Examen final

Analyse 3 (solutionnaire)

MAT2100

L'examen dure 2h50. **Justifiez toutes vos réponses** (même les questions courtes). Il est sur 40 points. Si les points bonus font dépasser le total au-delà de 40, alors les points excédentaires seront ignorés.

Enseignant: Jonathan Godin

Session: H22

Questions courtes.

N'oubliez pas de justifier.

Question 1. (4pts) Soit $f, g: \mathbb{R} \to \mathbb{R}$ telles que $f \circ g = g \circ f$. Montrer que si f est une contraction, alors g possède un point fixe.

Solution. Par le principe de contraction, f possède un unique point fixe, disons $x_0 \in \mathbb{R}$. On a ensuite

$$f \circ g(x_0) = f(g(x_0))$$
 et $g \circ f(x_0) = g(x_0)$.

En combinant, on voit que $f(g(x_0)) = g(x_0)$, c'est-à-dire que $g(x_0)$ est un point fixe de f. Par unicité, on doit avoir $g(x_0) = x_0$, d'où x_0 est un point fixe de g.

Question 2. (4pts) Soit $U \subseteq \mathbb{R}^n$ un ouvert et $f: U \to \mathbb{R}^n$ une fonction de classe C^1 . Montrer que si f'(x) est inversible pour tout $x \in U$, alors f(U) est un ouvert dans \mathbb{R}^n .

Solution. Soit $y \in f(U)$ et soit $x \in U$ tel que f(x) = y. Par le théorème d'inversion locale, il existe U_x un voisinage ouvert de x et V_y un voisinage ouvert de y tels que $f: U_x \to V_y$ est un difféomorphisme. On a que $V_y = f(U_x) \subseteq f(U)$. Il suit que y est dans l'intérieur de f(U). On conclut que f(U) est ouvert.

Attention! Même si f'(x) est inversible pour tout x, il n'en **suit pas** que f est globalement inversible, ni même que f est injective. En effet, la fonction $g: \mathbb{R}^2 \to \mathbb{R}^2 \setminus \{(0,0)\}; (x,y) \mapsto \begin{pmatrix} e^x \cos y \\ e^x \sin y \end{pmatrix}$ est surjective et g'(x,y) est inversible pour tout (x,y), mais g n'est pas injective! En effet, $g(x,y) = g(x,y+2\pi)$.

Question 3. (4pts) Soit $(V, \|\cdot\|)$ un espace normé et (v_n) une suite de V. On pose $s = \sum_{n\geq 1} v_n$. Montrer que si V est complet et si $\sum_{n\geq 1} \|v_n\|$ converge dans \mathbb{R} , alors s converge dans $(V, \|\cdot\|)$.

Solution. Soit (s_n) la suite des sommes partielles de s. Soit $n, m \in \mathbb{N}$ avec $n \geq m$. Par

l'inégalité triangulaire, on a

$$||s_n - s_m|| = \left\| \sum_{k=1}^n v_k - \sum_{k=1}^m s_k \right\| = \left\| \sum_{k=m+1}^n v_k \right\| \le \sum_{k=m+1}^n ||v_k|| \le \sum_{k=m+1}^\infty ||v_k|| < \infty.$$

Puisque $\sum_{n>1} \|v_n\|$ converge par hypothèse, pour $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que si $m \geq N$, alors

$$\sum_{k=m+1}^{\infty} \|v_k\| = \sum_{k=1}^{\infty} \|v_k\| - \sum_{k=1}^{m} \|v_k\| < \varepsilon.$$

Il suit que (s_n) est une suite de Cauchy. Puisque $(V, \|\cdot\|)$ est complet, elle converge.

Bonus. (3pts) Soit $C = (0,1)^n$ le cube unité ouvert dans \mathbb{R}^n . On suppose que $f(\frac{1}{2},\ldots,\frac{1}{2}) =$ $b \in \mathbb{R}^n$ et qu'il existe $M \ge 0$ tel que $||f(x) - f(y)|| \le M||x - y||^2$ pour tout $x, y \in C$. Montrer que f(x) = b pour tout $x \in C$.

Solution. On a que f'(x) = 0 pour tout $x \in C$. En effet, on voit que

$$\frac{\|f(x+h) - f(x) + 0h\|}{\|h\|} \le \frac{M\|h\|^2}{\|h\|} = M\|h\| \to 0$$

lorsque $h \to 0$. Puisque C est connexe, il s'ensuit que f est constante. Puisque $f\left(\frac{1}{2}, \dots, \frac{1}{2}\right) =$ b, on conclut que f(x) = b pour tout $x \in C$.

