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Abstract
Sharp upper bounds for the first eigenvalue of the Laplacian on a

surface of a fixed area are known only in genera zero and one. We
investigate the genus two case and conjecture that the first eigenvalue is
maximized on a singular surface which is realized as a double branched
covering over a sphere. The six ramification points are chosen in such
a way that this surface has a complex structure of the Bolza surface.
We prove that our conjecture follows from a lower bound on the first
eigenvalue of a certain mixed Dirichlet-Neumann boundary value problem
on a half-disk. The latter can be studied numerically, and we present
conclusive evidence supporting the conjecture.
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1 Introduction and main results

1.1 Upper bounds on the first eigenvalue

Let M be a closed surface of genus γ and let g be the Riemannian metric on
M . Denote by ∆ the Laplace-Beltrami operator on M , and by λ1 the smallest
positive eigenvalue of the Laplacian. Let the area Area(M) be fixed. How large
can λ1 be on such a surface?

Sharp bounds for the first eigenvalue are known only for the sphere ([H], see
also [SY]), the projective plane ([LY]), the torus ([Ber], [N]), and the Klein bottle
([JNP], [EGJ]). The present paper is concerned with the surface of genus 2.

Let M be orientable and let Π : M → S2 be a non-constant holomorphic
map (or, conformal branched covering) of degree d. It was proved in [YY] that

λ1Area(M) ≤ 8πd . (1.1.1)

Any Riemann surface of genus γ can be represented as a branched cover over

S2 of degree d =

[
γ + 3

2

]
, where [·] denotes the integer part (see [Gun], [GH]).

Therefore,

λ1Area(M) ≤ 8π

[
γ + 3

2

]
. (1.1.2)

In general, (1.1.2) is not sharp, for example for γ = 1 ([N]).
Let M = P be a surface of genus γ = 2. Then (1.1.2) implies

λ1Area(P) ≤ 16π. (1.1.3)

The aim of this paper is to show, using a mixture of analytic and numerical tools,
that (1.1.3) is sharp. Main results of this paper were announced (without proofs)
in [JLNP, section 4].

1.2 The Bolza surface

Let Π : P → S2 be a branched covering of degree d = 2. The Riemann-Hurwitz
formula (see [GH]) implies that this cover is ramified at 6 points. We choose
these points to be the intersections of the round sphere S2 centered at the origin
with the coordinate axes in R3. The surface P can be realized as{

(z, w) ∈ C2 : w2 = F (z) := z
(z − 1)(z − i)

(z + 1)(z + i)

}
.
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This surface has the conformal structure of the Bolza surface. It has an octahe-
dral group of holomorphic automorphisms and its symmetry group is the largest
among surfaces of genus two [I, KW]. Interestingly enough, the Bolza surface
appears in some other extremal problems, in particular for systoles (see [KS]).

To simplify calculations it is convenient to rotate the equatorial plane by π/4.
The equation of P becomes

P :=

{
(z, w) ∈ C2 : w2 = F (z) := z

(z − eπi/4)(z − e3πi/4)

(z + eπi/4)(z + e3πi/4)

}
. (1.2.1)

The projection Π is defined by Π : (z, w) → z. The set of ramification points in
the complex z plane is R := {0,∞,±eπi/4,±e3πi/4}. The spherical and complex
models are related by the stereographic projection; the induced metric in the
complex plane (which we assume coincides with the equatorial plane of S2) is

4dzdz̄/(1 + |z|2)2. (1.2.2)

Let g0 be the metric on P which is the pullback of the round metric (1.2.2)
on S2. One can see that the metric g0 has conical singularities at the points
of ramification. It has curvature +1 everywhere except the branching points.
Because of the presence of singularities we have to specify what we mean by the
first positive eigenvalue of the Laplacian on (P , g0). We set

λ1(P , g0) := inf
u∈H1

0 (P,g0) , u6=0 , 〈u,1〉=0

‖∇u‖2

‖u‖2
,

where the scalar product 〈·, ·〉 and the norm ‖·‖ are taken in the space L2(P , g0).
The Sobolev space H1

0 (P , g0) of functions supported away from the singularities
is obtained by the closure of C∞

0 (P , g0) := {v ∈ C∞(P , g0) | Π supp v ∩R = ∅}
with respect to the norm ‖∇ v‖2 + ‖v‖2.

