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Dynamics of Antipolynomials

Dynamics of antipolynomials

• Study the iterations of
z 7→ zk + c

The connectedness
locus is a multicorn

• Key di�erence from the
holomorphic setting :

Real analytic
dependence of the
parameter

Tricorn (k=2)
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Parabolic Fixed Point and Unfoldings

Local dynamics near a parabolic �xed point

f (z) = z + 1

2
z2 + o(z2)

• g := f ◦ f is a holomorphic with a parabolic �xed point

• Model. v
1
2 , where v t is the time-t of the vector �eld

ż = z2

Flot of ż = z2

• an orbit of f jumps up and down
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Parabolic Fixed Point and Unfoldings

Local dynamics near a parabolic �xed point

f (z) = z + 1

2
z2 + o(z2)

Complete modulus of classi�cation (k , b, [ψ]) :

• k the codimension, i.e. the multiplicity of the �xed point
minus 1 (in this case k = 1)

• b the formal invariant (the residue of 1

f ◦f−z )

• ψ one of the horn maps of g = f ◦ f
the second horn map is given by σ ◦ v 1

2 ◦ ψ ◦ σ ◦ v 1
2
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Parabolic Fixed Point and Unfoldings

Unfolding of a parabolic �xed point

We consider a family depending on ε = ε1 + iε2 (εj real)

fε(z) = a0(ε) + a1(ε)z + a2(ε)z
2 + · · ·

Two questions :

• Can we describe the space of orbits of fε for small values
of ε ?

• Can we determine when two families are equivalent ?
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Parabolic Fixed Point and Unfoldings

Unfolding of a parabolic �xed point

fε(z) = a0(ε) + a1(ε)z + a2(ε)z
2 + · · ·

• This unfolds the parabolic �xed point into either
two simple �xed points
a periodic orbit of periode 2
a parabolic �xed

• gε := fε ◦ fε unfolds a holomorphic parabolic �xed point

−
√
ε

√
ε

−
√
ε

√
ε

Periodic orbit 2 �xed points
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Parabolic Fixed Point and Unfoldings

Unfolding of a parabolic �xed point

Lemma

If ∂fε
∂ε1

(0) 6= 0, there exists a real analytic curve γ in the
parameter space on which fε is parabolic.

γ
ε = ε1 + iε2

Parameter space Recti�ed parameter space
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Parabolic Fixed Point and Unfoldings

Prepared form

Theorem (2020, Godin, J., Rousseau, C.)

There exists a change of coordinates and parameter that
brings f̃η to the prepared form

fε(z) = z + (z2 − ε1)Rε(z),

where ε1 := <ε is the unique parameter given by

ε1 =

(
1

log(λ+)
− 1

log(λ−)

)2

,
(
g̃η = f̃η ◦ f̃η
λ± = g̃ ′η(±

√
η)

)
.

• ε1 is the canonical parameter
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Bifurcation

Prepared form

From here, we consider families of one real paramter ε in
prepared form

fε(z) = z + (z2 − ε)Rε(z), ε ∈ R small.

We de�ne

b(ε) =
1

log(λ+)
+

1

log(λ−)
,

(
gε = fε ◦ fε,

λ± = g ′ε(±
√
ε),

)

the formal invariant.
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Bifurcation

Bifurcation diagram

0

ε

−
√
ε

√
ε

b > 0

−
√
ε

√
ε

b < 0

−
√
ε

√
ε
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Space of Orbits

Space of orbits for ε < 0

First return map P

decomposes

P = L ◦ ψ.

−
√
ε

√
ε

z

g◦mε (z)

√
ε

−
√
ε
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Space of Orbits

Space of orbits for ε < 0

• Each crescent is identi�ed to a doubly punctured sphere

∞

0

∞

0

ψ∞
ε

ψ0
ε

`L

• We quotient by `L and fε to obtain

[∞]

[`L ◦ ψ∞
ε ]R

Space of orbits of fε :
the projective space
RP2
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Space of Orbits

Space of orbits for ε > 0

• We extend the point of view of the previous case

We complexi�e ε, so that fε is antiholomorphic in ε

The relation between gε and fε extends to gε = fε ◦ fε

√
ε

−
√
ε
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The Equivalence Theorem

Equivalence Theorem

Theorem (2020, Godin, J., Rousseau, C.)

Two prepared families fj ,ε unfolding a parabolic �xed point are
equivalent if and only if they have the same geometric
invariant.

Corollary

Two generic families f1,α and f2,β each unfolding a parabolic
�xed point are equivalent if and only if they have the same
modulus of classi�cation (ε, b, [ψ]).
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