Confluence in Antiholomorphic Dynamics Unfolding of a Parabolic Fixed Point

Jonathan Godin
Université de Montréal

Workshop FASnet 2020

Content

1 Dynamics of Antipolynomials
2 Parabolic Fixed Point and Unfoldings
3 Bifurcation

4 Space of Orbits
5 The Equivalence Theorem

Dynamics of antipolynomials

- Study the iterations of
$z \mapsto \bar{z}^{k}+c$
■ The connectedness
locus is a multicorn

Dynamics of antipolynomials

- Study the iterations of

$$
z \mapsto \bar{z}^{k}+c
$$

- The connectedness locus is a multicorn

Tricorn (k=2)

Dynamics of antipolynomials

- Study the iterations of
$z \mapsto \bar{z}^{k}+c$
- The connectedness locus is a multicorn
- Key difference from the holomorphic setting :
■ Real analytic dependence of the parameter

Tricorn (k=2)

Local dynamics near a parabolic fixed point

$$
f(z)=\bar{z}+\frac{1}{2} \bar{z}^{2}+o\left(\bar{z}^{2}\right)
$$

Local dynamics near a parabolic fixed point

$$
f(z)=\bar{z}+\frac{1}{2} \bar{z}^{2}+o\left(\bar{z}^{2}\right)
$$

- $g:=f \circ f$ is a holomorphic with a parabolic fixed point
- Model. $\overline{v^{\frac{1}{2}}}$, where v^{t} is the time- t of the vector field $\dot{z}=z^{2}$

Flot of $\dot{z}=z^{2}$

- an orbit of f jumps up and down

Local dynamics near a parabolic fixed point

$$
f(z)=\bar{z}+\frac{1}{2} \bar{z}^{2}+o\left(\bar{z}^{2}\right)
$$

Complete modulus of classification $(k, b,[\psi])$:

Local dynamics near a parabolic fixed point

$$
f(z)=\bar{z}+\frac{1}{2} \bar{z}^{2}+o\left(\bar{z}^{2}\right)
$$

Complete modulus of classification $(k, b,[\psi])$:

- k the codimension, i.e. the multiplicity of the fixed point minus 1 (in this case $k=1$)

Local dynamics near a parabolic fixed point

$$
f(z)=\bar{z}+\frac{1}{2} \bar{z}^{2}+o\left(\bar{z}^{2}\right)
$$

Complete modulus of classification $(k, b,[\psi])$:

- k the codimension, i.e. the multiplicity of the fixed point minus 1 (in this case $k=1$)
- b the formal invariant (the residue of $\frac{1}{f \circ f-z}$)

Local dynamics near a parabolic fixed point

$$
f(z)=\bar{z}+\frac{1}{2} \bar{z}^{2}+o\left(\bar{z}^{2}\right)
$$

Complete modulus of classification $(k, b,[\psi])$:

- k the codimension, i.e. the multiplicity of the fixed point minus 1 (in this case $k=1$)
- b the formal invariant (the residue of $\frac{1}{f \circ f-z}$)
- ψ one of the horn maps of $g=f \circ f$
\square the second horn map is given by $\sigma \circ v^{\frac{1}{2}} \circ \psi \circ \sigma \circ v^{\frac{1}{2}}$

Unfolding of a parabolic fixed point

We consider a family depending on $\varepsilon=\varepsilon_{1}+i \varepsilon_{2}$ (ε_{j} real)

$$
f_{\varepsilon}(z)=a_{0}(\varepsilon)+a_{1}(\varepsilon) \bar{z}+a_{2}(\varepsilon) \bar{z}^{2}+\cdots
$$

Two questions:

Unfolding of a parabolic fixed point

We consider a family depending on $\varepsilon=\varepsilon_{1}+i \varepsilon_{2}$ (ε_{j} real)

$$
f_{\varepsilon}(z)=a_{0}(\varepsilon)+a_{1}(\varepsilon) \bar{z}+a_{2}(\varepsilon) \bar{z}^{2}+\cdots
$$

Two questions:

- Can we describe the space of orbits of f_{ε} for small values of ε ?
- Can we determine when two families are equivalent?