1.3 Main results

We start with the following

Conjecture 1.3.1. The equality in (1.1.3) is attained for the metric g0 on P ,
i.e.

λ1(P , g0)Area(P , g0) = 16π.
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Since (P , g0) is a double cover of the standard S2, we have

Area(P , g0) = 2Area(S2) = 8π.

Therefore, in order to prove Conjecture 1.3.1 it suffices to show that

λ1(P , g0) = λ1(S2) = 2. (1.3.2)

Unfortunately, we are unable to prove (1.3.2), and therefore establish Con-
jecture 1.3.1. We can however reduce the conjecture to the following spectral
problem on a quarter-sphere Q ⊂ S2 that can be treated using numerical meth-
ods. Namely, let, in usual spherical coordinates (φ, θ),

Q = {(φ, θ) : 0 < φ < π/2, 0 < θ < π} .

We split the boundary ∂Q into two parts: ∂Q = ∂1Q t ∂2Q, where

∂1Q = {(0, θ) : |θ − π/2| < π/4} ∪ {(π/2, θ) : 0 < θ < π/2} ,

∂2Q = {(0, θ) : |θ − π/2| > π/4} ∪ {(π/2, θ) : π/2 < θ < π} ,

and consider the spectral boundary value problem for the Laplace-Beltrami op-
erator on Q:

−∆u = Λu on Q , u|∂1Q = 0 , (∂u/∂n)|∂2Q = 0 . (1.3.3)

Let Λ1 denote the first eigenvalue of the problem (1.3.3) (which we under-
stand as usual in the variational sense).

Conjecture 1.3.4.
Λ1 > 2.

Our main result is

Theorem 1.3.5. Conjecture 1.3.4 implies Conjecture 1.3.1.

Theorem 1.3.5 is proved in sections 2 and 3.
Extensive numerical calculations (see Section 4) show that Λ1 & 2.27 which

implies Conjecture 1.3.1. The best lower bound we are able to prove is just Λ1 >
0.75, which follows from Dirichlet-Neumann bracketing (replace the Dirichlet
condition by the Neumann one on the arc (0, θ), π/4 < θ < 3π/4), see [Ke]).
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Finally, we note that the spectral problem (1.3.3) easily reduces via the stere-
ographic projection to the following mixed Dirichlet-Neumann problem on a half-
disk D := {(r, ψ) ∈ R2 : r < 1, 0 < ψ < π} (here (r, ψ) are usual planar polar
coordinates):

−∆v =
4Λ

(1 + r2)2
v on D , v|∂1D = 0 , (∂v/∂n)|∂2D = 0 . (1.3.6)

Here ∂1D := {(r, 0) : r ∈ (0, 1)} ∪ {(1, ψ) : |ψ − π/2| < π/4} and ∂2D :=
{(r, π) : r ∈ (0, 1)} ∪ {(1, ψ) : |ψ − π/2| > π/4}.

Problems (1.3.3) and (1.3.6) are quite remarkable in their own right — each
of them is an example of a mixed Dirichlet-Neumann boundary value problem
whose spectrum is invariant under a swap of Dirichlet and Neumann boundary
conditions. Namely, the spectrum of (1.3.6) coincides with the spectrum of

−∆v =
4Λ

(1 + r2)2
v on D , v|∂2D = 0 , (∂v/∂n)|∂1D = 0 . (1.3.7)

We refer to [JLNP] for a further discussion on Dirichlet-Neumann swap isospec-
trality.

Figure 1: Geometry of boundary value problems (1.3.6) (left) and (1.3.7) (right).
Here and further on, the solid red line denotes Dirichlet boundary condition and
the dashed blue line — the Neumann one.

