Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires
TABLE DES MATIÈRES

Introduction ... 5

I. Préludraires ... 7
 I.1. Notations et définitions ... 8
 I.2. Espaces de Sobolev .. 9
 I.3. Transversalité topologique .. 10

II. Intervalle d'existence de solution pour des problèmes à valeur initiale (du premier ordre) ... 11
 II.1. Problèmes à valeur initiale avec une fonction de Carathéodory 15
 II.2. Problèmes à valeur initiale avec un opérateur multivoque 19

III. Problèmes à valeur initiale dans un domaine complexe 20
 III.1. Formulation du problème .. 24
 III.2. Existence .. 26

IV. Problèmes aux limites du second ordre avec une fonction de Carathéodory .. 27
 IV.1. Formulation du problème .. 29
 IV.2. Majoration a priori des solutions .. 33
 IV.3. Existence .. 35
 IV.4. Régularité .. 39

V. Problèmes aux limites du second ordre avec un opérateur multivoque satisfaisant une condition de croissance de type Bernstein .. 42
 V.1. Formulation du problème .. 46
 V.2. Conditions aux limites: $u(0) - \beta u(0) = r$, $u(1) + bu'(1) = s$ 50
 V.3. Conditions aux limites: $au(0) - \beta u(0) = r$, $au(1) + bu'(1) = s$ 52

VI. Problèmes aux limites du second ordre avec un opérateur multivoque satisfaisant une condition de croissance de type Bernstein–Nagumo .. 57
 VI.1. Formulation du problème .. 57
 VI.2. Conditions aux limites: $u(0) - \beta u(0) = r$, $u(1) + bu'(1) = s$ 61
 VI.3. Conditions aux limites: $au(0) - \beta u(0) = r$, $au(1) + bu'(1) = s$ 63

VII. Problèmes aux limites du second ordre dans l'intervalle $[0, \infty)$... 63
 VII.1. Problèmes aux limites avec une fonction de Carathéodory 68
 VII.2. Problèmes aux limites avec un opérateur multivoque 72

Annexe 1. Changement de variables dans une intégrale .. 72
Annexe 2. Principes du maximum ... 77
Annexe 3. Inversibilité des opérateurs ... 80
Commentaires .. 83
Références ... 86
Introduction

En 1959, Granas introduisait avec sa théorie de transversalité topologique pour les applications compactes dans les espaces de Banach, des techniques topologiques permettant l'étude de problèmes aux limites. Cette approche que nous utilisons dans ce texte est basée sur la notion d'applications "essentielles" pour les opérateurs compacts. La méthode consiste à introduire un paramètre et dès lors à considérer une famille d'équations différentielles sur laquelle une majoration a priori des solutions est obtenue. Cette famille de problèmes aux limites ou à valeur initiale est ensuite transformée en problèmes de point fixe d'opérateurs compacts. L'invariance par homotopie de la propriété d'être "essentielle" permet alors de déduire l'existence d'un point fixe et par conséquent d'une solution au problème original. (Pour plus de détails, voir Dugundji–Graná [DG].) Cette technique de "bornes a priori" a été introduite par S. Bernstein en 1912 et les résultats obtenus alors ont été généralisés en 1978 par Granas, Guenther et Lee [GGL1].

Ces derniers considéraient l'équation différentielle:

\[y'' = f(t, y, y'), \quad 0 \leq t \leq 1, \]

\[y \in \mathcal{A} \text{ (i.e. } y \text{ est assujetti à certaines conditions aux limites)} \]

où \(f \) était une fonction continue vérifiant les hypothèses suivantes:

\begin{align*}
(1) & \quad |f(t, u, p)| \leq A(t, u) p^2 + B(t, u) \\
\text{avec } & \quad A \text{ et } B \text{ bornées sur } [0, 1] \times [-k, k] \text{ pour tout } k \geq 0,
\end{align*}

\begin{align*}
(2) & \quad \text{il existe } M \geq 0 \text{ tel que } uf(t, u, 0) > 0 \text{ pour } |u| \geq M.
\end{align*}

Ils obtenaient alors l'existence d'une solution \(u \in C^2[0, 1] \). Ici nous affaiblissons l'hypothèse de continuité sur \(f \) en demandant que \(f \) soit une fonction de Carathéodory. Nous obtenons alors l'existence d'une solution faible \(u \in H^2(0, 1) \) (chapitre IV).

Ce résultat est généralisé de nouveau au chapitre V. L'hypothèse (2) est remplacée par une d'existence de sur- et sous-solutions:

\begin{align*}
(3) & \quad \text{il existe } \varrho, \psi \in W^{2, p}(0, 1) \text{ telles que } \varrho(t) \leq \psi(t) \text{ et}
\end{align*}

\[\varrho''(t) \geq f(t, \varrho(t), \varrho'(t)), \quad \psi''(t) \leq f(t, \psi(t), \psi'(t)) \text{ p.p. } t \in (0, 1) \]

et \(\varrho \) et \(\psi \) sont assujettis à certaines conditions aux limites.
Nous obtenons alors l’existence d’une solution \(u \in H^2(0, 1) \) telle que \(\varphi(t) \leq u(t) \leq \psi(t) \). Entre parenthèses, on remarque que l’hypothèse (2) implique que \(M (-M) \) est sur-sous-solution.

En 1980, Granas, Guenther et Lee [GGL2] considéraient le même problème (avec \(f \) continue) dans lequel ils affaiblissaient la condition de croissance de type Bernstein (1) en une de type Bernstein–Nagumo:

\[
(4) \quad \text{il existe } \psi: [0, \infty) \rightarrow (0, \infty) \text{ telle que } \psi, x/\psi(x) \in L^1_{\text{loc}}[0, \infty) \text{ et } |f(t, u, p)| \leq \psi(|p|) \text{ pour } (t, u) \in [0, 1] \times [-M, M] \text{ et } \int_0^x \frac{dx}{\psi(x)} > 2M \text{ (M est la constante donnée dans (2) et } C \text{ dépend des conditions aux limites).}
\]

Donc, sous les hypothèses (2) et (4), ils obtenaient l’existence d’une solution classique. Nous généralisons leur résultat de façon à obtenir l’existence d’une solution faible en supposant que \(f \) est une fonction de Carathéodory satisfaisant (2) et

\[
(5) \quad \text{pour tout } k \geq 0, \text{ il existe } \phi_k \in L^2(0, 1), |f(t, u, p)| \leq \phi_k(t) \text{ pour } |u| \leq k, |p| \leq k, \text{ et il existe } \Phi: [0, \infty) \rightarrow (0, \infty), x/\Phi(x) \in L^1_{\text{loc}}[0, \infty) \text{ telle que } |f(t, u, p)| \leq \Phi(|p|), |u| \leq M \text{ et } \int_0^x \frac{dx}{\Phi(x)} > 2M.
\]

Ce résultat est formulé dans le texte de façon plus générale dans le cas où l’existence de sous- et sur-solutions est supposée (3) (chapitre VI).

Récemment, Granas, Guenther, Lee et O’Regan [GGLO] ont considéré ce problème sur l’intervalle \([0, \infty)\)

\[
y''(t) = f(t, y(t), y'(t)), \quad t \geq 0, \quad y(0) = \lim_{t \to \infty} y(t) = 0,
\]

où \(f \) est une fonction continue satisfaisant les hypothèses (1) et (2). Ils obtenaient alors l’existence d’une solution \(u \in BC^2[0, \infty) \) telle que \(u(0) = 0 \). La condition \(\lim_{t \to \infty} u(t) = 0 \) est assurée par l’ajout d’hypothèses supplémentaires. Nous généralisons d’abord ce résultat pour une fonction de Carathéodory, puis nous l’affaiblissons en remplaçant l’hypothèse (2) par une d’existence de sous- et sur-solutions et finalement en imposant sur \(f \) une condition de croissance de type Bernstein–Nagumo.

Ces généralisations apparaissent dans le texte comme corollaires à des problèmes pour des équations différentielles avec comme membre de droite un opérateur multivoque.

Le principal problème de ce texte en est un de la forme suivante:

\[
u''(t) \in F(t, u(t), u'(t)),
\]

\[
xu(0) - \beta u'(0) = r,
\]

\[
a u(1) + b u'(1) = s \quad \text{ou} \quad \lim_{t \to \infty} u(t) = 0.
\]
Cette formulation a été inspirée d'un article de Chang [CH] dans lequel il considérait des problèmes de cette forme pour des équations aux dérivées partielles de type elliptiques. Les résultats obtenus sont de même nature que ceux mentionnés plus haut pour des problèmes univoques.

Lee et O'Regan [LO] se sont aussi intéressés à des problèmes à valeur initiale:

\[y'(t) = f(t, y(t)), \quad t \in [0, T], \quad y(0) = r, \]

où la fonction \(f: [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}^d \) est continue et satisfait une condition de croissance:

\[|f(t, u)| \leq \psi(|u|) \quad \text{avec} \quad \psi \text{ continue et positive.} \]

La question posée était pour quel intervalle existe-t-il ou n'existe-t-il pas de solution à ce problème. Ils obtenaient alors que pour tout \(T < T_\infty = \int_0^\infty \frac{dx}{\psi(x)} \)

le problème possède une solution et que ce résultat est en fait le meilleur possible pour cette fonction \(\psi \). Au chapitre II, nous généralisons ce résultat en enlevant l'hypothèse de continuité sur \(f \) (et sur \(\psi \)). Nous supposons que \(f \) est une fonction de Carathéodory, soit un opérateur multivoque.

En 1984, dans sa thèse de doctorat, O'Regan [OR] a considéré des problèmes à valeur initiale dans un domaine complexe:

\[y'(z) = f(z, y(z)), \quad z \in B_c(T), \quad y(0) = r \in \mathbb{C}^n. \]

Sur \(f \) une condition de croissance soit linéaire, soit quadratique était imposée. Dans ce texte, une condition de croissance plus générale sera imposée (\(\| f(z, u) \| \leq \psi(\| u \|) \)) pour laquelle nous obtiendrons l'existence de solution sur \(B_c(T) \) pour \(\sqrt{2} T < T_\infty \).

Une grande part de la matière de ce texte est incluse dans la thèse de doctorat de l'auteur à l'Université de Montréal. Je tiens à exprimer toute ma gratitude à mon directeur de recherche, le professeur A. Granas.

I. Préliminaires

1.1. Notations et définitions

Dans ce chapitre, nous allons donner les principales notations, définitions et résultats qui seront utilisés par la suite.

Nous noterons par \(C^k(I) \) l'espace des fonctions à valeurs réelles continûment différentiables jusqu'à l'ordre \(k (k \in \mathbb{N}) \) et où \(I \) est un intervalle ouvert dans \(\mathbb{R} \) (borné ou non). On munit \(C^k(I) \) de la norme \(\| u \|_k = \max \{ \| u \|_0, \ldots, \| u^{(k)} \|_0 \} \) où \(\| u \|_0 = \sup_{t \in I} |u(t)| \). \(C^k(I) \) dénotera l'espace des fonctions \(k \) fois continûment différentiables et à support compact dans \(I \).
Par $C(\overline{I}; \mathbb{R}^{n})$ nous signifierons l'espace des fonctions continues à valeurs dans \mathbb{R}^{n}. Nous utiliserons habituellement sur \mathbb{R}^{n} la norme $\|v\| = \sqrt{v_{1}^{2} + \ldots + v_{n}^{2}}$ où $v = (v_{1}, \ldots, v_{n})$ et nous noterons $u \cdot v = (u_{1}, \ldots, u_{n}) \cdot (v_{1}, \ldots, v_{n})$.

(1.1) **Théorème** (Arzelà–Ascoli). Soit X un espace normé compact.

(i) Un sous-ensemble M de $C(X; \mathbb{R}^{n})$ est relativement compact dans $C(X; \mathbb{R}^{n})$ si et seulement si il est borné et équicontinu (i.e. $\forall x \in X \ \forall \varepsilon > 0 \ \exists \delta > 0$ tel que $\|x - y\| < \delta \Rightarrow \|f_{x} - f_{y}\| < \varepsilon \ \forall f_{x} \in M$).

(ii) Soit la famille (f_{n}) dans $C(X; \mathbb{R}^{n})$. Si elle est équicoordinée et bornée ponctuellement alors la suite (f_{n}) possède une sous-suite uniformément convergente.

(1.2) **Définition.** Une fonction $f : I \times \mathbb{R}^{n} \to \mathbb{R}^{m}$ est dite de Carathéodory si

(a) $f(t, u)$ est continue par rapport à u presque pour tout $t \in I$;

(b) $f(t, u)$ est mesurable par rapport à t pour tout $u \in \mathbb{R}^{n}$.

(1.3) **Définition.** Une fonction $f : I \times \mathbb{R}^{n} \to \mathbb{R}^{m}$ est dite de type \mathcal{M} si pour toute fonction mesurable $u : I \to \mathbb{R}^{n}$, la fonction $t \mapsto f(t, u(t))$ est mesurable.

Remarquons qu'une fonction de Carathéodory est de type \mathcal{M}.

Soit $f : I \times \mathbb{R}^{n} \to \mathbb{R}^{m}, f = (f_{1}, \ldots, f_{m})$. De cette fonction, deux applications sont induites:

$$f(t, u) = (f_{1}(t, u), \ldots, f_{m}(t, u)), \quad \overline{f}(t, u) = (\overline{f}_{1}(t, u), \ldots, \overline{f}_{m}(t, u))$$

où

$$\overline{f}_{i}(t, u) = \lim_{y \to u} \inf f_{i}(t, y) \quad \text{et} \quad \overline{f}_{i}(t, u) = \lim_{y \to u} \sup f_{i}(t, y).$$

Notons que pour tout $t \in I$, les fonctions f_{i} sont semi-continues inférieurement (s.c.i.) ($\forall t \in I, \exists u \in \mathbb{R}^{n} | f_{i}(t, u) > z$) est ouvert pour tout $z \in \mathbb{R}$ et \overline{f}_{i} sont semi-continues supérieurement (s.c.s.) ($\forall t \in I, \exists u \in \mathbb{R}^{n} | \overline{f}_{i}(t, u) < z$) est ouvert pour tout $z \in \mathbb{R}$.

(1.4) **Définition.** Soit $f : I \times \mathbb{R}^{n} \to \mathbb{R}^{m}$. A l'aide de cette fonction nous définissons une multiapplication $\mathcal{F} : I \times \mathbb{R}^{n} \to \mathbb{R}^{m}$:

$$\mathcal{F}(t, u) = [\overline{f}(t, u), \overline{f}(t, u)]$$

$$= \left\{ v \in \mathbb{R}^{m}, \ v = (v_{1}, \ldots, v_{m}) \ | \ f_{i}(t, u) \leq v_{i} \leq \overline{f}_{i}(t, u) \right\}.$$

On dira que \mathcal{F} est de type \mathcal{M} si \overline{f} et \overline{f} sont de type \mathcal{M}.

1.2. Espaces de Sobolev

Nous rappelons quelques définitions sur les espaces de Sobolev, pour plus de détails voir Brézis [BR].

$W^{1,p}(I) = \left\{ u : I \to \mathbb{R} \ | \ u \text{ est absolument continue et } u' \in L^{p}(I), \ 1 \leq p < \infty \right\}$.

ou la définition équivalente:

\[W^{1,p}(I) = \{ u \in L^p(I) \mid \exists u' \in L^p(I) \text{ telle que } \int_I u' \varphi = -\int_I u \varphi \quad \forall \varphi \in C^1_c(I) \}. \]

On définit par récurrence

\[W^{k,p}(I) = \{ u \in W^{k-1,p}(I) \mid u' \in W^{k-1,p}(I) \}, \quad k \geq 2. \]

\(W^{k,p}(I) \) dénotera les fonctions de \(W^{k,p}(I) \) qui satisferont une certaine condition aux limites et nous noterons par \(W^{k,p}(I; \mathbb{R}^n) \) l'espace des fonctions \(u = (u_1, \ldots, u_n) \) telles que \(u_i \in W^{k,p}(I) \), \(i = 1, \ldots, n \).

Munis des normes \(\| u \|_{W^{k,p}} = \left[\int_I \sum_{i=0}^k \| u^{(i)}(t) \|_p^p \, dt \right]^{1/p}, \quad 1 \leq p < \infty, \) et

\[\| u \|_{W^{k,p}} = \sum_{i=0}^k \| u^{(i)} \|_{L^p} \] (où \(\| u^{(0)}(t) \| \) est la norme dans \(\mathbb{R}^n \)), les espaces \(W^{k,p}(I) \) sont des espaces de Banach. Nous notons \(H^k(I) = W^{k,2}(I) \), qui sont en fait des espaces de Hilbert.

Les inclusions \(j: W^{k,p}(I) \to C^{k-1}(I) \) sont continues. Lorsque \(I \) est borné, elles sont complètement continues pour \(p > 1 \) (i.e. \(j(B) \) est compact pour tout sous-ensemble borné \(B \)).

(I.5) THÉORÈME (Règle de dérivation d’un produit de composition). Soient \(u \in W^{1,p}(I) \) et \(G \in C^1(\mathbb{R}) \), \(G(0) = 0 \) si \(I \) est non borné. Alors \(G \circ u \in W^{1,p}(I) \) et \((G \circ u)' = (G' \circ u) u' \). (Si \(u \) est à valeurs dans \([a, b] \), on peut prendre \(G \in C^1([a-c, b+c]) \)).

(I.6) PROPOSITION. Soit \(u \in W^{1,p}(I; \mathbb{R}^n) \). Alors \(\| u \| \in W^{1,p}(E) \) et \(\| u(t) \| \)

\[= \frac{u(t)}{\| u(t) \|} \cdot u'(t) \text{ p.p. } t \in E \text{ où } E = \{ t \in I \mid \| u(t) \| > 0 \} \text{ et où } \| u(t) \| \text{ est la norme dans } \mathbb{R}^n \text{ et } u \cdot v \text{ dénote le produit scalaire usuel dans } \mathbb{R}^n. \]

Preuve. \(E \) est ouvert dans \(I \) car \(u \) est une fonction continue. Soit \(\varphi \in C^1_c(E) \) et soit \(K \) un compact tel que \(\text{supp } \varphi \subset K \subset E \). Alors il existe \(\mu > 0 \) telle que \(\| u(t) \| > \mu \) pour tout \(t \in K \).

Soit la fonction \(N: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}, N X = \| X \| \). Alors, \(N \in C^1(\mathbb{R}^n \setminus \{0\}; \mathbb{R}^n) \) et \(N'(X) = X/\| X \| \).

Par la règle de dérivation d’un produit de composition (I.5) on a

\[\int_E N(u(t)) \varphi'(t) dt = \int_K N(u(t)) \varphi'(t) dt = -\int_K N'(u(t)) \cdot u'(t) \varphi(t) dt \]

\[= -\int_E N'(u(t)) \cdot u'(t) \varphi(t) dt, \quad \text{i.e.} \]

\[\int_E \| u(t) \| \varphi'(t) dt = -\int_E \frac{u(t)}{\| u(t) \|} \cdot u'(t) \varphi(t) dt \]
d’où $\|u(t)\| = \frac{u(t)}{\|u(t)\|} \cdot u(t)$ p.p. $t \in E$ et $\frac{u(t)}{\|u(t)\|} \cdot u(t) \leq \|u(t)\|$, ce qui implique que $\|u(t)\| \in L^p(E)$, d’où $\|u\| \in W^{1,p}(E)$ et $\|u\|^p = \frac{u}{\|u\|} \cdot u$. □

1.3. Transversalité topologique

Nous formulons quelques définitions et résultats sur la théorie de la transversalité topologique. Pour plus de détails, voir Dugundji, Granas [DG].

Soient X et Y deux espaces normés. Nous dirons qu’une fonction $G : X \to Y$ est compacte si G est continue et $\overline{G(X)}$ est compact dans Y. Une multiapplication $G : X \to 2^Y$ est dite compacte si $G(X) = \bigcup \{G(x) | x \in X\}$ est compact. G est à valeurs convexes (compactes) (fermées) si $G(x)$ est convexe (compact) (fermé) pour tout $x \in X$. G est bornée sur les bornés si $G(B)$ est borné dans Y pour tout sous-ensemble B borné dans X. Soit G une multiapplication; alors G est semi-continue supérieurement (s.c.s.) en $x_0 \in X$ si pour tout ouvert N contenant Gx_0, il existe un voisinage M de x_0 tel que $G(M) \subseteq N$. G est s.c.s. si elle est s.c.s. en tout point de X. Si $X \subseteq Y$ alors G a un point fixe s’il existe $x \in X$ tel que $x \in Gx$. Pour plus de détails sur les fonctions multivoques, voir Berge [BE].

Soient E un espace linéaire normé, C un convexe $\subset E$ et U un ouvert $\subset C$. Nous dénotons par $K_{\partial U}(U, C)$ l’ensemble de toutes les applications compactes $G : U \to C$ qui sont sans point fixe sur ∂U (i.e. $u \not\in Gu$, $\forall u \in \partial U$). Nous appelons $H : [0, 1] \times U \to C$ une homotopie compacte si H est compacte. L’homotopie H est dite sans point fixe sur ∂U si $u \not\in H(t, u)$ pour tout $t \in [0, 1]$ et $u \in \partial U$. On note par $K_{\partial U}(U, 2^C)$ l’ensemble de toutes les multiapplications $G : U \to 2^C$ compactes, s.c.s., à valeurs convexes fermées qui sont sans point fixe sur ∂U (i.e. $u \not\in Gu$, $\forall u \in \partial U$). Une homotopie compacte est une multiapplication $H : [0, 1] \times U \to 2^C$ telle que H est compacte, s.c.s. et à valeurs convexes fermées. Si $u \not\in H(t, u)$ pour tout $t \in [0, 1]$, $u \in \partial U$ alors H est dite sans point fixe sur ∂U.

(1.7) Définitions. (i) Deux applications $F, G \in K_{\partial U}(U, C)$ ($F, G \in K_{\partial U}(U, 2^C)$) sont dites homotopes dans $K_{\partial U}(U, C)$ ($K_{\partial U}(U, 2^C)$) s’il existe une homotopie compacte $H : [0, 1] \times U \to C$ ($H : [0, 1] \times U \to 2^C$) sans point fixe sur ∂U et telle que $H_0 = H(0, \cdot) = F$ et $H_1 = H(1, \cdot) = G$.

(ii) Une application $G \in K_{\partial U}(U, C)$ ($G \in K_{\partial U}(U, 2^C)$) est dite essentielle si pour tout $F \in K_{\partial U}(U, C)$ ($F \in K_{\partial U}(U, 2^C)$) tel que $G|_{\partial U} = F|_{\partial U}$, F a un point fixe. Une application qui n’est pas essentielle est inessentielle.

(1.8) Théorème (transversalité topologique). Soient $F, G \in K_{\partial U}(U, C)$ ($F, G \in K_{\partial U}(U, 2^C)$) deux applications homotopes dans $K_{\partial U}(U, C)$ ($K_{\partial U}(U, 2^C)$). Alors F est essentielle si et seulement si G est essentielle.
(I.9) **Théorème.** Soit $G : \mathcal{U} \to C (G : \mathcal{U} \to 2^C)$ l'application constante $G(u) = u_0$. Alors si $u_0 \in \mathcal{U}$, G est essentielle.

(I.10) **Théorème (alternative non linéaire).** Soit U ouvert $\subset C$ tel que $0 \in U$. Alors pour toute application compacte $G : \mathcal{U} \to C$ (multiapplication compacte, s.c.s., à valeurs convexes fermées $G : \mathcal{U} \to 2^C$) au moins l'un des deux énoncés suivants a lieu:

(a) G a un point fixe.

(b) il existe $u \in \mathcal{U}$ tel que $u = \lambda G(u)$ $(u \in \mathcal{U})$ pour un certain $\lambda \in (0, 1)$.

(I.11) **Théorème (alternative non linéaire générale).** Soit U ouvert $\subset C$ tel que $0 \in U$. Alors pour toute homotopie compacte $H : [0, 1] \times \mathcal{U} \to C$ ($H : [0, 1] \times \mathcal{U} \to 2^C$) telle que $H_0 \equiv 0$ au moins l'un des deux énoncés suivants a lieu:

(a) il existe $u \in \mathcal{U}$ tel que $u = H(1, u)$ $(u \in \mathcal{U})$,

(b) il existe $u \in \mathcal{U}$ tel que $u = H(\lambda, u)$ $(u \in \mathcal{U})$ pour un certain $\lambda \in (0, 1)$.

Dans le reste du texte, lorsqu'il n'y aura pas de confusion nous noterons une multiapplication $G : X \to Y$.

II. Intervalle d'existence de solution pour des problèmes à valeur initiale (du premier ordre)

Dans ce chapitre la question posée est la suivante: Pour quel intervalle $[0, T]$ y a-t-il il existe solution ou non existence de solution au problème à valeur initiale

$$
\begin{align*}
\begin{cases}
u'(t) = f(t, u(t)) & \text{p.p. } t \in (0, T), \\
u(0) = r
\end{cases}
\end{align*}
$$

où $f : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ n'est pas nécessairement continue et satisfait une condition de croissance du type $\|f(t, u)\| \leq \psi(\|u\|)$?

En fait, nous généraliserons un résultat de Lee et O'Regan [LO] qui établissait lorsque f était continue l'existence d'une solution pour tout $T < T_* = \frac{c}{\int_{\|r\|} d\psi(x)}$.

Premièrement, nous étudierons le cas où la fonction f sera de Carathéodory et ensuite nous considérerons le cas plus général où f sera un opérateur multivoque.

II.1. Problèmes à valeur initiale avec une fonction de Carathéodory

Nous considérerons le problème à valeur initiale suivant:

$$
\begin{align*}
(\text{II.0}) & \quad u'(t) = f(t, u(t)) & \text{p.p. } t \in (0, T); \\
(\text{II.1}) & \quad u(0) = 0
\end{align*}
$$
où \(f: [0, T] \times \mathbb{R}^n \to \mathbb{R}^n \) est une fonction qui vérifie les hypothèses suivantes:

(H.II.1) \(f \) est une fonction de Carathéodory,
(H.II.2) il existe une fonction \(\psi: [0, \infty) \to (0, \infty) \) telle que \(\psi \), \(1/\psi \in L^\infty_{\text{loc}}[0, \infty) \) et \(\| f(t, u) \| \leq \psi(\| u \|) \) p.p. \(t \in [0, T] \).

Une solution à ce problème sera une fonction \(u \in H^1([0, T]; \mathbb{R}^n) = \{ u \in H^1([0, T]; \mathbb{R}^n) \mid u(0) = 0 \} \) qui satisfait (II.0), (II.1).

(II.1) PROPOSITION. Soit \(f \) qui vérifie (H.II.1), (H.II.2). Alors la fonction \(F: C([0, T]; \mathbb{R}^n) \to L^2((0, T); \mathbb{R}^n), (Fu)(t) = f(t, u(t)) \) est bien définie et continue.

