Confluence in Antiholomorphic Dynamics Unfolding of a Parabolic Fixed Point

Jonathan Godin

Université de Montréal

Workshop FASnet 2020

1 Dynamics of Antipolynomials

- 2 Parabolic Fixed Point and Unfoldings
- 3 Bifurcation
- 4 Space of Orbits
- **5** The Equivalence Theorem

Dynamics of antipolynomials

- Study the iterations of $z \mapsto \overline{z}^k + c$
 - The connectedness locus is a *multicorn*

Confluence in Antiholomorphic Dynamics

Dynamics of antipolynomials

- Study the iterations of $z \mapsto \overline{z}^k + c$
 - The connectedness locus is a *multicorn*

Tricorn (k=2)

Dynamics of antipolynomials

- Study the iterations of $z \mapsto \overline{z}^k + c$
 - The connectedness locus is a *multicorn*
- Key difference from the holomorphic setting :
 - Real analytic dependence of the parameter

Tricorn (k=2)

Confluence in Antiholomorphic Dynamics - Parabolic Fixed Point and Unfoldings

Local dynamics near a parabolic fixed point

$$f(z) = \overline{z} + \frac{1}{2}\overline{z}^2 + o(\overline{z}^2)$$

$$f(z) = \overline{z} + \frac{1}{2}\overline{z}^2 + o(\overline{z}^2)$$

• $g := f \circ f$ is a holomorphic with a parabolic fixed point • Model. $\overline{v^{\frac{1}{2}}}$, where v^t is the time-*t* of the vector field $\dot{z} = z^2$

Flot of $\dot{z} = z^2$

• an orbit of f jumps up and down

Confluence in Antiholomorphic Dynamics Parabolic Fixed Point and Unfoldings

Local dynamics near a parabolic fixed point

$$f(z) = \overline{z} + \frac{1}{2}\overline{z}^2 + o(\overline{z}^2)$$

Complete modulus of classification $(k, b, [\psi])$:

$$f(z) = \overline{z} + \frac{1}{2}\overline{z}^2 + o(\overline{z}^2)$$

Complete modulus of classification $(k, b, [\psi])$:

 k the codimension, i.e. the multiplicity of the fixed point minus 1 (in this case k = 1)

$$f(z) = \overline{z} + \frac{1}{2}\overline{z}^2 + o(\overline{z}^2)$$

Complete modulus of classification $(k, b, [\psi])$:

- k the codimension, i.e. the multiplicity of the fixed point minus 1 (in this case k = 1)
- b the formal invariant (the residue of $\frac{1}{f \circ f z}$)

$$f(z) = \overline{z} + \frac{1}{2}\overline{z}^2 + o(\overline{z}^2)$$

Complete modulus of classification $(k, b, [\psi])$:

- k the codimension, i.e. the multiplicity of the fixed point minus 1 (in this case k = 1)
- b the formal invariant (the residue of $\frac{1}{f \circ f z}$)
- ψ one of the horn maps of g = f ∘ f
 the second horn map is given by σ ∘ v^{1/2} ∘ ψ ∘ σ ∘ v^{1/2}

We consider a family depending on $\varepsilon = \varepsilon_1 + i\varepsilon_2 \ (\varepsilon_j \text{ real})$

$$f_{\varepsilon}(z) = a_0(\varepsilon) + a_1(\varepsilon)\overline{z} + a_2(\varepsilon)\overline{z}^2 + \cdots$$

Two questions :

We consider a family depending on $\varepsilon = \varepsilon_1 + i\varepsilon_2 \ (\varepsilon_j \text{ real})$

$$f_{\varepsilon}(z) = a_0(\varepsilon) + a_1(\varepsilon)\overline{z} + a_2(\varepsilon)\overline{z}^2 + \cdots$$

Two questions :

• Can we describe the space of orbits of f_{ε} for small values of ε ?