Unfolding of a parabolic fixed point

$$
f_{\varepsilon}(z)=a_{0}(\varepsilon)+a_{1}(\varepsilon) \bar{z}+a_{2}(\varepsilon) \bar{z}^{2}+\cdots
$$

- This unfolds the parabolic fixed point into either
- two simple fixed points
- a periodic orbit of periode 2
- a parabolic fixed

Periodic orbit

2 fixed points

Unfolding of a parabolic fixed point

$$
f_{\varepsilon}(z)=a_{0}(\varepsilon)+a_{1}(\varepsilon) \bar{z}+a_{2}(\varepsilon) \bar{z}^{2}+\cdots
$$

- This unfolds the parabolic fixed point into either
- two simple fixed points
- a periodic orbit of periode 2
- a parabolic fixed
- $g_{\varepsilon}:=f_{\varepsilon} \circ f_{\varepsilon}$ unfolds a holomorphic parabolic fixed point

Periodic orbit

2 fixed points

Unfolding of a parabolic fixed point

Lemma

If $\frac{\partial f_{\varepsilon}}{\partial \varepsilon_{1}}(0) \neq 0$, there exists a real analytic curve γ in the parameter space on which f_{ε} is parabolic.

Parameter space

Rectified parameter space

Prepared form

Theorem (2020, Godin, J., Rousseau, C.)
There exists a change of coordinates and parameter that brings \tilde{f}_{η} to the prepared form

$$
f_{\varepsilon}(z)=\bar{z}+\left(\bar{z}^{2}-\varepsilon_{1}\right) R_{\varepsilon}(\bar{z}),
$$

where $\varepsilon_{1}:=\Re \varepsilon$ is the unique parameter given by

$$
\varepsilon_{1}=\left(\frac{1}{\log \left(\lambda_{+}\right)}-\frac{1}{\log \left(\lambda_{-}\right)}\right)^{2}, \quad\binom{\widetilde{\mathfrak{g}}_{n}=\tilde{f}_{n} \circ \tilde{f}_{\eta}}{\lambda_{ \pm}=\widetilde{\mathfrak{g}}_{n}^{\prime}(\pm \sqrt{\eta})} .
$$

- ε_{1} is the canonical parameter

Prepared form

From here, we consider families of one real paramter ε in prepared form

$$
f_{\varepsilon}(z)=\bar{z}+\left(\bar{z}^{2}-\varepsilon\right) R_{\varepsilon}(\bar{z}), \quad \varepsilon \in \mathbb{R} \text { small. }
$$

Prepared form

From here, we consider families of one real paramter ε in prepared form

$$
f_{\varepsilon}(z)=\bar{z}+\left(\bar{z}^{2}-\varepsilon\right) R_{\varepsilon}(\bar{z}), \quad \varepsilon \in \mathbb{R} \text { small. }
$$

We define

$$
b(\varepsilon)=\frac{1}{\log \left(\lambda_{+}\right)}+\frac{1}{\log \left(\lambda_{-}\right)}, \quad\binom{g_{\varepsilon}=f_{\varepsilon} \circ f_{\varepsilon},}{\lambda_{ \pm}=g_{\varepsilon}^{\prime}(\pm \sqrt{\varepsilon}),}
$$

the formal invariant.

Confluence in Antiholomorphic Dynamics

டBifurcation

Bifurcation diagram

Space of orbits for $\varepsilon<0$

First return map P

Space of orbits for $\varepsilon<0$

First return map P

Space of orbits for $\varepsilon<0$

First return map P

Space of orbits for $\varepsilon<0$

First return map P decomposes

$$
P=L \circ \psi
$$

Space of orbits for $\varepsilon<0$

- Each crescent is identified to a doubly punctured sphere

Space of orbits for $\varepsilon<0$

- Each crescent is identified to a doubly punctured sphere

- We quotient by ℓ^{L} and f_{ε} to obtain

Space of orbits of f_{ε} : the projective space $\mathbb{R} P^{2}$

Space of orbits for $\varepsilon>0$

- We extend the point of view of the previous case

■ We complexifie ε, so that f_{ε} is antiholomorphic in ε
$■$ The relation between g_{ε} and f_{ε} extends to $g_{\varepsilon}=f_{\bar{\varepsilon}} \circ f_{\varepsilon}$

Equivalence Theorem

Theorem (2020, Godin, J., Rousseau, C.)

Two prepared families $f_{j, \varepsilon}$ unfolding a parabolic fixed point are equivalent if and only if they have the same geometric invariant.

Corollary

Two generic families $f_{1, \alpha}$ and $f_{2, \beta}$ each unfolding a parabolic fixed point are equivalent if and only if they have the same modulus of classification ($\varepsilon, b,[\psi]$).

