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ABSTRACT. An example of Cornalba and Shiffman from 1972 disproves
in dimension two or higher a classical prediction that the count of ze-
ros of holomorphic self-mappings of the complex linear space should
be controlled by the maximum modulus function. We prove that such
a bound holds for a modified coarse count based on the theory of
persistence modules originating in topological data analysis.

1. INTRODUCTION AND MAIN RESULTS

1.1. The transcendental Bézout problem. The classical Bézout theo-
rem states that the number of common zeros of n polynomials in n vari-
ables is generically bounded by the product of their degrees. The tran-
scendental Bézout problem is concerned with the count of zeros of entire
maps Cn→ Cn. It is motivated by a number of influential mathematical
ideas. The starting point is Serre’s famous G.A.G.A. [25], by now under-
stood as a meta-mathematical principle stating that complex projective
analytic geometry reduces to algebraic geometry. A prototypical result is
a theorem of Chow [9], by which every closed complex submanifold of
CPn is necessarily algebraic, i.e., is given as the set of solutions of a sys-
tem of polynomial equations. However, as the following simple example
shows, Chow’s theorem fails in the affine setting.

Example 1.1. Consider an analytic function f : C→ C given by

f (z) = ez + 1= (ex cos y + 1) + iex sin y, z = x + i y .

Zeros of f form an infinite discrete set {(2k + 1)πi, k ∈ Z}. It is not
biholomorphically equivalent to any algebraic (and hence finite) proper
subset of C.
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In order to revive at least some parts of G.A.G.A. in the affine frame-
work one needs a substitute of the notion of the degree of a polynomial
for entire mappings f : Cn → Cn. As it is put in [14], “A transcendental
entire function that can be expanded into an infinite power series can be
viewed as a “polynomial of infinite degree", and the fact that the degree is
infinite brings no additional information to the statement that an entire
function is not a polynomial." To this end, one introduces the maximum
modulus

µ( f , r) =max
z∈Br

| f (z)| ,

where Br stands for the closed ball of radius r. This quantity has at least
two degree-like features. First, assume that

lim sup
r→∞

logµ( f , r)
log r

< k+ 1.

Then, remarkably, f is a polynomial of the total degree ≤ k. This is
a minor generalization of Liouville’s classical theorem. Thus one can
distinguish polynomials in terms of the maximum modulus.

The second feature of the maximum modulus is given by a statement
which readily follows from Jensen’s formula. Let ζ( f , r) be the number of
zeros of an entire function f : C→ C inside the ball Br . Then, provided
f (0) 6= 0, one has for every a > 1

(1) ζ( f , r)≤ C logµ( f , ar) ∀r > 0 ,

where C is a positive constant depending on a and f (0). For instance,
in Example 1.1 both ζ and logµ grow linearly in r.

These two features might have given a hope that logµ(r) is an ap-
propriate substitute of the degree for an entire map f : Cn → Cn (this
was known as the transcendental Bézout problem). However, this anal-
ogy was overturned by Cornalba and Shiffman [11] who famously con-
structed, for n = 2, an entire map f with logµ( f , r) ≤ Cεr

ε for every
ε > 0 (and hence of growth order zero), with ζ( f , r) growing arbitrarily
fast. As Griffiths wrote in [15] “This is the first instance known to this
author when the analogue of a general result in algebraic geometry fails to
hold in analytic geometry."

1.2. Coarse zero count. One of the motivations for the present paper
is to further explore the Cornalba–Shiffman example using the notion of
coarse zero count introduced in [7], which is based on topological persis-
tence. The idea, roughly speaking, is to discard the zeros corresponding
to small oscillations of the map. It turns out that with such a count we
are able to get a Jensen-type estimate (1), albeit with a somewhat worse
power of logµ(r) in the right-hand side, see (2) below.
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Given an analytic map f : Cn→ Cn and positive numbers δ, r > 0, we
define the counting function ζ( f , r,δ) of δ-coarse zeros of f inside a ball
Br as the number of connected components of the set f −1(Bδ)∩Br which
contain zeros of f , see Figure 1.

ζ(f, r) = 7

ζ(f, r, δ) = 3

Br

FIGURE 1. Dots represent zeros of f , while shaded regions
depict the set f −1(Bδ)

Theorem 1.2. For any analytic map f : Cn → Cn and any a > 1, r > 0,
and δ ∈ (0, µ( f ,ar)

e ), we have

(2) ζ( f , r,δ)≤ C
�

log
�

µ( f , ar)
δ

��2n−1

,

where the constant C depends only on a and n.

Note that by Liouville’s theorem, unless f is constant, µ( f , ar) is un-
bounded. Therefore, for any givenδ > 0, the conditionδ ∈ (0,µ( f , ar)/e)
holds for all r large enough.

Remark 1.3. Consider a higher-dimensional generalization of Example
1.1: take an analytic map f : Cn→ Cn given by

f (z1, . . . , zn) = (e
z1 + 1, . . . , ezn + 1) .

It is easy to see that logµ( f , r) grows linearly in r and ζ( f , r,δ) grows
as rn when r →∞, for δ sufficiently small. It would be interesting to
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understand whether the power of the logarithm in (2) is sharp or it can
be improved, possibly, to n.

It follows from Theorem 1.2 that for the Cornalba-Shiffman example
the coarse count of zeros grows slower than any positive power of r, see
Theorem 1.5 below for precise asymptotics.

Remark 1.4. Consider a function f of growth order ≤ ρ, that is, for all
ε > 0, there exist positive constants Aε, B, such that

| f (z)| ≤ Aεe
B|z|ρ+ε

everywhere. Then by (2), ζ( f , r,δ) grows slower than r(2n−1)ρ+ε for every
ε > 0. At the same time, it was shown in [8, equation (1.9)] that for any
α > 0, ζ( f +c, r) grows slower than r(2n−1)ρ+1+α for almost all c > 0 small
enough. While the growth rate in (2) is slightly sharper, it is interesting
to note that the power (2n− 1)ρ appears in both bounds.

1.3. Cornalba–Shiffman example: a coarse perspective. Let us re-
mind the Cornalba–Shiffman construction. Let g : C→ C be given by

g(z) =
∞
∏

i=1

�

1−
z
2i

�

.

For k ≥ 1 an integer, let

gk(z) =
g(z)

1− z
2k

be the function defined by the same product with k-th term excluded.
All the infinite products converge uniformly on compact subsets of C and
hence g and gk are holomorphic by Weierstrass’ theorem. For a positive
integer c we define a polynomial Pc : C→ C as

Pc(w) =
c
∏

j=1

�

w−
1
j

�

.

Given a strictly increasing sequence of positive integers c = {ci}, c1 <
c2 < . . . define f : C2→ C as

f (z, w) =
∞
∑

i=1

2−c2
i gi(z)Pci

(w).

f converges uniformly on compact sets and is hence holomorphic by
Weierstrass’ theorem in several variables. Finally, we define a map F :
C2 → C2, F(z, w) = (g(z), f (z, w)). As shown in [11], for all c, F is of
order zero. However, the zero set of F is given by

F−1(0) =
§

�

2i,
1
j

�

| i = 1,2, . . . ; j = 1, . . . , ci

ª

,
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as depicted in Figure 2. The dots represent zeros of F and the number
of zeros ζ(F, r) = ζ(F, r, 0) equals the number of dots inside the circle.
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FIGURE 2. Classical count of zeros

We now see that by taking c which increases sufficiently fast ζ(F, r)
can grow arbitrarily fast which disproves the two-dimensional transcen-
dental Bézout problem. More precisely, in [11] Cornalba and Shiffman
made a remark that ci = 22i

would suffice. Indeed, it is not difficult to
check that for λ > 0, if ci = b2λic then ζ(F, r) = Θ(rλ) i.e. the order of
growth of the number of zeros is λ, while for ci = 22i

, log2 ζ(F, r) = Θ(r)
and the order of growth of ζ(F, r) is infinite. Here and further on we
write a(r) = Θ(b(r)) if a(r) = O(b(r)) and b(r) = O(a(r)) as r →∞;
we will also write a(r)∼ b(r) if limr→∞ a(r)/b(r) = 1.