• Can we determine when two families are equivalent?

$$f_{\varepsilon}(z) = a_0(\varepsilon) + a_1(\varepsilon)\overline{z} + a_2(\varepsilon)\overline{z}^2 + \cdots$$

- This unfolds the parabolic fixed point into either
 two simple fixed points
 - a periodic orbit of periode 2
 - a parabolic fixed

Periodic orbit

² fixed points

$$f_{\varepsilon}(z) = a_0(\varepsilon) + a_1(\varepsilon)\overline{z} + a_2(\varepsilon)\overline{z}^2 + \cdots$$

- This unfolds the parabolic fixed point into either
 two simple fixed points
 - a periodic orbit of periode 2
 - a parabolic fixed

• $g_{\varepsilon} := f_{\varepsilon} \circ f_{\varepsilon}$ unfolds a holomorphic parabolic fixed point

Lemma

If $\frac{\partial f_{\varepsilon}}{\partial \varepsilon_1}(0) \neq 0$, there exists a real analytic curve γ in the parameter space on which f_{ε} is parabolic.

Rectified parameter space

Prepared form

Theorem (2020, Godin, J., Rousseau, C.)

There exists a change of coordinates and parameter that brings \widetilde{f}_{η} to the prepared form

$$f_{\varepsilon}(z) = \overline{z} + (\overline{z}^2 - \varepsilon_1)R_{\varepsilon}(\overline{z}),$$

where $\varepsilon_1 := \Re \varepsilon$ is the *unique* parameter given by

$$arepsilon_1 = \left(rac{1}{\mathsf{log}(\lambda_+)} - rac{1}{\mathsf{log}(\lambda_-)}
ight)^2, \quad \left(egin{matrix} \widetilde{g}_\eta = \widetilde{f}_\eta \circ \widetilde{f}_\eta \ \lambda_\pm = \widetilde{g}_\eta'(\pm\sqrt{\eta}) \ \end{pmatrix}.$$

• ε_1 is the canonical parameter

Prepared form

From here, we consider families of one real paramter ε in prepared form

$$f_arepsilon(z)=\overline{z}+(\overline{z}^2-arepsilon)R_arepsilon(\overline{z}),\qquadarepsilon\in\mathbb{R}$$
 small.

Prepared form

From here, we consider families of one real paramter ε in prepared form

$$f_arepsilon(z)=\overline{z}+(\overline{z}^2-arepsilon) {\cal R}_arepsilon(\overline{z}),\qquadarepsilon\in\mathbb{R}$$
 small.

We define

$$b(arepsilon) = rac{1}{\log(\lambda_+)} + rac{1}{\log(\lambda_-)}, \qquad egin{pmatrix} g_arepsilon = f_arepsilon \circ f_arepsilon, \ \lambda_\pm = g_arepsilon'(\pm \sqrt{arepsilon}), \end{pmatrix}$$

the formal invariant.

Bifurcation diagram

Space of orbits for $\varepsilon < 0$

First return map P

Space of orbits for $\varepsilon < 0$

First return map P

Space of orbits for $\varepsilon < 0$

Space of orbits for $\varepsilon < 0$

Space of orbits for $\varepsilon < 0$

• Each crescent is identified to a doubly punctured sphere

Space of orbits for $\varepsilon < 0$

• Each crescent is identified to a doubly punctured sphere

• We quotient by ℓ^L and f_{ε} to obtain

Space of orbits of f_{ε} : the projective space $\mathbb{R}P^2$

Space of orbits for $\varepsilon > 0$

- We extend the point of view of the previous case
 - **We** complexifie ε , so that f_{ε} is antiholomorphic in ε
 - The relation between g_{ε} and f_{ε} extends to $g_{\varepsilon} = f_{\overline{\varepsilon}} \circ f_{\varepsilon}$

Equivalence Theorem

Theorem (2020, Godin, J., Rousseau, C.)

Two prepared families $f_{j,\varepsilon}$ unfolding a parabolic fixed point are equivalent if and only if they have the same geometric invariant.

Corollary

Two generic families $f_{1,\alpha}$ and $f_{2,\beta}$ each unfolding a parabolic fixed point are equivalent if and only if they have the same modulus of classification $(\varepsilon, b, [\psi])$.