Questions longues.

Question 4. (9pts) Soit $U \subseteq \mathbb{R}^n$ un ouvert, $f: U \to \mathbb{R}^m$ une fonction de classe C^1 et $a,b\in U$ deux points. Soit $\gamma{:}\,[0,1]\to U$ une courbe de classe C^1 joignant a à b (c'est-à-dire $\gamma(0) = a$ et $\gamma(1) = b$). Montrer que si $||f'(\gamma(t))|| \leq M$ pour tout $t \in [0,1]$, alors on a $||f(b) - f(a)|| \le ML(\gamma)$, où $L(\gamma) = \int_0^1 ||\gamma'(t)|| dt$. Indice. Posez $g(t) = (f(b) - f(a))^T f(\gamma(t))$. (Ici, l'« exposant » T signifie le vecteur trans-

Solution. Soit g comme dans la suggestion. D'une part, on a

$$|g(1) - g(0)| = ||f(b) - f(a)||^2.$$

D'autre part, par le théorème fondamental du calcul, on a

$$|g(1) - g(0)| = \left| \int_0^1 g'(t) dt \right|$$

$$\leq \int_0^1 |g'(t)| dt$$

$$= \int_0^1 \left| \left(f(b) - f(a) \right)^T f' \circ \gamma(t) \gamma'(t) \right| dt$$

$$\leq \int_0^1 ||f(b) - f(a)|| ||f' \circ \gamma(t)\gamma'(t)|| dt
\leq ||f(b) - f(a)|| \int_0^1 M ||\gamma'(t)|| dt
\leq M ||f(b) - f(a)|| L(\gamma).$$

On obtient donc

$$||f(b) - f(a)||^2 \le M||f(b) - f(a)||L(\gamma),$$

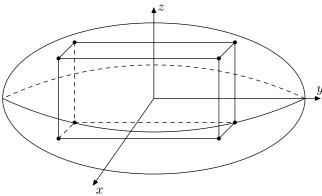
d'où la conclusion découle.

Question 5. (9pts) Montrer que le plus grand volume atteint par un parallélépipède rectangle parallèle aux axes qui puisse être inscrit dans l'ellipsoïde E d'équation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

est $\frac{8abc}{3\sqrt{3}}$, où 0 < c < b < a.

Rappel. Un parallélépipède rectangle est un polyèdre à six faces dont tous les angles sont droits. Il est parallèle aux axes si chacune de ses arrêtes est parralèle à l'axe des x, des y ou des z.



Solution. Soit (x, y, z) un point dans E. Pour obtenir un parallélépipède tel que décrit dans l'énoncé à partir de ce point, il n'y a qu'une seule possibilité : on abaisse des droites partant de (x, y, z) parallèles aux axes jusqu'à ce qu'elles rencontrent à nouveau E. On obtient les points (-x, y, z), (x, -y, z) et (x, y, -z). On répète ce processus jusqu'à obtenir tous les coins du parallélépipède. Le volume de ce solide est V(x, y, z) = (2x)(2y)(2z) = 8xyz. Ainsi, la fonction objectif est V relatif à la contrainte $g(x, y, z) := \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0$. Puisque E est compact et que V est continue, il suit que V atteint son minimum et son maximum. On note que V est un volume orienté, donc le volume maximal recherché sera le maximum de |V|.

On dérive V et g:

$$V'(x, y, z) = (8yz 8xz 8xy)$$
 et $g'(x, y, z) = (\frac{2x}{a^2} \frac{2y}{b^2} \frac{2z}{c^2})$.

Puisque $(0,0,0) \notin E$, g est de rang constant 1 sur E. On peut ainsi appliquer la méthode de Lagrange. On obtient le système de Lagrange suivant :

$$\begin{cases} V'(x,y,z) - \lambda g'(x,y,z) = 0, \\ g(x,y,z) = 0, \end{cases} \Rightarrow \begin{cases} 8yz - \lambda \frac{2x}{a^2} = 0, \\ 8xz - \lambda \frac{2y}{b^2} = 0, \\ 8xy - \lambda \frac{2z}{c^2} = 0, \\ \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. \end{cases}$$

On multiplie la première équation par x, la deuxième par y et la troisième par z et on les additionne :

$$24xyz - 2\lambda \left(\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{x}\right) = 0.$$

En utilisant la quatrième équation, on trouve $24xyz - 2\lambda = 0$, donc $12xyz = \lambda$. En remplaçant dans le première équation, on obtient

$$8yz - \frac{24x^2yz}{a^2} = 0 \qquad \Leftrightarrow \qquad 8yz\left(1 - \frac{3x^2}{a^2}\right) = 0.$$

Si y et z sont non nuls, on trouve $x=\pm\frac{a}{\sqrt{3}}$. Dans ce cas, on trouve y et z de la même façon et on obtient $y=\pm\frac{b}{\sqrt{3}}$ et $z=\pm\frac{c}{\sqrt{3}}$. Ensuite, λ est simplemnt $\pm 12\frac{abc}{3\sqrt{3}}$.