Let us re-examine the same class of examples from the coarse point of
view.

Theorem 1.5. Let c be an arbitrary increasing sequence of positive integers.
When r → +∞ it holds

logµ(F, r) = Θ((log2 r)2),

and for a fixed δ > 0
ζ(F, r,δ)∼ log2 r.

Let us explain the geometric picture behind Theorem 1.5, while refer-
ring the reader to Section 5 for detailed proofs. For a fixed δ, we show
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FIGURE 3. Coarse count of zeros

that the set {|F | ≤ δ}, while possibly being complicated for small ra-
dius r, stabilizes for large radii and can be described rather accurately.
More precisely, we show that there exists k0, which depends only on δ,
such that {|F | ≤ δ} contains intervals {2k}×[0, 1] for all k ≥ k0. Thus, for
k ≥ k0 the zeros on each of the intervals {2k}×[0, 1] are counted coarsely
as one zero and the coarse count increases at the rate log r. This implies
ζ(F, r,δ) = O(log r). Furthermore, for k ≥ k0, {|F | ≤ δ} will never in-
tersect hyperplanes Hk = {(w, z) | Re(z) = 2k + 2k−1}. In other words,
{|F | ≤ δ} consists of parts contained between those hyperplanes and
which contain intervals {2k} × [0, 1], as shown on Figure 3 (shaded re-
gions represent the set {|F | ≤ δ}). This implies that ζ(F, r,δ) = Θ(log r),
which we can improve to ζ(F, r,δ)∼ log r as claimed by Theorem 1.5.

Putting together Theorems 1.2 and 1.5, we come to the following con-
clusion. It follows from Theorem 1.2 for n= 2 that

ζ(F, r,δ)≤ Ca(logµ(F, ar)− logδ)3.

On the logarithmic scale, this inequality tells us that for fixed a and δ,

(3) logζ(F, r,δ) = O (log logµ(F, ar)) ,
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when r → +∞. Theorem 1.5 implies that (3) is asymptotically sharp as

(4) logζ(F, r,δ) = Θ(log logµ(F, ar)).

In other words, Cornalba–Shiffman examples exhibit highly oscillatory
behaviour on small scales, which increases the count of zeros in an un-
controllable way and contradicts the transcendental Bézout problem.
However, equality (4) shows that if we discard small oscillations, the
same examples behave essentially as predicted by the coarse version of
the transcendental Bézout problem.

1.4. Islands vs peninsulas. A connected component of f −1(Bδ)∩ Br is
called an island if it is disjoint from Sr = ∂ Br and a peninsula otherwise.
It is not hard to see that every island contains at least one zero of f ,
see Remark 3.2. Let ζ0( f , r,δ) denote the number of islands, and let
τ( f , r,δ) denote the total number of zeros of f with multiplicities con-
tained in islands in Br . Since an island can contain more than one zero,
clearly

ζ0( f , r,δ)≤ τ( f , r,δ).
The following result is a consequence of Rouché’s theorem for analytic

mappings.

Theorem 1.6. For all a > 1, r > 0, and δ ∈ (0,µ( f , ar)/e)

(5) τ( f , r,δ)≤ C1

�

log(µ( f , ar)/δ)
�n

,

where C1 depends only on a and n.

Note that in view of Remark 1.3, estimate (5) is sharp.

Remark 1.7. Estimates analogous to (5) for the usual count of zeros have
been proven under positive lower bounds on the Jacobian of f in [18,
19, 20]. Upper bounds in Theorems 1.2 and 1.6 apply to all holomorphic
mappings f : Cn → Cn. A detailed comparison of our results with those
in [18, 19, 20] are carried out in Section 7. In particular, we give a
different proof of a result from [20] using Theorem 1.6.

The proof of Theorem 1.6 does not use persistence techniques and
does not extend to an estimate on ζ( f , r,δ), as it does not control penin-
sulas. In general, ζ( f , r,δ) and ζ0( f , r,δ) can behave rather differently.
Indeed, this is the case for the Cornalba–Shiffman example. as we dis-
cuss below.

Let F be a Cornalba-Shiffman map defined previously. It is natural to
ask what is the possible growth of the coarse count of islands ζ0(F, r,δ).
We show that, as opposed to ζ(F, r,δ), ζ0(F, r,δ) can grow arbitrarily
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slow, with an upper bound depending on c. More precisely, we prove the
following theorem.

Theorem 1.8. Let λ,δ > 0, l ≥ 1 an integer and denote by exp2(x) = 2x .
If ci = bexp2 . . . exp2

︸ ︷︷ ︸

l times

(λi)c then there exists a constant ml,λ,δ such for all

r ≥ exp2 . . . exp2
︸ ︷︷ ︸

l+1 times

(1) it holds

ζ0(F, r,δ)≤
1
λ

log2 . . . log2
︸ ︷︷ ︸

l+1 times

r +ml,λ,δ.

In particular, for ci = 22i
as in [11], we have that ζ0(F, r,δ) = O(log2 log2 log2 r).

From the geometric perspective, the slow growth of ζ0(F, r,δ) is due to
elongation of {|F | ≤ δ} in the w-direction. Namely, as r increases, new
groups of zeros of roughly the same modulus r appear, while the com-
ponents of {|F | ≤ δ} which contain these zeros grow in the w-direction
faster than r (the diameter of their w-projection grows faster than r).
Hence, it takes larger r for a component of {|F | ≤ δ} to be fully con-
tained in Br i.e. to contribute to ζ0(F, r,δ).

1.5. Discussion. Below we discuss some extensions of our results as
well as directions for further research.

1.5.1. Analytic mappings from Cn to Ck. We expect that a bound analo-
gous to Theorem 1.2 should hold for entire mappings f : Cn→ Ck. How-
ever, to have geometric meaning in this case, the definition of ζ( f , r,δ)
should be generalized. There are two essentially dual directions of do-
ing so. First, we can look at coarse homology groups of the zero set: for
0≤ d ≤ 2n− 1, set

ζd( f , r,δ) = dim Im
�

Hd({ f = 0} ∩ Br)→ Hd({| f | ≤ δ} ∩ Br)
�

.

Considering generic algebraic maps f , we expect only 0 ≤ d ≤ n− k to
have geometric significance. Of particular interest is d = n−k, since this
is the dimension where vanishing cycles appear. We expect the upper
bound

ζd( f , r,δ)≤ C
�

log(µar( f )/δ)
�2n

.
Second, we may set

md( f , r,δ) = dim Im
�

Hd({| f |> δ} ∩ Br)→ Hd({| f |> 0} ∩ Br)
�

.

We expect the upper bound

md( f , r,δ)≤ C
�

log(µar( f )/δ)
�2n

for 0≤ d ≤ 2n− 1.
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1.5.2. Affine varieties. It would be interesting to generalize our main re-
sults to more general affine algebraic varieties Y ⊂ CN . The starting
case would be varieties which compactify to smooth projective varieties
X ⊂ CPN by a normal crossings divisor D = X \ Y. We expect that the
methods of [10] combined with those of [7], in particular the subadditiv-
ity theorem for persistence barcodes, should be useful for this purpose.