Remark 1.3.8. One can check that a surface with a finite number of conical
singularities can be approximated by a sequence of smooth surfaces of the same
genus and area in such a way that the corresponding sequence of the first non-
zero eigenvalues converges to λ1 on the original surface. Thus, Conjecture 1.3.1
means that (1.1.3) is sharp in the class of smooth metrics, although the equality
is not necessarily attained. For a general result about the convergence of the
whole spectrum see [Ro].

5



2 Symmetries

2.1 Hyperelliptic involution

Let T : P → P , T 2 = Id be a map that intertwines the preimages of points of
S2 under a two-sheeted covering Π : P → S2. Clearly, the Laplace operator ∆
commutes with T .

By the spectral theorem, we can consider separately the restrictions of the
Laplacian onto the spaces of functions which are either even or odd with respect
to T . The even functions on P can be identified with the functions on S2.
Therefore, as λ1(S2) = 2, we have λ1(P) ≤ 2, and the equality in (1.3.2) will
be achieved if and only if the first eigenvalue λodd

1 of the Laplacian acting on the
odd subspace satisfies λodd

1 ≥ 2.

2.2 Isometries of P
Consider the following isometries of S2 (as usual, we identify S2 and C by stere-
ographic projection):

σ1 : z 7→ z̄ or (χ, η, ξ) 7→ (χ,−η, ξ),
σ2 : z 7→ −z̄ or (χ, η, ξ) 7→ (−χ, η, ξ),
σ3 : z 7→ 1/z̄ or (χ, η, ξ) 7→ (χ, η,−ξ).

(2.2.1)

Here z = x+iy is a point in the equatorial plane upon which a point (χ, η, ξ) ∈ S2

is stereographically projected.
The hyperelliptic involution T is given by T : (z, w) → (z,−w). For 1 ≤

j ≤ 3, a symmetry σj of S2 has two corresponding symmetries sj and T ◦ sj

satisfying
Π ◦ sj = Π ◦ T ◦ sj = σj ◦ Π . (2.2.2)

Those symmetries, with account of (1.2.1) are given by the explicit formulae

s1 : (z, w) 7→ (z̄, z̄/w̄),

s2 : (z, w) 7→ (−z̄, iw̄),

s3 : (z, w) 7→ (1/z̄, w̄/z̄).

(2.2.3)

As an illustration, we demonstrate how the last of these formulae is obtained: if
w2 = F (z), then by (1.2.1),

F

(
1

z̄

)
=

1

z̄

(1/z̄ − eπi/4)(1/z̄ − e3πi/4)

(1/z̄ + eπi/4)(1/z̄ + e3πi/4)
=
F (z)

z̄2
,
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thus giving the expression for s3.
It easily seen that all sj commute with T and satisfy

s2
j = Id, j = 1, 2, 3;

s1s3 = s3s1, s2s3 = s3s2;

s2s1 = Ts1s2.

(2.2.4)

Remark 2.2.5. In the proof of Theorem 1.3.5 we will use only the symmetries
s1 and s3. Calculations for s2 are presented for the sake of completeness (see
Remark 3.4.1).

2.3 Fixed point sets of isometries

Let Fix(S) denote a fixed point set of a mapping S. As easily seen from (2.2.1),
the sets Fix(σj), for j = 1, 2, 3, lie in the union of the coordinate lines and a unit
circle of C, and we introduce the following notation for future reference. The
coordinate lines are divided into two rays each by the ramification point r0 := 0,
and we denote

a1 := {z = t, t > 0} , a2 := {z = it, t > 0} ,

a3 := {z = t, t < 0} , a4 := {z = it, t < 0} .