Preuve. Soit \(u_0 \in C([0, T]; \mathbb{R}^n) \) et soit \(\varepsilon > 0 \); montrons qu'il existe \(\delta > 0 \) tel que \(\| u - u_0 \|_0 < \delta \) implique que \(\| Fu - Fu_0 \|_{L^2} < \varepsilon \).

Posons \(G_{\varepsilon m} = \{ t \in [0, T] \mid \| v - u_0(t) \| < 1/m \Rightarrow \| f(t, v) - f(t, u_0(t)) \| < \varepsilon/R \} \) où \(v \in \mathbb{R}^n \) et \(R \) est une constante qui sera déterminée ultérieurement. \(G_{\varepsilon m} \) est mesurable puisque \(f \) satisfait (H.II.1).

Soit \(E_{m_0} = \bigcap_{\varepsilon \in \mathbb{R}} G_{\varepsilon m_0} \). Cet ensemble est mesurable et \(E_{1\varepsilon} \subset E_{2\varepsilon} \subset E_{3\varepsilon} \subset \ldots \)

Soit \(N = \{ t \in (0, T) \mid f(t, \cdot) \) n'est pas continue \}. Par hypothèse \(\text{mes}(N) = 0 \) et on a \((0, T) \setminus N \subset \bigcup_{m=1}^{\infty} E_{m_0} \). En effet, si \(t_0 \in (0, T) \setminus N \) alors il existe \(m \) tel que pour \(\| v - u_0(t_0) \| < 1/m \) on a \(\| f(t_0, v) - f(t_0, u_0(t_0)) \| < \varepsilon/R \) car \(f(t_0, \cdot) \) est continue. Donc \(t_0 \in E_{m_0} \).

Conséquemment, \(\text{mes}(\bigcup_{m=1}^{\infty} E_{m_0}) = T \). Il existe donc \(m_0 \in N \) tel que \(\text{mes}(E_{m_0}) > T - \varepsilon/R \).

Soient

\[k = \sup_{x \in 1 + \| u_0 \|_0} \psi(x) < \infty, \quad \eta < (\varepsilon/4k)^2. \]

Posons \(0 < \delta < 1/m_0 \) et \(R > \max\{\sqrt{2T}, \varepsilon/\eta\} \).

Soit \(u \in C([0, T]; \mathbb{R}^n) \) tel que \(\| u - u_0 \|_0 < \delta \). Montrons que \(\| Fu - Fu_0 \|_{L^2} < \varepsilon \).

Si \(t \in E_{m_0} \) alors \(\| f(t, u(t)) - f(t, u_0(t)) \| < \varepsilon/R \) et ainsi

\[\int_{E_{m_0}} \| f(t, u(t)) - f(t, u_0(t)) \|^2 \, dt < \frac{\varepsilon^2}{R^2} T < \frac{\varepsilon^2}{2}. \]

Autrement, posons \(V = E_{m_0} \); alors \(\text{mes}(V) < \varepsilon/R < \eta, \) d'où

\[\int_V \| f(t, u(t)) - f(t, u_0(t)) \|^2 \, dt \leq 4 \int_V \left(\psi(\| u(t) \|)^2 + \psi(\| u_0(t) \|)^2 \right) \, dt \]

\[\leq 4 \int_V (k^2 + k^2) \, dt \leq 8k^2 \text{mes}(V) < 8k^2 \eta < 8k^2(\varepsilon/4k)^2 = \varepsilon^2/2. \]

Ainsi, \(\| Fu - Fu_0 \|_{L^2} < \varepsilon \). D'où la continuité de \(F \). \(\Box \)
(II.2) Théorème (majoration a priori des solutions). Soit $u \in H^1_0((0, T))$: \mathbb{R}^n
une solution de (II.0), (II.1). Supposons que $T < T_\infty = \int_0^\infty dx/\psi(x)$. Alors il existe
une constante M telle que $\|u(t)\| \leq M$. (M ne dépend pas de u).

Preuve. $\|u'(t)\| = \|f(t, u(t))\| \leq \psi(\|u(t)\|)$ p.p. $t \in (0, T)$. Or, par la proposition
(I.6), $u \in H^1(E)$ et $\|u(t)\| = \frac{u(t)}{\|u(t)\|} u(t) \leq \|u'(t)\|$ p.p. $t \in E$ où
$E = \{ t \in [0, T] \mid \|u(t)\| > 0 \}$. Soit $t_0 \in [0, T]$ pour lequel $\|u(t)\|$ atteint son
maximum; si $t_0 \notin E$ on a $\|u(t)\| = 0$. Sinon, il existe un intervalle $(a, t_0] \subset E$ tel
que $\|u(a)\| = 0$. Nous avons donc

$$\|u(t)\| \leq \|u'(t)\| \leq \psi(\|u(t)\|) \quad \text{p.p. } t \in (a, t_0], \quad \text{i.e.}$$

$$\frac{\|u(t)\|}{\psi(\|u(t)\|)} \leq 1 \quad \text{p.p. } t \in (a, t_0].$$

En intégrant de a à t_0 il vient:

$$\int_a^{t_0} \frac{\|u(t)\|}{\psi(\|u(t)\|)} dt \leq t_0 - a \leq T.$$

Or $\|u(t)\| \in H^1(a, t_0)$ et $1/\psi \in L^\infty_0[0, \infty)$. Nous sommes donc dans les conditions
du théorème sur la règle de changement de variables dans une intégrale (voir
Annexe 1). D'où

$$\int_0^{\|u(t_0)\|} \frac{dx}{\psi(x)} = \int_a^{t_0} \frac{\|u(t)\|}{\psi(\|u(t)\|)} dt \leq T < T_\infty = \int_0^\infty \frac{dx}{\psi(x)}.$$

Dès lors, nous obtenons l'existence d'une constante $M = M(T, \psi)$ telle que
$\|u(t_0)\| \leq M$, donc $\|u(t)\| \leq M$ pour $t \in [0, T]$. \Box

(II.3) Théorème. Sous les hypothèses (H II.1), (H II.2) le problème (II.0),
(II.1) possède une solution $u \in H^1_0((0, T))$: \mathbb{R}^n pour tout $T < T_\infty = \int_0^\infty dx/\psi(x)$.

Preuve. Considérons la famille de problèmes suivants:

(II.2)$_t$

$$\begin{cases}
\dot{u}(t) = f(t, u(t)) \quad \text{p.p. } t \in (0, T), \\
u(0) = 0.
\end{cases}$$

Alors si u est solution de (II.2)$_t$ pour un certain $\lambda \in [0, 1]$, u satisfait $\|u(t)\| \leq M$, $t \in [0, T]$, où M est la constante donnée au Théorème (II.2).

Il vient que

$$\|\dot{u}(t)\| = \|f(t, u(t))\| \leq \psi(\|u(t)\|) \leq \sup_{x \leq M} \psi(x) = M_1 \quad \text{p.p. } t \in (0, T).$$

Par conséquent, il existe une constante M_0 telle que $\|u\|_{H^1} < M_0$ pour tout $u \in H^1_0$ solution de (II.2)$_t$ pour $\lambda \in [0, 1]$.
Définissons \(F_\lambda : C([0, T], \mathbb{R}^n) \rightarrow L^2(0, T; \mathbb{R}^n) \), \((F_\lambda u)(t) = \dot{u}(t, u(t)) \). Par la proposition (II.1), \(F_\lambda \) est continue. Soit \(L : H^1_b(0, T; \mathbb{R}^n) \rightarrow L^2(0, T; \mathbb{R}^n) \), \(L = u' \). \(L \) est un opérateur linéaire continu et bijectif. Notons \(L^{-1} \) son inverse et \(j : H^1_b(0, T; \mathbb{R}^n) \rightarrow C([0, T], \mathbb{R}^n) \) l'inclusion complémentaire continue.

Considérons \(H : [0, T] \times B_{M_0} \rightarrow H^1_b(0, T; \mathbb{R}^n) \), \(H(\lambda, u) = (L^{-1} \circ F_\lambda \circ j)(u) \) où \(B_{M_0} = \{ u \in H^1_b(0, T; \mathbb{R}^n) \mid \|u\|_{H^1_b} < M_0 \} \). Notons \(H_\lambda = H(\lambda, \cdot) \).

Il est clair que les points fixes de \(H_\lambda \) sont les solutions de (II.2). \(H \) est sans point fixe sur \(\partial B_{M_0} \) puisque les solutions de (II.2) satisfont \(\|u\|_{H^1_b} < M_2 \). De plus, \(H \) est une homotopie compacte entre \(H_1 \) et \(H_0 \equiv 0 \). Les théorèmes (I.8) et (I.9) impliquent que \(H_0 \) est essentielle et donc que \(H_1 \) l'est aussi.

Autrement dit, \(L^{-1} \circ F \circ j \) a un point fixe, d'où l'existence d'une solution \(u \in H^1_b(0, T; \mathbb{R}^n) \) au problème (II.0), (II.1).

(II.4) Théorème. Soit \(\psi : [0, \infty) \rightarrow (0, \infty) \) une fonction continue. Alors le problème

\[
\begin{align*}
\{ & u'(t) = \overline{f}(t, u(t)) \quad p.p. \quad t \in (0, T), \\
& u(0) = 0 \}
\end{align*}
\]

où \(\overline{f}(t, u) = (\psi(\|u\|), 0, \ldots, 0) \) possède une solution si et seulement si \(T < T_x = \int_0^\infty dx/\psi(x) \).

Preuve. Le théorème (II.3) donne l'existence d'une solution pour \(T < T_x \).

D'autre part, si \(u = (u_1, u_2, \ldots, u_n) \) est solution du problème (II.3) alors

\[
u_1 = u_2 = \ldots = u_n = 0.
\]

Donc, \(\|u(t)\| = \|u_1(t)\| \) et \(u_1(t) = \psi(\|u_1(t)\|) > 0 \), d'où \(u_1 \)

est une fonction croissante et \(u_1(t) \geq 0 \) car \(u_1(0) = 0 \).

Ainsi, \(u_1(t) = \psi(\|u_1(t)\|) \), d'où

\[
T = \int_0^T \frac{u_1(t)}{\psi(u_1(t))} dt = \frac{\int_0^\infty dx}{\psi(x)} < \int_0^\infty dx = T_x. \quad \Box
\]

Pour des problèmes à valeur initiale non homogène, nous avons le:

(II.5) Théorème. Sous les hypothèses (II.1), (II.2) le problème

\[
\begin{align*}
\{ & u'(t) = f(t, u(t)) \quad p.p. \quad t \in (0, T), \\
& u(0) = 0,
\}
\end{align*}
\]

possède une solution \(u \in H^1_b(0, T; \mathbb{R}^n) \) pour tout \(T < T_x = \int_{\|r\|}^\infty dx/\psi(x) \), où \(H^1_b((0, T); \mathbb{R}^n) = \{ u \in H((0, T); \mathbb{R}^n) \mid u(0) = r \} \).

La preuve de ce théorème est obtenue par une légère modification des théorèmes (II.2) et (II.3). Dans le théorème (II.2) si \(\|u(t_0)\| > \|r\| \), on considère l'intervalle \((a, t_0] \) tel que \(\|u(t)\| > \|r\|, \quad t \in (a, t_0] \) et \(\|u(a)\| = \|r\| \). Dans le théorème (II.3), \(H : [0, 1] \times B_{M_0} \rightarrow H^1_b((0, T); \mathbb{R}^n) \). \(H(\lambda, u) = L^{-1} \circ F \circ j \) est une homotopie compacte entre \(H_1 \) et \(H_0 \equiv u_0 \) où \(u_0 \in H^1((0, T); \mathbb{R}^n) \) et \(Lu_0 = 0, u_0(0) = r \).
Pour plus de détails voir la méthode utilisée dans Guenther ([GU], théorème 5.1).

(II.6) COROLLARE. Soit \(f : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) une fonction de Carathéodory qui satisfait

(H II.3) Il existe \(\psi : [0, \infty) \rightarrow [0, \infty) \), telle que \(\psi \in L^\infty_{\text{loc}}([0, \infty)), \| f(t, u) \| \leq \psi(\|u\|) \) et soit \(\Psi(x) = (x^2 + \psi(x)^2)^{1/2} \). On suppose que \(1/\Psi \in L^\infty_{\text{loc}}([0, \infty)). \)

Alors le problème

\[
\begin{aligned}
\begin{cases}
\dot{u}(t) = f(t, u(t), \ldots, u(t)) & \text{p.p. } t \in (0, T), \\
u(0) = r, & u(t) = r, \quad i = 1, \ldots, n,
\end{cases}
\end{aligned}
\]

possède une solution \(u \in H^1_0((0, T); \mathbb{R}^n) \) pour tout \(T < T_* = \int_R dx/\Psi(x) \) où \(R = \{(r_1, \ldots, r_n)\| \).

Preuve. Considérons le système

\[
\begin{aligned}
\dot{u}_i(t) &= \dot{u}_{i-1}(t), \\
\vdots
\end{aligned}
\]

\[
\begin{aligned}
\dot{u}_n(t) &= f(t, u_1(t), \ldots, u_n(t)), \\
u(0) &= r, \\
\end{aligned}
\]

Pour simplifier posons \(u = (u_1, \ldots, u_n), r = (r_1, \ldots, r_n) \) et

\[
F : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^n, \quad F(t, u) = (u_2, u_3, \ldots, u_n, f(t, u_1, \ldots, u_n)).
\]

On a le système suivant:

\[
\begin{aligned}
\begin{cases}
\dot{u}(t) = F(t, u(t)) & \text{p.p. } t \in (0, T), \\
\dot{u}(0) = r
\end{cases}
\end{aligned}
\]

Les hypothèses du théorème (II.5) sont satisfaites, il existe donc une solution \(u = (u_1, \ldots, u_n) \).

On vérifie que \(u_1 \in H^1_0((0, T); \mathbb{R}^n) \) et est solution du problème (II.5).

II.2. Problèmes à valeur initiale avec un opérateur multivoque

Soit \(f : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) et soient \(\bar{f}, \bar{f} \) et \(\bar{F} \) qui lui sont associées et définies au paragraphe I.1.

Maintenant, nous considérerons un problème à valeur initiale plus général

\[
\begin{aligned}
\begin{cases}
\bar{u}(t) \in \bar{F}(t, u(t)) = [f(t, u(t)), \bar{f}(t, u(t))] & \text{p.p. } t \in (0, T), \\
u(0) = r
\end{cases}
\end{aligned}
\]

On suppose que la multiapplication \(\bar{F} : [0, T] \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) satisfait les hypothèses suivantes:
(H II.4) \(\mathcal{F} \) est de type \(\mathcal{M} \) (voir définitions (I.3) et (I.4)).

(H II.5) Il existe \(\psi : [0, \infty) \to (0, \infty) \) telle que \(\psi, 1/\psi \in L^\infty_{loc} [0, \infty) \) et \(\| \mathcal{F}(t, u) \| \leq \psi(\|u\|) \) p.p. \(t \in [0, T] \), i.e. si \(w \in \mathcal{F}(t, u) \) alors \(\|w\| \leq \psi(\|u\|) \).

Une solution de ce problème sera une fonction \(u \in H^1(0, T) : \mathbb{R}^n \) définie, s.c.s., à valeurs convexes, bornée sur les sous-ensembles bornés de \(C([0, T]) : \mathbb{R}^n \).

(II.7) PROPOSITION. Soit \(\mathcal{F} \) qui vérifie (H II.4), (H II.5). Alors

\[F : C([0, T]) : \mathbb{R}^n \to L^2(0, T) : \mathbb{R}^n, \quad (Fu)(t) = \mathcal{F}(t, u(t)) \]

(i.e. \(Fu = \{ w : [0, T] \to \mathbb{R}^n \text{ mesurable} \mid w(t) \in \mathcal{F}(t, u(t)) \text{ p.p. } t \in [0, T] \} \) est bien définie, s.c.s., à valeurs convexes, bornée sur les sous-ensembles bornés de \(C([0, T]) : \mathbb{R}^n \)).

Preuve. Soit \(u_0 \in C([0, T]) : \mathbb{R}^n \). Si \(w \in Fu_0 \) alors

\[\|w(t)\| \leq \psi(\|u_0(t)\|) \leq \sup_{x \in \mathbb{R}^n} \psi(x) = M, \text{ donc } \|w\|_{L^2} \leq MT. \]

Donc \(F \) est bien définie.

Soit \(B \) un sous-ensemble borné dans \(C([0, T]) : \mathbb{R}^n \) et soit \(k \) tel que \(\|u\|_0 \leq k \) pour \(u \in B \). Alors \(\|w\|_{L^2} \leq T \sup_{x \in \mathbb{R}^n} \psi(x) \) pour \(w \in Fu \), \(u \in B \), d'où \(F \) est bornée sur les bornés. Il est clair que \(F \) est à valeurs convexes.

Vérifions que \(F \) est s.c.s. Soit \(\varepsilon > 0 \) et soit \(u_0 \in C([0, T]) : \mathbb{R}^n \); on veut montrer l'existence d'un \(\delta > 0 \) tel que \(\|u - u_0\|_0 < \delta \) implique que pour \(w \in Fu \), il existe \(v \in Fu_0 \) tel que \(\|w - v\|_{L^2} < \varepsilon \).

Posons

\[G_{\varepsilon m} = \{ t \in [0, T] \mid \|v - u_0(t)\| < 1/m \Rightarrow [f_i(t, v), f_i(t, v)] \subset (f_i(t, u_0(t)) - \varepsilon/R, f_i(t, u_0(t)) + \varepsilon/R), \quad i = 1, \ldots, n \} \]

où \(v \in \mathbb{R}^n \) et \(R \) est une constante qui sera déterminée ultérieurement. \(G_{\varepsilon m} \) est mesurable par (H II.4).

Soit \(E_{mc} = \bigcap_{\varepsilon \in \mathbb{R}^n} G_{\varepsilon m} \). Cet ensemble est mesurable et \(E_{1\varepsilon} \subset E_{2\varepsilon} \subset \ldots \). Aussi,

\[\bigcup_{m=1}^{\infty} E_{mc} = (0, T) \]. En effet, si \(t \in (0, T) \)

\[A_i = \{ v \in \mathbb{R}^n \mid f_i(t, v) > f_i(t, u_0(t)) - \varepsilon/R \}, \]

\[B_i = \{ v \in \mathbb{R}^n \mid f_i(t, v) < f_i(t, u_0(t)) + \varepsilon/R \}, \quad i = 1, \ldots, n, \]

sont ouverts car \(f_i \) et \(\tilde{f}_i \) sont respectivement s.c.i. et s.c.s., donc il existe \(m \in N \) tel que pour \(\|v - u_0(t)\| < 1/m \) on a \(v \in \bigcap_{i=1}^{n} A_i \cap B_i \), d'où \(t \in E_{mc} \).
Dès lors, mes($\bigcup_{m=1}^{\infty} E_{m_0}) = T$. Ainsi, il existe $m_0 \in \mathbb{N}$ tel que mes(E_{m_0}) $\geq T - \varepsilon/R$. Soient

$k = \sup_{x \in [1 - \varepsilon_0]} \psi(x) < \infty, \quad \eta < (\varepsilon/4k)^2$.

Posons $0 < \delta < 1/m_0$ et $R > \max\{\sqrt{2Tn}, \varepsilon/\eta\}$. Soit $u \in C([0, T[: \mathbb{R}^n]$ telle que $\|u - u_0\|_0 < \delta$ et soit $w \in Fu$, $w = (w_1, \ldots, w_n)$. Montrons qu'il existe $v \in Fu_0$ telle que $\|v - w\|_{L^2} < \varepsilon$.

Définissons

$v_i(t) = \begin{cases} f_i(t, u_0(t)); & w_i(t) > f_i(t, u_0(t)), \\ f_i(t, u_0(t)); & f_i(t, u_0(t)) \leq w_i(t) \leq f_i(t, u_0(t)), \\ f_i(t, u_0(t)); & f_i(t, u_0(t)) < w_i(t), \end{cases}$

ainsi $v = (v_1, \ldots, v_n) \in Fu_0$.

Si $t \in E_{m_0}$ alors

$w_i(t) \in \left[f_i(t, u(t)), f_i(t, u_0(t)) \right] = \left(f_i(t, u_0(t)) - \varepsilon/R, f_i(t, u_0(t)) + \varepsilon/R \right)$

donc $|v_i(t) - w_i(t)| < \varepsilon/R, \ i = 1, \ldots, n, d'où

$$\int_{E_{m_0}} \|v(t) - w(t)\|^2 dt = \int_{E_{m_0}} \sum_{i=1}^{n} |w_i(t) - v_i(t)|^2 dt < \frac{\varepsilon^2}{R^2} n T < \frac{\varepsilon^2}{2}.$$ Autrement, posons $V = E_{m_0} \setminus \text{mes}(V) < \varepsilon/R < \eta$. Alors

$$\int_{V} \|v(t) - w(t)\|^2 dt \leq 4 \int_{V} \left(\psi(\|u(t)\|) + \psi(\|u_0(t)\|) \right) dt$$

$$\leq 8k^2 \text{mes}(V) < 8k^2 \eta < \varepsilon^2/2.$$ Donc $\|w - v\|_{L^2} < \varepsilon$, d'où la semi-continuité supérieure de F. \(\square\)

(II.8) Théorème (Majoration a priori des solutions). Soit $u \in H_+^1((0, T[: \mathbb{R}^n)$ une solution du problème (II.6), (II.4). Supposons que $T < T_\infty = \int_{\|x\|}^{\infty} dx/\psi(x)$.

Alors il existe une constante M telle que $\|u(t)\| \leq M, t \in [0, T]$ (M ne dépend pas de u).

La preuve est analogue à celle du théorème (II.2).

(II.9) Théorème. Sous les hypothèses (H. II.4), (H. II.5) le problème (II.6), (II.4) possède une solution $u \in H_+^1((0, T[: \mathbb{R}^n)$ pour tout $T < T_\infty = \int_{\|x\|}^{\infty} dx/\psi(x)$.

Preuve. Considérons la famille de problèmes suivants:

\[\begin{cases} u(t) \in \mathcal{F}(t, u(t)) & \text{p.p. } t \in (0, T), \\ u(0) = r. \end{cases} \]

\[\text{(II.6)} \]
Alors si u est solution de (II.6), pour un certain \(\lambda \in [0, 1] \), u satisfait \(\|u(t)\| \leq M \), \(t \in [0, T] \) où M est la constante donnée par le théorème (II.8).

Posons pour \(\lambda \in [0, 1] \), \(F_j: C([0, T]; \mathbb{R}^n) \to L^2([0, T]; \mathbb{R}^n), \) \((F_j u)(t) = \lambda \mathcal{F}(t, u(t)) \). Par la proposition (II.7), \(F_j \) est s.c.s., bornée sur les bornés et à valeurs convexes.

Soient \(j: H_k^1((0, T]; \mathbb{R}^n) \hookrightarrow C([0, T]; \mathbb{R}^n) \) l’inclusion complètement continue et \(L: H_k^1((0, T]; \mathbb{R}^n) \to L^2((0, T]; \mathbb{R}^n), Lu = u' \). L est un opérateur inversible. Notons \(L^{-1} \) son inverse.

Considérons \(H: [0, 1] \times B_{M+1} \to C([0, T]; \mathbb{R}^n), \) \(H(\lambda, u) = (j \circ L^{-1} \circ F_j)(u) \) où \(B_{M+1} = \{u \in C([0, T]; \mathbb{R}^n) | \|u\|_0 \leq M + 1\} \). Il est clair que les points fixes de \(H \) sont les solutions de (II.6).

Or \(H_j \) est sans point fixe sur \(\partial B_{M+1} \) puisque les solutions de (II.6) satisfont \(\|u\|_0 \leq M \). De plus, \(H \) est compacte car \(F_j \) envoie les bornés sur les bornés et \(j \) est complètement continue. Aussi, \(H \) est s.c.s. et à valeurs convexes fermées.

Conséquemment, \(H \) est une homotopie compacte entre \(H_0 \) et \(H_0 \equiv u_0 \) où \(Lu_0 = 0 \), \(u_0(0) = r \) et \(u_0 \in H_k^1((0, T]; \mathbb{R}^n) \).

Les théorèmes (I.8) et (I.9) impliquent que \(H_0 \) est essentielle et donc que \(H_1 \) l’est aussi, i.e. \(j \circ L^{-1} \circ F \) possède un point fixe. Il existe donc \(u \in H_k^1((0, T]; \mathbb{R}^n) \) solution du problème (II.6), (II.4).

(II.10) Théorème. Soit \(f = (f_1, 0, \ldots, 0) \) telle que la multiapplication associée \(\mathcal{F} \) satisfait les hypothèses (H.II.4), (H.II.5). Supposons de plus qu’il existe \(q: [0, \infty) \to (0, \infty) \) telle que \(1/q \in L^\infty_{loc}[0, T] \) et \(q(\|u\|) \leq \int_0^T \|f_1(u, t)\| \) p.p. \(t \in [0, T] \).

Alors le problème (II.6), (II.1) possède une solution pour tout \(T < T_\infty = \int_0^\infty dx/\psi(x) \) et pour \(T \geq \int_0^\infty dx/q(x) \) il n’en possède pas.

Preuve. Le théorème (II.9) donne l’existence pour tout \(T < T_\infty \). Si \(u = (u_1, \ldots, u_n) \) est solution du problème (II.6), (II.1) alors \(u_2 = u_3 = \ldots = u_n = 0 \). Donc \(\|u(t)\| = \|u_1(t)\| \) et

\[
\|u_1'(t)\| \geq f_1(t, u(t)) \geq q(\|u(t)\|) = q(\|u_1(t)\|) = 0,
\]

d’où \(u_1 \) est croissante et \(u_1(t) \geq 0 \) car \(u_1(0) = 0 \). Il vient

\[
T \leq \int_0^T \frac{u_1'(t)}{q(u_1(t))} dt = \int_0^\infty \frac{dx}{\psi(x)} < \int_0^\infty \frac{dx}{\psi(x)}.
\]

(II.11) Corollaire. Soit \(\mathcal{F} \) une multiapplication qui satisfait (H.II.4) et (H.II.6) pour tout \(i = 1, \ldots, n \), il existe \(\psi_i: [0, \infty) \to [0, \infty), \psi_i \in L^\infty_{loc}[0, T] \) telles que \(\max \{|f_i(t, u)|, |\bar{f}_i(t, u)|\} \leq \psi_i(\|u\|) \) p.p. \(t \in (0, T) \).

