Examen intra 2

Analyse 3

MAT2100

L'examen dure 1h50. Justifiez toutes vos réponses. Aucun matériel permis.

Enseignant: Jonathan Godin

Session: H23

/30

Question 1. (5pts) Montrer que , dans (\mathbb{R}^2, d_2) , le disque unité $\overline{B}((0,0), 1)$ et le cercle unité $\partial \overline{B}((0,0), 1)$ ne sont pas homéomorphes.

Question 2. (5pts) Soit (X, d) un espace métrique compact.

- a) Montrer que si $\{F_i\}_{i\in I}$ est une collection de fermés de X telle que $\bigcap_{i\in I} F_i = \emptyset$, alors il existe i_1, \ldots, i_n tels que $F_{i_1} \cap \cdots \cap F_{i_n} = \emptyset$.
- b) Montrer que si $I = \mathbb{N}$ et $F_n \downarrow \emptyset$, Note 1 alors il existe $N \in \mathbb{N}$ tel que $F_N = \emptyset$.

Question 3. (10pts) Soit l'espace métrique $(\mathbb{R}^{n\times n}, d_2)$, où $\mathbb{R}^{n\times n}$ est l'ensemble des matrices $n\times n$ à coefficients réels et d_2 est donnée, pour $A=(a_{ij})_{ij}$ et $B=(b_{ij})_{ij}$ dans $\mathbb{R}^{n\times n}$, par

$$d_2(A, B) = \left(\sum_{i=1}^n \sum_{j=1}^n (a_{ij} - b_{ij})^2\right)^{\frac{1}{2}}.$$

- a) Montrer par récurrence sur $n \in \mathbb{N}$ que $\det_n : \mathbb{R}^{n \times n} \to \mathbb{R}$, la fonction déterminant, est continue.
 - Indice. Pour une matrice A de taille $n \times n$, considérez l'application $P_{ij}: \mathbb{R}^{n \times n} \to \mathbb{R}^{(n-1) \times (n-1)}$ définie par $P(A) = A_{ij}$, où A_{ij} est la matrice $(n-1) \times (n-1)$ obtenue en retirant la i-ième ligne et le j-ième colonne de A.
- b) Montrer que $G = \{A \in \mathbb{R}^{n \times n} \mid A \text{ est inversible}\}$ n'est pas connexe. Remarque. On tient pour acquis que A est inversible si et seulement si $\det A \neq 0$.
- c) Pour $n \geq 2$, montrer que $E := \{A \in \mathbb{R}^{n \times n} : |\det A| \leq 1\}$ est fermé dans $\mathbb{R}^{n \times n}$ et qu'il n'est pas compact.

Note 1 Rappel: $F_n \downarrow \emptyset$ signifie que $F_1 \supseteq F_2 \supseteq F_3 \supseteq \cdots$ et $\bigcap_{n \in \mathbb{N}} F_n = \emptyset$.

Question 4. (10pts) Soit (X, d) un espace métrique. Soit (f_n) une suite de fonctions de $X \to \mathbb{R}$ et $f: X \to \mathbb{R}$ une autre fonction. On fait les hypothèses suivantes :

- i) X est compact;
- ii) f_n (pour tout n) et f sont continues sur X;
- iii) $f_n \to f$ simplement sur X;
- iv) (f_n) est croissante, c'est-à-dire que pour tout $x \in X$, on a $f_n(x) \leq f_{n+1}(x)$.

Le but est de montrer qu'alors, $f_n \to f$ uniformément $^{\text{Note 2}}$ sur X.

a) Soit $\varepsilon > 0$. On pose

$$F_n = \{ x \in X : |f_n(x) - f(x)| \ge \varepsilon \}.$$

Montrer que F_n est fermé dans X.

- b) Montrer que $F_n \downarrow \emptyset$ (voir note 1). Déduire qu'il existe $N \in \mathbb{N}$ tel que $F_N = \emptyset$.
- c) Déduire que $f_n \to f$ uniformément sur X.

Note 2 Rappel : $f_n \to f$ uniformément sur X signifie que pour tout $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que pour tout $n \ge N$ et pour tout $x \in X$, on a $|f_n(x) - f(x)| < \varepsilon$.