this lemma is a modi�cation of the proof of [Bl2, Lemma 3.3].

Proof. One can check that����
Z T

1

sin

�
� jx+ �j � (n� 1)�

4

�
sin

�
� jx+ �j � (n� 1)�

4

�
d�

����
6 CminfT; jjx+ �j � jx+ �jj�1g :

Expanding the squared sum in the integral below and taking into account that
jŵ(x)j < C(1 + jxj)�2n as ŵ is rapidly decreasing, we obtain

(6.1.6)
1

T

Z T

1

������
X
j�j>Q

ŵ(T�1(x+ �))

jx+ �jn+1
2

sin

�
� jx+ �j � (n� 1)�

4

�������
2

d�

6 C
X
j�j>Q

T�1j�jn�1 + j�jn�2+ 2
n+1

j�j(n+1)(1 + T�1j�j)4n

+
C

T

X
j�j>Q

bj�j
1� 2

n+1 cX
k=dT�1j�j

1� 2
n+1 e

j�j1� 2
n+1

k

j�jn�2+ 2
n+1

j�j(n+1)(1 + T�1j�j)4n

+
C

T

+1X
k=1

1

k

X
j>Q

j
n�3
2 (j + k)

n�3
2

(1 + T�1j)2n(1 + T�1(j + k))2n
:

In the right hand side of (6.1.6), the �rst sum bounds the contribution of the
terms corresponding to pairs �; � such that jjx+�j� jx+�jj 6 T�1 . The second
sum estimates the contribution of the terms such that T�1 < jjx+�j�jx+�jj 6 1.

Here we consider each subinterval of length jx + �j�1+ 2
n+1 separately. The last

sum takes care of pairs �; � such that k < jjx+ �j � jx+ �jj 6 k+1, with k > 1.
For T > Q, the �rst sum in (6.1.6) is bounded by

X
j�j>Q

T�1j�jn�1 + j�jn�2+ 2
n+1

j�jn+1(1 + T�1j�j)4n 6

(
C (Q�1 + T�1Q�1) ; n = 1 ;

C (Q�1=3 + T�1j lnT � lnQj) ; n = 2 :

In order to estimate the second sum in (6.1.6), we �rst note that

bj�j
1� 2

n+1 cX
k=dT�1j�j

1� 2
n+1 e

j�j1� 2
n+1

k
< Cj�j1� 2

n+1 lnT:
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for all su�ciently large T . Estimating the sum over � by an integral we get

1

T

X
j�j>Q

bj�j
1� 2

n+1 cX
k=dT�1j�j

1� 2
n+1 e

j�j1� 2
n+1

k

j�jn�2+ 2
n+1

j�jn+1 (1 + T�1j�j)4n

<
C lnT

T

Z +1

Q

rn�3dr

(1 + T�1r)4n
6

(
CQ T

�1 lnT ; n = 1 ;

CQ T
�1 ln2 T ; n = 2 :

To �nd a bound for the third sum in (6.1.6), we use the inequality 2a
n�3
2 b

n�3
2 6

an�3 + bn�3 and once again estimate the sum by an integral,

X
j>Q

j
n�3
2 (j + k)

n�3
2

(1 + T�1j)2n(1 + T�1(j + k))2n

<
C

(1 + T�1k)2n

Z +1

Q

rn�3dr

(1 + T�1r)2n
+ C

Z +1

Q+k

rn�3dr

(1 + T�1r)2n
:

Hence we have

C

T

+1X
k=1

1

k

X
j>Q

j
n�3
2 (j + k)

n�3
2

(1 + T�1j)2n(1 + T�1(j + k))2n
6

(
CQ T

�1 lnT ; n = 1 ;

CQ T
�1 ln2 T ; n = 2 :

This completes the proof of the lemma.

Note that the proof of Lemma 6.1.5 uses the fact that the limit with respect
to T is taken �rst.

Lemma 6.1.7.

Z T

1

������
X
j�j6Q

1� ŵ(T�1(x+ �))

jx+ �j(n+1)=2 sin

�
� jx+ �j � (n� 1)�

4

�������
2

d� = o(T ) :

Proof. This estimate holds because the sum involves a �nite number of terms and
limT!+1 ŵ(T�1x) = 1 for all x.