Supposons de plus que \(\Phi(x) = \left(\sum_{i=1}^n \psi_i(x)^2\right)^{1/2} > 0 \) et \(1/\Phi \in L^\infty_{loc}[0, T] \). Alors le problème (II.6), (II.4) possède une solution pour tout \(T < T_\infty = \int_0^\infty dx/\Phi(x) \).
(II.12) **Corollaire.** Soit \(f : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n \) telle que

(H II.7) \(f \) et \(f \) sont de type \(\mathcal{A} \) (i.e. \(\mathcal{F} \) est de type \(\mathcal{A} \)),

(H II.8) il existe \(\psi : [0, \infty) \to [0, \infty) \), \(\psi \in L^1_{\text{loc}}[0, \infty) \) telle que
\[
\max \{ |f(t, u)|, |f(t, u)| \} \leq \psi(\|u\|)
\]
et soit \(\Psi(x) = (x^2 + \psi(x^2))^{1/2} \). On suppose que \(1/\Psi \in L^1_{\text{loc}}[0, \infty) \). Alors le problème
\[
\begin{align*}
&u^{n}(t) \in \mathcal{F}(t, u(t), \ldots, u^{n-1}(t)) \quad \text{p.p. } t \in (0, T), \\
&u(0) = r_1, \ldots, u^{n-1}(0) = r_n
\end{align*}
\]
possède une solution \(u \in H^1_r((0, T) ; \mathbb{R}^n) \) pour tout \(T < T_\alpha = \int_0^\infty dx/\Psi(x) \) où \(R = \|(r_1, \ldots, r_n)\| \).

III. Problèmes à valeur initiale dans un domaine complexe

Dans ce chapitre, nous sommes intéressés à étudier l'existence de solution à des problèmes à valeur initiale dans un domaine complexe

\[
\begin{align*}
&u'(z) = f(z, u(z)), \quad z \in U_T, \\
&u(0) = z \in C
\end{align*}
\]
où \(U_T = \{z \in C \mid \|z\| < T \} \) et \(f : \bar{U}_T \times C \to C \) est holomorphe sur \(U_T \times C \) et continue sur \(\bar{U}_T \times C \). Aussi \(f \) satisfera une condition de croissance du type \(\|f(z, u)\| \leq \psi(\|u\|) \).

Le résultat principal de ce chapitre déterminera \(T \) pour lequel notre problème admet une solution, à savoir pour \(\sqrt{2} T < T_\alpha = \int_0^\infty ds/\psi(s) \).

Dans sa thèse de doctorat, D. O'Regan [OR] a considéré les cas où \(f \) satisfaisait une condition de croissance soit linéaire, soit quadratique. Entre autre, si \(|f(z, u)| \leq A|u| + B \) il obtenait l'existence de solution pour \(T < 1/A \). Sous cette même condition, le problème (III.1) possèdera une solution pour tout \(T \).

III.1. Formulation du problème

Dénomons par \(A^n(\bar{U}_T) \) l'espace des fonctions \(g \) telles que \(g : \bar{U}_T \to C \) est holomorphe sur \(U_T \) et \(g^{(k)} \) est continue sur \(U_T \), \(k = 0, \ldots, n \). Avec la norme \(\|g\|_n = \max \{ \|g\|_0, \ldots, \|g^{(n)}\|_0 \} \), \(A^n(\bar{U}_T) \) est un espace de Banach. Notons par \(A^0(\bar{U}_T) \) le sous-ensemble des fonctions de \(A^n(\bar{U}_T) \) qui satisfont une condition initiale donnée.

L'inclusion \(j : A^n(\bar{U}_T) \to A^{n-1}(\bar{U}_T) \), \(n \geq 1 \), est une application complètement continue.
Considérons le problème à valeur initiale suivant:

\[
\begin{align*}
\begin{cases}
u'(z) = f(z, u(z)), & z \in U_T, \\
u(0) = \chi
\end{cases}
\end{align*}
\]

où \(f : \overline{U}_T \times \mathbb{C} \rightarrow \mathbb{C} \) est une fonction qui vérifie les hypothèses suivantes:

1. **H.III.1** \(f(z, u) \) est holomorphe en \((z, u)\) sur \(U_T \times \mathbb{C} \) et est continue en \((z, u)\) sur \(\overline{U}_T \times \mathbb{C} \);

2. **H.III.2** il existe \(\psi : [0, \infty) \rightarrow (0, \infty) \) continue telle que \(\| f(z, u) \| \leq \psi(\| u \|) \).

Une solution du problème (III.1) sera une fonction \(u \in A_k^1(\overline{U}_T) \) qui satisfera (III.1).

III.2. Existence

Proposition. Soient \(u \in A_k^1(\overline{U}_T) \) et \(z_0 \in \overline{U}_T \setminus \{0\} \) tel que \(\| u(z_0) \| > 0 \) et soit \(z : [0, 1] \rightarrow \mathbb{C} \), \(z(t) = tz_0 = tx_0 + ity_0 \) la paramétrisation du segment \([0, z_0] \).

Soit \(a \in [0, 1) \) tel que \(\| u(z(a)) \| > 0 \), \(t > a \). Alors

\[
\frac{d}{dt} \| u(z(t)) \| \leq \sqrt{2} \| z_0 \| \left\| \frac{d}{dz} u(z(t)) \right\|, \quad t \in (a, 1].
\]

Preuve.

\[
u(z) = v(x, y) + iw(x, y), \quad \| u(z) \| = \left[v(x, y)^2 + w(x, y)^2 \right]^{1/2},
\]

\[
u'(z) = \frac{\partial v}{\partial x}(x, y) + i \frac{\partial w}{\partial x}(x, y) = \frac{\partial w}{\partial y}(x, y) - i \frac{\partial v}{\partial y}(x, y),
\]

\[
\| u'(z) \| = \left[\left(\frac{\partial v}{\partial x}(x, y) \right)^2 + \left(\frac{\partial w}{\partial y}(x, y) \right)^2 \right]^{1/2} = \left[\left(\frac{\partial w}{\partial x}(x, y) \right)^2 + \left(\frac{\partial v}{\partial y}(x, y) \right)^2 \right]^{1/2}.
\]

Pour simplifier l'écriture, posons \(\tilde{u}(t) = u(z(t)), \quad x(t) = tx_0, \quad y(t) = ty_0, \)

\(\tilde{u}(t) = v(x(t), y(t)), \quad \tilde{w}(t) = w(x(t), y(t)), \quad t \in (a, 1] \). Alors

\[
\frac{d}{dt} \| \tilde{u}(t) \| = \frac{1}{2 \| \tilde{u}(t) \|} \left(2 \tilde{v}(t) \left[\frac{\partial v}{\partial x} \frac{dx}{dt} + \frac{\partial v}{\partial y} \frac{dy}{dt} \right] + 2 \tilde{w}(t) \left[\frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} \right] \right).
\]

\[
= \frac{1}{\| \tilde{u}(t) \|} \left(\tilde{v}(t) \left[x_0 \frac{\partial v}{\partial x} + y_0 \frac{\partial v}{\partial y} \right] + \tilde{w}(t) \left[x_0 \frac{\partial w}{\partial x} + y_0 \frac{\partial w}{\partial y} \right] \right)
\]

\[
= \frac{1}{\| \tilde{u}(t) \|} \left(\tilde{v}(t), \tilde{w}(t) \right) \cdot \left(x_0 \frac{\partial v}{\partial x} + y_0 \frac{\partial v}{\partial y}, x_0 \frac{\partial w}{\partial x} + y_0 \frac{\partial w}{\partial y} \right).
\]

Par l'inégalité de Schwarz

\[
\leq \frac{1}{\| \tilde{u}(t) \|} \left[\tilde{v}^2(t) + \tilde{w}^2(t) \right]^{1/2} \left[\left(x_0 \frac{\partial v}{\partial x} + y_0 \frac{\partial v}{\partial y} \right)^2 + \left(x_0 \frac{\partial w}{\partial x} + y_0 \frac{\partial w}{\partial y} \right)^2 \right]^{1/2}
\]

\[
= \left[\left(x_0, y_0 \right) \cdot \left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \right) \right]^{1/2} + \left(x_0, y_0 \right) \cdot \left(\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y} \right) \right]^{1/2}.
\]
III. Problèmes dans un domaine complexe

Par l'inégalité de Schwarz

\[
\leq \left[(x_0^2 + y_0^2) \left(\frac{\partial v^2}{\partial x} + \frac{\partial w^2}{\partial y} \right) + (x_0^2 + y_0^2) \left(\frac{\partial w^2}{\partial x} + \frac{\partial w^2}{\partial y} \right) \right]^{1/2}
\]

\[
= \left[\|z_0\|^2 \|u'(z(t))\|^2 + \|z_0\|^2 \|u'(z(t))\|^2 \right]^{1/2}
\]

\[
= \|z_0\| \|u'(z(t))\| \sqrt{2}.
\]

En résumé, nous avons obtenu

\[
\frac{d}{dt} \|\tilde{u}(t)\| = \frac{d}{dt} \|u(z(t))\| \leq \sqrt{2} \|z_0\| \|u'(z(t))\|, \quad t \in (a, 1].
\]

Remarquons que \(\|u(z)\|\) n'est pas différentiable comme fonction de \(z\) et c'est pourquoi nous ne pouvons procéder comme dans le cas réel (chapitre II).

(III.2) THÉORÈME. Soit \(f\) une fonction qui vérifie (H III.1). Supposons qu'il existe \(M\) tel que \(\|u\|_1 < M\) pour toute solution \(u\) de (III.1) pour \(\lambda \in [0, 1]\) où

\[
(III.1)_{\lambda} \quad \begin{cases}
 u'(z) = \lambda f(z, u(z)), & z \in U_T, \\
 u(0) = z.
\end{cases}
\]

Alors le problème (III.1) possède une solution.

PRÉUVE. Posons

\[
F_{\lambda}: \mathcal{A}(\bar{U}_T) \to \mathcal{A}(\bar{U}_T), \quad (F_{\lambda} u)(z) = \lambda f(z, u(z)),
\]

\[
L: \mathcal{A}(\bar{U}_T) \to \mathcal{A}(\bar{U}_T), \quad Lu = u',
\]

\[
j: \mathcal{A}(\bar{U}_T) \to \mathcal{A}(\bar{U}_T)
\]

l'inclusion complètement continue. \(F\) est une application continue et \(L\) est un opérateur inversible. Notons \(L^{-1}\) son inverse.

Considérons \(H: [0, 1] \times B_M \to \mathcal{A}(\bar{U}_T), \quad H(\lambda, u) = L^{-1} \circ F_{\lambda} \circ j(u)\) où \(B_M = \{ u \in \mathcal{A}_1(\bar{U}_T) | \|u\|_1 < M\}\).

Clairement, les points fixes de \(H_{\lambda} = H(\lambda, \cdot)\) sont solutions de (III.1)\(_{\lambda}\). Or, \(H_{\lambda}\) est sans point fixe sur \(\partial B_M\) car les solutions de (III.1)\(_{\lambda}\) satisfaisent \(\|u\|_1 < M\). Puisque \(j\) est complètement continue, \(H\) est une homotopie compacte entre \(H_1\) et \(H_0 \equiv u_0\) où \(Lu_0 = 0\) et \(u_0 \in \mathcal{A}(\bar{U}_T)\). Les théorèmes (I.8) et (I.9) impliquent que \(H_0\) est essentielle et ainsi \(H_1\) l'est aussi. Donc \(H_1\) admet un point fixe, d'où l'existence d'une solution \(u \in \mathcal{A}(\bar{U}_T)\) au problème (III.1).

Maintenant, nous voulons montrer que pour

\[
\sqrt{2} T < T_\psi = \int_{\|z\|}^{\infty} ds \psi(s)
\]

nous obtenons une majoration a priori des solutions de (III.1), le théorème (III.2) donnant l'existence d'une solution au problème (III.1).
(III.3) **Théorème.** Sous les hypothèses (H.III.1), (H.III.2), pour
\(\sqrt{2} T < T_z = \int_{|x|}^{x} ds/\psi(s) \), il existe \(M > 0 \) telle que \(\|u\|_1 < M \) pour tout
\(u \) solution de (III.1) pour \(\lambda \in [0, 1] \).

Preuve. Soit \(T < T_z/\sqrt{2} \) et soit \(u \in A_T^1(U_T) \) une solution de (III.1) pour
un certain \(\lambda \in [0, 1] \). Alors
\[
\|u(z)\| = \left\| \lambda f(z, u(z)) \right\| \leq \psi(\|u(z)\|), \quad z \in U_T.
\]
Soit \(z_0 \in U_T \) pour lequel \(\|u\| \) atteint son maximum. Si \(z_0 \in U_T \), par le principe
du maximum (voir [SS], p. 157) \(u(z) = \) constante = \(\lambda \). Sinon, \(z_0 \in \partial U_T \),
\(\|z_0\| = T \).

Supposons que \(\|u(z_0)\| > \|\lambda\| \). Considérons le segment \([0, z_0] \subset U_T \) et sa
paramétrisation \(z(t) = tz_0 \). Puisque \(u(0) = \lambda \), il existe \(\alpha \in [0, 1) \) tel que
\(\|u(z(t))\| > \|\lambda\| \), \(t \in (a, 1) \), et \(\|u(z(t))\| = \|\lambda\| \). Notons \(\tilde{u}(t) = u(z(t)) \). Par la
proposition (III.1)
\[
\frac{d}{dt} \|\tilde{u}(t)\| \leq \sqrt{2} \|z_0\| \|u(z(t))\| \leq \sqrt{2} T \psi(\|u(z(t))\|), \quad t \in (a, 1],
\]
i.e.
\[
\frac{d}{dt} \|\tilde{u}(t)\| \leq \sqrt{2} T, \quad t \in (a, 1].
\]
En intégrant de \(a \) à \(1 \), il vient
\[
\frac{d}{dt} \|\tilde{u}(t)\| \leq \sqrt{2} T(1-a) \leq \sqrt{2} T
\]
et par la règle de changement de variables
\[
\int_{\|x\|}^{x} \frac{ds}{\psi(s)} = \frac{d}{dt} \|\tilde{u}(t)\| \leq \sqrt{2} T < T_x = \int_{|x|}^{x} ds/\psi(s).
\]
Il existe donc \(M_0 \geq \|\lambda\| \) telle que \(\|u(z)\| \leq M_0 \), \(z \in U_T \). De plus,
\[
\|u(z)\| \leq \psi(\|u(z)\|) \leq \sup_{s \leq M_0} \psi(s) = M_1.
\]
Posons \(M = \max\{M_0, M_1\} \); alors \(\|u\|_1 < M \) pour tout \(u \) solution de
(III.1), \(\lambda \in [0, 1] \). □

(III.4) **Théorème.** Sous les hypothèses (H.III.1), (H.III.2), le problème (III.1)
possède une solution \(u \in A_T^1(U_T) \) pour tout \(T \) tel que \(\sqrt{2} T < T_z = \int_{|x|}^{x} ds/\psi(s) \).
Nous obtenons le même résultat pour les systèmes. Soit le problème
\[(III.2)\]
\[
\begin{cases}
u'(z) = f(z, u(z)), & z \in U_T, \\
u(0) = z \in \mathbb{C}^n
\end{cases}
\]
où \(f: \overline{U}_T \times \mathbb{C}^n \rightarrow \mathbb{C}^n \) satisfait les hypothèses suivantes:
\[(H III.3)\] \(f \) est holomorphe sur \(U_T \times \mathbb{C}^n \) et continue sur \(\overline{U}_T \times \mathbb{C}^n \),
\[(H III.4)\] il existe \(\psi: [0, \infty) \rightarrow (0, \infty) \) continue telle que \(\| f(z, u) \| \leq \psi(\| u \|) \).

\[(III.5)\] Théorème. Sous les hypothèses (H III.3), (H III.4), pour tout \(T \) tel que \(\sqrt{2} T < T_0 = \int_{\| u \|}^{\infty} \frac{ds}{\psi(s)} \), le problème (III.2) possède une solution \(u \in A_b^k(\overline{U}_T; \mathbb{C}^n) \).

Nous obtenons comme corollaire de ce théorème un résultat pour les équations différentielles d'ordre supérieure. Soit le problème
\[(III.3)\]
\[
\begin{cases}
u^{(0)}(z) = f(z, u(z), \ldots, u^{(n-1)}(z)), & z \in U_T, \\
u(0) = x_1, \ldots, u^{(n-1)}(0) = x_n
\end{cases}
\]
où \(f: \overline{U}_T \times \mathbb{C}^{nm} \rightarrow \mathbb{C}^m \) est une fonction qui satisfait
\[(H III.5)\] \(f(z, u_0, \ldots, u_{n-1}) \) est analytique sur \(U_T \times \mathbb{C}^{nm} \) et continue sur \(\overline{U}_T \times \mathbb{C}^{nm} \),
\[(H III.6)\] il existe \(\psi: [0, \infty), \psi(0) \neq 0, \) continue telle que \(\| f(z, u_1, \ldots, u_n) \| \leq \psi(\| u_1, \ldots, u_n \|) \).

\[(III.6)\] Corollaire. Supposons que les hypothèses (H III.5), (H III.6) sont satisfaites. Alors pour tout \(T \) tel que \(\sqrt{2} T < T_0 = \int_{\| u \|}^{\infty} \frac{ds}{\psi(s)} \) le problème (III.3) possède une solution \(u \in A_b^k(\overline{U}_T; \mathbb{C}^m) \) où \(\Psi(s) = (s^2 + \psi(s)^2)^{1/2} \), \(x = (x_1, \ldots, x_n) \in \mathbb{C}^{nm} \).

\[\text{Preuve.}\] Considérons le système suivant:
\[
u_1'(z) = u_2(z),
\vdots
\nu_{n-1}'(z) = u_n(z),
\nu_n'(z) = f(z, u_1(z), \ldots, u_n(z)),
\nu_n(0) = x_k, \quad k = 1, \ldots, n.
\]
Posons \(u = (u_1, \ldots, u_n) \) et \(F(z, u) = (u_2, \ldots, u_n, f(z, u_1, \ldots, u_n)) \). \(F: \overline{U}_T \times \mathbb{C}^{nm} \rightarrow \mathbb{C}^m \) satisfait (H III.3), (H III.4), \(\| F(z, u) \| \leq \psi(\| u \|) \). Par le théorème (III.5), le système
\[
\begin{cases}
u'(z) = F(z, u(z)), \\
u(0) = z
\end{cases}
\]
possède une solution \(u = (u_1, \ldots, u_n) \in A_b^k(\overline{U}_T; \mathbb{C}^m) \) pour \(\sqrt{2} T < T_x = \int_{\| u \|}^{\infty} \frac{ds}{\psi(s)} \). On vérifie que \(u_1 \in A_b^k(\overline{U}_T; \mathbb{C}^m) \) est solution de (III.3). \(\Box \)
IV. Problèmes aux limites du second ordre
avec une fonction de Carathéodory

Dans ce chapitre nous étudierons l’existence de solution à des problèmes aux limites du second ordre

\[
\begin{cases}
\frac{\partial u}{\partial t}(t) = f(t, u(t), u'(t)) & \text{p.p. } t \in (0, 1), \\
u \in \mathcal{A}
\end{cases}
\]

où \(f : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) est une fonction de Carathéodory qui satisfait une condition de croissance de type Bernstein, i.e. \(|f(t, u, p)| \leq A(t, u)p^2 + B(t, u) \), et \(\mathcal{A} \) dénote des conditions aux limites.

En fait, nous étendrons un résultat obtenu en 1977 par Granas, Guenther, et Lee [GGL1] dans lequel la fonction considérée était continue et qui généralisait un théorème de S. Bernstein établi en 1912 [BER].

IV.1. Formulation du problème

Soit le problème aux limites suivant:

\[
\begin{cases}
(IV.0) & \frac{\partial u}{\partial t}(t) = f(t, u(t), u'(t)) & \text{p.p. } t \in (0, 1), \\
u \in \mathcal{A}
\end{cases}
\]

où \(\mathcal{A} \) dénote une ou l’autre des conditions aux limites

\begin{align}
(IV.1) & & u(0) = u(1) = 0, \\
(IV.2) & & u(0) - \beta u'(0) = 0; \quad \beta \geq 0,
\end{align}

et où \(f : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) est une fonction qui satisfait les hypothèses suivantes:

\begin{align}
(HIV.1) & & f \text{ est une fonction de Carathéodory}, \\
(HIV.2) & & \text{il existe une constante } M > 0 \text{ telle que } u(t, u, 0) \geq 0 \text{ pour } |u| \geq M, \\
(HIV.3) & & |f(t, u, p)| \leq A(t, u)p^2 + B(t, u) \text{ où } A(t, u), B(t, u) \text{ sont des fonctions non négatives bornées sur tout sous-ensemble borné de } [0, 1] \times \mathbb{R}.
\end{align}

Une solution du problème (IV) sera une fonction \(u \in H^2(0, 1) \) qui vérifie (IV.0).

\((IV.1) \) PROPOSITION. Supposons que \(f : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) satisfait les hypothèses (HIV.1), (HIV.3). Alors l’application \(F : C^1([0, 1]) \to L^2(0, 1) \) donnée par \((Fu)(t) = f(t, u(t), u'(t)) \) est bien définie et continue.

\begin{proof}
Soit \(u_0 \in C^1([0, 1]) \) et soient \(A \) et \(B \) deux constantes telles que \(A(t, u) \leq A, B(t, u) \leq B, t \in [0, 1], |u| \leq 1 + \|u_0\|_0 \). Alors \(|Fu_0(t)| \leq Au_0(t)^2 + B \), donc \(\|Fu_0\|_{L^2} \leq A \|u_0\|^2_2 + B \) et ainsi \(F \) est bien définie.

Montrons la continuité de \(F \). Considérons

\[
G_{\epsilon, m} = \{ t \in (0, 1) \mid \|e - (u_0(t), u_0'(t))\| < \epsilon, m \Rightarrow \|f(t, r_1, r_2) - f(t, u_0(t), u_0(t))\| < \epsilon, \mathbb{R} \}
\]

où $v = (v_1, v_2) \in \mathbb{R}^2$, et R est une constante qui sera déterminée ultérieurement. G_{v_m} est mesurable par (H1V.1).

Soit $E_{v_m} = \bigcap_{v \in \mathbb{R}^2} G_{v_m}$. Cet ensemble est mesurable et $E_{v_1} \subset E_{v_2} \subset \ldots$. Soit $N = \{t \in (0, 1) | f(t, \cdot) \text{ n'est pas continue}\}$. Alors $(0, 1) \setminus N \subset \bigcup_{m=1}^{\infty} E_{v_m}$. En effet, soit $t_0 \in (0, 1) \setminus N$; alors (H1V.1) implique l'existence d'un $m \in N$ tel que pour $\|v - (u_0(t_0), u_0'(t_0))\| < 1/m$ on a $\|f(t_0, v_1, v_2) - f(t_0, u_0(t_0), u_0'(t_0))\| < \varepsilon/R$, i.e. $t_0 \in E_{v_m}$. Dès lors, mes$(\bigcup_{m=1}^{\infty} E_{v_m}) = 1$ puisque N est de mesure nulle. Il en découle l'existence d'un $m_0 \in N$ tel que $\text{mes}(E_{v_{m_0}}) > 1 - \varepsilon/R$.

Notons que pour tout $\varepsilon > 0$, il existe $\eta = \eta(\varepsilon) > 0$ tel que $\text{mes}(S) < \eta$ implique que $\int_S \left[A^2 (u_0'(t))^4 (2^4 + 1 + 2B^2)\right] \, dt < \frac{1}{4} (\varepsilon/4)^2$.

Posons $0 < \delta < \min\{1/m_0, \frac{1}{4} \varepsilon/\sqrt{3} \}$ et $R > \max\{\varepsilon/\sqrt{3}, \sqrt{3}\}$. Soit $u \in C^1([0, 1])$ telle que $\|u - u_0\| < \delta$. Montrons que $\|Fu - Fu_0\|_{L^2} < \varepsilon$.

Si $t \in E_{v_{m_0}}$, alors $\|f(t, u(t), u'(t)) - f(t, u_0(t), u_0'(t))\| < \varepsilon/R$ et par conséquent $\int_{E_{v_{m_0}}} \|fu(t) - Fu_0(t)\|^2 \, dt < \varepsilon^2/2 < \varepsilon^2/3$. Autrement, notons $V = E_{v_{m_0}} \setminus E_{v_{m_0}}$, $\text{mes}(V) < \varepsilon/R < \eta$ et

$$\int_{V} \|fu(t) - Fu_0(t)\|^2 \, dt \leq 4 \int_{V} (\|fu(t)\|^2 + \|Fu_0(t)\|^2) \, dt$$

$$\leq 4 \int_{V} (|A u'(t)|^2 + |A u_0'(t)|^2 + B^2) \, dt$$

$$\leq 4 \int_{V} \left(A^2 (u_0'(t))^4 + A^2 (u'(t))^4 + 2B^2\right) \, dt$$

$$\leq 4 \int_{V} \left(A^2 |u_0(t)|^4 (2^4 + 1) + 2^4 A^2 |u'(t) - u_0'(t)|^4 + 2B^2\right) \, dt$$

$$< 4^2 \frac{1}{3} (\varepsilon/4)^2 + 2^4 A^2 \delta^4$$

$$< \varepsilon^2/3 + \varepsilon^2/3 = 2\varepsilon^2/3.$$

Il en découle que $\|Fu - Fu_0\|_{L^2} < \varepsilon$, d'où la continuité de F.

Soit $0 < \varepsilon < M/2$; pour $0 \leq \lambda < 1$ posons $\gamma = (1 - \lambda) \varepsilon/2$ et

$$f_1(t, u, p) = \begin{cases} \gamma f(t, u, p) \vee 0, & u \geq M - \gamma, \\ \delta [\gamma f(t, u, p) \vee 0] + (1 - \delta) \gamma f(t, u, p), & u = M - \gamma (2 - \delta), \quad \delta \in [0, 1], \\ \gamma f(t, u, p), & -M + 2\gamma \leq u \leq M - 2\gamma, \\ \delta [\gamma f(t, u, p) \wedge 0] + (1 - \delta) \gamma f(t, u, p), & u = -M + \gamma (2 - \delta), \quad \delta \in [0, 1], \\ \gamma f(t, u, p) \wedge 0, & u \leq -M + \gamma, \end{cases}$$

$f_1 = f$.

IV. Problèmes avec une fonction de Carathéodory
f_j est de Carathéodory pour tout $\lambda \in [0, 1]$ et
\[
|f_j(t, u, p)| \leq A(t, u) p^2 + B(t, u).
\]

Considérons maintenant la famille de problèmes suivants:
\[
(IV)_\lambda \quad \begin{cases}
 u''(t) = f_j(t, u(t), u'(t)) & \text{p.p. } t \in [0, 1], \\
 u(0) - \beta u'(0) = 0; & \beta \geq 0, \\
 u(1) + b u'(1) = 0; & b \geq 0.
\end{cases}
\]

IV.2. Majoration a priori des solutions

(IV.2) **Proposition.** Soit f une fonction qui satisfait (H IV.1), (H IV.2) et soient f_j définies précédemment. Alors toute solution u de $(IV)_\lambda$, $0 \leq \lambda < 1$, satisfait $|u(t)| < M$.