The circle is divided into four arcs by the ramification points r1 := e−πi/4,
r2 := eπi/4, r3 := e3πi/4, and r4 := e−3πi/4, and we denote the arcs by

ak+4 := {z = etπi/4, t ∈ (2k − 3, 2k − 1)} , k = 1, 2, 3, 4 ,

so that the arc a5 goes from r1 to r2, the arc a6 goes from r2 to r3, the arc a7

goes from r3 to r4, and finally a8 goes from r4 to r1.
In this notation, the fixed point sets Fix(σj) are written as

Fix(σ1) = a1∪a3 , Fix(σ2) = a2∪a4 , Fix(σ3) = a5∪a6∪a7∪a8 . (2.3.1)

Note that each of the rays aj (j = 1, 2, 3, 4) intersects an arc aj+4 at a single
point which we denote zj:

z1 = 1 , z2 = i , z3 = −1 , z4 = −i ,

see Figure 2.
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Figure 2: Ramification points, rays, arcs and intersections

2.4 Fixed point sets of s1, s2, s3

Each of the points zj has exactly two pre-images p
(m)
j := (w

(m)
j , zj) ∈ Π−1zj,

m = 1, 2, where w
(1,2)
j are the solutions of the equation (wj)

2 = F (zj), with F
given in (1.2.1). These solutions are easily found from (1.2.1); we are of course

at liberty to choose which of the two solutions is denoted w
(1)
j and which is
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denoted w
(2)
j . For definiteness we set

w
(1)
1 = i , w

(2)
1 = −i ;

w
(1)
2 =

1 + i

2 +
√

2
, w

(2)
2 = − 1 + i

2 +
√

2
;

w
(1)
3 = 1 , w

(2)
3 = −1 ;

w
(1)
4 =

1− i

2−
√

2
, w

(2)
4 = − 1− i

2−
√

2
.

(2.4.1)

For future use, we need to know the images of points p
(m)
j under the sym-

metries sl, l = 1, 2, 3. These are easily calculated from (2.2.3); it turns out that

slp
(m)
j = p

(n)
k with some indices k ∈ {1, 2, 3, 4}, n ∈ {1, 2}. The results of the

calculations are summarized in the following Table 1.

(j,m) (k, n)

l = 1 l = 2 l = 3

(1,1) (1,1) (3,1) (1,2)

(1,2) (1,2) (3,2) (1,1)

(2,1) (4,1) (2,1) (2,1)

(2,2) (4,2) (2,2) (2,2)

(3,1) (3,2) (1,2) (3,2)

(3,2) (3,1) (1,1) (3,1)

(4,1) (2,1) (4,2) (4,1)

(4,2) (2,2) (4,1) (4,2)

Table 1: The points p
(m)
j and their images p

(n)
k = slp

(m)
j under symmetries

sl. The table lists the pairs of indices (j,m) and the resulting pairs (k, n) for
l = 1, 2, 3. Note also that T acts by interchanging the second indices 1 ↔ 2.

For each of the rays or arcs ak, k = 1, . . . , 8 defined in the previous section,
its pre-image Π−1ak has two connected components which we denote b

(1)
k , b

(2)
k

related by b
(m)
k = Tb

(m′)
k , m,m′ ∈ {1, 2}, m 6= m′. Again, the choice of which

component we denote by an upper index (1) is up to us and in order to fix
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the notation we postulate that b
(m)
k 3 w

(m)
k′ , k′ = ((k − 1) mod 4) + 1, e.g.

w
(1)
1 ∈ b(1)

1 ∩ b(1)
5 , w

(2)
3 ∈ b(2)

3 ∩ b(2)7 , etc.
We now have at our disposal all the information we need in order to obtain

the fixed point sets of s1, s2, s3. We start with the following two simple Lemmas.

Lemma 2.4.2. Π Fix(sj) ⊆ Fix(σj).

Proof. Let z ∈ Π Fix(sj). Then there exists p ∈ P such that Πp = z and sjp =
p. Thus Πsjp = z and by (2.2.2) σjΠp = σjz = z, so that z ∈ Fix(σj).

Lemma 2.4.3. Let ak ⊆ Fix(σj). Then, for m = 1, 2, either b
(m)
k ⊆ Fix(sj) or

b
(m)
k ⊆ Fix(T ◦ sj).