By Lemma 6.1.2 we get

lim
T!+1

1

T

Z T

1

���Nx;0(�)�N
((�T )�1)
x;0 (�)

���2 d�

�n�1
= 0 :

Lemmas 6.1.4, 6.1.5 and 6.1.7 imply

lim
Q!+1

lim
T!+1

1

T

Z T

1

�������
1�n
2 N

((�T )�1)
x;0 (�)�

X
j�j6Q

2 sin
�
� jx+ �j � (n�1)�

4

�
(2�)(n+1)=2 jx+ �j(n+1)=2

������
2

d� = 0 ;
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so that

lim
Q!+1

lim
T!+1

1

T

Z T

1

������ ~Nx;0(�)�
X
j�j6Q

2 sin
�
� jx+ �j � (n�1)�

4

�
(2�)(n+1)=2 jx+ �j(n+1)=2

������
2

d� = 0 :

This implies (6.1.1) and therefore proves Examples 3.2.2 and 3.2.4.

Remark 6.1.8. As was indicated in Remark 3.2.6, this approach can not work for
n > 3. Indeed, in higher dimensions we can no longer bound the sums under the
integral in Lemmas 6.1.2, 6.1.4 and 6.1.5 by taking the absolute value of each
term. A more delicate analysis is required in this case (see [BB] for some related
results).
We also note that there is a simpler and more direct proof of Example 3.2.2

based on the identity [GR, formula 1.422(4)]

(6.1.9)
1

sin2( s
2
)
=

+1X
k=�1

4

(s+ 2�k)2
:

It works in dimension n = 1 only, and we leave the details to the interested
reader.

6.2. Spheres. In this subsection we are going to justify Examples 1.3.4 and 3.2.7.
The spectral function on Sn depends only on the distance or, equivalently, on the
angle s between the points x and y. For any x 2 Sn, the eigenfunctions orthogonal
to the Legendre polynomials Pm(n; t), with t = cos s and m > 0, vanish at x.
Hence, Pm(n; t) are the only eigenfunctions that matter to compute the spectral
function. They satisfy the di�erential equation

((1� t2)@2t � nt@t)Pm(n; t) = �m(m+ n� 1)Pm(n; t) ;

which is equivalent to the eigenvalue problem �f = m(m + n � 1)f on Sn with
f depending only on the parameter t 2 [�1; 1]. Note also thatZ 1

�1

P 2
m(n; t)(1� t2)

n�2
2 dt =

Dn

Dn�1

1

N(n;m)
; Pm(n; 1) = 1;

where

Dn =
2�

n+1
2

�(n+1
2
)

and N(n;m) =
(2m+ n� 1)�(m+ n� 1)

�(m+ 1)�(n)

(see [Mu, Lemma 10]). We assume that x and y are non-conjugate points, so
that 0 < s < �. The rescaled spectral function on Sn, for n > 2, is given by

~Ns(�) = �
1�n
2 Ns(�) = �

1�n
2

X
06m(m+n�1)6�2

N(n;m)Pm(n; cos s)

Dn
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Here we are abusing notation slightly, since according to (1.2.1) the inequalities
in the summation limits should be strict. However, because of the rescaling this
makes no di�erence in B2.
Consider the following generating function ([Mu], Lemma 17):

(6.2.1)
+1X
m=0

N(n;m)Pm(n; t)z
m =

1� z2

(1 + z2 � 2zt)
n+1
2

:

It is easy to see that
P+1

k=0 akz
k = f(z) implies

P+1
k=0

�Pk
j=0 aj

�
zk = f(z)

1�z
.

