Topologie

Série 2

Homotopie

Exercice 1. Trouver une homotopie entre les fonctions suivantes.

a)
$$f, q: \mathbb{R}^2 \to \mathbb{R}^2$$

b)
$$f, g: [0, 1] \to \mathbb{R}^2 \setminus \{(0, 0)\}$$

$$f(x,y) = \begin{pmatrix} x\cos(y) \\ x\sin(y) \end{pmatrix}, \quad g(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$f(x,y) = \begin{pmatrix} x\cos(y) \\ x\sin(y) \end{pmatrix}, \quad g(x,y) = \begin{pmatrix} x \\ y \end{pmatrix} \qquad \qquad f(t) = \begin{pmatrix} -(1-t)+t \\ -1 \end{pmatrix}, \quad g(t) = \begin{pmatrix} -(1-t)+t \\ 1 \end{pmatrix}$$

Exercice 2. Trouver une homotopie stricte entre les chemins suivants.

a)
$$\alpha, \beta : [0, 1] \to \mathbb{R}^2$$

b)
$$\alpha, \beta: [0,1] \to S^2$$

$$\alpha(t) = \begin{pmatrix} 2t - 1 \\ t - t^2 \end{pmatrix}, \quad \beta(t) = \begin{pmatrix} \cos(\pi(t+1)) \\ \sin(\pi(t+1)) \end{pmatrix}$$

$$\alpha(t) = \begin{pmatrix} 2t-1 \\ t-t^2 \end{pmatrix}, \quad \beta(t) = \begin{pmatrix} \cos\bigl(\pi(t+1)\bigr) \\ \sin\bigl(\pi(t+1)\bigr) \end{pmatrix} \qquad \qquad \alpha(t) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}, \quad \beta(t) = \begin{pmatrix} \cos(t-t^2)\cos\bigl(t-t^2-\frac{\pi}{2}\bigr) \\ \sin(t-t^2)\cos\bigl(t-t^2-\frac{\pi}{2}\bigr) \\ \sin\bigl(t-t^2-\frac{\pi}{2}\bigr) \end{pmatrix}$$

Exercice 3. Soit $\alpha, \beta: [0,1] \to (X,\tau)$ des chemins, $f,g:(Z,\tau'') \to (X,\tau)$ et $h:(X,\tau) \to (X,\tau)$ (Y, τ') des fonctions continues.

- a) Montrer que si $f \stackrel{H}{\simeq} g$, alors $h \circ f \stackrel{h \circ H}{\simeq} h \circ q$.
- b) Montrer que si $\alpha \stackrel{H}{\simeq}_* \beta$, alors $h \circ \alpha \stackrel{h \circ H}{\simeq}_* h \circ \beta$.

Exercice 4. Montrer que \mathbb{R}^2 et $B((0,0),1) \subseteq \mathbb{R}^2$ ont le même type d'homotopie.

Exercice 5. Soit (X,τ) un espace topologique. Montrer que toute fonction continue $f:X\to X$ \mathbb{R}^2 est nullhomotope.

Exercice 6. Soit (X,τ) , (Y,τ') et (Z,τ'') des espaces topologiques. Soit $f_1, f_2: X \to Y$ et $g_1,g_2:Y\to Z$ des fonctions continues. Montrer que si f_1,f_2 sont homotopes et g_1,g_2 sont homotopes, alors $g_1 \circ f_1$, $g_2 \circ f_2$ sont homotopes.

Exercice 7. Soit (X,τ) et (Y,τ') des espaces topologiques. On définit [X,Y] l'ensemble des classes d'équivalence d'homotopie des fonctions de $X \to Y$, c'est-à-dire pour $[f] \in [X,Y]$, on a $[f] = \{g: X \to Y \mid g \simeq f\}.$

1

- a) Soit I := [0, 1]. Montrer que [X, I] possède un seul élément.
- b) Montrer que si Y est connexe par arcs, alors [I, Y] possède un seul élément.

Exercice 8. Soit (X, τ) un espace topologique $f: X \to X$ une fonction continue. On suppose qu'il existe $x_0 \in X$ tel que $f(x_0) = x_0$. Montrer que si

- 1. $f \stackrel{H}{\simeq} id_X$ et
- 2. $H(x_0, t) = f(x_0)$ pour tout $t \in [0, 1]$,

alors pour toute boucle $\alpha: [0,1] \to X$ de x_0 à x_0 , on a $\alpha \simeq_* f \circ \alpha$.

Exercice 9. Soit (X, τ) et (Y, τ') deux espaces topologiques. On suppose que X et Y ont le même type d'homotopie. Montrer que X est connexe par arcs si et seulement si Y est connexe par arcs.