Preuve. Soit u une solution de $(IV)_\lambda$ pour un certain $\lambda \in [0, 1]$ et soit $\{t \mid u(t) > M - (1 - \lambda) \varepsilon/2\}$. Presque partout sur cet ensemble, $u''(t) = f_j(t, u(t), u'(t)) \vee 0 \geq 0$. Puisque u satisfait les conditions aux limites (IV.2), on déduit par un principe du maximum (voir annexe 2) que $u(t) \leq M - (1 - \lambda) \varepsilon/2 < M$ sur $[0, 1]$. De même, on montre que $u(t) > -M$ sur $[0, 1]$. □

(IV.3) **Proposition.** Sous les hypothèses (H IV.1) — (H IV.3), il existe une constante M_1 telle que pour toute solution u de $(IV)_\lambda$, $0 \leq \lambda < 1$, on a $|u'(t)| < M_1$ sur $[0, 1]$.

Preuve. Soit u une solution de $(IV)_\lambda$ pour un certain $\lambda \in [0, 1]$. Soit $t_0 \in [0, 1]$ pour lequel $|u'(t_0)|$ atteint son maximum. Supposons que $|u'(t_0)| > 0$; alors il existe un intervalle (a, t_0) sur lequel u' ne change pas de signe et $|u'(a)| \leq c$ car u satisfait la condition aux limites (IV.1) ou (IV.2) et où
\[
c = \begin{cases}
 0 & \text{si } \beta = b = 0, \\
 M/\max \{\beta, b\} & \text{sinon}.
\end{cases}
\]

Sans perte de généralité, supposons que $u'(t_0) > 0$; alors
\[
u''(t) = f_j(t, u(t), u'(t)) \leq A(t, u(t)) u'(t)^2 + B(t, u(t)) \\ \leq A u'(t)^2 + B \quad \text{p.p. } t \in [0, 1]
\]

où $A(t, y) \leq A$, $B(t, y) \leq B$, $t \in [0, 1]$, $|y| \leq M$.

Dès lors, $2A u'(t) u''(t) \leq (A u'(t)^2 + B) 2A u'(t)$ p.p. $t \in (a, t_0]$, i.e.
\[
\frac{2Au'(t) u''(t)}{Au'(t)^2 + B} \leq 2Au'(t).
\]

En intégrant de a à t_0, il vient
\[
\int_a^{t_0} \frac{2Au'(t) u''(t) dt}{2Au'(t)^2 + B} \leq 2A|u(t_0) - u(a)| < 4AM.
\]
D’autre part, par le théorème (I.5), \(\log(Au'(t)^2 + B) \in H^1(a, t_0) \) et
\[
\left[\log \left(Au'(t)^2 + B \right) \right]' = \frac{2Au'(t)u''(t)}{Au'(t)^2 + B},
\]
d’où
\[
\log \left(\frac{Au'(t_0)^2 + B}{Ac^2 + B} \right) < 4AM.
\]
Nous obtenons ainsi
\[
|u'(t_0)| < \left[\frac{B}{4} \left(e^{4AM} - 1 \right) + c^2 e^{4AM} \right]^{1/2} \equiv M_1.
\]
Par conséquent \(|u'(t)| < M_1, \quad t \in [0, 1] \), et ainsi pour \(u \) solution de (IV)_2,
\(\lambda \in [0, 1] \), \(\|u\|_0 < M_1 \). \(\Box \)

(IV.4) Remarque. Nous verrons dans la suite que dans les deux propositions précédentes, les inégalités strictes sont importantes.

IV.3. Existence

Posons \(V = \{ u \in C^1[0, 1] \mid |u(t)| < M \text{ et } |u'(t)| < M_1 \} \).

(IV.5) Proposition. Sous les hypothèses (H IV.1)-(H IV.3), \(F : [0, 1] \times P \rightarrow L^2(0, 1) \), \(F(\lambda, u)(t) = f_\lambda(t, u(t), u'(t)) \) est continue.

Preuve. Soit \((\lambda_0, u_0) \in [0, 1] \times P \). En utilisant la même technique de preuve qu’à la proposition (IV.1) on obtient que pour tout \(\varepsilon > 0 \), il existe \(\delta > 0 \) tel que pour \(|\lambda - \lambda_0| < \delta \) et \(\|v - u_0\|_1 < \delta \) on a \(\|F(\lambda, v) - F(\lambda_0, u_0)\|_{L^2} < \varepsilon \).

D’autre part, soit \(u_0 \in P \). Montrons la continuité de \(F \) au point \((1, u_0) \). Soit \((\lambda_n, v_n) \) une suite qui converge vers \((1, u_0) \) dans \([0, 1] \times P \). Montrons que \(F(\lambda_n, v_n)(t) \rightarrow F(1, u_0)(t) \) p.p. \(t \in [0, 1] \).

Soit \(N_1 \subset [0, 1] \) de mesure nulle pour lequel \(u, p \rightarrow f(t, u, p) \) est continue pour tout \(t \in [0, 1] \setminus N_1 \). Posons \(E^+ = \{ t \mid u_0(t) = M \}, \ E^0 = \{ t \mid -M < u_0(t) < M \}, \ E^- = \{ t \mid u_0(t) = -M \} \). Soit \(t \in E^0 \setminus N_1 \); alors il existe \(\lambda_0 \in [0, 1] \) tel que \(-M + (1 - \lambda_0) \varepsilon < u_0(t) < M - (1 - \lambda_0) \varepsilon \) et il existe \(N \in N \) tel que pour tout \(n > N_1, \ -M + (1 - \lambda_0) \varepsilon < v_n(t) < M - (1 - \lambda_0) \varepsilon \) et \(\lambda_0 > \lambda_n > \lambda_0 \). Donc
\[
f_{\lambda_n}(t, v_n(t), v_n'(t)) = \lambda_n f(t, v_n(t), v_n'(t)) \rightarrow f(t, u_0(t), u_0'(t)).
\]
D’autre part, puisque \(-M < u_0(t) < M \) sur \([0, 1] \) on a que sur \(E^+ \cup E^- \), \(u_0(t) = 0 \). Soit \(N_2 \subset [0, 1] \) un ensemble de mesure nulle tel que \(f(t, u_0(t), u_0'(t)) \geq 0 \) pour tout \(t \in E^+ \setminus N_2 \) par (H IV.2). Soit \(t \in E^+ \setminus N_1 \cup N_2 \); puisque \(f(t, u_0(t), u_0'(t)) \geq 0 \), il découle que
\[
|f(t, u_0(t), u_0'(t)) - f_{\lambda_n}(t, v_n(t), v_n'(t))| \leq |f(t, u_0(t), u_0'(t)) - \lambda_n f(t, v_n(t), v_n'(t))|,
\]
d’où \(f_{\lambda_n}(t, v_n(t), v_n'(t)) \rightarrow f(t, u_0(t), u_0'(t)) \).
On montre de même la convergence presque partout sur E^-. On a donc montré que $F(\lambda_n, v_n)(t) \to F(1, u_0)(t)$ p.p. sur $[0, 1]$ et il existe $k \geq 0$ tel que

$$|F(\lambda_n, v_n)(t)| \leq A(t, v_n(t))v_n(t) + B(t, v_n(t)) \leq k$$

car $v_n \to u_0$ dans C^1. Par le théorème de la convergence dominée de Lebesgue, il découle que $F(\lambda_n, v_n) \to F(1, u_0)$ dans $L^2(0, 1)$.

Nous donnons maintenant le théorème principal de ce chapitre, soit celui d'existence de solution au problème (IV).

(IV.6) **Théorème.** Sous les hypothèses (HIV.1)-(HIV.3) le problème (IV) possède une solution $u \in H^1_2(0, 1)$ telle que $|u(t)| \leq M$, $t \in [0, 1]$.

Preuve. Considérons la famille de problèmes suivants:

$$(IV)_\lambda\begin{cases}
 u''(t) = f_\lambda(t, u(t), u'(t)) & \text{p.p. } t \in (0, 1), \\
 u \in \mathcal{B}
\end{cases}$$

où $\lambda \in [0, 1]$ et \mathcal{B} correspond à (IV.1) ou (IV.2). On a montré précédemment (propositions (IV.2) et (IV.3)) que si u est solution de $(IV)_\lambda$ pour un certain $\lambda \in [0, 1)$,

$$u \in V = \{u \in C^1[0, 1] | |u(t)| < M, |u'(t)| < M_1, \forall t \in [0, 1]\}.$$

V est convexe et ouvert dans C^1. Soient

$$F : [0, 1] \times V \to L^2(0, 1), \quad F(\lambda, u)(t) = f_\lambda(t, u(t), u'(t)), \quad \lambda \in [0, 1],$$

$$L : H^1_2(0, 1) \to L^2(0, 1), \quad Lu = u''$$

et

$$j : H^1_2(0, 1) \to C^1[0, 1],$$

l'inclusion complètement continue.

Par la proposition (IV.5), F est une application continue. L est un opérateur inversible où L^{-1} est son inverse.

Posons $H : [0, 1] \times V \to C^1[0, 1]$, $H(\lambda, u) = j \circ L^{-1} \circ F(\lambda, u)$. H est une homotopie compacte entre $H_1 = H(1, \cdot)$ et $H_0 = 0$. Clairement, les points fixes de H sont des solutions de $(IV)_\lambda$ pour $\lambda \in [0, 1]$. Or, pour $\lambda \in [0, 1)$, les solutions de $(IV)_\lambda$ sont dans V et par conséquent, H_λ est sans point fixe sur ∂V pour $\lambda \in [0, 1]$. Le théorème (I.11) implique que H_1 a un point fixe dans V. D'où l'existence d'une solution $u \in H^1_2(0, 1)$ au problème (IV). □

(IV.7) **Remarque.** Dans l'énoncé du théorème précédent, on peut affaiblir l'hypothèse (HIV.2) par la suivante:

(HIV.2)' il existe $M_1 > 0$ et $M_2 > 0$ tels que $f(t, M_1, 0) \geq 0 \geq f(t, M_2, 0)$ presque pour tout $t \in [0, 1]$.

Cette hypothèse correspond à l'existence de sous- et sur-solutions que nous utiliserons dans les chapitres suivants.
IV.4. Régularité

Maintenant, dans l’éventualité où la fonction f est continue, est-ce que la solution obtenue est une solution classique, i.e. $u \in C^2[0, 1]$? Le théorème suivant répond à cette question.

(IV.7) **Théorème.** Soit $f: [0, 1] \times \mathbb{R}^2 \to \mathbb{R}$ une fonction continue qui satisfait les hypothèses (H IV.2), (H IV.3). Alors le problème (IV) possède une solution classique.

Preuve. Le théorème (IV.6) donne l’existence d’une solution $u \in H^2_b(0, 1)$ au problème (IV), i.e. $u''(t) = f(t, u(t), u'(t)) = g(t)$ p.p. $t \in (0, 1)$ où $g \in C([0, 1])$. Par unicité des dérivées généralisées, $u'' \in C([0, 1])$, d’où $u \in C^2[0, 1]$.

V. Problèmes aux limites du second ordre avec un opérateur multivoque satisfaisant une condition de croissance de type Bernstein

Dans ce chapitre, des problèmes d’existence de solutions généralisées à des équations différentielles du second ordre avec partie de droite multivoque seront considérés:

$$u''(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1),$$

$$z u(0) - \beta u'(0) = r, \quad a u(1) + b u'(1) = s.$$

L’opérateur \mathcal{F} satisfiera une condition de croissance de type Bernstein:

$$|\mathcal{F}(t, u, p)| \leq A(t, u) p^2 + B(t, u).$$

Ici notre approche sera basée sur l’existence de sous- et sur-solutions nous permettant d’obtenir une majoration a priori des solutions. Enfin, en utilisant la théorie de la transversalité topologique, nous obtiendrons les résultats escomptés.

V.1. Formulation du problème

Soit $f: [0, 1] \times \mathbb{R}^2 \to \mathbb{R}$ et soient f, \mathcal{F} qui lui sont associées et définies au paragraphe I.1, $\mathcal{F}(t, u, p) = [f(t, u, p), \mathcal{F}(t, u, p)]$.

Nous considérons le problème aux limites suivant:

(V)

$$\begin{cases}
 u''(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1), \\
 u \in \mathcal{A}
\end{cases}$$

où \mathcal{A} dénotera l’une ou l’autre des conditions aux limites

(V.1)

$$\begin{cases}
 u(0) - \beta u'(0) = r; \quad \beta \geq 0, \\
 u(1) + b u'(1) = s; \quad b \geq 0.
\end{cases}$$
(V.2) \[
\begin{align*}
\begin{cases}
zu(0) - \beta u'(0) &= r, & \alpha, \beta \geq 0, \max\{\alpha, \beta\} > 0, \\
au(1) + bu'(1) &= s, & a, b \geq 0, \max\{a, b\} > 0
\end{cases}
\end{align*}
\]

et où \(\mathcal{F} \) satisfait les hypothèses suivantes:

(H V.1) \(\mathcal{F} \) est de type \(\mathcal{H} \) (voir définitions (1.3), (1.4));

(H V.2) \(|\mathcal{F}(t, u, p)| \leq A(t, u)p^2 + B(t, u) p.p. \text{ sur } [0, 1] \) où \(A \) et \(B \) sont des fonctions bornées sur tout sous-ensemble borné de \([0, 1] \times \mathbb{R} \) (i.e. \(w \in \mathcal{F}(t, u, p), |w| \leq A(t, u)p^2 + B(t, u) \));

(H V.3) il existe \(q, \psi \in W^{2,\infty}(0, 1) \) telles que \(q(t) \leq \psi(t) \) et sont respectivement sous- et sur-solutions de (V), i.e.
\[
\begin{align*}
\psi''(t) &\leq f(t, \psi(t), \psi'(t)) \quad p.p. \ t \in (0, 1), \\
\alpha \psi(0) - \beta \psi'(0) &\geq r, \quad \alpha \psi(1) + b \psi'(1) \geq s, \\
q''(t) &\geq f(t, q(t), q'(t)) \quad p.p. \ t \in (0, 1), \\
\alpha q(0) - \beta q'(0) &\leq r, \quad \alpha q(1) + b q'(1) \leq s.
\end{align*}
\]

(V.1) PROPOSITION. Soit \(\mathcal{F} \) une multiapplication qui satisfait (H V.1),
(H V.2). Alors \(F: C^1[0, 1] \rightarrow L^2(0, 1) \), \((Fu)(t) = \mathcal{F}(t, u(t), u'(t)) \), i.e. \(Fu = \{w: [0, 1] \rightarrow \mathbb{R} \ \text{mesurable} | w(t) \in \mathcal{F}(t, u(t), u'(t)) \ \text{p.p.} \ t \in [0, 1] \} \), est bien définie, s.c.s., à valeurs convexes et bornée sur les sous-ensembles bornés de \(C^1[0, 1] \).

\[\text{Preuve.} \] Soient \(u_0 \in C^1[0, 1] \) et \(w \in F u_0 \). Alors \(|w(t)| \leq A(t, u_0(t))u_0(t)^2 + B(t, u_0(t)) \), d'où \(F \) est bien définie et bornée sur les bornés de \(C^1[0, 1] \). Clairement, \(F \) est à valeurs convexes.

Montrons la semi-continuité supérieure de \(F \), i.e. pour tout \(\varepsilon > 0 \), il existe \(\delta > 0 \) tel que pour \(\|u - u_0\|_1 < \delta \) on a \(Fu \subset Fu_0 + B_{L^2}(\varepsilon) \) où \(B_{L^2}(\varepsilon) \) est la boule ouverte centrée en \(0 \) et de rayon \(\varepsilon \) dans \(L^2(0, 1) \).

Considérons
\[
G_{\varepsilon m} = \{t \in (0, 1) | \|v - (u_0(t), u_0'(t))\| < 1/m \Rightarrow \}
\]
\[
\mathcal{F}(t, v_1, v_2) \subseteq \left\{ f(t, u_0(t), u_0'(t)) - \varepsilon/R, f(t, u_0(t), u_0'(t)) + \varepsilon/R \right\}
\]

où \(v = (v_1, v_2) \in \mathbb{R}^2 \) et \(R \) une constante qui sera déterminée ultérieurement.

\(G_{\varepsilon m} \) est mesurable par (H V.1).

Posons \(E_{\varepsilon m} = \bigcap_{m \in \mathbb{R}^+} G_{\varepsilon m} \). Cet ensemble est mesurable et on a les inclusions
\[
E_{\varepsilon 1} \subset E_{\varepsilon 2} \subset E_{\varepsilon 3} \subset \ldots
\]

Aussi, \(\bigcup_{m = 1}^{\infty} E_{\varepsilon m} = (0, 1) \). En effet, \(\overline{f} \) et \(f \) sont respectivement s.c.s. et s.c.i.,
d'où pour \(t \in (0, 1) \)
\[
\begin{align*}
O_1 = \{v \in \mathbb{R}^2 | \overline{f}(t, v_1, v_2) < \overline{f}(t, u_0(t), u_0'(t)) + \varepsilon/R \} \quad \text{et} \\
O_2 = \{v \in \mathbb{R}^2 | f(t, v_1, v_2) > \overline{f}(t, u_0(t), u_0'(t)) - \varepsilon/R \}
\end{align*}
\]

sont ouverts. Il existe donc \(m \) tel que \((u_0(t), u_0'(t)) + B_{R^2}(1/m) \subset O_1 \cap O_2 \), d'où \(t \in E_{\varepsilon m} \).
Conséquemment, \(\text{mes}\left(\bigcup_{m=1}^{\infty} E_{m\infty} \right) = 1 \) et il existe \(m_0 \in \mathbb{N} \) tel que \(\text{mes}(E_{m_0}) > 1/\delta R \).

Soient \(A \) et \(B \) des constantes telles que \(A(t, v_1) \leq A, \ B(t, v_1) \leq B \) pour \(|v_1| \leq 1 + \|u_0\|_0 \). Aussi, pour tout \(\varepsilon > 0 \), il existe \(\eta = \eta(\varepsilon) \) tel que pour \(S \subset (0, 1) \) avec \(\text{mes}(S) < \eta \) on a

\[
\frac{1}{S} \int (A^2 |u_0(t)|^4 (2^4 + 1) + 2B^2) \, dt < \frac{1}{2}(\varepsilon/4)^2.
\]

Posons

\[
0 < \delta < \min\left\{ \frac{1}{m_0}, \frac{1}{4}\left(\frac{\varepsilon}{A \sqrt{3}} \right)^{1/2} \right\}, \quad R > \max\left\{ \frac{\varepsilon}{\eta}, \sqrt{3} \right\}.
\]

Soit \(u \in C^1 [0, 1] \) telle que \(\|u - u_0\|_1 < \delta \). Montrons que \(F u \subset F_{u_0} + B_{L_2}(\varepsilon) \), i.e. soit \(w \in F_{u_0} \); prouvons qu'il existe \(v \in F_{u_0} \) telle que \(\|v - w\|_{L^2} < \varepsilon \).

Soient

\[
G^+ = \{ t \in (0, 1) \mid w(t) > \bar{f}(t, u_0(t), u_0(t)) \},
\]

\[
G^0 = \{ t \in (0, 1) \mid \bar{f}(t, u_0(t), u_0(t)) \leq w(t) \leq \bar{f}(t, u_0(t), u_0'(t)) \},
\]

\[
G^- = \{ t \in (0, 1) \mid \bar{f}(t, u_0(t), u_0(t)) < w(t) \}.
\]

Posons

\[
v(t) = \begin{cases}
\bar{f}(t, u_0(t), u_0(t)), & t \in G^+, \\
w(t), & t \in G^0, \\
\bar{f}(t, u_0(t), u_0'(t)), & t \in G^-.
\end{cases}
\]

Alors \(v \in F_{u_0} \).

Si \(t \in E_{m_0} \),

\[
\mathcal{F}(t, u(t), u'(t)) = (\bar{f}(t, u_0(t), u_0'(t)) - \varepsilon/R, \bar{f}(t, u_0(t), u_0'(t)) + \varepsilon/R)
\]

puisque \(\|u - u_0\|_1 < \delta < 1/m_0 \), ce qui implique que \(|w(t) - v(t)| < \varepsilon/R \). Ainsi,

\[
\int_{E_{m_0}} |w(t) - v(t)|^2 \, dt < \varepsilon^2/R^2 < \varepsilon^2/3.
\]

Autrement posons \(V = E_{m_0} \), \(\text{mes}(S) < \varepsilon/R < \eta \). Nous obtenons

\[
\int_v |v(t) - w(t)|^2 \, dt \leq 4^2 \int_v (|w(t)|^2 + |v(t)|^2) \, dt
\]

\[
\leq 4^2 \int_v (\|A|u'(t)|^2 + B\|^2 + \|A|u_0(t)|^2 + B\|^2) \, dt
\]

\[
\leq 4^2 \int_v (A^2 |u_0(t)|^4 + 2B^2 + A^2 2^4 (|u_0(t) - u'(t)|^4 + |u_0(t)|^4)) \, dt
\]
\[= 4^2 \left(((2^4 + 1) A^2 |u_0(t)|^4 + 2B^2 + A^2 2^4|u_0(t) - u'(t)|^4) \right) dt \]
\[< 4^2 \left(\frac{1}{3} \left(\frac{\varepsilon}{4} \right)^2 + A^2 2^4 \delta^4 \right) < \frac{\varepsilon^2}{3} + A^2 4^4 \left(\frac{1}{4^4 3A^2} \right) = \frac{2\varepsilon^2}{3}, \]
donc \(\|v - w\|_{L^2} < \varepsilon \). D'où la semi-continuité supérieure de \(F \). □

(V.2) Proposition. Soient \(M, A_M, B_M \in \mathbb{R} \) et \(D_M \) l'ensemble des fonctions \(u \in H^2(0, 1) \) telles que \(\|u\|_0 \leq M \) et \(|u'(t)| \leq A_M u'(t)^2 + B_M \) p.p. \(t \in (0, 1) \). Alors il existe une constante \(M_1 = M_1(M, A_M, B_M, \mathcal{B}) \) telle que \(|u(t)| \leq M_1 \), \(t \in [0, 1] \), pour tout \(u \in D_M \).

Preuve. Soit \(u \in D_M \) et soit \(t_0 \in [0, 1] \) pour lequel \(|u'(t)| \) atteint son maximum. Supposons que \(|u'(t_0)| > c \) où

\[
c = \begin{cases}
\frac{aM + |r|}{\beta} & \text{si } \beta = b = 0, \\
\frac{aM + |s|}{b} & \text{si } \beta > 0, b = 0, \\
\beta \min \left\{ \frac{aM + |r|}{b}, \frac{aM + |s|}{b} \right\} & \text{si } \beta > 0, b > 0.
\end{cases}
\]

Alors il existe un intervalle \((a, t_0] \) \(([t_0, a]) \) sur lequel \(|u'(t)| > c \) et \(|u(a)| = c \) puisque \(u \) satisfait (V.1) ou (V.2). Supposons sans perte de généralité que \(u'(t_0) > 0 \). Alors

\[u'(t) \leq A_M u'(t)^2 + B_M \quad \text{p.p. } t \in (0, 1), \]
\[\frac{2A_M u'(t) u''(t)}{A_M u'(t)^2 + B_M} \leq 2A_M u'(t) \quad \text{p.p. } t \in (a, t_0). \]

En intégrant de \(a \) à \(t_0 \) il vient:

\[\int_a^{t_0} 2A_M u'(t) u''(t) dt \leq 2A_M [u(t_0) - u(a)] \leq 4A_M M. \]

Par la règle de dérivation d'un produit de composition (théorème (I.5))

\[\left(\log \left(A_M u'(t)^2 + B_M \right) \right)' = \frac{2A_M u'(t) u''(t)}{A_M u'(t)^2 + B_M} \]

et ainsi,

\[\log \left(\frac{A_M u'(t_0)^2 + B_M}{A_M u'(a)^2 + B_M} \right) \leq 4A_M M. \]
De ce fait, nous obtenons

$$|u'(t_0)| \leq \left[\frac{B_M(e^{A_M M} - 1) + c^p e^{A_M M}}{A_M} \right]^{1/2} = M_1,$$

d'où $|u'(t)| \leq M_1$, $t \in [0, 1]$, pour tout $u \in D_M$. □

V.2. Conditions aux limites: $u(0) - \beta u'(0) = r$, $u(1) + bu'(1) = s$

Considérons le problème

(V.0) \quad \begin{cases} u''(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1), \\ u(0) - \beta u'(0) = r; \quad \beta \geq 0, \\ u(1) + bu'(1) = s; \quad b \geq 0 \end{cases}

où $\mathcal{F} : [0, 1] \times \mathbb{R}^2 \to \mathbb{R}$ est une multiapplication satisfaisant les hypothèses (H.V.1)–(H.V.3).

Soit $f : [0, 1] \times \mathbb{R}^2 \to \mathbb{R}$ la fonction qui détermine \mathcal{F}, i.e. $\mathcal{F}(t, u, p) = [\int f(t, u, p), \int f(t, u, p)]$. Pour $\tau \in [0, 1]$ posons

$$f(t, u, p, \tau) = \begin{cases} \psi''(t) \lor \tau^f(t, u, p), & u \geq \psi(t) \geq \varphi(t), \\ \tau f(t, u, p), & \psi(t) > u \geq \varphi(t), \\ \varphi''(t) \land \tau^f(t, u, p), & \psi(t) > \varphi(t) \geq u, \\ \varphi''(t), & \psi(t) = \varphi(t) = u. \end{cases}$$

La multiapplication $\mathcal{F}(t, u, p, \tau)$ associée à $f(t, u, p, \tau)$ devient donc

$$\mathcal{F}(t, u, p, \tau) = \begin{cases} [\psi''(t) \lor \tau f(t, u, p), \psi''(t) \lor \tau^f(t, u, p)], & u > \psi(t) \geq \varphi(t), \\ [\tau f(t, u, p), \psi''(t) \lor \tau^f(t, u, p)], & u = \psi(t) \geq \varphi(t), \\ [\tau^f(t, u, p), \tau^f(t, u, p)], & \psi(t) > u \geq \varphi(t), \\ [\varphi''(t) \land \tau f(t, u, p), \tau^f(t, u, p)], & \psi(t) > \varphi(t) \geq u, \\ [\varphi''(t) \land \tau^f(t, u, p), \varphi''(t) \land \tau^f(t, u, p)], & \psi(t) > \varphi(t) > u, \\ [\varphi''(t) \land \tau f(t, u, p), \psi''(t) \lor \tau^f(t, u, p)]. & \psi(t) = \varphi(t) = u. \end{cases}$$

Pour chaque $\tau \in [0, 1]$, $\mathcal{F}(t, u, p, \tau)$ satisfait (H.V.1) et (H.V.2) car $\mathcal{F}(t, u, p)$ vérifie (H.V.1) et (H.V.2) car $\varphi'', \psi'' \in L^\infty(0, 1)$.