Therefore (6.2.1) implies

(6.2.2)
+1X
m=0

Ns(
p
m(m+ n� 1))zm =

1 + z

Dn(1 + z2 � 2zt)
n+1
2

:

Lemma 6.2.3. For m 2 N, the spectral function on Sn satis�es the following

asymptotic formula

Ns(
p
m(m+ n� 1))

=
2 cos( s

2
)m

n�1
2

(2� sin s)
n+1
2

cos

��n
2
+m

�
s� (n+ 1)

4
�

�
+O(m

n�3
2 ) ; m!1 :

Proof. Following the approach of [CoH, Chapter VII, Sections 6.6 and 6.7], we
prove Lemma 6.2.3 using the Darboux method applied to the generating function
(6.2.2). The Darboux method relies on the following fact: the coe�cients ak of
the Taylor expansion at the origin of the function f(z) =

P+1
k=0 akz

k, holomorphic
in the open disc D, decay as O(k�r) if f(eix) 2 Cr(R). The �rst step to obtain
the asymptotic formula is to approximate the generating function (6.2.2), taking
into account the singularities of the highest order.
Near the singular point x = e�is, we can write

1

(1 + z2 � 2zt)
n+1
2

=
((e�is � e�is) + (z � e�is))

�n+1
2

(z � e�is)
n+1
2

=
e�i

3(n+1)�
4

(2 sin s)
n+1
2 (z � e�is)

n+1
2

+1X
k=0

��n+1
2

k

��
z � e�is

�2i sin s
�k

;

where �
�

k

�
=

(
1; k = 0;
�(��1):::(��k+1)

k!
; k > 0 :
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For p > n+1
2
, we have:

(6.2.4)

1

(2 sin s)
n+1
2

pX
k=0

��n+1
2

k

� 
ei

3(n+1)�
4

(z � eis)k�
n+1
2

(2i sin s)k
+ e�i

3(n+1)�
4

(z � e�is)k�
n+1
2

(�2i sin s)k
!

� 1

(1 + z2 � 2zt)
n+1
2

2 C1(�D) :

Expanding the powers of z � e�is by Taylor's formula at z = 0, we see that
Taylor's expansion at z = 0 of the di�erence (6.2.4) is given by

2

(2 sin s)
n+1
2

pX
k=0

+1X
l=0

��n+1
2

k

��
k � n+1

2

l

�
cos
�
(n+1

2
+ l � k)s+ (l � n+1

4
� k

2
)�
�

(2 sin s)k
zl:

Using (6.2.2) and comparing the coe�cients in front of the same powers of z, we
deduce that

DnNs(
p
m(m+ n� 1))

=
2

(2 sin s)
n+1
2

pX
k=0

��n+1
2

k

� 
cos
�
(n+1

2
+m� k)s+ (m� n+1

4
� k

2
)�
�

(2 sin s)k

�
k � n+1

2

m

�!

+
2

(2 sin s)
n+1
2

pX
k=0

��n+1
2

k

� 
cos
�
(n�1

2
+m� k)s+ (m� n+5

4
� k

2
)�
�

(2 sin s)k

�
k � n+1

2

m� 1

�!

+O(m�1):

as m!1. Here the error estimate follows from (6.2.4) in view of the remark in
the beginning of the proof. Taking into account the estimate

�(m+ n+1
2
)

�(m+ 1)
= m

n�1
2 +O(m

n�3
2 ) ;

we see that the main term of the expansion above corresponds to k = 0. Hence
we obtain

DnNs(
p
m(m+ n� 1))

=
4 cos( s

2
) �(m+ n+1

2
)

(2 sin s)
n+1
2 �(m+ 1)�(n+1

2
)
cos

��n
2
+m

�
s� (n+ 1)

4
�

�
+O(m

n�3
2 ) :

This completes the proof of the lemma.

Note that on Sn there are simple expressions for Ns(�) at conjugate points:

N0(
p
m(m+ n� 1)) =

(n+ 2m) (n+m� 1)!

Dnm!n!
=

2�n=2

(2�)n�(n=2)n
mn +O(mn�1) ;
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N�(
p
m(m+ n� 1)) =

(�1)m(n+m� 1)!

Dnm! (n� 1)!
6= o(mn�1)

These formulae and Lemma 6.2.3 prove Example 1.3.4.