1.5.3. Harmonic mappings. A result analogous to Theorem 1.2 but in the
context of harmonic maps can be proven in a similar way. Namely, let
h= (h1, . . . , hd) : Rd → Rd be a harmonic map in the sense that h j : Rd →
R is harmonic for all j. In this case, the coarse counts ζ(h, r,δ),ζ0(h, r,δ)
being defined analogously to the above, should satisfy the upper bound

(6) ζ0(h, r,δ)≤ ζ(h, r,δ)≤ C2

�

log(µar(h)/δ)
�d

,

for all a > C1, r > 0, and δ ∈ (0,µar(h)/e), where C1 depends on d
only, and C2 depends on a and d, but not on r or δ. (By Liouville’s
theorem the condition on δ holds for all r large enough, if our mapping
is not constant.) This bound is sharp asymptotically in r for all fixed
δ > 0, as can be easily seen from the example h = (h1, . . . , hd) where
hi(x1, . . . , xd) = (ex i+1 sin(x i)) for 1 ≤ i ≤ d − 1 and hd(x1, . . . , xd) =
(ex1 sin(xd)). Note that log(µar(h)) is closely related to the notion of the
doubling index of the harmonic function (see for example [21, Equation
(12)]).

SInce our proof of inequality (6) is based on Cauchy estimates, as in
Proposition 4.1, and bounds on barcodes of polynomials as in Proposition
3.1 (see also [7, Proposition 4.12]), it is not hard to extend (6) to a
certain quasi-analytic class of functions.

1.5.4. Near-holomorphic mappings. Let us also note that Theorem 1.2
implies the following result about the count of islands for continuous
functions that are close to holomorphic ones.

Corollary 1.9. Fix b < 1 and δ > 0, and let h : Cn→ Cn be a continuous
function such that there exists a holomorphic function f : Cn → Cn with
dC0(h, f )< b

2δ. Then

ζ(h, r, (1+ b)δ)≤ C
�

log(µ(h, ar)/δ)
�2n−1

,

where C depends on a, b, n only.

1.5.5. A dynamical interlude. A dynamical counterpart of the transcen-
dental Bézout problem is the count of periodic orbits of entire maps
f : Cn → Cn. Here by a k-periodic orbit we mean a fixed point of the
iteration f ◦k = f ◦ · · · ◦ f (k times). There exists a vast literature on the
orbit growth of algebraic maps f (see e.g. [2]). For instance, it follows
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from the Bézout theorem that if the components of f are generic poly-
nomials of degree ≤ d, the number of k-periodic orbits does not exceed
dkn. Can one expect a bound on the number of k-periodic orbits in the
ball of radius r in terms of the maximum modulus function µ( f , r)? The
naive answer is “no" due to the the Cornalba-Shiffman example. Nev-
ertheless, Theorem 1.2 above readily yields such a bound on the coarse
count ζ( fk, r,δ), where

fk(z) := f ◦k(z)− z .

One can check that the maximum modulus function behaves nicely under
the composition and the sum:

µ( f ◦ g, r)≤ µ( f ,µ(g, r)), µ( f + g, r)≤ µ( f , r) +µ(g, r) .

Fix a > 1 and δ > 0, set µ̃(r) := µ( f , ar), and put

µk(r) = µ̃
◦k(r) + r .

By Theorem 1.2 we have the desired estimate

(7) ζ( fk, r,δ)≤ C max

�

log
�

µk(r)
δ

�2n−1

, 1

�

.

A few questions are in order.

Question 1.10. Can one find a transcendental entire map f for which
estimate (7) is sharp?

A natural playground for testing this question are transcendental Hénon
maps whose entropy as restricted to a family of concentric discs grows
arbitrarily fast [1].

Further, recall that a k-periodic orbit of an entire map f : Cn → Cn is
called primitive if it is not m-periodic with m< k. Denote by νk( f , r) the
number of primitive periodic orbits lying in the ball of radius r.

Question 1.11. Does there exist a transcendental entire map f of order 0
(i.e., the modulus µ( f , r) grows slower than erε for every ε > 0) such that
νk( f , r) grows arbitrarily fast in k and r?

For instance, taking f (z) = h(z)+z, where h is the Cornalba-Shiffman
map, we see that ν1( f , r) can grow arbitrarily fast. Can one generalize
this construction to k ≥ 2?

Finally, let us mention that the failure of the transcendental Bézout
theorem appears as one of the substantial difficulties in the work [16]
dealing with a dynamical problem of a completely different nature, namely
with embeddings of Zk-actions into the shift action on the infinite dimen-
sional cube (see (2) on p. 1450 in [16]). In particular, the authors ana-
lyze the structure of zeroes of so-called tiling-like band-limited maps (see
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p.1477 and Lemma 5.9). It would be interesting to perform our coarse
count of zeroes (i.e., to calculate ζ) for this class of examples.

1.5.6. Multiparameter persistence. An entire map f : Cn→ Cn naturally
gives rise to a persistence module H∗({| f | ≤ t}∩Br) in two parameters r
and t. In this paper we considered it as an r-parametrized family of per-
sistence modules with one parameter t. It would be interesting to study
this persistence module from the viewpoint of multiparameter persis-
tence, see [4] and references therein, for example by using the recently
introduced language of signed barcodes, see [5, 6, 23].
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2. PERSISTENCE MODULES AND BARCODES

Recall that for a Morse function f : M → R on a compact manifold
and a coefficient field K, its barcode in degree q ∈ Z is a finite multi-set
Bq( f ;K) of intervals with multiplicities (I j, m j), where m j ∈ N and I j is
finite, that is of the form [a j, b j) or infinite, that is of the form [c j,∞).
The number of infinite bars is equal to the Betti number bq(M ;K) =
dim Hq(M ;K).

This barcode is obtained algebraically from the persistence module Vq( f ;K)
consisting of vector spaces Vq( f ;K)t = Hq({ f ≤ t};K) parametrized by
t ∈ R and connecting maps πs,t : Vq( f ;K)s → Vq( f ;K)t induced by
the inclusions { f ≤ s} ,→ { f ≤ t} for s ≤ t. These maps satisfy the
structure relations of a persistence module: πs,s = idVq( f ;K)s for all s and
πs2,s3 ◦πs1,s2 = πs1,s3 for all s1 ≤ s2 ≤ s3. The total barcode of f is set to be

B( f ;K) = tq∈ZBq( f ;K)

where t stands for the sum operation on multisets. This is the barcode
of the persistence module

V ( f ;K) = ⊕q∈ZVq( f ;K).

On a compact manifold M with boundary ∂M and a Morse function
f : M → R in the sense of manifolds with boundary, we may define the
persistence module and barcode of f as above.

One simple property of the barcode of this persistence module is that
for x ∈ R the number of bars starting at x is dim coker(πx−ε,x+ε) for ε > 0
sufficiently small. Moreover, the number of bars in the barcode clearly
coincides with the number of their starting points. Another property is
that the number of bars containing a given interval [a, b] is dim Im(πa,b).
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Recall that the length of a finite bar [a, b) is b−a and the length of an
infinite bar [c,∞) is +∞. We require the following notion: for δ ≥ 0,
let Nδ( f ;K) denote the number of bars of length > δ in the barcode
B( f ;K). SimilarlyNq,δ( f ;K) is the number of bars of length > δ in the
barcodeBq( f ;K) and Nδ( f ;K) =

∑

qNδ,q( f ;K).
We refer to [24] for a systematic introduction to persistence modules

with a view towards applications in topology and analysis. The only re-
sult which we require here is the following direct consequence of the al-
gebraic isometry theorem [3] (see [24, Theorem 2.2.8, Equation (6.4)]).