Considérons la famille de problèmes associés

(V.0) \quad \begin{cases} u''(t) \in \mathcal{F}(t, u(t), u'(t), \tau) \quad \text{p.p. } t \in (0, 1), \\ u(0) - \beta u'(0) = r; \quad \beta \geq 0, \\ u(1) + bu'(1) = s; \quad b \geq 0 \end{cases}

(V.3) Proposition. Si u est solution du problème (V.0)–(V.1) pour un certain $\tau \in [0, 1]$ alors $\varphi(t) \leq u(t) \leq \psi(t)$, $t \in [0, 1]$.

3. Dissertationes Math. 296
Preuve. En effet, si \(u''(t) \in \mathcal{F}(t, u(t), u'(t), \tau) \) alors pour presque tout \(t \in E^+ = \{ t \in (0, 1) | u(t) > \psi(t) \} \) on a
\[
u''(t) \geq \psi''(t) \vee \tau f(t, u(t), u'(t)) \geq \psi''(t),
\]
i.e. \((u'' - \psi'')(t) \geq 0\) p.p. \(t \in E^+ \). Or, \(E^+ = \bigcup_{i}(a_i, b_i) \) où
\[
si \ a_i, b_i \neq 0 \ ou \ 1 \quad (u - \psi)(a_i) \leq 0 \ et \ (u - \psi)(b_i) \leq 0,
\]
si \(a_i = 0 \quad (u - \psi)(0) - \beta(u' - \psi')(0) \leq 0,
\]
si \(b_i = 1 \quad (u - \psi)(1) + b(u' - \psi')(1) \leq 0,
\]
car \(\psi \) est une sur-solution.

On peut donc appliquer le principe du maximum 1 (voir annexe 2): si \(y''(t) \geq 0 \) p.p. sur \((a_i, b_i)\) et si \(y(a_i) - c_1 y'(a_i) \leq 0, y(b_i) - c_2 y'(b_i) \leq 0, c_1, c_2 \geq 0\) alors \(y(t) \leq 0 \) sur \([a_i, b_i]\).

Nous obtenons donc que \((u'' - \psi'')(t) \leq 0\) sur \(E^+ \), d'où \(u(t) \leq \psi(t), t \in [0, 1]\).

De façon analogue, nous obtenons \(q(t) \leq u(t), t \in [0, 1]\). □

Précédemment, nous avons remarqué que \(\mathcal{F}(t, u, p, \tau) \) satisfait (H V.2). En fait,
\[
|\mathcal{F}(t, u, p, \tau)| \leq \max \{|\psi''(t)|, |q''(t)|\} + |\mathcal{F}(t, u, p)|
\]
\[
\leq A(t, u) p^2 + B(t, u) + \max \{|\psi''(t)|, |q''(t)|\} = A(t, u) p^2 + \tilde{B}(t, u).
\]

En conséquence, toute solution \(u \) de (V.0), (V.1) satisfait
\[
|u(t)| \leq \max \{\|q\|_0, \|\psi\|_0\} = M, \quad |u''(t)| \leq A_M u(t)^2 + \tilde{B}_M
\]
où \(A(t, u) \leq A_M, \tilde{B}(t, u) \leq \tilde{B}_M, t \in [0, 1], \) et \(|u| \leq M \).

Nous sommes dans les conditions pour appliquer la proposition (V.2) qui fournit l'existence d'une constante \(M_1 \), telle que pour toute solution \(u \) du problème (V.0), (V.1), \(|u''(t)| \leq M_1 \).

(V.4) Théorème. Sous les hypothèses (H V.1)-(H V.3), le problème (V.0), (V.1) possède une solution \(u \in H^2(0, 1) \) telle que \(q(t) \leq u(t) \leq \psi(t) \).

Preuve. Considérons \(F : C^1[0, 1] \to L^2(0, 1), (F, u)(t) = \mathcal{F}(t, u(t), u'(t), \tau) \). \(F \) est s.c.s., à valeurs convexes et bornée sur les sous-ensembles bornés de \(C^1[0, 1] \) par la proposition (V.1).

Posons \(H : [0, 1] \times B_{C^1}(M_0) \to C^1[0, 1], H(\tau, u) = j \circ L^{-1} \circ F, u \) où \(B_{C^1}(M_0) = \{ u \in C^1[0, 1] | \| u \|_1 \leq M_0 \} \) et \(M_0 > \max \{ M, M_1 \} \). \(H \) est s.c.s., compacte et à valeurs convexes. Notons \(H_t = H(\tau, \cdot) \).

Clairement, les points fixes de \(H_t \) sont solutions de (V.0), (V.1). Ils sont donc dans \(K = \{ u \in C^1[0, 1] | q(t) \leq u(t) \leq \psi(t) \} \) et satisfont \(\| u \|_1 < M_0 \), d'où \(H \) est sans point fixe sur \(\partial B_{C^1}(M_0) \). \(H \) est une homotopie compacte entre \(H_1 \) et \(H_0 \). Le théorème (I.8) implique que \(H_1 \) est essentielle si \(H_0 \) l'est.

Maintenant, nous voulons montrer que \(H_0 \) est essentielle. On a
Considerons la famille de problèmes suivants:

\[(V.0)_0 : \quad u'(t) \in \lambda \mathcal{F}(t, u(t), u'(t), 0) \quad \text{p.p.} \quad t \in (0, 1), \]

\[(V.1) : \quad u(0) - \beta u'(0) = r, \quad u(1) + bu'(1) = s \]

et \(\mathcal{F} : [0, 1] \times B_C(r) \to C^1[0, 1] \). \(\mathcal{J}(\lambda, u) = j \circ L^{-1} \circ \lambda F_0 \) est s.c., compacte et à valeurs convexes. Les points fixes de \(\mathcal{J} \) sont solutions de \((V.0)_0, (V.1) \).

Or, pour \(r \) suffisamment grand, \(\mathcal{J} \) est sans point fixe sur \(\partial B_C(r) \), \(\mathcal{J} \) est une homotopie entre \(\mathcal{J}_1 = H_0 \) et \(\mathcal{J}_0 \equiv u_0 \) où \(u_0 \in H^2_0(0, 1) \) et \(Lu_0 = 0 \). Les théorèmes (1.7) et (1.9) impliquent que \(\mathcal{J}_0 \) est essentielle et ainsi que \(H_0 \) et \(H_1 \) le sont aussi.

Le problème \((V.0)_1, (V.1) \) possède donc une solution \(u \in H^2_0(0, 1) \cap K \).

Montrons que \(u \in K \cap H^2_0(0, 1) \) solution de \((V.0)_1, (V.1) \) est aussi solution de \((V.0), (V.1) \). En effet, si \(u'(t) \in \mathcal{F}(t, u(t), u'(t), 1) \) et \(u \in K \) alors si \(u(t) = \psi(t) \) on a \(u'(t) = \psi'(t) \) car \(u(t) \leq \psi(t) \) et \(u'(t) \leq \psi'(t) \) et \(\lambda \mathcal{F}(t, u(t), u'(t)) = \psi'(t) \) où \(\mathcal{F}(t, u(t), u'(t)) \)

\[\psi'(t) \leq \mathcal{F}(t, \psi(t), \psi'(t)); \quad \text{or par (H.V.3),} \quad \psi'(t) \leq \mathcal{F}(t, \psi(t), \psi'(t)), \text{d'où} \]

\[u'(t) \leq \mathcal{F}(t, u(t), u'(t)). \]

De même, si \(u(t) = q(t) \), \(u'(t) \geq \mathcal{F}(t, u(t), u'(t)) \). Aussi, si \(u(t) < \psi(t) \), on a \(u'(t) \leq \mathcal{F}(t, u(t), u'(t)) \) et de même si \(u(t) > q(t) \), \(u'(t) \geq \mathcal{F}(t, u(t), u'(t)) \). Ainsi, \(u'(t) \in \mathcal{F}(t, u(t), u'(t)) \) p.p. \(t \in (0, 1) \), d'où \(u \) est solution de \((V.0), (V.1) \).

Nous avons donc montré l'existence d'une solution du problème \((V.0), (V.1) \) telle que \(q(t) \leq u(t) \leq \psi(t) \). □

V.3. Conditions aux limites: \(\alpha u(0) - \beta u'(0) = r, \alpha u(1) + bu'(1) = s \)

Considérons le problème

\[(V.0) : \quad u'(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p.} \quad t \in (0, 1), \]

\[(V.2) : \quad \begin{cases}
\alpha u(0) - \beta u'(0) = r; \quad &\alpha, \beta \geq 0, \quad \max \{\alpha, \beta\} > 0, \\
\alpha u(1) + bu'(1) = s; \quad &a, b \geq 0, \quad \max \{a, b\} > 0
\end{cases} \]

où \(\mathcal{F} : [0, 1] \times R^2 \to R \) est une multiapplication satisfaisant les hypothèses (H.V.1)-(H.V.3).

Posons \(\mathcal{F}(t, u, p) = \mathcal{F}(t, u, p) - u, \quad \mathcal{F}(t, u, p) = f(t, u, p) - u \). Le problème \((V.0), (V.2) \) est alors équivalent à
Transversalité topologique et problèmes non linéaires

(V.3) \[u''(t) - u(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1), \]

(V.2) \[xu(0) - \beta u'(0) = r, \quad au(1) + bu'(1) = s. \]

En fait, nous considérons le problème (V.3), (V.2) pour s’assurer que l’opérateur \(L: H^2_0[0, 1] \to L^2(0, 1) \), \(Lu = u'' - u \) est inversible (annexe 3). On sait en effet que l’application \(u \to u'' \) où \(u \) satisfait les conditions aux limites de Neumann n’est pas bijective.

Pour \(\tau \in [0, 1] \), posons

\[
\mathcal{F}(t, u, p, \tau) = \begin{cases}
\tau f(t, u, p), & u \geq \psi(t) > q(t), \\
(\psi''(t) - \psi(t)) \wedge \tau f(t, u, p), & \psi(t) > u > q(t), \\
(\psi''(t) - q(t)) \wedge \tau f(t, u, p), & \psi(t) > q(t) \geq u, \\
\psi(t) = q(t) = u. &
\end{cases}
\]

Sa multiapplication associée devient:

\[
\mathcal{F}(t, u, p, \tau) = \begin{cases}
[(\psi''(t) - \psi(t)) \vee \tau \mathcal{F}(t, u, p), (\psi''(t) - \psi(t)) \vee \tau \mathcal{F}(t, u, p)], & u > \psi(t) > q(t), \\
[\tau \mathcal{F}(t, u, p), (\psi''(t) - \psi(t)) \vee \tau \mathcal{F}(t, u, p)], & u = \psi(t) > q(t), \\
[\tau \mathcal{F}(t, u, p), \tau \mathcal{F}(t, u, p)], & \psi(t) > u > q(t), \\
[(q''(t) - q(t)) \wedge \tau \mathcal{F}(t, u, p), \tau \mathcal{F}(t, u, p)], & \psi(t) > u = q(t), \\
[\tau \mathcal{F}(t, u, p), (\psi''(t) - q(t)) \wedge \tau \mathcal{F}(t, u, p), \tau \mathcal{F}(t, u, p)], & \psi(t) > q(t) \geq u, \\
[(q''(t) - q(t)) \wedge \tau \mathcal{F}(t, u, p), \tau \mathcal{F}(t, u, p), (\psi''(t) - q(t)) \vee \tau \mathcal{F}(t, u, p)], & \psi(t) = q(t) = u.
\end{cases}
\]

Pour chaque \(\tau \in [0, 1] \), \(\mathcal{F}(t, u, p, \tau) \) satisfait (H V.1), (H V.2) car \(\psi'' \) et \(q'' \in L^\infty(0, 1) \) et \(\mathcal{F} \) vérifie (H V.1), (H V.2).

Maintenant, considérons la famille de problèmes associés:

(V.3), \[u''(t) - u(t) \in \mathcal{F}(t, u(t), u'(t), \tau) \quad \text{p.p. } t \in (0, 1), \]

(V.2) \[xu(0) - \beta u'(0) = r, \quad \alpha \geq 0, \max\{\alpha, \beta\} > 0, \\
au(1) + bu'(1) = s, \quad a, b \geq 0, \max\{a, b\} > 0. \]

(V.5) Proposition. Les solutions \(u \in H^2_0(0, 1) \) d’un problème (V.3), (V.2) pour un certain \(\tau \in [0, 1] \) satisfont \(\varrho(t) \leq u(t) \leq \psi(t) \).

Preuve. Si \(u''(t) - u(t) \in \mathcal{F}(t, u(t), u'(t), \tau) \) alors pour presque tout \(t \in E^+ = \{t \in (0, 1) \mid u(t) > \psi(t)\} \), on a

\[u''(t) - u(t) \geq (\psi''(t) - \psi(t)) \vee \tau f(t, u(t), u'(t)) \geq (\psi''(t) - \psi(t)), \]

i.e. \(L(u - \psi) \geq 0 \) p.p. \(t \in E^+ \) où \(Ly = y'' - y \).

On peut donc appliquer le principe du maximum 2 (voir annexe 2): si \(y''(t) - y(t) \geq 0 \) p.p. \(t \in (a_1, b_1) \) et \(x\gamma(a_1) - \beta\gamma'(a_1) \leq 0, \quad ay(b_1) + by(b_1) \leq 0 \) alors \(y(t) \leq 0 \).
Nous obtenons donc que \((u - \psi)(t) \leq 0\) sur \(E^+\), d'où \(u(t) \leq \psi(t), \forall t \in [0, 1]\), et de même, \(\varphi(t) \leq u(t)\).

Remarquons que si \(u\) est solution de (V.3), puisque
\[
|\mathcal{F}(t, u, p, \tau)| \leq \max \{|\psi''(t) - \psi(t)|, |\varphi''(t) - \varphi(t)|\} + |\mathcal{F}(t, u, p)| + |u|
\]
alors
\[
|u''(t)| \leq A(t, u) p^2 + B(t, u) + k + |u|
\]
En conséquence, toute solution \(u\) de (V.3), (V.2) satisfait \(|u(t)| \leq \max \{\|\psi\|_0, \|\varphi\|_0\}\), soit \(M\) et \(|u''(t)| \leq A M u''(t)^2 + \tilde{B} M\) où \(A(t, u) \leq A_M, \tilde{B}(t, u) \leq \tilde{B}_M, \forall t \in [0, 1]\), et \(|u| \leq M\).

Nous sommes donc dans les conditions pour appliquer la proposition (V.2) qui fournit l'existence d'une constante \(M_1\) telle que pour toute solution \(u\) du problème (V.3), (V.2), \(|u''(t)| \leq M_1\).

(V.6) **Théorème.** Sous les hypothèses (H.V.1)–(H.V.3) le problème (V.0), (V.2) possède une solution \(u \in H^2_0(0, 1)\) telle que \(\varphi(t) \leq u(t) \leq \psi(t)\).

La preuve est semblable à celle du théorème (V.4).

Soit \(f : [0, 1] \times \mathbb{R}^2 \to \mathbb{R}\) une fonction de Carathéodory; alors \(\mathcal{F}(t, u, p) = f(t, u, p)\).

(V.7) **Corollaire.** Soit \(f : [0, 1] \times \mathbb{R}^2 \to \mathbb{R}\) une fonction de Carathéodory satisfaisant (H.V.2), (H.V.3). Alors le problème
\[
\begin{align*}
 &u''(t) = f(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1), \\
 &au(0) - bu'(0) = r, \quad au(1) + bu'(1) = s
\end{align*}
\]
possède une solution \(u \in H^2_0(0, 1)\) telle que \(\varphi(t) \leq u(t) \leq \psi(t)\).

Si de plus, \(f\) est continue alors \(u\) est une solution classique, i.e. \(u \in C^2[0, 1]\).

(V.8) **Corollaire.** Soit \(\mathcal{F} : [0, 1] \times \mathbb{R}^2 \to \mathbb{R}\) qui satisfait les hypothèses (H.V.1), (H.V.2) et
\[
\begin{align*}
 &\exists \, \text{des constantes } M', M'' \geq 0 \text{ telles que} \\
 &u \mathcal{F}(t, u, 0) \geq 0 \quad \text{pour } u \geq M', r \leq \alpha M', s \leq a M, \\
 &u \mathcal{F}(t, u, 0) \geq 0 \quad \text{pour } u \leq -M'', -r \leq \alpha M'', -s \leq a M.
\end{align*}
\]
Alors le problème (V.0), (V.2) possède une solution \(u\) telle que \(-M'' \leq u(t) \leq M'\).

Preuve. Il suffit de montrer que \(-M''\) et \(M'\) sont respectivement sous- et sur-solutions de (V.0), (V.2):
\[
\begin{align*}
&0 \leq \mathcal{F}(t, M', 0), \alpha M' \geq r, \quad a M' \geq s \quad \text{implique que } M' \text{ est sur-solution,} \\
&0 \geq \mathcal{F}(t, -M'', 0), -\alpha M'' \leq r, -a M'' \leq s \quad \text{implique que } -M'' \text{ est sous-solution.}
\end{align*}
\]
(V.9) **Remarque.** Pour le problème de Neumann, i.e. \(x = a = 0 \), nous devons avoir \(r = s = 0 \). La condition \(uf(t, u, 0) \geq 0 \) pour \(u \geq M \), \(uf(t, u, 0) \geq 0 \) pour \(u \leq -M \) n'est pas suffisante pour assurer l'existence de solution au problème

\[
(V.0) \quad u''(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1),
\]

\[
(V.2)_N \quad u'(0) = r, \quad u'(1) = s.
\]

Et dans le cas où \(f \) est continue ceci correspond bien au résultat de Granas, Guenther et Lee [GGL2].

(V.10) **Exemple.**

\[
\begin{cases}
 u''(t) = u'(t)^2, \\
 u'(0) = 1, \quad u'(1) = 0.
\end{cases}
\]

Ce problème ne possède pas de solution et pourtant \(uf(t, u, 0) \geq 0 \) pour \(|u| \geq 0 \). Ce qui montre l'insuffisance de cette condition. De plus, les hypothèses (H V.1), (H V.2) sont satisfaites et \(\psi(t) = 0 \) est une sous-solution. En fait, ce problème ne possède pas de sous-solution.

(V.11) **Corollaire.** Soit \(\mathcal{F} : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) une multiapplication qui satisfait (H V.1), (H V.2) et

\[
(H V.5) \quad f(t, u, p) \text{ et } \bar{f}(t, u, p) \text{ sont continues et différentiables par rapport à } u \text{ et il existe } k > 0 \text{ telle que } f_u(t, u, p) \geq k, \bar{f}_u(t, u, p) \geq k \text{ p.p. } t \in (0, 1), u \in \mathbb{R}, \text{ et } |p| \leq c = \max \{|r|, |s|\}.
\]

Alors le problème

\[
\begin{cases}
 u''(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1), \\
 u'(0) = r, \quad u'(1) = s
\end{cases}
\]

possède une solution.

Preuve. Posons \(v(t) = ((s-r)/2)t^2 + rt, \quad v'(t) = (s-r)t + r, \quad v''(t) = s - r \).

Soit \(u \) une solution de (V.0), (V.2)N. Posons \(y = u - v \); alors

\[u''(t) \in \mathcal{F}(t, u(t), u'(t)) - (s-r), \quad y'(0) = y'(1) = 0.
\]

Posons \(g(t, u, p) = f(t, u + v(t), p + v'(t)) - (s-r) \); ainsi

\[G(t, u, p) = \mathcal{F}(t, u + v(t), p + v'(t)) - (s-r), \quad G = [g, \bar{g}].
\]

Clairement, \(G(t, u, p) \) satisfait (H V.1), (H V.2).

Dès lors, \(u \) est solution de (V.0), (V.2)N si et seulement si \(y \) est solution de

\[
\begin{cases}
 y''(t) \in G(t, y(t), y'(t)), \\
 y'(0) = y'(1) = 0.
\end{cases}
\]

De plus,
V. Conditions de type Bernstein

\[y \tilde{g}(t, y, 0) = y \left[\tilde{f}(t, y + v(t), v'(t)) + (r - s) \right] \]

\[= y \left[\tilde{f}(t, y + v(t), v'(t)) - \tilde{f}(t, v(t), v'(t)) \right] + y \left[\tilde{f}(t, v(t), v'(t)) + r - s \right] \]

\[= y^2 \left[\tilde{f}_u(t, v(t), v'(t)) \right] + y \left[\tilde{f}(t, v(t), v'(t)) + r - s \right] \]

\[\geq y^2 k - |y| k_1 \]

où \(k_1 \geq |\tilde{f}(t, v, 0) + r - s| \) pour \(|u| \leq |(s - r)/2| + |r| \) et \(|p| \leq c' \).

Si \(y \geq k_1/k \) alors \(y \tilde{g}(t, y, 0) \geq 0 \). De même, si \(y \leq -k_2/k \), \(y \tilde{g}(t, y, 0) \geq 0 \) ou \(k_2 \geq |\tilde{f}(t, u, 0) + r - s| \) pour \(|u| \leq |(s - r)/2| + |r| \) et \(|p| \leq c' \). Alors, par le corollaire (V.8), le problème (V.5) possède une solution \(y \in H^2_0(0, 1) \) telle que \(-k_2/k \leq y(t) \leq k_1/k \) et par conséquent le problème (V.0), (V.2) possède une solution.

VI. Problèmes aux limites du second ordre avec un opérateur multivoque satisfaisant une condition de croissance de type Bernstein–Nagumo

Nous considérons le même problème aux limites qu'au chapitre précédent. Ici, la condition de croissance sur \(\mathcal{F} \) sera affaiblie en une de type Bernstein–Nagumo. De nouveau, en supposant l'existence de sous- et sur-solutions des théorèmes d'existence de solution seront obtenus.

VI.1. Formulation du problème

Considérons le problème

\[\begin{cases} (VI.0) & u''(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1), \\ & u \in \mathcal{A} \end{cases} \]

où \(\mathcal{A} \) dénote l'une ou l'autre des conditions aux limites suivantes:

(VI.1) \[
\begin{cases}
 u(0) - \beta u'(0) = r, & \beta \geq 0,
 u(1) + b u'(1) = s, & b \geq 0,
\end{cases}
\]

(VI.2) \[
\begin{cases}
 \alpha u(0) - \beta u'(0) = r, & \alpha, \beta \geq 0, \ \max\{\alpha, \beta\} > 0,
 \alpha u(1) + b u'(0) = s, & \alpha, b \geq 0, \ \max\{\alpha, b\} > 0
\end{cases}
\]

où \(\mathcal{F} : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) est une multiapplication déterminée par une fonction \(f \) et qui satisfait les hypothèses

(H VI.1) \(\mathcal{F} \) est de type \(\mathcal{A} \);

(H VI.2) il existe \(\varphi, \psi \in W^{2, \infty}(0, 1) \) telles que \(\varphi(t) \leq \psi(t) \) et sont respectivement sous- et sur-solution de (VI), i.e.

\[\psi''(t) \leq \tilde{f}(t, \psi(t), \psi'(t)) \quad \text{p.p. } t \in (0, 1), \]

\[\alpha \psi(0) - \beta \psi'(0) \geq r, \quad \alpha \psi(1) + b \psi'(1) \geq s. \]
Transversalité topologique et problèmes non linéaires

\[q''(t) \leq \int (t, q(t), q'(t)) \quad \text{p.p. } t \in (0, 1), \]

\[\alpha_0(0) - \beta q'(0) \leq r, \quad a q(1) + b q'(1) \leq s; \]

(VI.3) pour tout \(k \geq 0 \), il existe \(\varphi_k \colon [0, 1] \to [0, \infty) \), \(\varphi_k \in L^2(0, 1) \) telle que

\[|\mathcal{F}(t, u, p)| \leq \varphi_k(t) \text{ pour } |u| \leq k \text{ et } |p| \leq k; \]

(VI.4) il existe \(\Phi \colon [0, \infty) \to (0, \infty) \) telle que \(x/\Phi(x) \in L^2_{\text{loc}}[0, \infty) \), \(|\mathcal{F}(t, u, p)| \leq \Phi(|p|) \) pour \(q(t) \leq u \leq \psi(t) \) et \(\text{p.p. } t \in (0, 1) \) et

\[\int_{\mathcal{E}} x dx/\Phi(x) > \lfloor \psi - q \rfloor = \sup \{|\psi(t_1) - \psi(t_2)| \mid t_1, t_2 \in [0, 1]\} \]

et où

\[c = \begin{cases} \frac{s - r}{\beta + \alpha} & \text{si } \beta = b = 0, \\ \frac{z M + |r|}{\beta} & \text{si } \beta > 0, b = 0, \\ \frac{a M + |s|}{\beta} & \text{si } \beta = 0, b > 0, \\ \min \left\{ \frac{z M + |r|}{\beta}, \frac{a M + |s|}{\beta} \right\} & \text{si } \beta > 0, b > 0, \end{cases} \]

\[M = \max \{ \|q\|_0, \|\psi\|_0 \}. \]

L'hypothèse (VI.4) s'appelle une condition de croissance de type Bernstein–Nagumo. Généralement elle se rencontre sous la forme plus restrictive

\[\int_0^\infty x dx/\Phi(x) = \infty. \]

(VI.1) PROPOSITION. Soit \(\mathcal{F} \) une multiapplication satisfaisant (VI.1), (VI.3). Alors

\[F \colon C^1[0, 1] \to L^2(0, 1), \quad (F u)(t) = \mathcal{F}(t, u(t), u'(t)), \]

i.e. \(Fu = \{ w \colon [0, 1] \to R \text{ mesurable} \mid w(t) \in \mathcal{F}(t, u(t), u'(t)) \text{ p.p. } t \in [0, 1] \} \) est bien définie, s.c.s., à valeurs convexes et bornée sur les sous-ensembles bornés de \(C^1[0, 1] \).

Preuve. Soient \(u_0 \in C^1[0, 1], w \in Fu_0 \) et \(k \geq 0 \) tels que \(\|u_0\|_1 \leq k. \) Alors \(|w(t)| \leq \varphi_k(t) \), d'où \(F \) est bien définie.

Montrons la semi-continuité supérieure de \(F \). Considérons \(E_{m_{\varepsilon}} \) comme à la proposition (V.1), i.e.

\[E_{m_{\varepsilon}} = \{ t \in (0, 1) \mid |v - (u_0(t), u_0'(t))| < 1/m \Rightarrow \left[\int (t, v_1, v_2), \mathcal{F}(t, v_1, v_2) \right] \subset \left(\int (t, u_0(t), u_0'(t)) - \varepsilon/R, \int (t, u_0(t), u_0'(t)) + \varepsilon/R \right). \]

Il existe \(m_0 \in N \) tel que \(\text{mes}(E_{m_{\varepsilon}}) > 1 - \varepsilon/R. \)
VI. Conditions de type Bernstein-Nagumo

Pour tout $\varepsilon > 0$, il existe $\eta = \eta(\varepsilon)$ tel que pour $S \subset (0, 1)$ avec $\operatorname{mes}(S) < \eta$ on a $\int_S |q_k(t)|^2 \, dt < (\varepsilon/4)^2$.