Let us now complete the proof of Example 3.2.7. Lemma 6.2.3 implies that

Z T

1

����� ~Ns(�)�
2 cos( s

2
)

(2� sin s)
n+1
2

cos

��
b�� n� 1

2
c+ n

2

�
s� (n+ 1)

4
�

������
2

d�

6 C
TX

m=1

1

m
= O(lnT ) :

Here we have used that the intervalhp
m(m+ n� 1);

p
(m+ 1)(m+ n)

� \
f� : b�� (n� 1)=2c 6= mg;

where the formula above does not agree with Lemma 6.2.3, is of size O(m�1). This

follows from the simple asymptotic formula
p
m(m+ n� 1) = m+ n�1

2
+O(m�1):

Therefore, ~Ns(�) is B
2-equivalent to

2 cos( s
2
)

(2� sin s)
n+1
2

cos

��
b�� n� 1

2
c+ n

2

�
s� (n+ 1)

4
�

�

which can be rewritten as

(6.2.5)
1

(2�)
n+1
2 sin

n�1
2 (s)

1

sin( s
2
)
sin

��
b�� n� 1

2
c+ n

2

�
s� (n� 1)

4
�

�

Lemma 6.2.6. The following expansions hold in B2 for 0 < s < �:

sin((b�c+ 1
2
)s)

2 sin( s
2
)

�
+1X

k=�1

1

js+ 2�kj sin(�js+ 2�kj) ;

sin(b�+ 1
2
cs)

2 sin( s
2
)

�
+1X

k=�1

(�1)k
js+ 2�kj sin(�js+ 2�kj) ;

cos((b�c+ 1
2
)s)

2 sin( s
2
)

�
+1X

k=�1

(�1)H(k)

js+ 2�kj cos(�js+ 2�kj) ;

cos(b�+ 1
2
cs)

2 sin( s
2
)

�
+1X

k=�1

(�1)k+H(k)

js+ 2�kj cos(�js+ 2�kj) :

Here H(x) is the \reversed" Heaviside function: H(x) = 0 if x > 0, and H(x) = 1
if x < 0.

Proof. Each of these expansions can be obtained in a similar way as (6.1.1) in
the case n = 1. Alternatively, they could be proved directly using the identity
(6.1.9).
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Applying Lemma 6.2.6 to the formula (6.2.5), we deduce that

~Ns(�) � 1

� (2� sin s)
n�1
2

1X
j=0

sin
�
� l(
j)� (n�1)�

4
� !(
j)

�
2

�
l(
j)

;

where the sum runs over all geodesic segments 
j starting at x and ending at
y. Here l(
j) is the length of 
j and !(
j) is the Morse index of 
j. Counting
the points conjugate to x on the geodesic 
 of length js+ 2�kj, one gets !(
) =
(n� 1) (2jkj �H(k)). This completes the proof of Example 3.2.7.

7. The �-function: proofs

7.1. Auxiliary functions. Throughout the section we denote

� t := Re z , s := Im z and
� hsi := (1 + jsj2)1=2.

Let � be a real-valued even function satisfying Condition 4.1.1 with a su�-
ciently small � . Let us �x an arbitrary c > 0 such that 2 c < �1 and c < d�1x;y
for all x; y 2M , and denote

(7.1.1) Zx;y;j(z) := z

Z 1

c

��z�1Nx;y;j(�) d� ; j = 0; 1;

where Nx;y;j(�) are the functions de�ned by (4.1.2). Then

Zx;y = Zx;y;0(z) + Zx;y;1(z)

and, due to the �nite speed of propagation, jZx;y(z)� Zx;y;1(z)j 6 Ct whenever
� < dx;y .
By Lemma 4.1.3, we have

(7.1.2) Zx;y;1(z) :=

Z
h1(z; �) dNx;y(�) ;

where h1(z; �) := z
R1
c
��z�1 �1(� � �) d� . Substituting z��z�1 = �d

d�
(��z) ,

integrating by parts and then changing variables, we obtain

(7.1.3) h1(z; �) = ��z + c�z �1(c� �)�
Z 1

c��

(�+ �)�z �(�) d� ; 8� > c :

Since one can di�erentiate under the integral sign, h1(z; �) is an entire function
of the variable z 2 C smoothly depending on the parameter � 2 (2c;+1) , such
that