Proof. We have Πb
(m)
k = ak, so that σjΠb

(m)
k = σjak = ak, and so by (2.2.2)

Πsjb
(m)
k = ak = Πb

(m)
k = ΠTb

(m)
k . The result follows from the obvious observa-

tion: if Πα = Πβ, then either α = β or α = Tβ.

The lemmas lead to the following

Proposition 2.4.4.

Fix(s1) = b
(1)
1 ∪ b(2)1 ,

Fix(Ts1) = b
(1)
3 ∪ b(2)3 ,

Fix(s2) = b
(1)
2 ∪ b(2)2 ,

Fix(Ts2) = b
(1)
4 ∪ b(2)4 ,

Fix(s3) = b
(1)
6 ∪ b(2)6 ∪ b(1)8 ∪ b(2)8 ,

Fix(Ts3) = b
(1)
5 ∪ b(2)5 ∪ b(1)7 ∪ b(2)7 .

Proof. By Lemmas 2.4.2 and 2.4.3, for any given j the fixed sets Fix(sj) and
Fix(Tsj) consist only of the pre-images of the components ak of the correspond-
ing fixed sets Fix(σj) (given by (2.3.1)). However we still need to describe which

component b
(m)
k , m = 1, 2, lies in Fix(sj) and which in Fix(Tsj). As each com-

ponent bk(m) is uniquely determined by the point w
(m)
k given by (2.4.1), it is

sufficient just to check in Table 1 whether sjw
(m)
k = w

(m)
k or Tsjw

(m)
k = w

(m)
k .

For example, to find Fix(s2) we need only to inspect b
(m)
2 and b

(m)
4 . As, by

Table 1, s2w
(m)
2 = w

(m)
2 and Ts2w

(m)
4 = w

(m)
4 , we have Fix(s2) = b

(1)
2 ∪ b(2)

2 and

Fix(Ts2) = b
(1)
4 ∪ b(2)

4 . The rest of Proposition 2.4.4 is obtained in the same
manner.
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3 Proof of Theorem 1.3.5

We divide the proof of Theorem 1.3.5 into several steps.

3.1 Even eigenfunctions with respect to T

Consider the subspace V+ ⊂ L2(P) consisting of all even eigenfunctions with
respect to T . Any such eigenfunction has a well-defined projection on S2. There-
fore, if there exists a first eigenfunction of P that belongs to V+, its projection
is an eigenfunction on S2 and hence the corresponding eigenvalue is greater or
equal than two (recall that λ1(S2) = 2). Hence, in this case the Conjecture 1.3.1
is verified.

3.2 Use of symmetries s1, s3.

Denote by G13 the subgroup of the automorphism group of P generated by the
symmetries

{T, s1, s3}.

It follows from (2.2.4) that G13 is commutative. Note also that all the elements
of G13 commute with the Laplacian on P . Therefore, we can choose a basis
of L2(P) consisting of joint eigenfunctions of all s ∈ G13 and ∆. Given a joint
eigenfunction f of all s ∈ G13, we denote by µ(f, s) the corresponding eigenvalue
of s, i.e.

f(sx) = µ(f, s)f(x) .

Since s2
j = T 2 = Id for j = 1, 3, we see that µ(f, s) = ±1 for all s ∈ G13.

3.3 Odd eigenfunctions with respect to T

Consider now the space V− ⊂ L2(P) consisting of all eigenfunctions of the
Laplacian which are odd with respect to T . Let φ1 be a joint eigenfunction of
{T, s1, s3,∆}, corresponding to the smallest eigenvalue of ∆

∣∣
V−

Now, since µ(φ1, T ) = −1 and s2
3T = T , we have µ(φ1, s1)µ(φ1, s1T ) =

µ(φ1, T ) = −1, and similarly µ(φ1, s3)µ(φ1, s3T ) = −1.
Without loss of generality we may assume that µ(φ1, s1) = −1. We recall

from section 2.3 that the fixed point set Fix s1 consists of the arcs b
(1)
1 , b

(2)
1 .