Theorem 2.1. Let f , g : M → R two functions on a compact manifold M
with boundary such that dC0( f , g)≤ c − ε/2 for c > ε/2> 0. Then for all
q ∈ Z, Nq,2c( f )≤Nq,ε(g).

3. BARCODE FOR A COMPLEX POLYNOMIAL MAPPING ON A BALL

In this section we prove the following result which provides necessary
bounds on the number of degree zero bars in the barcode of the norm of
an equidimensional polynomial mapping over a ball.

Proposition 3.1. Let k ≥ 1. Let p1, . . . , pn : Cn→ C be complex polynomi-
als of degree at most k. Set p : Cn → Cn, p = (p1, . . . , pn) for the induced
polynomial mapping. Let B be a ball in Cn. Then for all δ > 0, the number
N0,δ(|p|) of degree 0 bars of length at least δ in the barcode of |p| on the
ball B satisfies

N0,δ(|p|)≤ Cnk2n−1

for a constant Cn depending on n only. Moreover, the degree 0 barcode of
|p| is finite with N0,0(|p|)≤ Cnk2n−1 finite bars.

Proof. We start the proof by perturbing p to another polynomial map-
ping g = (g1, . . . , gn) with dC0(Q)(p, g) < δ/2 and deg(g j) ≤ k1 = Ak+ B
for constants A ≥ 1, B ≥ 0 depending only on n, for all j. Moreover,
we choose g such that h = |g|2 is a Morse function on B in the sense of
manifolds with boundary: in particular, the critical points of h lie in the
interior of B, where h is Morse, and h|∂ B is Morse (see [17] for a slightly
more general notion). In addition we choose g : Cn→ Cn to be a proper
mapping. It is sufficient to prove that the number of degree 0 bars in
the barcodeB(h;K) of h is at most Cnk2n−1

1 . In order to do this we shall
estimate the number of boundary critical points first and subsequently
the number of interior critical points. That this produces the required
upper bound is classical Morse theory for interior critical points together
with [17, Theorem 8] for critical points on the boundary.

First, by assumption, there exists a point N ∈ ∂ B which is regular for
h|∂ B. Consider complex linear coordinates (z1, . . . , zn), z j = x2 j−1+i x2 j, in
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which B is the unit ball, so ∂ B is the unit sphere, and N is the base vector
(0, . . . , 0, i). Note that h is a polynomial of degree at most 2k1 in these
coordinates. Following an idea of Nonez, we consider inverse stereo-
graphic projection θ : R2n−1→ ∂ B\{N}, θ (u1, . . . , u2n−1) = (x1, . . . , x2n),
x j =

2u j

|u|2+1 for 1 ≤ j ≤ 2n − 1, x2n =
|u|2−1
|u|2+1 . Then θ ∗h = q

(|u|2+1)2k1
for a

polynomial q in u1, . . . , u2n−1 of degree at most 4k1. The critical points of
θ ∗h are in bijection with those of h|∂ B, and are given by 2n− 1 polyno-
mial equations ∂u j

q(u)(|u|2 + 1) − 4k1u jq(u) = 0, 1 ≤ j ≤ 2n − 1, each
one of degree at most 4k1 + 1 ≤ 5k1. In total, by an estimate of Milnor
[22] we obtain that there are at most (5k1)2n−1 = Cnk2n−1 such critical
points.

It remains to estimate the number of degree 0 critical points in the
interior of B. Such critical points are local minima of |g|2 and hence of |g|.
Since g is proper, it is finite, and as it is equidimensional it is therefore an
open mapping [12, Proposition 3, Section 2.1.3]. Therefore the interior
local minima of |g| are necessarily zeros of g. Hence their number is
bounded by the number of the connected components of the zero variety
Zg = g−1(0). In turn, this number is bounded by kn

1 in view of Bézout’s
theorem (see [13, Example 8.4.6] for example). This finishes the proof
of the main part of the theorem.

The moreover part follows immediately, since the estimate onN0,δ(|p|)
is uniform in δ.

�

Remark 3.2. In fact, we did not need to arrange g to be proper. Indeed,
an interior Morse minimum p of h= |g|2 must be a zero of g. If g(p) 6= 0,
then dph = 0 implies that dp g : Cn → Cn has non-trivial kernel K . This
implies that the Hessian of h restricted to K is the real part of a complex
quadratic form, and hence has signature zero. Therefore it cannot be
positive definite. Note that the same argument can be applied to show
that for a holomorphic function, every island contains at least one zero.

4. PROOF OF THEOREM 1.2

We first recall a version of the classical Cauchy estimates for complex
analytic mappings.

Proposition 4.1. Let f : Cn→ Cm be a complex analytic mapping, a > 1,
and Rk = f − pk be the Taylor remainder for the approximation of f by the
Taylor polynomial mapping pk at 0 of degree< k. Then for all r > 0, k ≥ 0,

µr(Rk)≤ Caa−kµar( f )

for the constant Ca =
a

a−1 depending only on a.
13



We give a proof for clarity.

Proof. Suppose first that m = 1. Let v ∈ S2n−1 ⊂ Cn and u ∈ Br(C) ⊂ C.
Write a point z in Br = Br(Cn) as z = uv. Then Rk(z) = f (uv)− pk(uv).
Now take v′ ∈ S2n−1 and set g(u) = 〈 f (uv), v′〉, qk(u) = 〈pk(uv), v′〉. Then
qk is the Taylor polynomial of g of degree < k and rk = g − qk is the
corresponding Taylor remainder. It is enough to bound rk(u) uniformly
in v, v′ for u ∈ Br(C).

Let 0< r < ρ. The Cauchy integral formula yields for |w|= ρ, |u|= r
that

rk(u) =
1

2πi

∫

S1
ρ

g(w)
� u

w

�k 1
w− u

dw.

Therefore

|rk(u)| ≤
� r
ρ

�k ρ

ρ − r
µρ(g)

and picking ρ = ar, we get

|rk(u)| ≤ Caa−kµar(g)≤ Caa−kµar( f ).

So taking maxima over u, v and v′, we obtain

µr(Rk)≤ Caa−kµar( f ).

�

Proof of Theorem 1.2. Let us now suppose that f = ( f1, . . . , fn) : Cn→ Cn

is a complex analytic self-mapping. Let h = | f |. Proposition 4.1 implies
that on the ball Br of radius r, there exists a polynomial mapping pk :
Cn→ Cn of degree < k such that

dC0( f , pk)< Caa−kµar( f ).

In particular for k = dloga(µar( f )/δ)e= dlog(µar( f )/δ)/ log(a)e, which
makes sense as a positive integer since a > 1,

dC0( f , pk)< Caδ,

and therefore
dC0(h, |pk|)< Caδ.

Hence by Theorem 2.1 and Proposition 3.1 from Section 3

N0,C ′aδ
(h)≤N0,ε(|pk|)≤ Cnk2n−1 ≤ Cn,a

�

log(µar( f )/δ)
�2n−1

,

for C ′a = 2Ca, Cn,a = Cn((log(a))−1 + 1)2n−1 and suitable small ε > 0. In
turn by a change of variable

N0,δ(h)≤ C ′n,a

�

log(µar( f )/δ)
�2n−1

,
14



for C ′n,a = (log(C ′a) + 1)2n−1Cn,a. We used the condition µar( f )/δ > e in
order to absorb additive terms into suitable multiplicative terms in both
inequalities.