(7.1.4)
@m

@�m
h1(z; �) = (�1)m �(z +m)

�(z)
h1(z +m;�) :

Lemma 7.1.5. For all � 2 (2c;+1), we have jh1(z; �)j 6 Ct �
�t and

(7.1.6) jh1(z; �)j 6 Ct;{ �
�t�{ hsi{ (1 + j lnhsi � ln�j)�r ; 8{; r > 0 :
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Proof. The identities (7.1.3) and
R
�(�) d� = 1 imply that

h1(z; �) = c�z�1(c� �) + ��z
Z c��

�1

�(�) d�+

Z ��
2

c��

�
��z � (�+ �)�z

�
�(�) d�

+

Z 1

�
2

�
��z � (�+ �)�z

�
�(�) d�+

Z �
2

��
2

�
��z � (�+ �)�z

�
�(�) d� :

Since � is rapidly decreasing, the �rst four terms in the right hand side are
bounded by Ct;m �

�m for all m > 0. Therefore we only need to estimateR �
2

��
2
((�+ �)�z � ��z) �(�) d� .

By Taylor's formula,

(7.1.7) (�+ �)�z � ��z =
m�1X
k=1

(�1)k �(z + k)

k! �(z)
�k��z�k

+ (�1)m �(z +m)

(m� 1)! �(z)
�m
Z 1

0

(1� t)m�1 (�+ t�)�z�m dt ; m = 1; 2; : : :

(unless �z is a nonnegative integer, in which case the terms with negative expo-
nents �z � k are absent). Substituting (7.1.7) into the integral, we see that

(7.1.8)

Z �
2

��
2

�
(�+ �)�z � ��z

�
�(�) d�

=
m�1X
k=1

(�1)k �(z + k)

k! �(z)
��z�k

Z �
2

��
2

�k �(�) d�

+ (�1)m �(z +m)

(m� 1)! �(z)

Z �
2

��
2

Z 1

0

(1� �)m�1 (�+ ��)�z�m �m �(�) d� d� :

Since � is rapidly decreasing, Condition 4.1.1 implies that the sum in the right
hand side of (7.1.8) is estimated by Cm �

�t�m hsim�1 for all m > 1. On the other
hand, for all j;m > 0 ,

(7.1.9)

Z �
2

��
2

j(�+ ��)�z�m �j �(�)j d� 6 Ct;m �
�t�m ; 8� 2 [0; 1] :

Therefore the last term in (7.1.8) does not exceed Ct;m �
�t�m hsim. Thus we have

(7.1.10)

�����
Z �

2

��
2

�
��z � (�+ �)�z

�
�(�) d�

����� 6 Ct;m �
�t bms;� ; 8m = 0; 1; : : : ;

where bs;� := ��1hsi (the estimate with m = 0 is a particular case of (7.1.9) ).

Since b{s;� (1 + j ln bs;�j)�r > Cr;{ minfb3{=2s;� ; b
{=2
s;� g whenever { > 0 and

��{ hsi{ (1 + j lnhsi � ln�j)�r = b{s;� (1 + j ln bs;�j)�r ;
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interpolating between the estimates (7.1.10), we arrive at (7.1.6).

7.2. Estimates for Zx;y;1(z). Lemma 7.1.5 implies the following corollaries.

Corollary 7.2.1. Zx;y;1(z) is an entire function of z for each (x; y) 2 M �M ,

such that

(7.2.2) jZx;y;1(t+ is)j 6 Ct

�hsin�t + 1
�
; 8t 6= n :

Proof. In view of (7.1.4) and (7.1.6), one can di�erentiate under the integral sign
in the de�nition of Zx;y;1(z). Therefore the function Zx;y;1(z) is analytic.