Si x est nul, alors 8yz=0, donc y ou z nul. Si y est nul, alors z doit être $\pm c$ par l'équation 4 et λ doit être nul par l'équation 3. On trouve ainsi les candidats $(0,0,\pm c)$. De façon analogue, on trouve les candidats $(\pm a,0,0)$ et $(0,\pm b,0)$.

Parmi les candidats, on trouve que le maximum est atteint au moins en $\left(\frac{a}{\sqrt{3}}, \frac{b}{\sqrt{3}}, \frac{c}{\sqrt{3}}\right)$ qui donne bien $\frac{8abc}{3\sqrt{3}}$.

Question 6. (10pts) Soit $U \subseteq \mathbb{R}^n$ un ouvert et $f: U \to \mathbb{R}$ une fonction de classe C^1 . Soit S la surface $S := \{z \in \mathbb{R}^n \mid f(z) = 0\}$. On suppose qu'il existe $a \in S$ tel que $f'(a) \neq 0$. Montrer que si $u \in \mathbb{R}^n$ vérifie f'(a)u = 0, alors il existe r > 0 et une courbe $\gamma: (-r, r) \to S$ de classe C^1 telle que $\gamma(0) = a$ et $\gamma'(0) = u$.

Suggestion. Si $z=(z_1,\ldots,z_n)$, arguez que SPDG, $\frac{\partial f}{\partial z_n}(a)\neq 0$ et utilisez la notation suivante : $z=(x,y),\ a=(b,c),\ u=(v,w),\ \text{où }x,b,v\in\mathbb{R}^{n-1}$ et $y,c,w\in\mathbb{R}$.

Solution. Puisque $f'(a) \neq 0$, il existe une composante de f'(a) non nulle. Quitte à changer l'ordre des variables (faire un changement de variables), on suppose que $\frac{\partial f}{\partial z_n}(a) \neq 0$. On pose z = (x, y), a = (b, c) et u = (v, w), où $x, b, v \in \mathbb{R}^{n-1}$ et $y, c, w \in \mathbb{R}$.

Par le théorème des fonctions implicites, il existe U_b un voisinage ouvert de b, V_c un voisinage ouvert de c et $g: U_b \to V_c$ de classe C^1 telle que f(y, g(y)) = 0 pour tout $y \in U_b$. De plus, on a g(b) = c.

Soit r > 0 tel que $B(b, r) \subseteq U_b$. On pose $\gamma(t) = (b + tv, g(b + tv))$, où $t \in (-r, r)$. Ainsi, on voit que $\gamma(0) = (b, g(b)) = (b, c) = a$ et que $f \circ \gamma(t) = 0$. Ensuite, on a $\gamma'(0) = (v, g'(v)v)$. Donc il reste à montrer que g'(v)v = w.

On dérive l'équation f(x, g(x)) = 0:

$$0 = \left[\frac{\partial f}{\partial x} (x, g(x)) + \frac{\partial f}{\partial y} (x, g(x)) g'(x) \right]_{x=b} = \frac{\partial f}{\partial x} (a) + \frac{\partial f}{\partial y} (a) g'(b)$$

et l'on obtient

$$g'(b)v = -\frac{\partial f}{\partial x}(a)v / \frac{\partial f}{\partial y}(a)$$
.

Par ailleurs, l'hypothèse est que f'(a)u = 0. Cela veut dire que $\frac{\partial f}{\partial x}(a)v + \frac{\partial f}{\partial y}(a)w = 0$, autrement dit $w = -\frac{\partial f}{\partial x}(a)v \Big/ \frac{\partial f}{\partial y}(a)$. Il s'ensuit que g'(b)v = w.

Ainsi, cette courbe γ est satisfait à l'énoncé.

Remarque. On voit que le graphe de g dessine une partie de S. Ainsi, l'idée est simplement de prendre la droite qui passe par b dans le domaine de g dont la pente est v et la projeter sur S par g. La condition f'(a)u = 0 signifie que u est un vecteur tangent à S, car f'(a) est orthogonal à S (car S est une surface de niveau de f) et u est orthogonal à f'(a). Ceci est donc un exemple où l'analyse joue un rôle important pour déduire une propriété géométrique.