Now, ζ(r, f ,δ)≤N0,δ(h) by definition of the persistence module of h.
�

5. COARSE ANALYSIS OF THE CORNALBA-SHIFFMAN EXAMPLE

The goal of this section is to prove Theorem 1.5. We will break down
its proof into Propositions 5.1, 5.4 and 5.6. Since there are no zeros of
F when r < 2 we always assume r ≥ 2. Firstly, we estimate µr(F) as
needed for the first part of Theorem 1.5.

Proposition 5.1. For all c and all r ≥ 2 it holds

1
2
(log2 r)2 −

3
2

log2 r + 1≤ log2µr(F)≤
3
2
(log2 r)2 +

7
2

log2 r + C ,

where C = 4+ log2

�∏∞
i=1(1+ 2−i)

�

.

Proof. Let k ≥ 1 be an integer such that 2k ≤ r < 2k+1. To prove the first
inequality it is enough to take (z, w) = (−r, 0). Now

|F(−r, 0)| ≥ |g(−r)| ≥ |g(−2k)|=
∞
∏

i=1

(1+ 2k−i),

and
∞
∏

i=1

(1+ 2k−i)>
k
∏

i=1

(1+ 2k−i) =
k−1
∏

j=0

(1+ 2 j)> 2
k(k−1)

2 >
� r

2

�
k−1

2

.

Since log2 r < k + 1 we have that k−1
2 >

log2 r−2
2 and hence |F(−r, 0)| ≥

�

r
2

�

log2 r
2 −1

. Applying logarithm to both sides proves the first inequality.
To prove the second inequality we firstly notice that if |z| ≤ r then

|g(z)| ≤
∞
∏

i=1

(1+ 2−i|z|)<
∞
∏

i=1

(1+ 2k+1−i) =
k
∏

j=0

(1+ 2 j) ·
∞
∏

i=1

(1+ 2−i).

Denoting C1 =
∏∞

i=1(1+ 2−i) and estimating

k
∏

j=0

(1+ 2 j)≤
k+1
∏

j=1

2 j = 2
(k+1)(k+2)

2 ≤ (2r)
k+2

2 ≤ (2r)
log2 r

2 +1,

yields

(8) |g(z)|< C1(2r)
log2 r

2 +1.
15



Similarly,

|gi(z)|< C1(2r)
log2 r

2 +1,
for all i ≥ 1. Using this inequality we further estimate that if |(z, w)| ≤ r
then

| f (z, w)| ≤
∞
∑

i=1

|gi(z)| · |Pci
(w)|

2c2
i

≤ C1(2r)
log2 r

2 +1
∞
∑

i=1

|Pci
(w)|

2c2
i

.

On the other hand
∞
∑

i=1

|Pci
(w)|

2c2
i

=
∞
∑

i=1

∏ci

j=1 |(w− 1/ j)|

2c2
i

<

∞
∑

i=1

(r + 1)ci

2c2
i

≤
∞
∑

i=1

(r + 1)i

2i2 .

To bound the last term we proceed as follows
∞
∑

i=1

(r + 1)i

2i2 =
∑

1≤i≤log2(r+1)

�

r + 1
2i

�i

+
∑

i>log2(r+1)

�

r + 1
2i

�i

<

<
∑

1≤i≤log2(r+1)

(r + 1)i +
∞
∑

j=0

1
2 j
< (r + 2)log2(r+1) + 2< (2r)log2 2r + 2.

Putting all the inequalities together, we obtain

(9) | f (z, w)|< C1(2r)
log2 r

2 +1((2r)log2 2r + 2).

Since |F(z, w)| =
p

|g(z)|2 + | f (z, w)|2, combining (8) and (9) proves
the desired inequality. �

We will now estimate ζ(F, r,δ) from above. Before we carry out the
relevant computations, let us explain the geometric intuition behind the
estimate.

Zeros of F belong to intervals {2k} × [0, 1], k ≥ 1. For a fixed δ, we
wish to prove that there exists k0 such that for all k ≥ k0, each of the
intervals {2k} × [0,1] is fully contained in {|F | ≤ δ}. This is the content
of Corollary 5.3. Now, on each of these intervals all zeros belong to the
same connected component of {|F | ≤ δ} and are thus counted at most
once in the coarse count ζ(F, r,δ), see Figure 4. In other words, each
of the intervals {2k} × [0,1], k ≥ k0 contributes at most one to ζ(F, r,δ)
and since they appear at rate log2 r we have that

ζ(F, r,δ)≤ log2 r + the error term.

The error term comes from zeros on intervals {2k} × [0,1] for k < k0
where we can not guarantee merging of zeros in {|F | ≤ δ}, i.e. we
observe no coarse effects. Moreover, since k0 depends only on δ, the
error terms only depends on c and δ. These considerations are formally
proven in Proposition 5.4.

16
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z

1

2k0 2k0+1 2k0+2 2k0+3

FIGURE 4. Merging of zeros starting from 2k0

Lemma 5.2. For each δ ≥ 2
(i−1)i

2 −c2
i the whole interval {2i}×[0, 2ci−

(i−1)i
2ci δ

1
ci ]

is contained in {|F | ≤ δ}.

Proof. Firstly we notice that

|gi(2
i)|=

i−1
∏

j=1

(2i− j − 1) ·
∞
∏

j=i+1

(1− 2i− j)<
i−1
∏

j=1

2i− j = 2
(i−1)i

2 .

Secondly

|F(2i, w)|= | f (2i, w)|= 2−c2
i |gi(2

i)||Pci
(w)|< 2

(i−1)i
2 −c2

i |Pci
(w)|.

Now, if w ∈ [0,1], |Pci
(w)| < 1 and the claim follows by the assump-

tion on δ. If w ∈ (1, 2ci−
(i−1)i

2ci δ
1
ci ], |Pci

(w)| < wci and thus |F(2i, w)| <
2
(i−1)i

2 −c2
i wci ≤ δ and the claim follows. �

Corollary 5.3. If δ ≥ 2
−i(i+1)

2 then the whole interval {2i} × [0, 1] is con-
tained in {|F | ≤ δ}.

Proof. Since c2
i ≥ i2, δ ≥ 2

−i(i+1)
2 implies that δ ≥ 2

(i−1)i
2 −c2

i and thus

{2i} × [0, 1] ⊂ {2i} × [0,2ci−
(i−1)i

2ci δ
1
ci ] ⊂ {|F | ≤ δ}

by Lemma 5.2. �
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Proposition 5.4. The following estimates hold for r > 2 :

ζ(F, r,δ)≤



















∑

1≤i≤log2 r
ci, if 0< δ < 2

− log2 r(log2 r+1)
2

log2 r + 2−
p

−2 log2δ+
∑

1≤i<
p
−2 log2 δ

ci, if 2
− log2 r(log2 r+1)

2 ≤ δ < 1
2

log2 r, if δ ≥ 1
2

.

Proof. Firstly, we notice that for all r ≥ 2

dim H0(F
−1(0)∩ Br) = number of zeros in Br ≤

∑

1≤i≤log2 r

ci,

and hence ζ(F, r,δ)≤
∑

1≤i≤log2 r
ci which proves the first case of the propo-

sition.
Now, we treat the third case, i.e. δ ≥ 1

2 . In this case, by Corollary
5.3 all intervals {2i} × [0,1], i ≥ 1 are contained in {|F | ≤ δ}. Thus
dim H0({|F | ≤ δ} ∩ Br) equals the number of intervals {2i} × [0,1], i ≥
1 which intersect Br . This number is not greater than log2 r and thus
ζ(F, r,δ)≤ log2 r.