Thus φ1 must vanish on these arcs.
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Consider now the symmetries s3, s3T . We must have one of the following
two cases:

i) µ(φ1, s3T ) = −1, µ(φ1, s3) = 1;

ii) µ(φ1, s3) = −1, µ(φ1, s3T ) = 1.

Consider first Case i).

Proposition 3.3.1. In Case i) the function φ1 vanishes on the arcs

b
(1)
1 , b

(2)
1 , b

(1)
5 , b

(2)
5 , b

(1)
7 , b

(2)
7 ,

and its normal derivative ∂nφ1 vanishes on the arcs

b
(1)
3 , b

(2)
3 , b

(1)
6 , b

(2)
6 , b

(1)
8 , b

(2)
8 .

Proof. By Proposition 2.4.4, the fixed-point set of s3T consists of the arcs
b15, b

2
5, b

1
7, b

2
7. Accordingly, φ1 vanishes on all those arcs, as well as on b11, b

2
1.

Moreover, φ1 has µ(φ1, s3) = µ(φ1, s1T ) = 1. It follows that the normal deriva-
tive of ∂nφ1 vanishes on the fixed-point sets of those symmetries. It remains to
apply once more Proposition 2.4.4 in order to complete the proof.

Consider next Case ii).

Proposition 3.3.2. In Case ii) the function φ1 vanishes on the arcs

b
(1)
3 , b

(2)
3 , b

(1)
6 , b

(2)
6 , b

(1)
8 , b

(2)
8 ,

and its normal derivative ∂nφ1 vanishes on the arcs

b
(1)
1 , b

(2)
1 , b

(1)
5 , b

(2)
5 , b

(1)
7 , b

(2)
7 .

Proposition 3.3.2 is proved in the same way as Proposition 3.3.1.

3.4 Final step of the proof

Since φ1 is an odd function with respect to the hyperelliptic involution T , its
projection upon S2 is not well-defined. However, the projection of |φ1| to S2 is
well-defined. Denote it by ψ1.

In Case i), the function ψ1 can be chosen as a test function for the mixed
Dirichlet-Neumann boundary value problem (1.3.3). Assume now Conjecture
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1.3.4 is true and the first eigenvalue of (1.3.3) satisfies Λ1 > 2. Then the
Rayleigh quotient of ψ1 and hence of φ1 satisfies the same inequality. But this
means that φ1 cannot be a first eigenfunction on P since we get a contradiction
with (1.1.3). Therefore, any first eigenfunction on P is even with respect to T .
As was shown in section 3.1, the existence of an even first eigenfunction implies
Conjecture 1.3.1.

Similarly, in Case ii), the function ψ1 can be chosen as a test function for
the mixed Dirichlet-Neumann boundary volume problem which is obtained from
(1.3.3) by swapping the Dirichlet and the Neumann conditions. However, it
was shown in [JLNP] that this problem is isospectral to (1.3.3). Therefore,
repeating the same arguments as above we prove that Conjecture 1.3.1 holds.
This completes the proof of Theorem 1.3.5.

Remark 3.4.1. In the proof of Theorem 1.3.5 we have used only the symmetries
s1 and s3. Alternatively, we could have used s2 and s3. One can check directly
using Proposition 2.4.4 that applying s2 one obtains a mixed Dirichlet-Neumann
boundary value problem which is equivalent to (1.3.3) and hence no additional
information about the first eigenfunction is obtained.

3.5 A family of extremal surfaces of genus two

The purpose of this section is to prove the following

Corollary 3.5.1. Conjecture 1.3.4 implies that there exists a continuous family
Pt of surfaces of genus 2 such that λ1(Pt)Area(Pt) = 16π.