Let ~Nx;y(�; a1; a2) :=
P

�j<�
ja1 'j(x) + a2 'j(y))j2 where a1; a2 are complex

constants such that ja1j2+ ja2j2 = 2. The function Nx;y(�; a1; a2) is nondecreasing
and, in view of the Weyl formulae (1.2.2), is estimated by C �n. We have

2 ReNx;y(�) = Nx;y(�; 1; 1)�Nx;x(�)�Ny;y(�) ;

2i ImNx;y(�) = Nx;y(�; i; 1)�Nx;x(�)�Ny;y(�) :

Therefore it is su�cient to prove that the estimate (7.2.2) holds for the integralR1
2c
h1(z; �) dG(�), where G(�) is a nondecreasing function bounded by C �n .

If t < n then (7.1.6) with { = n� t and r = 2 implies thatZ 1

2c

h1(z; �) dG(�) 6 Ct hsin�t
Z 1

2c

��n (1 + j lnhsi � ln�j)�2 dG(�)

6 Ct hsin�t
Z 1

2c

��n�1 (1 + j lnhsi � ln�j)�2G(�) d�

6 Ct hsin�t
Z 1

2c

(1 + j lnhsi � ln�j)�2 ��1 d� 6 Ct hsin�t :
If t > n then the required estimate is obtained in a similar way, with the use of
the inequality jh1(z; �)j 6 Ct �

�t .

Remark 7.2.3. Note that (7.2.2) holds for x = y.

Corollary 7.2.4.

(7.2.5)

Z
M

jZx;y;1(t+ is)j2 dy 6 Ct

�hsin�2t + 1
�
; 8t 6= n

2
; 8x 2M :

Proof. In the same way as in (4.2.1), we obtainZ
M

jZx;y;1(z)j2 dy =

Z
jh1(z; �)j2 dNx;x(�) :

If t < n=2 then (7.1.6) with { = n
2
� t and r = 2 implies thatZ

jh1(z; �)j2 dNx;x(�) 6 Ct;{ hsin�2t
Z 1

"

��n (1 + j lnhsi � ln�j)�2 dNx;x(�)

6 Ct hsin�2t
Z 1

"

��n�1 (1 + j lnhsi � ln�j)�2Nx;x(�) d� :
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Using the Weyl formula and estimating integrals as in the proof of the previous
corollary, we see that the right hand side is not greater than Ct hsin�2t .
If t > n

2
then the required inequality is obtained in the same way, with the use

of the estimate jh1(z; �)j2 6 Ct �
�2t.

7.3. Estimates for Zx;y;0(z). If x 6= y then Zx;y;0(z) is an entire function of
z . Our goal is to estimate Zx;y;0(z) uniformly with respect to s and x; y 2M .
Further on

� Ot(d
p
x;y) denotes a function which is estimated by Ct(d

p
x;y + 1) .

Obviously, if jf(�)j 6 C h�i�m for all � 2 R+ then
R1
c
��z f(�) d� is an

analytic function in the half-plane fz : t > 1 �mg and
��R1

c
��z f(�) d�

�� 6 Ct

for all t > 1 �m . In particular, if 	x;y(�) = Nx;y(�) �Nx;y(��) then, in view
of (4.3.2), we have

Zx;y;0(z) = z

Z 1

c

��z�1Nx;y;0(�) d� =

Z 1

c

��z (� �	x;y)
0 (�) d� + Ot(1) :

Let us assume that � in Condition 4.1.1 is small enough, so that the Hadamard
representation (4.3.1) holds on supp �̂. Then the Fourier transform of the deriv-
ative 	0

x;y admits an asymptotic expansion of the form (4.3.1) on supp �̂ . This
implies that

(� �	x;y)
0 (�) �

Z 1

c

�(�� �)	0
0;x;y(�) d� = O(��1) ;

uniformly with respect to x; y 2M , where 	0
0;x;y(�) is a function whose asymp-

totic expansion for �!1 is obtained from (4.3.6) by di�erentiating each term
with respect to � and putting � = � . Thus we have

(7.3.1) Zx;y;0(z) =

Z 1

c

Z 1

c

��z�(�� �)	0
0;x;y(�) d� d� + Ot(1) :

For all m = 0; 1; 2 : : : , we have dm

d�m
Jp(�) 6 C � p�m for small values of � and

dm

d�m
Jp(�) � ��

1
2 cos �

1X
k=0

am;k �
�k + ��

1
2 sin �

1X
k=0

bm;k �
�k ; � !1 ;

where am;k and bm;k are some real coe�cients (see, for example, [GR, 8.440 and
8.451(1)]). Therefore the asymptotic formula for 	0