Finally, we treat the second case, i.e. 2
− log2 r(log2 r+1)

2 ≤ δ < 1
2 . Denote

by r0 > 2 the unique real number such that δ = 2
− log2 r0(log2 r0+1)

2 . By the
assumption, r0 ≤ r. Let k ≥ 1 be an integer such that 2k < r0 ≤ 2k+1.
Now 2

−(k+1)(k+2)
2 ≤ δ and hence by Corollary 5.3, {|F | ≤ δ} contains all

interval {2i} × [0,1], i ≥ k+ 1. Thus

(10) dim(H0({|F | ≤ δ} ∩ Br)≤ I+ II,

where
I= the number of zeros in Br ∩∪k

i=1{2
i} × [0,1],

and

II= the number of intervals {2i} × [0, 1], i ≥ k+ 1 which intersect Br .

From (10) it follows that

ζ(F, r,δ)≤ I+ II.

Since k < log2 r0 <
p

−2 log2δ we have that

I≤
∑

1≤i<
p
−2 log2 δ

ci.

On the other hand, r ≥ r0 and thus log2 r ≥ log2 r0 > k as well as

II≤ log2 r − k.
18



Lastly, we use
p

−2 log2δ < log2 r0 + 1 ≤ k + 2 to obtain the desired
inequality. �

We will now provide a lower bound for ζ(F, r,δ). As before, we start
by explaining the geometric intuition.

As r increases,new zeros of F appear on intervals {2k} × [0, 1], i.e. at
a rate log2 r. We wish to prove that zeros on different intervals will not
be counted as one zero in the coarse count ζ(F, r,δ). Precisely, in Lemma
5.5, we prove that for a fixed δ, there exists k0 which depends only on
δ, such that the set {|F | ≤ δ} does not intersect any of the hyperplanes
Hk = {Re(z) = 2k + 2k−1} for k ≥ k0. Since Hk separates intervals {2k} ×
[0,1] and {2k+1} × [0,1], {|F | ≤ δ} can not contain zeros from different
intervals for k ≥ k0, see Figure 5. Similarly to the case of the upper
bound, this implies that

ζ(F, r,δ)≥ log2 r + the error term,

where the error term comes from zeros on intervals {2k}× [0, 1] for k <
k0 where we can not guarantee separation of components of {|F | ≤ δ}.
These considerations are formally proven in Proposition 5.6.

w

z

1

2k0 2k0+1 2k0+2 2k0+3

Hk0
Hk0+1 Hk0+2 Hk0+3

FIGURE 5. Separation of zeros starting from 2k0

In the lemma and the proposition that follow, we denote by C0 =
1
2

∏∞
i=1

�

1− 3
2i+1

�

.
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Lemma 5.5. Let z ∈ C be such that Re(z) = 2k + 2k−1 for some integer
k ≥ 1. Then for all w ∈ C it holds

|F(z, w)|> C02
(k−1)k

2 .

Proof. We estimate

|F(z, w)| ≥ |g(z)|=
∞
∏

i=1

|1− 2−iz| ≥
∞
∏

i=1

|1− 2−iRe(z)|=

=
k−1
∏

i=1

�

2k + 2k−1

2i
− 1

�

·
1
2
·
∞
∏

i=k+1

�

1−
2k + 2k−1

2i

�

> C02
(k−1)k

2 .

�

Proposition 5.6. For all r ≥ 2 it holds

ζ(F, r,δ)≥

¨

blog2 rc − 1, if δ ≤ C0

blog2 rc −
p

2 log2δ− 2 log2 C0 − 2, if C0 < δ ≤ C0r
log2 r−1

2
.

Proof. We first prove the case δ ≤ C0. By Lemma 5.5, we see that on each
hyperplane {Re(z) = 2i + 2i−1}, i ≥ 1 it holds |F(z, w)| > C0 ≥ δ. Hence
{|F | ≤ δ} does not intersect any of these hyperplanes and in particular
zeros (2i, 1), i ≥ 1 all belong to different connected components of {|F | ≤
δ}. In other words

ζ(F, r,δ)≥ the number of points (2i, 1), i ≥ 1 in Br ≥ blog2 rc − 1,

which finishes the proof of the first case.
To prove the second case, we firstly denote by r0 > 2 the unique real

number such that δ = C0r
log2 r0−1

2
0 . By assumption r0 ≤ r and we denote by

k ≥ 1 an integer such that 2k ≤ r0 < 2k+1. Now δ < C02
k(k+1)

2 and Lemma
5.5 implies that {|F | ≤ δ} does not intersect hyperplanes {Re(z) = 2i +
2i−1}, i ≥ k + 1. As in the first case, zeros (2i, 1), i ≥ k + 1 belong to
different connected components of {|F | ≤ δ} and thus

ζ(F, r,δ)≥ the number of points (2i, 1), i ≥ k+1 in Br ≥ blog2 rc−1−k.

Since log2δ = log2 C0 +
1
2 log2 r0(log2 r0 − 1) > log2 C0 +

1
2(k − 1)2, we

have that k <
p

2 log2δ− 2 log2 C0 + 1 and the claim follows. �

6. COUNTING ISLANDS

Let us start with the proof of Theorem 1.6 which, as was mentioned
in the introduction, is a an easy corollary of Rouché’s theorem.
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Proof of Theorem 1.6. By Rouché’s theorem for analytic mappings from
Cn to Cn (see e.g. [12, Section 2.1.3]) if g : Cn → Cn is a polynomial
mapping of degree at most k such that dC0( f |Br

, g|Br
)< δ/2, then

τ( f , r,δ)≤ τ(g, r,δ/2).

By Bézout’s theorem, however,

τ(g, r,δ/2)≤ kn.

By Proposition 4.1, it is enough to take k such that Caa−kµar( f ) < δ/2.
It is easy to see that the optimal such k satisfies

k ≤ C ′a log(µar( f )/δ).

Combining the three displayed inequalities finishes the proof. �

Before we give a formal proof of Theorem 1.8, let us briefly explain
the geometric intuition as we did for the proof of Theorem 1.5. As we
already explained, for a fixed δ, the sublevel set {|F | ≤ δ} stabilizes
starting from r = 2k0 into components which contain intervals {2k} ×
[0, 1] , k ≥ k0, but which are separated by hyperplanes Hk = {Re(z) =
2k+2k−1}. However, we will show that these components in fact contain
intervals {2k}× [0, L(k)] where L(k) can grow arbitrarily fast, the lower
bound on growth depending on c. This follows from Lemma 5.2. In other
words, components of {|F | ≤ δ} get elongated in w-direction and thus
they partly remain outside of Br for very large r, as shown on Figure
6. Due to this elongation, most of the components of {|F | ≤ δ} only
contribute to ζ(F, r,δ) and not to ζ0(F, r,δ), which leads to the upper
bound given by Theorem 1.8.

Proof of Theorem 1.8. Since ζ0(F, r,δ) is decreasing in δ, it is enough to

prove the statement for δ ≤ 1. Denote by bi = 2ci−
(i−1)i

2ci δ
1
ci . Let i0(l,λ,δ)

be the smallest index such that

1) For all i ≥ i0, δ ≥max(2−ci , 2
(i−1)i

2 −c2
i );

2) log2 bi0 ≥ i0;
3) For all i ≥ i0, bi is increasing.