Posons $0 < \delta < 1/m_0$ et $R > \max\{\varepsilon/\eta, \sqrt{2}\}$. Soit $u \in C^1[0, 1]$ telle que $\|u - u_0\|_1 < \delta$ et soit $w \in F(u)$.

Définissons $v \in F_{u_0}$ comme à la proposition (V.1), i.e.

$$ v(t) = \begin{cases} f(t, u_0(t), u_0(t)) & \text{si } w(t) > f(t, u_0(t), u_0(t)) , \\ f(t, u_0(t), w(t)) & \text{si } w(t) < f(t, u_0(t), u_0(t)) , \\ w(t) & \text{autrement}. \end{cases} $$

Si $t \in E_{\text{max}}$ alors $|v(t) - w(t)| < \varepsilon/R$ et ainsi

$$ \int_{E_{\text{max}}} |w(t) - v(t)|^2 \, dt < \varepsilon^2/R^2 < \varepsilon^2/2. $$

Sinon, posons $V = E_{\text{max}}$, $\operatorname{mes}(V) < \varepsilon/R < \eta$ et

$$ \int_V |w(t) - v(t)|^2 \, dt \leq 4 \int_V (|w(t)|^2 + |v(t)|^2) \, dt $$

$$ \leq 8 \int_V |\varphi_1(t)|^2 \, dt \leq 8(\varepsilon/4)^2 \leq \varepsilon^2/2, $$

donc $\|v - w\|_{L^2} < \varepsilon$. D'où la semi-continuité supérieure de F. □

(VI.2) PROPOSITION. Soit $\Phi_1 : [0, \infty) \to (0, \infty)$ telle que $x/\Phi_1(x) \in L^\infty_0[0, \infty)$ et $\int_0^\infty x dx/\Phi_1(x) > [\psi - \varrho]$ et soit $D l'ensemble des fonctions $u \in H^1_0(0, 1)$ telles que $\varrho(t) \leq u(t) \leq \psi(t)$ et $|u''(t)| \leq \Phi_1(|u'(t)|)$ p.p. $t \in (0, 1)$. Alors il existe une constante $M_1 = M_1(\Phi_1, c)$ telle que $|u'(t)| \leq M_1$, $t \in [0, 1]$, pour tout $u \in D$.

Preuve. Soit $u \in D$ et soit $t_0 \in [0, 1]$ pour lequel $|u'(t)|$ atteint son maximum. Supposons que $|u'(t_0)| > c$ où c est défini précédemment; alors il existe un intervalle (a, t_0) ((t_0, a)) sur lequel $|u'(t)| > c$ et $|u'(a)| = c$ puisqu'en u satisfait (VI.1) ou (VI.2).

Supposons sans perte de généralité que $u'(t_0) > c$; puisque $u''(t) \leq |u''(t)| \leq \Phi_1(|u'(t)|)$ p.p. $t \in (0, 1)$ on a $u''(t)u'(t)/\Phi_1(u'(t)) \leq u'(t)$ p.p. $t \in (a, t_0)$.

En intégrant de a à t_0 il vient

$$ \int_a^{t_0} u''(t)u'(t) \, dt \leq \int_a^{t_0} u'(t) \, dt = u(t_0) - u(a) \leq \psi(t_0) - \varrho(a) \leq [\psi - \varrho]. $$

Par hypothèse, $x/\Phi_1(x) \in L^\infty_0[0, \infty)$ et $u' \in H^1(0, 1)$. On peut donc appliquer la règle de changement de variables dans une intégrale (voir annexe 1):

$$ \int_c^{t_0} \frac{x dx}{\Phi_1(x)} = \int_c^{t_0} \frac{u'(t)u''(t) \, dt}{\Phi_1(u'(t))} \leq \int_c^{t_0} \frac{x dx}{\Phi_1(x)}. $$

Ce qui implique l'existence d'une constante $M_1 \geq 0$ telle que $|u'(t)| \leq M_1$, $t \in [0, 1]$, pour tout $u \in D$. □
VI.2. **Conditions aux limites:** \(u(0) - \beta u'(0) = r, \ u(1) + bu'(1) = s \)

Considérons le problème

\[
\begin{align*}
\text{(VI.0)} & \quad u''(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1), \\
\text{(VI.1)} & \quad \begin{cases} u(0) - \beta u'(0) = r; & \beta \geq 0, \\
& u(1) + bu'(1) = s; & b \geq 0
\end{cases}
\end{align*}
\]

où \(\mathcal{F} : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) une multiapplication qui satisfait (H VI.1)–(H VI.4).

Définissons \(\mathcal{F}(t, u, p, \tau) \) comme au paragraphe V.2. Alors pour chaque \(\tau \in [0, 1], \mathcal{F}(t, u, p, \tau) \) satisfait (H VI.1), (H VI.3).

Maintenant considérons la famille de problèmes associés

\[
\begin{align*}
\text{(VI.0)} & \quad u''(t) \in \mathcal{F}(t, u(t), u'(t), \tau) \quad \text{p.p. } t \in (0, 1), \\
\text{(VI.1)} & \quad \begin{cases} u(0) - \beta u'(0) = r; & \beta \geq 0, \\
& u(1) + bu'(1) = s; & b \geq 0
\end{cases}
\end{align*}
\]

(VI.3) **PROPOSITION.** Si \(u \) est solution du problème (VI.0), (VI.1) pour un certain \(\tau \in [0, 1] \) alors \(\varphi(t) \leq u(t) \leq \psi(t), \ t \in [0, 1] \).

La preuve est identique à celle de la proposition (V.3).

Remarquons de plus que si \(u \) est solution de (VI.0), (VI.1) alors \(|u''(t)| \leq \Phi(|u'(t)|) \). En effet, par la proposition (VI.3), \(\varphi(t) \leq u(t) \leq \psi(t) \). Par conséquent, si \(\varphi(t) < u(t) < \psi(t), \ u''(t) \in \tau \mathcal{F}(t, u(t), u'(t)) \) et par (H VI.4) on obtient \(|u''(t)| \leq \Phi(|u'(t)|) \). Si \(u(t) = \psi(t) \) alors \(u''(t) = \psi'(t) \) puisque \(u(t) \leq \psi(t) \) pour tout \(t \in [0, 1] \) et par (H VI.2), \(\psi''(t) \leq \check{f}(t, \psi(t), \psi'(t)) = \check{f}(t, u(t), u'(t)) \).

Or \(u''(t) \leq \psi' + \tau \check{f}(t, u(t), u'(t)) \leq |\check{f}(t, u(t), u'(t))| \). De même si \(u(t) = \varphi(t) \), on obtient \(u''(t) \geq -|\check{f}(t, u(t), u'(t))| \). D'où \(|u''(t)| \leq \Phi(|u'(t)|) \) puisque par (H VI.4), \(|\mathcal{F}(t, u, p)| \leq \Phi(|p|) \).

Nous sommes donc dans les conditions pour appliquer la proposition (VI.2) qui fournit l'existence d'une constante \(M \), telle que pour toute solution de (VI.0), (VI.1), \(|u'(t)| \leq M_1 \).

(VI.4) **THÉORÈME.** Sous les hypothèses (H VI.1)–(H VI.4), le problème (VI.0), (VI.1) possède une solution telle que \(\varphi(t) \leq u(t) \leq \psi(t) \).

La preuve est identique à celle du théorème (V.4).

VI.3. **Conditions aux limites:** \(\alpha u(0) - \beta u'(0) = r, \ \alpha u(1) + bu'(1) = s \)

Soit le problème

\[
\begin{align*}
\text{(VI.0)} & \quad u''(t) \in \mathcal{F}(t, u(t), u'(t)) \quad \text{p.p. } t \in (0, 1), \\
\text{(VI.2)} & \quad \begin{cases} \alpha u(0) - \beta u'(0) = r; & \alpha, \beta \geq 0, \ \max \{\alpha, \beta\} > 0, \\
& \alpha u(1) + bu'(1) = s; & a, b \geq 0, \ \max \{a, b\} > 0
\end{cases}
\end{align*}
\]

où \(\mathcal{F} : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) satisfait les hypothèses (H VI.1)–(H VI.4).
Si $u(t) = \psi(t)$, $u'(t) = \psi'(t)$ car $u(t) \leq \psi(t)$ et par (H VI.2), $\psi''(t) \leq \tilde{f}(t, \psi(t), \psi'(t)) = \tilde{f}(t, u(t), u'(t))$, donc

$$u''(t) - \varepsilon u(t) \leq (\psi''(t) - \varepsilon \psi(t)) \lor \tau (\tilde{f}(t, u(t), u'(t)) - \varepsilon u(t)), $$

$$u''(t) \leq \psi''(t) \lor (\tau \tilde{f}(t, u(t), u'(t))) + (1 - \tau) \varepsilon u(t)$$

$$\leq \tilde{f}(t, u(t), u'(t)) + \varepsilon |u(t)|. $$

Et de même si $u(t) = \varphi(t)$ on a $u''(t) \geq -[\int \tilde{f}(t, u(t), u'(t))] + \varepsilon |u(t)|$. Donc,

$$|u''(t)| \leq \Phi(|u'(t)|) + \varepsilon M = \Phi_1(|u'(t)|)$$

avec $\int_\varepsilon^\infty dx/\Phi_1(x) > [\psi - \varphi]$.

Nous sommes donc dans les conditions pour appliquer la proposition (VI.2) qui fournit l'existence d'une constante M_1 telle que pour toute solution u de (VI.3), (VI.2), $|u'(t)| \leq M_1$.

(VI.6) Théorème. Sous les hypothèses (H VI.1)−(H VI.4), le problème (VI.0), (VI.2) possède une solution telle que $\varphi(t) \leq u(t) \leq \psi(t)$.

La preuve est semblable à celle du théorème (V.6).

(VI.7) Corollaire. Soit $\mathcal{F} : [0, 1] \times \mathbb{R}^2 \to \mathbb{R}$ une multiapplication qui satisfait (H VI.1), (H VI.2),

(H VI.5) il existe $\Phi : [0, \infty) \to (0, \infty)$ telle que $|\mathcal{F}(t, u, p)| \leq \Phi(|p|)$ pour $\varphi(t) \leq u \leq \psi(t)$ et $x/\Phi(x) \in L^\infty_{loc}[0, \infty)$. De plus il existe $M_2 \geq c$ telle que $\int_M^\infty dx/\Phi(x) > [\psi - \varphi]$, et

(H VI.6) il existe $\varphi : (0, 1) \to [0, \infty) \in L^2(0, 1)$ telle que $|\mathcal{F}(t, u, p)| \leq \varphi(t)$ p.p. $t \in (0, 1), |u|, |p| \leq M, M > \max\{M_2, M\}$ où $M = \max\{\|\varphi\|_0, \|\psi\|_0\}$.

Alors le problème (VI.0), (VI.2) possède une solution telle que $\varphi(t) \leq u(t) \leq \psi(t)$.

Preuve. $\tilde{F}_t : B_{C^1}(\tilde{M}) \to L^2(0, 1)$, $\tilde{F}_t u(t) = \mathcal{F}(t, u(t), u'(t), t)$ est bien définie s.c.s., à valeurs convexes et bornée sur les bornés. Le reste de la preuve est semblable à celle du théorème (VI.6). □

(VI.8) Corollaire. Soit $\mathcal{F} : [0, 1] \times \mathbb{R}^2 \to \mathbb{R}$ une multiapplication qui satisfait (H VI.1), (H VI.2) et

(H VI.7) il existe $\varphi : [0, 1] \times \mathbb{R} \times [0, \infty) \to [0, \infty)$ bornée sur les bornés telle que $|\mathcal{F}(t, u, p)| \leq \varphi(t, u, |p|)$ et $\Phi(x) = \sup\{\varphi(t, u, x) | \varphi(t) \leq u \leq \psi(t),$ $t \in (0, 1)\}, \frac{x}{\Phi(x)} \in L^\infty_{loc}[0, \infty)$ et $\int_\varepsilon^\infty dx/\Phi(x) > [\psi - \varphi]$.

Alors le problème (VI.0) (VI.2) possède une solution.
Fixons \(\varepsilon > 0 \) tel que \(\int_{-\varepsilon}^{\infty} x \text{d}x \left(\Phi(x) + \varepsilon M \right) > [\psi - \varrho] \) où \(M = \max \{ \| \varrho \|_\infty, \| \psi \|_\infty \} \).

Posons \(\tilde{\mathcal{F}}(t, u, p) = \tilde{\mathcal{F}}(t, u, p) - \varepsilon u, \) \(\bar{f}(t, u, p) = f(t, u, p) - \varepsilon u \). Le problème (VI.0), (VI.2) est alors équivalent à

(VI.3) \(u'(t) - \varepsilon u(t) \in \tilde{\mathcal{F}}(t, u(t), u'(t)) \) p.p. \(t \in (0, 1) \),

(VI.2) \(au(0) - bu'(0) = r, \) \(au(1) + bu'(1) = s \).

Pour \(\tau \in [0, 1] \) posons

\[
\frac{\varepsilon}{\varepsilon} f(t, u, p, \tau) = \begin{cases}
(\psi''(t) - \varepsilon \psi(t)) \vee \tau \tilde{f}(t, u, p); & u \leq \psi(t) > \varrho(t), \\
\psi(t) > u \geq \varrho(t), \\
(\psi''(t) - \varepsilon \psi(t)) \wedge \tau \tilde{f}(t, u, p); & \psi(t) > \varrho(t) \geq u, \\
\psi(t) = \varrho(t) = u.
\end{cases}
\]

Sa multiapplication associée devient:

\[
\tilde{\mathcal{F}}(t, u, p, \tau) = \begin{cases}
[(\psi''(t) - \varepsilon \psi(t)) \vee \tau \tilde{f}(t, u, p), (\psi''(t) - \varepsilon \psi(t)) \vee \tau \tilde{f}(t, u, p)]; & u > \psi(t) > \varrho(t), \\
[\tau \tilde{f}(t, u, p), (\psi''(t) - \varepsilon \psi(t)) \vee \tau \tilde{f}(t, u, p)]; & u = \psi(t) > \varrho(t), \\
[\tau \tilde{f}(t, u, p), \tau \tilde{f}(t, u, p)]; & \psi(t) > u > \varrho(t), \\
[(\varrho''(t) - \varepsilon \varrho(t)) \wedge \tau \tilde{f}(t, u, p), (\varrho''(t) - \varepsilon \varrho(t)) \wedge \tau \tilde{f}(t, u, p)]; & \psi(t) > u = \varrho(t), \\
[(\varrho''(t) - \varepsilon \varrho(t)) \wedge \tau \tilde{f}(t, u, p), (\varrho''(t) - \varepsilon \varrho(t)) \wedge \tau \tilde{f}(t, u, p)]; & \psi(t) > \varrho(t) > u, \\
[(\psi''(t) - \varepsilon \psi(t)) \wedge \tau \tilde{f}(t, u, p), (\psi''(t) - \varepsilon \psi(t)) \wedge \tau \tilde{f}(t, u, p)]; & \psi(t) = \varrho(t) = u.
\end{cases}
\]

Pour chaque \(\tau \in [0, 1] \), \(\tilde{\mathcal{F}}(t, u, p, \tau) \) satisfait (H VI.1), (H VI.3) car \(\psi'' \) et \(\varrho'' \in L^a(0, 1) \) et \(\tilde{\mathcal{F}} \) vérifie (H VI), (H VI.3).

Maintenant, considérons la famille de problèmes associés:

(VI.3), \(u''(t) - \varepsilon u(t) \in \tilde{\mathcal{F}}(t, u(t), u'(t), \tau) \) p.p. \(t \in (0, 1) \),

(VI.2) \(au(0) - bu'(0) = r, \) \(au(1) + bu'(1) = s \).

(VI.5) PROPOSITION. Les solutions d'un problème (VI.3), (VI.2) pour un certain \(\tau \in [0, 1] \) satisfont \(q(t) \leq u(t) \leq \psi(t) \).

La preuve est très semblable à celle de la proposition (V.5).

Montrons que si \(u \) est solution de (VI.3), (VI.2) alors \(|u'(t)| \leq \Phi(|u'(t)|) + \varepsilon M \). En effet, par la proposition (V.5), \(q(t) \leq u(t) \leq \psi(t) \). Par conséquent, si \(u(t) < \psi(t) \),

\[
u''(t) - \varepsilon u(t) \leq \tau (\tilde{f}(t, u(t), u'(t)) - \varepsilon u(t)), \quad \text{i.e.}
\]

\[
u''(t) \leq \tau \tilde{f}(t, u(t), u'(t)) + (1 - \tau) \varepsilon u(t) \leq |\tilde{f}(t, u(t), u'(t))| + \varepsilon |u(t)|.
\]

De même si \(q(t) < u(t) \), on a \(u''(t) \geq -|\tilde{f}(t, u(t), u'(t))| + \varepsilon |u(t)| \).
VI. Conditions de type Bernstein-Nagumo

(VI.9) Corollaire. Soit \(\mathcal{F} : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) une multiapplication qui satisfait (H VI.1), (H VI.3), (H VI.4) et (H V.4) (voir chapitre V). Alors le problème (VI.0), (VI.2) possède une solution.

(VI.10) Corollaire. Soit \(\mathcal{F} \) une multiapplication qui satisfait (H VI.1), (H VI.3), (H VI.4) et (H V.5) (voir chapitre V). Alors le problème (VI.1), (VI.2) possède une solution.

(VI.11) Corollaire. Soit \(f : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) une fonction de Carathéodory satisfaisant (H VI.2)-(H VI.4). Alors le problème

\[
\begin{cases}
 u''(t) = f(t, u(t), u'(t)) & \text{p.p. } t \in (0, 1), \\
 a u(0) - \beta u'(0) = r, & \text{et } a u(1) + b u'(1) = s
\end{cases}
\]

possède une solution.

(VI.12) Remarques. (1) Les résultats des chapitres IV et V peuvent être obtenus comme corollaires des principaux théorèmes de ce chapitre.

(2) On pourrait aussi considérer les problèmes

\[
\begin{cases}
 L u(t) \in \mathcal{F}(t, u(t), u'(t)), \\
 u \in \mathcal{A}
\end{cases}
\]

avec \(L u = u''(t) + c(t) u'(t) + d(t) u(t) \) un opérateur inverse.

(3) Les problèmes sont considérés sur l'intervalle \([0, 1]\) mais nous obtenons les mêmes résultats sur tout intervalle borné \([a, b]\).

(4) Soit \(G : [0, 1] \times \mathbb{R}^2 \to \mathbb{R} \) une multiapplication qui n'est pas nécessairement définie à partir d'une fonction \(g \). On peut obtenir de façon analogue à ce qu'on a fait dans ce chapitre des théorèmes d'existence pour

\[
\begin{cases}
 \dot{u}(t) \in G(t, u(t), u'(t)), u \in \mathcal{A}
\end{cases}
\]

Ils suffit de remplacer l'hypothèse (H VI.1). Supposons que \(G \) est s.c.s. par rapport à \((u, p)\) et à valeurs convexes compactes. Soit \(\bar{g}(t, u, p) = \max[G(t, u, p)] \) et \(g(t, u, p) = \min[G(t, u, p)] \), i.e. \(G(t, u, p) = [g(t, u, p), \bar{g}(t, u, p)] \). On peut montrer que \(\bar{g} \) et \(g \) sont respectivement s.c.s. et s.c.i. par rapport à \((u, p)\). On remplace l'hypothèse (H VI.1) par

(H VI.1) \(G \) est s.c.s. par rapport à \((u, p)\), à valeurs convexes compactes, \(g \) et \(\bar{g} \) sont de type \(\mathcal{A} \) (voir définition I.3).

VII. Problèmes aux limites du second ordre
dans l'intervalle \([0, \infty)\)

Dans ce chapitre des problèmes aux limites du second ordre dans l'intervalle \([0, \infty)\) seront considérés

\[
\begin{cases}
 u''(t) = f(t, u(t), u'(t)), \\
 u(0) - \beta u'(0) = r, \\
 \lim_{t \to \infty} u(t) = 0
\end{cases}
\]
ou bien
\[\begin{align*}
\{ u'(t) \in \mathcal{F}(t, u(t), u'(t)), \\
\alpha u(t) - \beta u'(0) = r, \\
\lim_{t \to +\infty} u(t) = 0.
\}
\end{align*} \]

Le cas classique (i.e. le premier problème avec \(f \) continue) a été considéré par Granas, Guenther, Lee et O'Regan [GGLO] qui, sous certaines hypothèses, obtenaient l'existence d'une solution telle que
\[\lim_{t \to +\infty} u(t) = \lim_{t \to -\infty} u'(t) = \lim_{t \to +\infty} u'(t) = 0. \]

Dans un premier temps, nous généraliserons leur résultat au cas où la fonction \(f \) est de Carathéodory et satisfait une condition de croissance de type Bernstein. Comme eux, nous ferons l'hypothèse
\[(*) \quad u_f(t, u, 0) > 0 \quad \text{pour} \quad |u| \geq M.\]

Dans un deuxième temps, nous considérons un problème aux limites avec partie de droite multivoque. L'hypothèse \((*)\) sera remplacée par une d'existence de sous- et sur-solutions. Nous imposerois à \(\mathcal{F} \) une condition de croissance de type Bernstein que nous affaiblirons ensuite par une condition de type Bernstein–Nagumo.

VII.1. Problèmes aux limites avec une fonction de Carathéodory

Soit le problème aux limites suivant:
\[
(\text{VII.0}) \quad u''(t) = f(t, u(t), u'(t)) \quad \text{p.p.} \quad t \in (0, \infty), \\
(\text{VII.1}) \quad u(0) - \beta u'(0) = 0; \quad \beta \geq 0, \\
(\text{VII.2}) \quad \lim_{t \to +\infty} u(t) = 0
\]

où \(f : [0, \infty) \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) est une fonction qui vérifie les hypothèses suivantes:
\[
(\text{H VII.1}) \quad f \text{ est une fonction de Carathéodory,} \\
(\text{H VII.2}) \quad |f(t, u, p)| \leq A(t, u) p^2 + B(t, u) \quad \text{où} \quad A(t, u) \text{ et } B(t, u) \text{ sont des fonctions bornées sur } [0, \infty) \times D \text{ pour tout sous-ensemble borné } D \subset \mathbb{R}, \\
(\text{H VII.3}) \quad \text{il existe une constante } M > 0 \text{ telle que } u_f(t, u, 0) \geq 0 \quad \text{pour} \quad |u| \geq M.
\]

Une solution de ce problème sera une fonction \(u \in W^{2, \infty}(0, \infty) \) qui satisfera \((\text{VII.0})-(\text{VII.2})\).

Tout d'abord, obtenons l'existence d'une solution au problème \((\text{VII.0}), (\text{VII.1})\).

Pour \(n \in \mathbb{N} \), considérons la famille de problèmes suivants:
\[
(\text{VII.3})_n \quad \begin{align*}
\{ u''(t) = f(t, u(t), u'(t)) \quad \text{p.p.} \quad t \in (0, n), \\
u(0) - \beta u'(0) = 0, \quad u(n) = 0; \quad \beta \geq 0.
\}
\end{align*}
\]
Par le théorème (VI.6), pour tout \(n \in \mathbb{N} \), il existe \(u_n \in H^2_{\beta}(0, n) \) solution de (VII.3), telle que \(|u_n(t)| \leq M \).

\[
|u'_n(t)| \leq M_1 = \left[\frac{B}{A} \left(e^{4\beta M} - 1 \right) + c^2 e^{4\beta M} \right]^{1/2}, \quad |u''_n(t)| \leq M_2 = AM_1^2 + B
\]

où \(A(t, u) \leq A, B(t, u) \leq B, t \in [0, \infty), |u| \leq M \) et

\[
c = \begin{cases} 0 & \text{si} \ \beta = 0, \\ M/\beta & \text{si} \ \beta > 0. \end{cases}
\]

Remarquons que \(M, M_1 \) et \(M_2 \) sont indépendantes de \(n \).

(VII.1) **Théorème.** Sous les hypothèses (H.VII.1)-(H.VII.3) le problème (VII.0), (VII.1) possède une solution \(u \in W^{2,\infty}(0, \infty) \).

Preuve. Soient \(\{u_n\} \) solutions de (VII.3). Définissons:

\[
y'_n(t) = \begin{cases} u_n(t), & t \in [0, n], \\ 0, & t \in (n, \infty), \end{cases} \quad y''_n(t) = \begin{cases} u''_n(t), & t \in [0, n], \\ 0, & t \in (n, \infty), \end{cases}
\]

alors \(y_n \in W^{1,\infty}(0, \infty) \cap W^{2,\infty}(0, n) \).

Considérons la suite \(\{y_{n_0,0,1}\}_{n_0=1}^{\infty} \) comme un sous-ensemble de \(C^1[0, 1] \). Cet ensemble est borné et équiconnexe dans \(C^1 \) car \(|y''_n(t)| \leq M_2 \) p.p. \(t \in (0, 1) \). Par le théorème d'Arzelà-Ascoli (I.1), il existe une sous-suite \(N_1 \subset N \) et \(z_1 \in C^1[0, 1] \) telles que \(\|y_n - z_1\|_{C^1[0,1]} \to 0, n \to \infty \), \(n \in N_1 \).

Posons \(N_1 = \bar{N}_1 \setminus \{1\} \); alors \(\{y_{n_{1,0,2}}\}_{n_{1,0,2} \in N_1} \subset C^1[0, 2] \). De même, par le théorème (I.1), il existe une sous-suite \(N_2 \subset N_1 \) et \(z_2 \in C^1[0, 2] \) telles que \(\|y_n - z_2\|_{C^1[0,2]} \to 0, n \to \infty \), \(n \in N_2 \). De plus, \(z_1 \equiv z_2 \) sur \([0, 1] \) car \(N_2 \subset N_1 \).

Posons \(N_2 = \bar{N}_2 \setminus \{2\} \); alors \(\{y_{n_{2,0,3}}\}_{n_{2,0,3} \in N_2} \subset C^1[0, 3] \).

En répétant l'argument, nous obtenons pour \(k = 1, 2, \ldots \), une sous-suite \(\{N_k\}, N_{k+1} \subset N_k \) avec \(N_k \cap \{2, \ldots, k\} = \emptyset \) et une fonction \(z_k \in C^1[0, k] \) telles que \(\|y_n - z_k\|_{C^1[0,k]} \to 0, n \to \infty \), \(n \in N_k \). Aussi, \(z_k \equiv z_{k-1} \) sur \([0, k] \).