0;x;y implies that j	0
0;x;y(�)j 6

C h�in�1 for all � 2 (c; d�1x;y ) and

(7.3.2) 	0
0;x;y(�) =

X
j+k<N

uj;k(x; y) d
2j+1�n
x;y (dx;y �)

n�1
2

�j�k exp (i dx;y �)

+
X

j+k<N

vj;k(x; y) d
2j+1�n
x;y (dx;y �)

n�1
2

�j�k exp (�i dx;y �) + RN(x; y; �)
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for all � 2 (d�1x;y ;1) and N = 1; 2; : : : , where uj;k ; vj;k are bounded functions
and

jRN(x; y; �)j 6 C d 1�n
x;y (dx;y �)

n�1
2

�N ; 8� 2 (d�1x;y ;1) :

In particular, j	0
0;x;y(�)j 6 C d 1�n

x;y (dx;y �)
n�1
2 6 C �n�1 whenever � > d�1x;y and,

consequently, j	0
0;x;y(�)j 6 C h�in�1 for all � > c .

The above estimates and the obvious inequalities

(7.3.3) h�i�1h�i 6 2h�� �i ; h�i�1h�i 6 2h�� �i
imply that����z�(�� �)	0

0;x;y(�)
�� 6 Ct h�in�t�1h�� �in�1 j�(�� �)j ;����z�(�� �)	0

0;x;y(�)
�� 6 Ct h�in�t�1h�� �ijtj j�(�� �)j

and����z�(�� �)RN(x; y; �)
�� 6 C d t�n+1x;y

���(dx;y�)�t �(�� �) (dx;y�)
n�1
2

�N
���

6 Ct d
t�n+1
x;y hdx;y�in�12 �N�thdx;y�� dx;y�in�12 +N j�(�� �)j

for all �; � > d�1x;y . Since the function � is rapidly decreasing, integrating the
above estimates over � and �, we obtain

(7.3.4)

�����
Z d�1x;y

c

Z 1

c

��z�(�� �)	0
0;x;y(�) d� d�

����� 6
(
Ct (d

t�n
x;y + 1) ; t 6= n ;

C j ln dx;yj ; t = n ;

(7.3.5)

�����
Z 1

d�1x;y

Z d�1x;y

c

��z�(�� �)	0
0;x;y(�) d� d�

����� 6
(
Ct (d

t�n
x;y + 1) ; t 6= n ;

C j ln dx;yj ; t = n ;

and

(7.3.6)

�����
Z 1

d�1x;y

Z 1

d�1x;y

��z�(�� �)RN(x; y; �) d� d�

�����
6 Ct d

t�n�1
x;y

Z 1

1

Z 1

1

h�in�12 �N�th�� �in�12 +N j� �d�1x;y (�� �)
� j d� d�

6 Ct d
t�n�1
x;y

�Z 1

1

h�in�12 �N�t d�

��Z
h�in�12 +N j� �d�1x;y�

� j d�� = Ot(d
t�n
x;y )

for all N > n+1
2
� t .

It remains to estimate the integrals

(7.3.7)

Z 1

d�1x;y

Z 1

d�1x;y

��z�(�� �) d 2j+1�n
x;y (dx;y �)

n�1
2

�j�k e�i dx;y � d� d�

= d 2j+t�n�1+is
x;y

Z 1

1

Z 1

1

��z�
�
d�1x;y (�� �)

�
�
n�1
2

�j�k e�i � d� d�
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generated by the main asymptotic terms in (7.3.2). Expanding �
n�1
2

�j�k by
Taylor's formula at � = �, we see that the right hand side of (7.3.7) coincides
with

d 2j+t�n�1+is
x;y

Z 1

1

 (z; �; �)

�Z 1

1

�
�
d�1x;y (�� �)