Now,

(11) ζ0(F, r,δ)≤
∑

1≤i≤log2 bi0

ci + I,

where

I= the number of islands with zeros from {2i} × [0,1], i > log2 bi0 .
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FIGURE 6. Components count for ζ(F, r,δ), but not for ζ0(F, r,δ)

Since the first term of the right-hand side of this inequality depends only
on δ and c, we wish to estimate I. If r ≤ bi0 then 2i > r and I= 0. Thus,
we assume that r > bi0 . Firstly, from 2) it follows that

(12) I≤ the number of islands with zeros from {2i} × [0, 1], i > i0.

Now, 3) implies that there exists a unique integer k ≥ i0 such that bk ≤
r < bk+1. Due to 1) we may apply Lemma 5.2 to conclude that {|F | ≤ δ}
contains intervals {2i} × [0, bi] for all i ≥ i0. This fact, combined with
(12) implies

I≤ the number of intervals {2i}×[0, bi], i > i0 contained in Br ≤ k− i0.

Going back to (11) we have that

(13) ζ0(F, r,δ)≤
∑

1≤i≤log2 bi0

ci − i0 + k.
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Finally, 1) gives us that δ
1
ck ≥ 1

2 and hence 2ck−
(k−1)k

2ck
−1 ≤ bk ≤ r. Taking

logarithms we obtain that

ck ≤ log2 r +
(k− 1)k

2ck
+ 1.

Since (k−1)k
2ck
+ 1 has an upper bound which only depends on λ, taking

logarithms l times gives us

log2 . . . log2
︸ ︷︷ ︸

l times

ck ≤ log2 . . . log2
︸ ︷︷ ︸

l+1 times

r + aλ,

where aλ depends only on λ. Substituting the desired value of ck in this
inequality together with (13) finishes the proof. �

7. COMPARISON WITH OTHER RESULTS

The goal of this section is to compare the results of this paper to the
results of [20]. More precisely, we will deduce Theorem 5.1 in [20] from
Theorem 1.6, as well as show that Theorem 1.2 does not follow from
Theorem 5.1 in [20]. We start by recaling this result.

For an entire map f : Cn → Cn let J f denote the complex Jacobian
matrix. Given a sequence of zeros ξ = {ξi} ⊂ f −1(0) we define ζξ( f , r)
to be the number of elements of ξ inside a ball Br .

Theorem 7.1 (Theorem 5.1 in [20]). Let f : Cn → Cn be an entire map
and ξ= {ξi} a sequence of zeros of f . If there exist real numbers c > 0 and
b such that

(∀i) |det J f (ξi)| ≥ c(µ( f , |ξi|))−b,

then for any a > 1 it holds

ζξ( f , r) = O((logµ( f , ar))n),

when r →∞.

Firstly, we give a proof of Theorem 7.1 using Theorem 1.6. The strat-
egy of the proof follows [18]. Namely, the main results of [18], Theo-
rems 1.1 and 1.2, are proven using a lemma which was referred to as
“Weak Bézout estimate", see [18, Lemma 3.1]. This lemma establishes
an inequality

(14) τ( f , r,δ)≤ Cn

�

(r + 1)
µ( f , r + 1)

δ

�2n

,

with Cn which depends only on n. The proof of (14) relies on a global
version of the Chern-Levine-Nirenberg inequality, see [18, Theorem 2.1]
and references therein. Substituting (14) with Theorem 1.6 and using
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the same general arguments as in [18] proves Theorem 7.1. To imple-
ment this strategy, we will need the following lemma.

Lemma 7.2. Let f : Cn→ Cn be an entire map and ξ a zero of f such that
J f (ξ) 6= 0. Then, for all z ∈ Cn such that

|z| ≤
1

2
�

n! (µ( f ,|ξ|+1))n
|det J f (ξ)|

+ 1
�

it holds

| f (ξ+ z)| ≥
|det J f (ξ)| · |z|

2n!(µ( f , |ξ|+ 1))n−1
.

The proof of Lemma 7.2 can be extracted from the proof of Theorem
1.1 in [18]. We present it here for the sake of completeness. We will
use the following auxiliary statement, which is a direct consequence of
Schwarz lemma, see [18, Lemma 3.4] for details.

Lemma 7.3. Let f : Cn→ Cn be an entire map such that f (0) = 0, J f (0) =
0. Then for all z such that |z| ≤ 1

2µ( f ,1) it holds | f (z)| ≤ 1
2 |z|.

Proof of Lemma 7.2. We start by proving the following auxiliary inequal-
ity

(15) ‖J f (ξ)
−1‖op ≤ n!

(µ( f , |ξ|+ 1))n−1

|det J f (ξ)|
,

where ‖ · ‖op denotes the operator norm. Indeed,

‖J f (ξ)
−1‖op =

1
|det J f (ξ)|

‖adj(J f (ξ))‖op,

and thus we need to prove that

‖adj(J f (ξ))‖op ≤ n!(µ( f , |ξ|+ 1))n−1.

By Cauchy-Schwarz inequality

‖adj(J f (ξ))‖op ≤ n ·max
i, j
|adj(J f (ξ))i, j|,

and we are left to prove that

max
i, j
|adj(J f (ξ))i, j| ≤ (n− 1)!(µ( f , |ξ|+ 1))n−1.

For each i and j, adj(J f (ξ))i, j is a sum of (n−1)! terms, each of which is
a product of n− 1 partial derivatives of f . Thus

max
i, j
|adj(J f (ξ))i, j| ≤ (n− 1)! · (max

i
|∂i f (ξ))|)n−1.

Finally, Cauchy’s inequality yields that maxi |∂i f (ξ))| ≤ µ( f , |ξ|+1)which
completes the proof of (15).

24



Now, let g : Cn→ Cn be an entire map given by g(z) = (J f (ξ))−1 f (ξ+
z). Since g(0) = 0 and Jg(0) = idCn we may apply Lemma 7.3 to the map
g(z)− z, which gives us

(16) |g(z)− z| ≤
1
2
|z|,

for all z, such that |z| ≤ 1
2µ(g(z)−z,1) . Moreover, µ(g(z)−z, 1)≤ µ(g, 1)+1

implies that (16) holds for all z with |z| ≤ 1
2(µ(g,1)+1) and triangle inequal-

ity further implies that

(17) |g(z)| ≥
1
2
|z|

as long as |z| ≤ 1
2(µ(g,1)+1) . From the definition of g and (17) it follows

that

(18) | f (ξ+ z)| · ‖(J f (ξ))
−1‖op ≥

1
2
|z|,

for all z such that |z| ≤ 1
2(µ(g,1)+1) . Applying (15) to (18) yields

(19) | f (ξ+ z)| · n!
(µ( f , |ξ|+ 1))n−1

|det J f (ξ)|
≥

1
2
|z|,

for all z such that |z| ≤ 1
2(µ(g,1)+1) . Using (15) again gives us

|g(z)| ≤ | f (ξ+ z)| · ‖(J f (ξ))
−1‖op ≤ | f (ξ+ z)| · n!

(µ( f , |ξ|+ 1))n−1

|det J f (ξ)|
,

and thus

µ(g, 1)≤ n!
(µ( f , |ξ|+ 1))n

|det J f (ξ)|
.

Combining the last inequality and (19) finishes the proof. �

Proof of Theorem 7.1. For simplicity we assume that b ≥ 0 and f (0) 6= 0.
The general case readily reduces to this one.