Remarquons que \(|z_k(t)| \leq M, |z'_k(t)| \leq M_1, t \in [0, k] \), et \(z_k(0) - \beta z_k'(0) = 0 \).

Maintenant, définissons une fonction \(u \) qui sera solution du problème (VII.0), (VII.1). Soit \(t \in [0, \infty) \) et soit \(k \in \mathbb{N} \), \(k \geq t \). Posons \(u(t) = z_k(t) \). Par construction, cette fonction est bien définie et \(u \in C^1[0, \infty), \|u(t)\| \leq M, \|u'(t)\| \leq M_1, t \in [0, \infty), u(0) - \beta u'(0) = 0 \).

Vériions que \(u \in W^{2,\infty}(0, \infty) \) et satisfait (VII.0). Soit \(\varphi \in C^1_c(0, \infty) \) et soit \(k \in \mathbb{N} \) tel que \(\operatorname{supp} \varphi \subset [0, k] \); alors pour \(n \in N_k \)

\[
\int_0^k y''_n(t) \varphi'(t) dt = \int_0^k y'_n(t) \varphi'(t) dt = \int_0^k u'_n(t) \varphi'(t) dt = -\int_0^k u''_n(t) \varphi(t) dt
\]

\[
= -\int_0^k f(t, u_n(t), u'_n(t)) \varphi(t) dt = -\int_0^k f(t, y_n(t), y'_n(t)) \varphi(t) dt.
\]
Puisque \(\|y_n - z_k\|_{C([0,k])} \to 0, \ n \to \infty, \ n \in N_k \) et par (H VII.1) on a
\[
f(t, y_n(t), y'_n(t)) \to f(t, z_k(t), z'_k(t)) \quad \text{p.p.} \ t \in (0, k),
\]
donc
\[
\int_0^k \int_0^k f(t, y_n(t), y'_n(t)) \varphi(t) \, dt \to \int_0^k \int_0^k f(t, z_k(t), z'_k(t)) \varphi(t) \, dt,
\]
\[
\int_0^k y'_n(t) \varphi'(t) \, dt \to \int_0^k z'_k(t) \varphi'(t) \, dt.
\]
Il vient
\[
\int_0^k z'_k(t) \varphi'(t) \, dt = -\int_0^k f(t, z_k(t), z'_k(t)) \varphi(t) \, dt, \quad \text{i.e.}
\]
\[
\int_0^k u'(t) \varphi'(t) \, dt = -\int_0^k f(t, u(t), u'(t)) \varphi(t) \, dt,
\]
\[
\int_0^\infty u'(t) \varphi'(t) \, dt = -\int_0^\infty f(t, u(t), u'(t)) \varphi(t) \, dt.
\]
Par conséquent, \(u'(t) = f(t, u(t), u'(t)) \) p.p. \(t \in (0, \infty) \) et
\[
|f(t, u(t), u'(t))| \leq A|u'(t)|^2 + B \leq AM_1^2 + B = M_2 \quad \text{p.p.} \ t \in (0, \infty),
\]
d'où \(u \in W^{2,\infty}(0, \infty) \) et est solution du problème (VII.0), (VII.1). \(\square \)

Nous voulons maintenant un théorème d'existence au problème (VII.0)–(VII.2).

Faisons l'hypothèse additionnelle suivante:

(H VII.4) \(\text{il existe } \psi \in C([0, \infty)) \text{ telle que } \psi(t) \to 0 \text{ lorsque } t \to \infty \text{ et } |u(t)| \leq \psi(t) \text{ pour } 0 \leq t < \infty \text{ où } u \in W^{2,\infty}(0, \infty) \text{ est solution de (VII.0), (VII.1).} \)

(VII.2) \(\text{Théorème. Sous les hypothèses (H VII.1)–(H VII.4) le problème (VII.0)–(VII.2) possède une solution } u \in W^{2,\infty}(0, \infty). \)

(VII.3) \(\text{Théorème. Sous les hypothèses (H VII.1)–(H VII.4), le problème (VII.0)–(VII.2) possède une solution qui satisfait } \lim_{t \to \infty} u'(t) = 0. \)

\(\text{Preuve. Sans perte de généralité, nous pouvons supposer que } \psi \text{ est décroissante (sinon on prend } \psi_1(t) = \sup_{x \geq t} \psi(x). \text{ Soit } u \text{ la solution donnée par le théorème (VII.1). Puisque } \lim_{t \to \infty} u(t) = 0, \text{ pour tout } \epsilon > 0 \text{ et pour tout } t > 0, \text{ il existe } \bar{s} > t \text{ tel que } |u(\bar{s})| \leq \epsilon. \text{ En effet, soient } \epsilon \text{ et } t; \text{ alors il existe } t_1, t_2, \text{ tels que } |u(t_i)| < \epsilon/2 \text{ et par le théorème de la valeur moyenne, il existe } \bar{s} \in [t_1, t_2] \text{ tel que } |u(\bar{s})| = |(u(t_2) - u(t_1))/(t_2 - t_1)| \leq \epsilon. \text{ Fixons } \epsilon > 0 \text{ et soit } t_0 \in [0, \infty) \text{ tel que } |u(t_0)| > \epsilon (s'il existe). \text{ Alors il existe un intervalle } [t_0, s] \text{ sur lequel } u' \text{ ne change pas de signe et } |u(s)| \leq \epsilon. \) \)
Supposons que $u'(t_0) > 0$ et soient A_1, B_1 des constantes telles que $A(t, u) \leq A_1, B(t, u) \leq B_1$ sur $[0, \infty) \times [-\|\psi\|_0, \|\psi\|_0]$. Par $(H \text{ VII.4})$, $\|u\|_0 \leq \|\psi\|_0$, ce qui implique que

$$u''(t) = f(t, u(t), u'(t)) \geq -\left(A_1 u'(t)^2 + B_1\right).$$

Dès lors,

$$\frac{2A_1 u'(t) u''(t)}{A_1 u'(t)^2} B_1 \geq -2A_1 u'(t) \quad \text{p.p. } t \in [t_0, s].$$

En intégrant de t_0 à s il vient:

$$\log \left(\frac{A_1 u'(s)^2 + B_1}{A_1 u'(t_0)^2 + B_1}\right) \geq -2A_1 [u(s) - u(t_0)], \quad \text{i.e.}$$

$$\log \left(\frac{A_1 u'(t_0)^2 + B_1}{A_1 u'(s)^2 + B_1}\right) \leq 2A_1 [u(s) - u(t_0)] \leq 4A_1 \psi(t_0)$$
car ψ est décroissante. Il en découle:

$$|u'(t_0)| \leq \left[\frac{u'(s)^2 e^{4A_1 \psi(t_0)} + \frac{B_1}{A_1} \left(e^{4A_1 \psi(t_0)} - 1\right)}{e^{4A_1 \psi(t_0)} + \frac{B_1}{A_1} \left(e^{4A_1 \psi(t_0)} - 1\right)}\right]^{1/2}.$$

Clairement, cette majoration a priori vaut aussi si $|u'(t_0)| \leq \varepsilon$. Donc, pour tout $t \in [0, \infty)$, $|u'(t)| \leq \left[\varepsilon^2 e^{4A_1 \psi(t_0)} + (B_1/A_1) \left(e^{4A_1 \psi(t_0)} - 1\right)\right]^{1/2}$ et passant à la limite lorsque ε tend vers 0 on obtient

$$|u'(t)| \leq \left[\frac{B_1}{A_1} \left(e^{4A_1 \psi(t_0)} - 1\right)\right]^{1/2}$$
et donc

$$\lim_{t \to \infty} u'(t) = \lim_{t \to \infty} |u'(t)| = \lim_{t \to \infty} \left[\frac{B_1}{A_1} \left(e^{4A_1 \psi(t_0)} - 1\right)\right]^{1/2} = 0. \Box$$

Pour s’assurer que $\lim_{t \to \infty} u'(t) = 0$ il nous faut une hypothèse additionnelle (remarquons que par $\lim_{t \to \infty} u'(t) = 0$ nous signifions que pour tout $\varepsilon > 0$ il existe $k > 0$ tel que $\sup_{t > k} |u''(t)| < \varepsilon$).

$(H \text{ VII.5})$ $\lim_{t \to \infty} f(t, u, p) = 0$ (i.e. $\forall \varepsilon > 0$ $\exists k$, δ_1, δ_2 tels que pour $|u| < \delta_1$,

$$|p| < \delta_2, \sup_{t \to \infty} |f(t, u, p)| < \varepsilon).$$
(VII.4) **Théorème.** Sous les hypothèses (H VII.1)-(H VII.5) le problème (VII.0), (VII.1), (VII.2) possède une solution $u \in W^{2, \infty}(0, \infty)$ telle que
\[
\lim_{t \to \infty} u(t) = \lim_{t \to \infty} u'(t) = \lim_{t \to \infty} u''(t) = 0.
\]

(VII.5) **Corollaire.** Soit $f : [0, \infty) \times \mathbb{R}^2 \to \mathbb{R}$ une fonction continue vérifiant les hypothèses (H VII.2)-(H VII.5). Alors le problème (VII.0), (VII.1), (VII.2) possède une solution classique
\[
u \in C_0^0[0, \infty) = \{ u \in C^2[0, \infty) \mid \lim_{t \to \infty} u(t) = \lim_{t \to \infty} u'(t) = \lim_{t \to \infty} u''(t) = 0 \}.
\]

(VII.6) **Corollaire.** Supposons que les hypothèses suivantes sont satisfaites : (H VII.1)-(H VII.4) et

(H VII.6) (i) $\lim_{t \to \infty} f(t, 0, 0) = 0$,

(ii) $f(t, u, p)$ est dérivable par rapport à u et p et de plus, $f_u(t, u, p)$ et $f_p(t, u, p)$ sont bornées sur $[0, \infty) \times D_1 \times D_2$ pour tous sous-ensembles bornés D_1, D_2 dans \mathbb{R}.

Alors le problème (VII.0)-(VII.2) possède une solution $u \in W^{2, \infty}(0, \infty)$ telle que
\[
\lim_{t \to \infty} u(t) = \lim_{t \to \infty} u'(t) = \lim_{t \to \infty} u''(t) = 0.
\]

Preuve.
\[
f(t, u, p) = f(t, u, 0) - f(t, 0, 0) + f(t, 0, 0) - f(t, 0, 0)
\]
\[
= pf_u(t, u, \zeta) + uf_p(t, \zeta, 0) + f(t, 0, 0).
\]
Il s'ensuit:
\[
|u''(t)| = \left| f(t, u(t), u'(t)) \right|
\]
\[
\leq \left| f_u(t, u(t), \zeta(t)) \right| |u'(t)| + \left| f_p(t, \zeta(t), 0) \right| |u(t)| + |f(t, 0, 0)|
\]
\[
\leq k_2 \left[\frac{B_1}{A_1} (e^{A_1 \psi(t)} - 1) \right]^{1/2} + k_1 \psi(t) + |f(t, 0, 0)|
\]
ôù $k_2 \geq |f_u(t, u, p)|, k_1 \geq |f_p(t, u, p)|$ sur $[0, \infty) \times [-M_2, M_2] \times [-M_1, M_1]$. Dès lors, puisque $\lim_{t \to \infty} \psi(t) = \lim_{t \to \infty} f(t, 0, 0) = 0$ on a $\lim_{t \to \infty} u''(t) = 0$.

VII.2. Problèmes aux limites avec un opérateur multivoque

Considérons d'abord le cas où l'opérateur multivoque satisfait une condition de croissance de type Bernstein.
Soit le problème aux limites suivant:

(VII.4) $u''(t) \in \mathcal{F}(t, u(t), u'(t))$ p.p. sur $(0, \infty)$,
(VII.5) \[xu(0) - \beta u'(0) = r, \quad x, \beta \geq 0, \text{ max } \{x, \beta\} \geq 0, \]

(VII.6) \[\lim_{t \to +\infty} u(t) = 0 \]

où \(\mathcal{F} : [0, \infty) \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) est une multiapplication déterminée par \(f, \quad \mathcal{F} = [f, f] \) et vérifiant les hypothèses suivantes:

(H VII.7) \(\mathcal{F} \) est de type \(\mathcal{H} \) (voir définitions (I.3), (I.4)).

(H VII.8) \[|\mathcal{F}(t, u, p)| \leq A(t, u)p^2 + B(t, u) \] où \(A(t, u) \) et \(B(t, u) \) sont des fonctions bornées sur \([0, \infty) \times D\) pour tout sous-ensemble \(D \) borné dans \(\mathbb{R} \).

(H VII.9) Il existe \(q, \psi \in W^{2, \infty}(0, \infty) \) telles que \(q(t) \leq \psi(t) \) et sont respectivement sous- et sur-solutions de (VII.4) et (VII.5), i.e.

\[\psi''(t) \leq f(t, \psi(t), \psi'(t)) \quad \text{p.p. } t \in (0, \infty), \]
\[q''(t) \geq f(t, q(t), q'(t)) \quad \text{p.p. } t \in (0, \infty), \]
\[xq(0) - \beta q'(0) \geq r \geq x\psi(0) - \beta \psi'(0) \]

et il existe \(\{x_n\}_{n \in \mathbb{N}} \subset [1, \infty) \) une suite strictement croissante telle que \(x_n \to +\infty \) et \(\psi(x_n) \geq 0 \geq \psi(x_n) \).

Une solution de ce problème sera une fonction \(u \in W^{2, \infty}(0, \infty) \) qui satisfaira (VII.4)-(VII.6).

Nous obtiendrons d’abord l’existence d’une solution au problème (VII.4), (VII.5) et en ajoutant une hypothèse, cette fonction satisfaira (VII.6).

Pour \(n \in \mathbb{N} \), considérons la famille de problèmes suivants:

(VII.7) \[\begin{cases} u''(t) \in \mathcal{F}(t, u(t), u'(t)) & \text{p.p. } t \in (0, x_n), \\ xu(0) - \beta u'(0) = r, \\ u(x_n) = 0. \end{cases} \]

Par le théorème (V.6), pour tout \(n \in \mathbb{N} \), il existe \(u_n \in H^2(0, n) \) solution de (VII.7) \(n \) telle que \(q(t) \leq u_n(t) \leq \psi(t) \), \(t \in [0, n] \), et \(|u_n'(t)| \leq M_1 \), \(|u_n''(t)| \leq M_2 \), \(A(t, u) \leq A, B(t, u) \leq B, \psi(t) \leq \psi(t) \), \(A, B \in [0, \infty) \times [0, \infty) \times [0, \infty) \times [0, \infty) \) et \(M_1 = M_1(A, B_1, M_1) \). Remarquons aussi que \(u_n \in W^{2, \infty}(0, x_n) \).

(VII.7) THÉORÈME. Sous les hypothèses (H VII.7)-(H VII.9) le problème (VII.4), (VII.5) possède une solution \(u \in W^{2, \infty}(0, \infty) \) telle que \(q(t) \leq u(t) \leq \psi(t) \), \(t \geq 0 \).

P r e u v e. Pour simplifier la notation, supposons que \(x_n = n \) et soit \(u_n \) une solution de (VII.7) \(n \).

Posons

\[y_n(t) = \begin{cases} u_n(t), & t \in [0, n], \\ 0, & t \in (n, \infty), \end{cases} \]
\[y_n'(t) = \begin{cases} u_n'(t), & t \in [0, n], \\ 0, & t \in (n, \infty). \end{cases} \]

alors \(y_n \in W^{1, \infty}(0, \infty) \cap H^2(0, n) \).
Notons \(v_n(t) = u'_n(t) \), d'où \(v_n(t) \in \mathcal{F}(t, u_n(t), u'_n(t)) \) p.p. \(t \in (0, n) \). Définissons
\[
 w_n(t) = \begin{cases}
 v_n(t), & t \in [0, n], \\
 f(t, y_n(t), y'_n(t)), & t \in (n, \infty);
 \end{cases}
\]
alors \(w_n(t) \in \mathcal{F}(t, y_n(t), y'_n(t)) \) p.p. \(t \in (0, \infty) \) et \(|w_n(t)| \leq M_2 \) p.p. \(t \in (0, \infty) \), i.e. \(w_n \in L^\infty(0, \infty) \).

Considérons la suite \(\{w_n\}_{n \in N} \); alors il existe une sous-suite \(N_0 \subset N \) et \(w \in L^\infty(0, \infty) \) telles que \(\int_0^\infty w_n g - \int_0^\infty w g \, n \to \infty, n \in N_0 \), pour tout \(g \in L^1(0, \infty) \) car \(\{w_n\} \) est une suite bornée dans \(L^\infty(0, \infty) \) et on peut en extraire une sous-suite convergeante dans \(L^\infty(0, \infty) \) pour la topologie \(*\sigma(L^\infty, L^1) \) (voir [BR] p. 65).

Considérons la suite \(\{y_n\}_{n \in N} \) comme un sous-ensemble de \(C^1[0, 1] \). Puisque \(|y_n'(t)| \leq M_2 \), nous pouvons appliquer le théorème d'Arzelà-Ascoli (11.1). Il existe donc une sous-suite \(\bar{N}_1 \subset N_0 \) et \(z_1 \in C^1[0, 1] \) telles que
\[
 \|y_n - z_1\|_{C^0[0, 1]} \to 0, \quad n \to \infty, \quad n \in \bar{N}_1.
\]
Posons \(N_1 = \bar{N}_1 \setminus \{1\} \); alors \(\{y_n\}_{n \in N} \subset C^1[0, 1] \). De même, par le théorème (11.1) il existe une sous-suite \(\bar{N}_2 \subset N_1 \) et \(z_2 \in C^1[0, 2] \) telles que
\[
 \|y_n - z_2\|_{C^0[0, 2]} \to 0, \quad n \to \infty, \quad n \in \bar{N}_2.
\]
De plus, \(z_1 \equiv z_2 \) sur \([0, 1]\) car \(\bar{N}_2 \subset N_1 \). Posons \(N_2 = \bar{N}_2 \setminus \{2\} \).

En repétant l'argument, nous obtenons pour \(k = 1, 2, \ldots \) une sous-suite \(N_k \subset N_{k-1} \) avec \(N_k \cap \{1, \ldots, k\} = \emptyset \) et une fonction \(z_k \in C^1[0, k] \) telles que
\[
 \|y_n - z_k\|_{C^0[0, k]} \to 0, \quad n \to \infty, \quad n \in N_k, \quad \text{et} \quad z_k \equiv z_{k+1} \text{ sur } [0, k].
\]
De plus, \(q(t) \leq z_k(t) \leq \psi(t), \quad |z'_k(t)| \leq M_1, \quad t \in [0, k] \) et \(z_{k+1}(0) - \beta z'_k(0) = r \).

Définissons une fonction \(u \) qui sera solution du problème (VII.4), (VII.5). Soient \(t \in [0, \infty) \) et \(k \in N, \quad k \geq t \). Nous obtenons \(u(t) = z_k(t) \). Par construction, cette fonction est bien définie et \(u \in C^1[0, \infty), \quad q(t) \leq u(t) \leq \psi(t), \quad |u'(t)| \leq M_1, \quad t \in [0, \infty) \) et \(z(t) = \psi(0) - \beta u'(0) = r \). Il reste à vérifier que \(u \) satisfait (VII.4), i.e. nous voulons obtenir l'existence d'une fonction \(v(t) \in \mathcal{F}(t, u(t), u'(t)) \) p.p. \(t \in (0, \infty), \quad v \in L^\infty(0, \infty) \) telle que
\[
 \int_0^\infty v(t) \varphi(t) \, dt = -\int_0^\infty v(t) \varphi(t) \, dt \text{ pour tout } \varphi \in C^1[0, \infty).
\]

Montrons d'abord que \(w(t) \in \mathcal{F}(t, z_k(t), z'_k(t)) \) p.p. \(t \in (0, k) \). Soient \(m \in N \) et \(E_m = \{0 \in (0, k) \mid f(t, z_k(t), z'_k(t)) + 1/m \leq w(t)\} \). Supposons que \(\text{mes}(E_m) > 0 \); alors pour tout \(l \in L^1(0, k) \) tel que \(l(t) \in \mathcal{F}(t, z_k(t), z'_k(t)) \) p.p. \(t \in (0, k) \) on a
\[
 \int_{E_m} (w(t) - l(t)) \, dt \geq \int_{E_m} \frac{1}{m} \, dt = \frac{1}{m} \text{mes}(E_m).
\]
Par la proposition (V.1), et puisque l'inclusion \(L^2(0, k) \to L^1(0, k) \) est continue on pourrait montrer qu'on a: \(F \in C^1[0, k] \rightarrow L^1(0, k), \quad (Fu)(t) \in \mathcal{F}(t, u(t), u'(t)) \) est s.c.s. (pour tout \(t > 0 \), il existe \(\delta > 0 \) tel que pour \(\|u - u_0\|_1 < \delta \) on a: pour tout \(v \in Fu \), il existe \(l \in Fu_0 \) telle que \(\|l - v\|_1 < \epsilon \). Rappelons que \(w_n \in Fy_n \).

Fixons \(\epsilon = (1/2m) \text{mes}(E_m) \) et soit \(\delta \) donné par la semi-continuité
supérieure de \(F \). Alors il existe \(n_1 \in \mathbb{N}_k \) tel que pour tout \(n \geq n_1, n \in \mathbb{N}_k \),
\[\|y_n - z_k\|_{C([0, k])} < \delta \]
donc il existe \(l_n \in Fz_k \) telle que
\[\|l_n - w_n\|_{L^1([0, k])} < \varepsilon, \]
d'où
\[\int_{E_m} \|l_n(t) - w_n(t)\| \, dt \leq \int_{E_m} \|l_n(t) - w_n(t)\| \, dt < \varepsilon. \]

En combinant les inégalités, nous obtenons pour \(n \geq n_1, n \in \mathbb{N}_k \),
\[\int_{E_m} (w(t) - w_n(t)) \, dt \geq \int_{E_m} (w(t) - l_n(t) - l_n(t) - w_n(t)) \, dt \geq \frac{1}{m} \text{mes}(E_m) - \varepsilon = \varepsilon. \]

Soit \(\chi_{E_m} \in L^1(0, \infty) \) la fonction caractéristique de \(E_m \):
\[
\chi_{E_m}(t) = \begin{cases}
1, & t \in E_m, \\
0, & t \notin E_m.
\end{cases}
\]

Alors \(\int_0^\infty (w(t) - w_n(t)) \chi_{E_m} \, dt = \int_{E_m} (w(t) - w_n(t)) > \varepsilon \) pour \(n \geq n_1, n \in \mathbb{N}_k \subset \mathbb{N} \). Ce qui est une contradiction puisque \(\int_0^\infty w_n(t) \, dt = \int_0^\infty w(t) \, dt \to \infty, n \in \mathbb{N}_0 \) pour tout \(g \in L^1(0, \infty) \). Donc \(\text{mes}(E_m) = 0 \). En fait, \(\text{mes}(E_m) = 0 \) pour tout \(m \in \mathbb{N} \), ce qui implique que \(w(t) \leq \int f(t, z_k(t), z_k'(t)) \) p.p. \(t \in (0, k) \) et analoguement \(\int f(t, z_k(t), z_k'(t)) \leq w(t) \) p.p. \(t \in (0, k) \). Conséquemment, \(w(t) \in \mathcal{F}(u, u(t), u'(t)) \) p.p. \(t \in (0, k) \) et pour tout \(k \in \mathbb{N} \). D'où \(w(t) \in \mathcal{F}(u, u(t), u'(t)) \) p.p. \(t \in (0, \infty) \).

Vérifions maintenant que \(u \) satisfait (VII.4). Soit \(\varphi \in C^1([0, k]) \) et soit \(k \in \mathbb{N} \) tel que \(\text{supp} \varphi \subset [0, k] \); alors pour \(n \in \mathbb{N}_k \) on a
\[
\int_0^\infty -y_n(t) \varphi'(t) \, dt = \int_0^k y_n(t) \varphi'(t) \, dt = \int_0^k u_n(t) \varphi'(t) \, dt
\]
\[
= -\int_0^k u_n(t) \varphi(t) \, dt = -\int_0^k w_n(t) \varphi(t) \, dt.
\]

Or \(\int_0^k y_n(t) \varphi'(t) \, dt \to \int_0^k z_k'(t) \varphi'(t) \, dt, n \to \infty, n \in \mathbb{N}_k \), puisque \(\|y_n - z_k\|_{C([0, k])} \to 0 \).

Aussi \(\int_0^\infty w_n(t) \varphi(t) \, dt \to \int_0^\infty w(t) \varphi(t) \, dt, n \to \infty, n \in \mathbb{N}_0 \), car \(w_n \to w \) dans \(\ast \sigma(L^1, L^1) \) et \(\varphi \in L^1(0, \infty) \).

Dès lors,
\[
\int_0^k z_k'(t) \varphi'(t) \, dt = -\int_0^k w(t) \varphi(t) \, dt,
\]
\[
\int_0^k u_n(t) \varphi(t) \, dt = -\int_0^k w(t) \varphi(t) \, dt,
\]
\[
\int_0^\infty u_n(t) \varphi'(t) \, dt = -\int_0^\infty w(t) \varphi(t) \, dt.
\]
Ainsi, \(u'(t) = w(t) \in \mathcal{F}(t, u(t), u'(t)) \) p.p. \(t \in [0, \infty) \) et \(w \in L^1(0, \infty) \). Ce qui implique que \(u \in W^{2, \infty}(0, \infty) \) satisfait (VII.4), (VII.5) et est telle que \(\varphi(t) \leq u(t) \leq \psi(t), \quad t \in [0, \infty). \) \(\Box \)

(VII.8) COROLLAIRE. Soit \(f : [0, 1] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) satisfaisant (H VII.1), (H VII.2), (H VII.9) (\(f = \bar{f} = f \)). Alors le problème (VII.0), (VII.5) possède une solution \(u \in W^{2, \infty}(0, \infty) \) telle que \(\varphi(t) \leq u(t) \leq \psi(t), \quad t \in [0, \infty). \) Si de plus, \(f \) est continue alors \(u \in BC^2[0, \infty) \) où \(BC^2[0, \infty) = \{ u \in C^2[0, \infty) \mid \|u\|_2 < \infty \} \).

(VII.9) COROLLAIRE. Supposons que les hypothèses suivantes sont satisfaits: (H VII.7), (H VII.8) et (H VII.10) il existe des constantes \(K_1, K_2 > 0 \) telles que \(u(0, t, 0) \geq 0 \) pour \(u \geq K_1, \quad r \leq xK_1, \quad u_x(t, u, 0) \geq 0 \) pour \(u \leq -K_2, \quad -r \leq xK_2 \).

Alors le problème (VII.4), (VII.5) possède une solution \(u \in W^{2, \infty}(0, \infty) \) telle que \(-K_2 \leq u(t) \leq K_1 \).