�
e�i � d�

�
d� + Ot(d

2j+t�n
x;y ) ;

where

 (z; �; �) =
lX

m=0

�
n�1
2
� j � k

m

�
�
n�1
2

�j�k�m�z (�� �)m

with an arbitrary l > n+1
2
� t� j � k , and the remainder estimate follows from

the inequalities

j (z; �; �)� ��z�
n�1
2

�j�kj 6 C��t(�� �)l+1(�
n�1
2

�j�k�l�1 + �
n�1
2

�j�k�l�1)

and

�
n�1
2

�j�k�l�1
6 Ch�� �in�12 +j+k+l+1�

n�1
2

�j�k�l�1:

Note that the last inequality is a consequence of (7.3.3).
Obviously,

d�1x;y

Z 1

1

Z 1

�1

�p (�� �)m
��� �d�1x;y (�� �)

��� d� d�
6 dmx;y

Z 1

1

Z 1

d�1
M

(��1)

�p j�m� (�)j d� d� 6 Cp;m ; 8p 2 R ; 8m = 0; 1; 2; : : : ;

where dM is the diameter of M . This estimate and (7.3.3) imply that the
integral (7.3.7) is equal to

(7.3.8) d 2j+t�n�1+is
x;y

Z 1

1

 (z; �; �)

�Z 1

�1

�
�
d�1x;y (�� �)

�
e�i � d�

�
d�

=
lX

m=0

�
n�1
2
� j � k

m

�
d 2j+t�n+m+is
x;y (�i)m �̂(m)(dx;y)

Z 1

1

�
n�1
2

�j�k�m�z e�i� d�

modulo Ot(d
2j+t�n
x;y ) , where �̂(m) is the mth derivative of the Fourier transform.

For each p 2 R , the integral
R1
1
�p�z e�i� d� de�nes an analytic function on

the half-plane fz : t > p + 1g , where it is bounded on each vertical line by a
constant Ct . This function admits an analytic continuation to the whole com-
plex plane, obtained by replacing e�i� with (�i)m dm

d�m
e�i� and integrating by

parts. This continuation coincides with the di�erence between the meromorphic
continuations of the integrals

R1
0
�p�z e�i� d� and

R 1

0
�p�z e�i� d� . According

to [GR, 3.381] and [GR, 8.328(1)],Z 1

0

�p�z e�i� d� = � i e� i�(p�z)=2 �(p+ 1� z)
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and ��e� i�(p�z)=2 �(p+ 1� z)
�� = ��e�jsj=2 �(p+ 1� t+ is)

�� 6 Cp�t jsjp�t+1=2
whenever jsj > 1 . Replacing �p�z with (m+p�z)�1 : : : (1+p�z)�1 dm

d�m
�m+p�z

and integrating by parts, we see that
���R 1

0
�p�z e�i� d�

��� 6 Cp�t whenever jsj > 1 .

Therefore����
Z 1

1

�p�z e�i� d�

���� 6 Cp�t (1 + hsip�t+1=2) ; 8p 2 R ; 8z 2 C :

The above inequality implies that the integral in the left hand side of (7.3.8)
is estimated by Ct d

2j+t�n
x;y (1 + hsin2�t�j�k) and, consequently,

(7.3.9)

�����
Z 1

d�1x;y

Z
�>d�1x;y

��z�(�� �) d 2j+1�n
x;y (dx;y �)

n�1
2

�j�k e�i dx;y � d� d�

�����
6 Ct d

2j+t�n
x;y (1 + hsin2�t�j�k) :

Now, putting together (7.3.4){(7.3.6) and (7.3.9), we obtain

(7.3.10) jZx;y;0(t+ is)j 6
(
Ct

�
d t�nx;y hsin2�t + d t�nx;y + 1

�
; t 6= n ;

C
�hsin2�t + j ln dx;yj

�
; t = n :

7.4. Proof of Theorems 2.6.5 and 2.6.6. Theorem 2.6.5 is an immediate con-
sequence of (7.2.2) and (7.3.10). Since the function

�
d 2t�n�"
x;y + 1

��1
is bounded

and is estimated by dn�2t+"x;y for small values of dx;y , Theorem 2.6.6 follows from
(7.2.5) and (7.3.10).
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