Proof. Consider the Riemann surface Pt defined by the equation{
(z, w) : w2 =

z
(
z − ei(π/2−t)

) (
z − ei(π/2+t)

)
(z − e−i(π/2−t)) (z − e−i(π/2+t))

}

where t ∈ (0, π/2). Note that Pπ/4 = P . It is easy to see that for any t, Pt is
symmetric with respect to s1 and s3. Arguing in the same way as in the proof of
Theorem 1.3.5 and using a stereographic projection, we reduce the problem on
Pt to the following two mixed Dirichlet-Neumann boundary value problems on
the half-disk D:

−∆v =
4Λ

(1 + r2)2
v on D , v|∂1(t) = 0 , (∂v/∂n)|∂2(t) = 0 . (3.5.2)
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and

−∆v =
4Λ

(1 + r2)2
v on D , v|∂2(t) = 0 , (∂v/∂n)|∂1(t) = 0 . (3.5.3)

Here ∂1(t) := {(r, 0) : r ∈ (0, 1)} ∪ {(1, ψ) : |ψ − π/2| < t} and ∂(t)D :=
{(r, π) : r ∈ (0, 1)} ∪ {(1, ψ) : π/2 > |ψ − π/2| > t}.

We remark that for t 6= π/4 these two problems are not isospectral. De-
note the smaller of the first eigenvalues of (3.5.2) and (3.5.3) by Λ1(t). Using
Dirichlet-Neumann bracketing it is easy to see that (3.5.2) has a smaller first
eigenvalue than (3.5.3) if t < π/4 and a larger one if t > π/4.

Conjecture 1.3.4 implies that Λ1(π/4) > 2. Since the first eigenvalues of
both problems depend continuously and monotonically on parameter t, and since
Λ1(0) = Λ1(π/2) = 0.75 (see section 1.3), there exist numbers t∗1 ∈ (0, π/4)
and t∗2 ∈ (π/4, π/2) such that Λ1(t

∗
1) = Λ1(t

∗
2) = 2 and so Λ1(t) > 2 for

t ∈ (t∗1, t
∗
2). Arguing as above, we deduce that for all surfaces Pt corresponding

to these values of t, any first eigenfunction is even with respect to the hyperelliptic
involution and hence estimate (1.1.3) is sharp. This completes the proof of the
theorem.

Corollary 3.5.1 implies that 16π is a degenerate maximum for λ1Area(M)
for surfaces of genus two. This is not the case for surfaces of lower genus on
which the metric maximizing the first eigenvalue is unique. Note also that the
extremal metrics in genera zero and one are analytic, while the surfaces Pt have
singular points.

4 Numerical investigations

4.1 Basics of the Finite Element Method

In this section we describe the numerical experiments used to estimate the first
eigenvalue of (1.3.7).

We define the space H as the closure of {v ∈ C∞(D)|supp v ∩ ∂2D = ∅}
with respect to the H1(D) norm.

The variational setting for the eigenvalue problem is to find the smallest
eigenvalue λ ∈ R, and the associated eigenvector v ∈ H such that for all u ∈ H,∫

D

∇v · ∇u dD = 4λ

∫
D

vu

(1 + r2)2
dD . (4.1.1)
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We use finite elements to approximate the eigenvalues and eigenfunctions of
(4.1.1). The general procedure we follow is:

1. Discretize the region D using a triangular mesh Th =
⋃Nh

i=1 τi, with a size
of an individual triangle τ ∈ Th parameterized by h > 0.

2. Introduce a finite-dimensional subspace Vh of H, consisting of finite ele-
ment basis functions {φi}Nh

i=1 on Th;

3. Denote (vh, λh) ∈ Vh × R, with vh = (v1, v2, . . . , vNh
)t, the solution of

the finite-dimensional generalized eigenvalue problem

Ahvh = λhBhvh , (4.1.2)

where

(Ah)ij :=

∫
D

∇φi · ∇φj dD , (Bh)ij :=

∫
D

4φiφj

(1 + r2)2
dD . (4.1.3)

Clearly, problem (4.1.2) is the discrete analog of (4.1.1). The eigenpair
(vh, λh) is computed using some iterative algorithm, until a prescribed
tolerance tol is reached.

4. Steps 1-3 are repeated with smaller and smaller h until some other stopping
criterion is attained.

We now present the results of some numerical experiments based on this
strategy.