Let r ≥ 0 and ξi ∈ Br . By the assumption

|det J f (ξi)| ≥ c(µ( f , |ξi|))−b ≥ c(µ( f , r))−b ≥ c(µ( f , r + 1))−b,

and since µ( f , |ξi|+ 1)≤ µ( f , r + 1), Lemma 7.2 gives us that

(20) | f (ξi + z)| ≥ δ :=
c|z|

2n!(µ( f , r + 1))n−1+b
,

for all z such that

|z| ≤ ε :=
1

2(c−1 · n!(µ( f , r + 1))n+b + 1)
.
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Since ε < 1
2 < 1 a connected component of {| f | ≤ δ} which contains ξi

is itself fully contained in Br+1. The same holds for each ξ j ∈ Br and thus

ζξ( f , r)≤ τ( f , r + 1,δ).

Finally, by (20), δ/e ≤ µ( f , a(r + 1))/e for all a > 1 and we may apply
Theorem 1.6 which yields

ζξ( f , r)≤ τ( f , r + 1,δ)≤ Cn,a

�

log
e ·µ( f , a(r + 1))

δ

�n

.

Substituting the expression for δ into this inequality and using µ( f , r +
1)≤ µ( f , a(r + 1)) gives us

ζξ( f , r)≤ Cn,a

�

log
2en! · (µ( f , a(r + 1)))n+b

c|z|

�n

for all z such that |z| ≤ ε. Taking |z|= ε yields

ζξ( f , r)≤ Cn,a

�

An,b logµ( f , a(r + 1)) + Bn,c

�n
,

where A, B, C depend on n, a, b, c as indicated. This completes the proof.
�

So far we proved that Theorem 7.1 follows from Theorem 1.6. Now,
we wish to show that Theorem 1.2 does not follow from Theorem 7.1.
Namely, one may imagine the following scenario. Let f : Cn→ Cn be an
entire map. While the classical count of zeros of f might not satisfy the
transcendental Bézout bound, it may still happen that for a fixed δ > 0,
we can choose a sequence of zeros {ξi} from f −1(Bδ) such that Theorem
7.1 applies to this sequence and ζ( f , r,δ) = O(ζξ( f , r)). In this case,
Theorem 7.1 would imply Theorem 1.2 (at least up to a constant which
depends on δ). However, our next result rules out this possibility.

Proposition 7.4. Let c= {ci} be an increasing sequence of positive integers
such that limi→+∞

i
ci
= 0 and F the corresponding Cornalba-Shiffman map.

For all real numbers c > 0 and b the inequality

|det J f (ξ)| ≥ c(µ( f , |ξ|))−b,

holds for at most finitely many zeros ξ ∈ F−1(0).

Proof. Since the zeros of Cornalba-Shiffman maps are isolated andµ(F, r)→
+∞ as r → +∞, it is enough to prove the proposition for b > 0. Since
F(z, w) = (g(z), f (z, w)), we have that

det JF = ∂z g∂w f − ∂w g∂z f = ∂z g∂w f .
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All relevant infinite sums and products converge uniformly on compact
sets and thus we may compute

∂z g =
∞
∑

l=1

−2−l gl ,

as well as

∂w f =
∞
∑

l=1

2−c2
l gl∂wPcl

.

We wish to evaluate JF at zeros of F. To this end, let us denote the zeros
of F by ξi, j = (2i, 1/ j) for i ≥ 1 and 1≤ j ≤ ci. We calculate

∂z g(2i) = −2−i gi(2
i),

as well as

∂w f (ξi, j) = 2−c2
i gi(2

i)∂wPci
(1/ j) = 2−c2

i gi(2
i)

∏

1≤l≤ci ,l 6= j

�

1
j
−

1
l

�

.

Since
�

�

�

∏

1≤l≤ci ,l 6= j

�

1
j −

1
l

�

�

�

�≤ 1, we get that for all i and j

(21) |det JF(ξi, j)| ≤ 2−c2
i −i(gi(2

i))2.

Moreover,

g(2i) =
i−1
∏

l=1

(1− 2i−l) ·
∞
∏

l=i+1

(1− 2i−l) =
i−1
∏

l=1

(1− 2l) ·
∞
∏

l=1

(1− 2−l),

and thus we have that

|gi(2
i)|<

i−1
∏

l=1

(2l − 1)<
i−1
∏

l=1

2l = 2
i(i−1)

2 .

Combining this inequality with (21) yields

(22) |det JF(ξi, j)|< 2−c2
i +i2−2i,

for all i and j. By the assumption on c, we have that for any b > 0,
c2

i ≥ 5b(i + 1)2 + i2 for all but finitely many i. Thus, for all but finitely
many i, it holds

(23) |det JF(ξi, j)|< 2−5b(i+1)2−2i

for all j. Since |ξi, j|= |(2i, 1/ j)|< 2i+1, we have that

(24) 2−5b(i+1)2 < 2−5b(log2 |ξi, j |)2 <
�

2
3
2 (log2 |ξi, j |)2+

7
2 log2 |ξi, j |

�−b
.

Now, by Proposition 5.1

(25)
�

2
3
2 (log2 |ξi, j |)2+

7
2 log2 |ξi, j |

�−b
≤ 2bC(µ(F, |ξi, j|))−b,
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where C > 0 is an absolute constant. Putting (23), (24) and (25) to-
gether gives us

|det JF(ξi, j)|< 2−2i+bC(µ(F, |ξi, j|))−b

for all but finitely many indices i, j. Since for every a > 0,2−2i+bC < a for
all but finitely many i, the proof follows. �

Remark 7.5. Different results in the spirit of Theorem 7.1 were obtained
in [18] and [19]. In one way or another, these results rely on lower
bounds on det J f at zeros of f . Namely, in [18], |det J f (ξi)| is assumed to
be bounded from below by a constant, while in [19] the upper bound for
ζξ( f , r) involves terms of the form log 1

det J f (ξi)
. From (22), it follows that

by taking {ci}which increases sufficiently fast, we can make |det JF(ξi, j)|
of Cornalba-Shiffman maps decrease arbitrarily fast. Since, by Theorem
1.5, ζ(F, r,δ) increases as log2 r independently of {ci}, we conclude that
Theorem 1.2 can not be deduced from the results of [18] and [19] using
the above-described strategy.

Remark 7.6. It is interesting to notice that Proposition 7.4 does not rule
out a possibility that Theorem 1.6, or at least the same bound for ζ0, can
be deduced from Theorem 7.1. Indeed, we have not proven any lower
bound on the count of islands of Cornalba-Shiffman maps. As a matter
of fact, it is not even clear if for each δ > 0 and each sequence {ci},
ζ0(F, r,δ)→ +∞ as r → +∞. Namely, it may happen that starting from
certain finite r0, all connected components of {|F | ≤ δ}, which contain
zeros of F , elongate all the way to infinity in w-direction and thus never
become islands, but rather remain peninsulas for all r > r0.

Question 7.7. Is it true that for each δ > 0 and all sequences c, ζ0(F, r,δ)→
+∞ as r → +∞? If so, what is the possible growth rate of ζ0(F, r,δ)
depending on parameters δ and c?

Remark 7.8. The main technical ingredient in [20] and [19] is Theorem
3.6 from [20] (slightly modified in [19]). While the proof of this result
has certain similarities with the proof of Theorem 1.6, it seems that the
two approaches are fundamentally different. Namely, approximation of a
holomorphic map by a polynomial is the key idea in the proof of Theorem
1.6, while it is not directly used in the proof of Theorem 3.6 in [20].
It would be interesting to explore how the methods of [20] and [19]
relate to the coarse counts of zeros. In the opposite direction, it would
be interesting to deduce the results of [19] using the same strategy as
above, by proving a suitable analogue of Theorem 1.6.
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