Examen intra 2

Analyse 3

MAT2100

L'examen dure 1h50. **Justifiez toutes vos réponses** (même les questions courtes). Il est sur 30 points. Si les points bonus font dépasser le total au-delà de 30, alors les points excédentaires seront ignorés.

Enseignant: Jonathan Godin

Session: H22

Questions courtes.

N'oubliez pas de justifier.

Question 1. (4pts) Soit (X,d) et (Y,d') deux espaces métriques et $f,g:X\to Y$ deux fonctions continues. Montrer que $E=\{x\in X\mid f(x)=g(x)\}$ est fermé.

Solution. Soit (x_n) une suite de E qui converge vers $x \in X$. On a donc $f(x_n) = g(x_n)$ pour tout $n \in \mathbb{N}$. Si on laisse $n \to \infty$, alors on obtient f(x) = g(x), d'où $x \in E$ et E est fermé.

Bonus. (3pts) L'ensemble $H = \{ y \in Y \mid \exists x \in X, f(x) = g(x) = y \}$ est-il fermé?

Question 2. (3pts) Soit (X, d) un espace métrique connexe. Que peut-on dire de $f: X \to \mathbb{Q}$, si f est continue?

Solution. f est constante. En effet, f(X) est connexe et comme \mathbb{Q} est totalement disconnexe, il suit que f(X) est un singleton.

Question 3. (3pts) La sphère unité $\partial B(\vec{0},1)$ dans \mathbb{R}^3 est-elle homéomorphe au plan \mathbb{R}^2 ? Solution. Non, car $\partial B(\vec{0},1)$ est compact, mais \mathbb{R}^3 ne l'est pas et la compacité est une propriété topologique.

Questions longues.

Question 4. (10pts) Soit (X,d) et (Z,d'') deux espaces métriques et (Y,d') un espace métrique compact. Soit $f:X\to Y$ une fonction et soit $g:Y\to Z$ une fonction injective et continue. On pose $h=g\circ f:X\to Z$. Montrer que f est uniformément continue si et seulement si h est uniformément continue.

Remarque. Vous pouvez tenir pour acquis que la composée de deux fonctions uniformément continues est uniformément continue.

Indice. Rappelez-vous que g est injective si et seulement si elle possède un inverse à gauche $(k \circ g = id \text{ pour une certaine } k)$.

Solution. Puisque Y est compact et que g est continue, il suit que g est uniformément continue.

- \Rightarrow) Comme f et g sont uniformément continues, il est immédiat que h est uniformément continue, en vertu de la remarque.
- \Leftarrow) On sait que g(Y) est compact. De plus, $g:Y\to g(Y)$ est surjective et donc, avec l'hypothèse, bijective. Ainsi, g est inversible. Son inverse, g^{-1} , est continue, puisque chaque $F\subseteq Y$ fermé est compact, donc $(g^{-1})^{-1}(F)=g(F)$ est compact et, en particulier, fermé. Puisque g(Y) est compact, on conclut que $g^{-1}:g(Y)\to Y$ est uniformément continue.

Enfin, on a $f = g^{-1} \circ h$, qui est la composée de deux fonctions uniformément continues.

Question 5. (10pts) Soit (X, d) et (Y, d') deux espaces métriques et soit $f: X \to Y$ une fonction continue. Montrer que si X est connexe, alors $G = \{(x, f(x)) : x \in X\}$, le graphe de f, est connexe dans $(X \times Y, d_2)$, où

$$d_2((x_1,y_1),(x_2,y_2)) = \left\| \left(d(x_1,x_2), d'(y_1,y_2) \right) \right\|_2 = \sqrt{d(x_1,d_2)^2 + d'(y_1,y_2)^2}.$$

Solution. Soit $F: X \to X \times Y$ définie par F(x) = (x, f(x)). C'est une fonction continue, car pour $\varepsilon > 0$ et $x \in X$, il existe $\delta > 0$ tel que si $d(x, y) < \delta$, alors $d'(f(x), f(y)) < \varepsilon$ et donc pour y tel que $d(x, y) < \min{\{\delta, \varepsilon\}}$, on a

$$d_2\big(F(x),F(y)\big) = \sqrt{d(x,y)^2 + d'\big(f(x),f(y)\big)^2} < \sqrt{\varepsilon^2 + \varepsilon^2} = \sqrt{2\varepsilon}.$$

Comme G = F(X) et X est connexe, on conclut que G est connexe.