4.2 Conforming finite elements

In the first set of experiments, the choice of approximating subspaces Vh was a
sequence of P1-conforming finite element spaces (Courant triangles), see [Br].
This means that for a given h > 0, and a triangulation Th of the domain,

Vh := {v ∈ H; v|τ = polynomial of degree ≤ 1 for every τ ∈ Th} .

The discrete generalized eigenvalue problem for each h was solved using an
Arnoldi iteration with shift 2.6. For details on the Arnoldi iteration, see, e.g.,
[GovL, TrBa].

Experiment 1: The initial triangulation is based on a graded mesh, with
more triangles located near the singularities of the eigenfunction (see Figure 3).
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Figure 3: A finite element mesh

λh Err Nh No. of No. of
Triangles Arnoldi iterates

2.45590105457 2.00434573363e-05 169 288 11
2.36301118569 1.32592470511e-06 625 1152 11
2.32089716556 8.16135748742e-08 2401 4608 12
2.30111238184 4.80693483786e-09 9409 18432 11
2.29161462311 2.79565739833e-10 37249 73728 11

Table 2: Using P1-conforming finite elements

The refinement strategy was based on simply subdividing each triangle in Th

into 4 while preserving the quality of the mesh, yielding a new triangulation Th/2.
The eigenvalue solver was run until a tolerance of tol = 10−16 was achieved. The
computation was performed using FreeFem++ for generating the finite elements
and the meshes, and ARPACK for the eigenvalue solve. The meshes were refined
until the measure of error,

Err :=

∫
D

|∇uh|2 − 4λh
u2

h

(1 + r2)2
dD ,

satisfied |Err| < 5× 10−10. The results are tabulated in Table 2.
Experiment 2: This experiment was conducted using MATLAB’s finite el-

ement package PDEToolbox, and the eigenvalue solve was performed using
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λh Nh No.of
Triangles

2.55310562723060 77 126
2.40400118356918 279 504
2.33742285062686 1061 2016
2.30582934149898 4137 8064
2.29039772121374 16337 32256
2.28276090970583 64929 129024
2.27895954902635 258881 516096

Table 3: Using P1-conforming finite elements in MATLAB

ARPACK routines. A sequence of triangular meshes was created, starting from
the coarsest mesh, and refining 5 times. The major difference between this and
the previous experiment is in the manner in which the zero Dirichlet data is
enforced.

4.3 Nonconforming finite elements

In the second set of experiments, we used P1-nonconforming finite elements
(Crouzeix elements), see [Br]. These are defined as

Vh := {v ∈ L2(D); v|τ is linear for each τ ∈ Th,

v is continuous at the midpoints of triangle edges}

for a given h > 0 and a triangulation Th. Note that Vh is not a subspace of H; for
more information on the use of nonconforming elements in eigenvalue problems,
see [ArDu]. As before, the discrete generalized eigenvalue problem is solved
using an Arnoldi iteration with a shift of 2.2 until a tolerance of tol = 10−16

is achieved. The refinement strategy was to subdivide each triangle in Th into 4
subtriangles, yielding a new mesh Th/2. The meshes were refined until a measure
of error

Err :=

∫
D

|∇vh|2 − 4λh
v2

h

(1 + r2)2
dD ,

satisfied |Err| < 5× 10−10. The results are presented in Table 4.
In each of the experiments above, we found that the computed eigenvalues

appeared to converge to a value greater than 2.27. The associated eigenfunctions
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λh Err Nh No. of No. of
Triangles Arnoldi iterates

2.13042989031 -1.5494060025e-05 169 288 11
2.20743747322 -7.89999667122e-07 625 1152 11
2.24561396752 -3.8455570927e-08 2401 4608 11
2.26440630518 -1.87263030138e-09 9409 18432 11
2.27364314423 -8.78059287464e-11 37249 73728 11

Table 4: Using P1-nonconforming finite elements

also appear to converge to a function whose contour lines are shown in Figure 4.

Figure 4: Contour lines of the first eigenfunction
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[H] J. Hersch, Quatre propriétés isopérimétriques de membranes sphérique ho-
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