Preuve. \(-K_2 \) et \(K_1 \) sont respectivement sous- et sur-solutions de (VII.4), (VII.5). \(\Box \)

Maintenant, nous ajoutons certaines hypothèses pour assurer l’existence d’une solution au problème (VII.4)–(VII.6):

(V VII.11) \[\lim_{t \to \infty} \psi(t) = \lim_{t \to -\infty} \varphi(t) = 0. \]

(VII.10) THÉORÈME. Sous les hypothèses (H VII.7), (H VII.8), (H VII.9), (VII.11) le problème (VII.4)–(VII.6) possède une solution \(u \in W^{2, \infty}(0, \infty) \) telle que \(\varphi(t) \leq u(t) \leq \psi(t), \quad t \in [0, \infty). \)

(VII.11) THÉORÈME. Sous les mêmes hypothèses qu’au théorème précédent, il existe \(u \in W^{2, \infty}(0, \infty) \) solution du problème (VII.4)–(VII.6) satisfaisant \(\lim_{t \to \infty} u'(t) = 0 \).

Preuve. Définissons \(\psi_1(t) = \sup_{x \geq 1} \{ r \varphi(x) \psi(x) \} \). Cette fonction est continue, décroissante et vérifie \(\lim_{t \to \infty} \psi_1(t) = 0 \). De plus, la solution \(u \) donnée par le théorème (VII.10) satisfait \(|u(t)| \leq \psi_1(t) \). Le reste de la preuve suit en utilisant le même type d’arguments qu’au théorème (VII.3). \(\Box \)

Pour s’assurer que \(\lim_{t \to \infty} u'(t) = 0 \), il nous faut faire une hypothèse additionnelle sur \(f \):

(VII.12) \[\lim_{t \to \infty} f(t, u, p) = \lim_{u, p \to 0} f(t, u, p) = 0. \]

(VII.12) THÉORÈME. Supposons que les hypothèses (H VII.7), (H VII.8), (H VII.9), (H VII.11) et (H VII.12) sont satisfaits. Alors le problème (VII.4)–(VII.6) possède une solution \(u \in W^{2, \infty}(0, \infty) \) telle que

\[\lim_{t \to \infty} u(t) = \lim_{t \to \infty} u'(t) = \lim_{t \to \infty} u''(t) = 0. \]
(VII.13) **Corollaire.** Supposons les hypothèses suivantes satisfaites:

(H VII.7)–(H VII.9), (H VII.11) et

(i) \(\lim_{t \to x} f(t, 0, 0) = \lim_{t \to x} \tilde{f}(t, 0, 0) = 0, \)

(ii) \(f \) et \(\tilde{f} \) sont continues et différentiables par rapport à \((u, p)\) et

\(\tilde{f}_u, \tilde{f}_p, f_p \) sont bornées sur \([0, \infty) \times D_1 \times D_2\) pour tous sous-ensembles bornés \(D_1, D_2\) dans \(R\).

Alors le problème (VII.4)–(VII.6) possède une solution \(u \in W^{2,\infty}(0, \infty)\) telle que

\[\lim_{t \to x} u(t) = \lim_{t \to x} u'(t) = \lim_{t \to x} u''(t) = 0. \]

La preuve vient avec une légère modification de la démonstration du corollaire (VII.6).

Nous considérons maintenant le même problème aux limites dans lequel nous affaiblissons la condition de croissance sur \(F\) en une condition de type Bernstein–Nagumo:

(VII.4) \[u''(t) \in F(t, u(t), u'(t)) \quad \text{p.p.} \quad t \in (0, \infty), \]

(VII.5) \[xu(0) - \beta u'(0) = r; \quad x, \beta > 0, \quad \max \{ x, \beta \} > 0, \]

(VII.6) \[\lim_{t \to x} u(t) = 0 \]

où \(F : [0, \infty) \times R \times R \to R\) une multiapplication satisfaisant les hypothèses

(H VII.7) \(F\) est de type \(H\),

(H VII.9) il existe \(g, \psi \in W^{2,\infty}(0, \infty)\) telles que \(g(t) \leq \psi(t)\) qui sont respectivement sous- et sur-solutions de (VII.4), (VII.5),

(H VII.14) pour tout \(k \geq 0\), il existe \(\varphi_k : [0, \infty) \to [0, \infty)\), \(\varphi_k \in L^1_{\text{loc}}(0, \infty)\) telle que \(|F(t, u, p)| \leq \varphi_k(t)\) pour \(|u| \leq k, |p| \leq k,\)

(H VII.15) il existe \(\Phi : [0, \infty) \to (0, \infty)\) telle que \(\Phi, x/\Phi(x) \in L^1_{\text{loc}}[0, \infty),\) \(|F(t, u, p)| \leq \Phi(|p|), \psi(t) \leq u \leq \psi(t) \quad \text{p.p.} \quad t \in (0, \infty)\) et

\[\int_0^x \frac{x dx}{\Phi(x)} > \left[\psi - \varphi \right] = \sup \{ \psi(t_1) - \varphi(t_2) \mid t_1, t_2 \in [0, \infty) \} \]

où

\[c = \begin{cases} \frac{|r| + xM}{\beta}, & \beta > 0 \quad \text{où} \quad M = \max \{ \| \varphi \|_0, \| \psi \|_0 \}, \\ |r|, & \beta = 0. \end{cases} \]

Comme précédemment, considérons la famille de problèmes

(VII.7) \[\begin{cases} u''(t) \in F(t, u(t), u'(t)) \quad \text{p.p.} \quad t \in (0, x_n), \\ xu(0) - \beta u'(0) = r, \\ u(x_n) = 0. \end{cases} \]
Par le théorème (VI.6), sous les hypothèses (H VII.7), (H VII.9), (H VII.14), (H VII.15) il existe \(u_\epsilon \in H^2_o(0, x_n) \) solution de (VII.7)_4 telle que \(\varphi(t) \leq u_\epsilon(t) \leq \psi(t) \), \(|u'_\epsilon(t)| \leq M_1 = M_1(\Phi, c), \quad t \in [0, x_n] \) et \(|u''_\epsilon(t)| \leq M_2 = \sup_{x \in M} \Phi(x) \) p.p. \(t \in (0, x_n) \).

Remarquons que \(M_1 \) et \(M_2 \) ne dépendent pas de \(\epsilon \).

(VII.14) THÉORÈME. Sous les hypothèses (H VII.7), (H VII.9), (H VII.14), (H VII.15) le problème (VII.4), (VII.5) possède une solution \(u \in W^{2,\infty}(0, \infty) \) telle que \(\varphi(t) \leq u(t) \leq \psi(t), \quad t \in [0, \infty) \). Si de plus, l'hypothèse (H VII.11) est satisfaite alors \(u \) est solution du problème (VII.4)–(VII.5).

La preuve est identique à celle du théorème (VII.7).

(VII.15) THÉORÈME. Sous les hypothèses (H VII.7), (H VII.9), (H VII.14), (H VII.15) et (H VII.11) il existe \(u \in W^{2,\infty}(0, \infty) \) solution du problème (VII.4)–(VII.6) satisfaisant \(\lim_{t \to \infty} u'(t) = 0 \).

Preuve. Définissons \(\psi_1(t) \) comme au théorème (VII.11); alors \(|u(t)| \leq \psi_1(t) \) et \(\lim_{t \to \infty} \psi_1(t) = 0 \) où \(u \) est la solution donnée par le théorème (VII.14).

Puisque \(\lim_{t \to \infty} u(t) = 0 \), pour tout \(\epsilon > 0 \) et pour tout \(t \geq 0 \), il existe \(\delta > t \) tel que \(|u'(s)| \leq \epsilon \).

Fixons \(\epsilon > 0 \) et soit \(t_0 \in [0, \infty) \) tel que \(|u'(t_0)| > \epsilon \) (s'il existe). Alors il existe un intervalle \([t_0, \delta] \) sur lequel \(u' \) ne change pas de signe et \(|u'(s)| \leq \epsilon \). Supposons sans perte de généralité que \(u'(t) \geq 0, \quad t \in [t_0, \delta] \).

\[u''(t) \in \mathcal{F}(t, u(t), u'(t)) \geq -\Phi|u'(t)| \quad \text{p.p.} \quad t \in (0, \infty). \]

Par conséquent, \(u'(t)u''(t)/\Phi(u'(t)) \geq -u'(t) \) p.p. \(t \in [t_0, \delta] \). En intégrant de \(t_0 \) à \(\delta \) il vient:

\[\int_{t_0}^{\delta} u'(t)u''(t) \Phi(u'(t)) \, dt \geq -[u(\delta) - u(t_0)]. \]

Puisque \(x/\Phi(x) \in L^\infty_{loc}[0, \infty) \), on peut appliquer la règle de changement de variables dans une intégrale (voir annexe 1):

\[- \frac{u'(t_0)}{u'(s)} \frac{x}{\Phi(x)} \, dx = \int_{t_0}^{\delta} u'(t)u''(t) \Phi(u'(t)) \, dt \geq -[u(\delta) - u(t_0)], \]

d'où

\[\int_{t_0}^{\delta} \frac{x}{\Phi(x)} \, dx \leq \frac{u'(t_0)}{u'(s)} \int_{t_0}^{\delta} \frac{x}{\Phi(x)} \, dx \leq [u(\delta) - u(t_0)] \leq 2\psi_1(t_0) \]

car \(\psi_1 \) est décroissante.
Donc pour tout $t \in [0, \infty)$ on a
\[\int_{\varepsilon}^{[\varepsilon t]} x dx / \Phi(x) \leq 2\psi_1(t) \text{ pour tout } \varepsilon > 0. \]

En passant à la limite lorsque ε tend vers 0 on obtient
\[\int_{0}^{u(t)} x dx / \Phi(x) \leq 2\psi_1(t), \quad t \in [0, \infty). \]

Dès lors,
\[\lim_{t \to \infty} u'(t) = 0 \quad \text{puisque} \quad \lim_{t \to \infty} \psi_1(t) = 0 \text{ et} \quad \frac{x}{\Phi(x)} \in L^\infty_{\text{loc}}[0, \infty). \]

(VII.16) Théorème. Sous les hypothèses (H VII.7), (H VII.9), (H VII.14), (H VII.15), (H VII.11) et (H VII.12) le problème (VII.4)-(VII.6) possède une solution $u \in W^{2,\infty}(0, \infty)$ telle que
\[\lim_{t \to \infty} u(t) = \lim_{t \to \infty} u'(t) = \lim_{t \to \infty} u''(t) = 0. \]

(VII.17) Remarque. En utilisant en remplacement de (H VII.14), (H VII.15) les hypothèses faites au corollaires (VI.7), (VI.8), des théorèmes d'existence de solutions pourraient être formulés de la même manière.

Annexe 1

Changement de variables dans une intégrale

Rappelons quelques définitions et résultats connus:

Une fonction $f: [a, b] \to \mathbb{R}$ est absolument continue si pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que pour tout $\sum_{i=1}^{k} |x_i-x_{i-1}| < \delta$ avec $a \leq x_0 < x_1 < \ldots < x_k \leq b$ on a $\sum_{i=1}^{k} |f(x_i) - f(x_{i-1})| < \varepsilon$.

Une fonction $f: [a, b] \to \mathbb{R}$ est à variation bornée si $V[f; a, b] = \sup_{T} \sum_{i=1}^{m} |f(x_i) - (x_{i-1})| < \infty$ où $T = \{x_0, x_1, \ldots, x_m\}$, $a = x_0 < x_1 < \ldots < x_m = b$.

Une fonction absolument continue ou à variation bornée est dérivable presque partout ([WZ], p. 113). Une fonction absolument continue sur $[a, b]$ est à variation bornée.

(i) (Relation avec la dérivée): Soit $f: [a, b] \to \mathbb{R}$ une fonction à variation bornée et soit U un ouvert $\subset [a, b]$. Alors
\[\int_{U} |f'(t)| dt \leq V[f; U]. \]
(ii) (Indicatrice de Banach) (voir [SA], p. 280): Soit $f \in C_c([a, b])$ une fonction à variation bornée et soit la fonction
\[\mathcal{V} \{ f^{-1}(y) \} = \text{cardinalité de } \{ f^{-1}(y) \}. \]
Alors
\[V[f; a, b] = \int_a^b \mathcal{V} \{ f^{-1}(y) \} dy. \]

De plus, soit U un ouvert dans $[a, b]$; alors
\[V[f; U] = \int_a^b \mathcal{V} \{ f^{-1}(y) \cap U \} dy. \]

Notons $W^{1,1}(a, b)$ l’espace des fonctions $f : [a, b] \to \mathbb{R}$ absolument continues et dont la dérivée est intégrable.

(iii) (Densité) (voir [BR], p. 127): Soit $f \in W^{1,1}(a, b)$. Alors il existe une suite $\{ f_n \}$ dans $C_c^\infty(\mathbb{R})$ telle que $f_n \to f$ dans $W^{1,1}(a, b)$. De plus, si $f, f' \in L^\infty(a, b)$ alors on peut choisir $\{ f_n \}$ de sorte que $\|f_n\|_{L^\infty} \leq M_1$, $\|f_n'\|_{L^\infty} \leq M_2$, où M_1 et M_2 sont des constantes indépendantes de n.

(A1.1) THÉORÈME (Règle de changement de variables dans une intégrale).
Soit $f \in W^{1,1}(a, b)$ et $k_1 < f(t) < k_2$, $t \in [a, b]$. Soit $g : [k_1, k_2] \to \mathbb{R}$ mesurable et bornée. Alors
\[\frac{f(b)}{f(a)} \int_a^b g(x) dx = \int_a^b g(f(t)) f'(t) dt. \]

Preuve. Posons $G(y) = \int_a^y g(x) dx$, $G \in W^{1,1}(k_1, k_2)$ et $G' = g$. Il existe une suite $\{ G_n \} \in C_c^\infty(\mathbb{R})$ telle que $G_n \to G$ dans $W^{1,1}$ et $\|G_n\|_{L^\infty} \leq M_1$ et $\|G_n'\|_{L^\infty} \leq M_2$ par (iii). En particulier $G_n(y) \to G(y)$ pour tout $y \in [k_1, k_2]$.

Par la règle de dérivation d’un produit de composition (théorème (I.5)) $G_n \circ f \in W^{1,1}(a, b)$ et $(G_n \circ f)' = (G_n' \circ f) f'$, i.e.
\[G_n(f(b)) - G_n(f(a)) = \int_a^b G_n'(f(t)) f'(t) dt. \]

Or
\[G_n(f(b)) - G_n(f(a)) \to G(f(b)) - G(f(a)) = \int_{f(a)}^{f(b)} g(x) dx. \]

Il reste à montrer que
\[\int_a^b G_n(f(t)) f'(t) dt \to \int_a^b g(f(t)) f'(t) dt. \]
On a $G^r_{n|[k_1,k_2]} \to g$ dans $L^1(k_1, k_2)$, il existe donc une sous-suite $\{G^r_n\}$ telle que

$$G^r_n(y) \to g(y) \quad \text{p.p. } y \in [k_1, k_2].$$

Soient $D_0 = \{y \in [k_1, k_2] | G^r_n(y) \to g(y)\}$ et $D = [k_1, k_2] \setminus D_0$; alors mes$(D) = 0$.

Soit $E = \{t \in (a, b) | f'(t) \text{ existe et } f'(t) \neq 0\}$. Soit $B \subseteq E$ tel que $f(B) \subseteq D$; alors mes$(f'(B)) = 0$. Pour montrer que mes$(B) = 0$ nous avons besoin du lemme suivant:

(A1.2) Lemme. Soit $f: [a, b] \to \mathbb{R}$ une fonction continue et à variation bornée. Soit $E = \{t \in (a, b) | f'(t) \text{ existe et } f'(t) \neq 0\}$. Si $B \subseteq E$ et mes$(f'(B)) = 0$ alors mes$(B) = 0$.

Donc $B = \{t \in E | G^r_n(f(t)) \to g(f(t))\}$ est de mesure nulle. Dès lors,

$$G^r_n(f(t)) \to g(f(t)) \quad \text{p.p. } t \in (a, b)$$

et

$$|G^r_n(f(t)) - f'(t)| \leq M_2 |f'(t)| \in L^1(a, b).$$

Par le théorème de la convergence dominée de Lebesgue il vient:

$$\int_a^b G^r_n(f(t)) f'(t) \, dt \to \int_a^b g(f(t)) f'(t) \, dt.$$

Nous avons donc montré que

$$\int_a^b g(f(t)) f'(t) \, dt = \int_{f(a)}^{f(b)} g(x) \, dx.$$

Remarque. Ce résultat a été récemment obtenu par Liu et moi-même [FL]. Il généralise la règle de changement de variables dans une intégrale rencontrée dans la littérature et qui apparaît avec une hypothèse supplémentaire de monotonicité sur f.

Prouvons maintenant le lemme que nous avons utilisé dans la démonstration du théorème.

Preuve du Lemme (A1.2). Par (ii),

$$\int_x^\infty \mathcal{V}\{f^{-1}(y)\} \, dy = V[f; a, b] < \infty$$

puisque f est à variation bornée. Dès lors, pour tout $\varepsilon > 0$, il existe $\delta(\varepsilon) > 0$ tel que

$$\int_{C} \mathcal{V}\{f^{-1}(y)\} \, dy < \varepsilon \quad \text{lorsque mes}(C) < \delta(\varepsilon).$$

Il existe un ouvert $W \subseteq \mathbb{R}$ tel que $f(B) \subseteq W$ et mes$(W) < \delta(\varepsilon)$ car mes$(f'(B)) = 0$.

Soit $U = f^{-1}(W)$ ouvert dans $[a, b]$. On a
\[V[f; U] = \int_{-\infty}^{\infty} \mathcal{N}\{f^{-1}(y) \cap U\} \, dy = \int_{W} \mathcal{N}\{f^{-1}(y)\} \, dy < \varepsilon. \]

Comme \(B \subset U \),
\[\int_{B} |f'(t)| \, dt \leq \int_{U} |f'(t)| \, dt \leq V[f; U] \quad \text{par (i),} \]
donc \(\int_{B} |f'(t)| \, dt < \varepsilon \) pour tout \(\varepsilon > 0 \), d'où \(\int_{B} |f'(t)| \, dt = 0 \). Or \(|f'(t)| > 0 \) sur \(B \subset E \), ce qui implique que \(\text{mes}(B) = 0 \). \(\square \)

Annexe 2

Principes du maximum

(A2.1) **Principe du maximum** 1. Soit \(u \in H^2_{\text{loc}}(a, b) \) tel que

\[
\begin{cases}
 u''(t) \geq 0 & \text{p.p. } t \in (a, b), \\
 u(a) - \beta u'(a) \leq 0, & \beta > 0, \\
 u(b) + \eta u'(b) \leq 0, & \eta > 0;
\end{cases}
\]

alors \(u(t) \leq 0, \ t \in [a, b] \).

Preuve. Posons \(f(t) = u'(t) \); alors \(f \in L^2(a, b) \) et \(f \geq 0 \); aussi, \(u''(t)v(t) = f(t)v(t) \) pour tout \(v \in C^1[a, b] \). En intégrant de \(a \) à \(b \) et par intégration par partie, il vient:

\[
(A2.1)' \quad u'(b)v(b) - u'(a)v(a) - \int_{a}^{b} u'(t)v'(t) \, dt = \int_{a}^{b} f(t)v(t) \, dt
\]

pour tout \(v \in H^1(a, b) \). Posons

\[
G(t) = \begin{cases}
 t^2, & t > 0, \\
 0, & t \leq 0,
end{cases} \quad G \in C^1(\mathbb{R}), \quad G'(t) = \begin{cases}
 2t, & t > 0, \\
 0, & t \leq 0.
end{cases}
\]

Soit \(v = G(u) \in H^1(a, b) \); alors \(v' = G'(u)u' \) par la règle de dérivation d'un produit de composition (théorème (I.5)). On a

\[
u(a) = G(u(a)) = \begin{cases}
 u(a)^2, & \text{si } u(a) > 0 \text{ et ainsi } \beta > 0 \text{ et } u'(a) > 0, \\
 0, & \text{si } u(a) \leq 0,
end{cases}
\]

\[
u(b) = G(u(b)) = \begin{cases}
 u(b)^2, & \text{si } u(b) > 0 \text{ et ainsi } \eta > 0 \text{ et } u'(b) < 0, \\
 0, & \text{si } u(b) \leq 0.
end{cases}
\]
(A2.1) devient donc:

\[
u'(b)u(b)^2 - u'(a)u(a)^2 - \int_a^b u'(t)^2 G'(u(t)) \, dt = \int_a^b f(t)G(u(t)) \, dt \quad \text{si } u(b) > 0, u(a) > 0,
\]

\[
u'(b)u(b)^2 - \int_a^b u'(t)^2 G'(u(t)) \, dt = \int_a^b f(t)G(u(t)) \, dt \quad \text{si } u(b) > 0, u(a) \leq 0,
\]

\[-u'(a)u(a)^2 - \int_a^b u'(t)^2 G'(u(t)) \, dt = \int_a^b f(t)G(u(t)) \, dt \quad \text{si } u(b) \leq 0, u(a) > 0,
\]

\[-\int_a^b u'(t)^2 G'(u(t)) \, dt = \int_a^b f(t)G(u(t)) \, dt \quad \text{si } u(b) \leq 0, u(a) \leq 0.
\]

Or \(f \geq 0, G(u) \geq 0, G'(u) \geq 0, \) d'où \(\int_a^b f(t)G(u(t)) \, dt \geq 0 \geq -\int_a^b u'(t)^2 G'(u(t)) \, dt. \)

Si \(u(a) > 0 \) et \(u(b) > 0 \) alors \(u'(a) > 0 \) et \(u'(b) < 0, \) d'où \(0 > u'(b)u(b)^2 \)

\[-u'(a)u(a)^2 - \int_a^b u'(t)^2 G'(u(t)) \, dt = \int_a^b f(t)G(u(t)) \, dt \geq 0, ce qui est contradictoire, d'où \(u(a) \leq 0 \) ou \(u(b) \leq 0. \)

De même, on obtient une contradiction si \(u(a) > 0 \) ou \(u(b) > 0, \) d'où \(u(a) \leq 0 \) et \(u(b) \leq 0 \) et

\[-\int_a^b u'(t)^2 G'(u(t)) \, dt = \int_a^b f(t)G(u(t)) \, dt.
\]

Supposons qu'il existe \(t_0 \in (a, b) \) tel que \(u(t_0) > 0; \) puisque \(u(a) \leq 0 \) et \(u(b) \leq 0, \) il existe \((a', b') \subset (a, b)\) sur lequel \(|u'(t)| > 0 \) et \(u(t) > 0. \) Ainsi

\[0 > -\int_a^b u'(t)^2 G'(u(t)) \, dt = \int_a^b f(t)G(u(t)) \, dt \geq 0,
\]

ce qui est contradictoire. D'où \(u(t) \leq 0, \ t \in [a, b]. \)

(A2.2) PRINCIPE DU MAXIMUM 2. Soit \(u \in H^2_{ac}(a, b) \) et \(c > 0 \) tels que

\[
\begin{cases}
u'(t) - cu(t) \geq 0 & \text{p.p. } t \in (a, b),
\end{cases}
\]

\[
\begin{cases}
u(a) - \beta u(a) \leq 0, & \alpha > 0, \ \beta \geq 0, \ \max\{\alpha, \beta\} > 0,
\end{cases}
\]

\[
\begin{cases}
u(b) + \eta u(b) \leq 0, & \gamma > 0, \ \eta \geq 0, \ \max\{\gamma, \eta\} > 0.
\end{cases}
\]

Alors \(u(t) \leq 0, \ t \in [a, b]. \)

Pr é u e. Posons \(f(t) = u'(t) - cu(t); \) alors \(f \in L^2(a, b) \) et \(f \geq 0. \) Aussi
\[u'(t) v(t) - cu(t) v(t) = f(t) v(t) \] pour tout \(v \in C^1[a, b] \). En intégrant de \(a \) à \(b \) et par intégration par partie il vient:

\[(A2.2') \quad u'(b) v(b) - u'(a) v(a) - \int_a^b (u'(t) v'(t) + cu(t) v(t)) \, dt = \int_a^b f(t) v(t) \, dt \]

pour tout \(v \in H^1(a, b) \). Posons

\[
G(t) = \begin{cases}
 t^2, & t > 0, \\
0, & t \leq 0,
\end{cases} \quad G \in C^1(R),
\]

et \(v = G(u) \); alors \(v \in H^1(a, b) \) et \(v'(t) = G'(u(t)) u'(t) \),

\[v(a) = G(u(a)) = \begin{cases}
 (u(a))^2 & \text{si } u(a) > 0, \\
0 & \text{si } u(a) \leq 0;
\end{cases} \]

aussi, lorsque \(u(a) > 0 \) si \(\alpha > 0 \) on a \(\beta > 0 \) et \(u'(a) \geq 0 \) et si \(\alpha = 0 \) on a \(u'(a) \geq 0 \). De même,

\[v(b) = G(u(b)) = \begin{cases}
 (u(b))^2 & \text{si } u(b) > 0, \\
0 & \text{si } u(b) \leq 0;
\end{cases} \]

aussi, lorsque \(u(b) > 0 \) si \(\gamma > 0 \) on a \(\eta > 0 \) et \(u'(b) < 0 \) et si \(\gamma = 0 \) on a \(u'(b) \leq 0 \).

\[(A2.2') \] devient donc:

\[u'(b) u(b)^2 - u'(a) u(a)^2 - \int_a^b (u'(t)^2 G'(u(t)) + cu(t) G(u(t))) \, dt \]

\[= \int_a^b f(t) G(u(t)) \, dt \quad \text{si } u(b) > 0, \; u(a) > 0, \]

\[u'(b) u(b)^2 - \int_a^b (u'(t)^2 G'(u(t)) + cu(t) G(u(t))) \, dt = \int_a^b f(t) G(u(t)) \, dt \]

\[\text{si } u(b) > 0, \; u(a) \leq 0, \]

\[- u'(a) u(a)^2 - \int_a^b (u'(t)^2 G'(u(t)) + cu(t) G(u(t))) \, dt = \int_a^b f(t) G(u(t)) \, dt \]

\[\text{si } u(b) \leq 0, \; u(a) > 0, \]

\[- \int_a^b (u'(t)^2 G'(u(t)) + cu(t) G(u(t))) \, dt = \int_a^b f(t) G(u(t)) \, dt \]

\[\text{si } u(b) \leq 0, \; u(a) \leq 0. \]

Or \(f \geq 0 \), \(G(u) \geq 0 \), \(G'(u) \geq 0 \), \(cuG(u) \geq 0 \), d'où

\[\int_a^b f(t) G(u(t)) \, dt \geq 0 \geq - \int_a^b (u'(t)^2 G'(u(t)) + cu(t) G(u(t))) \, dt. \]
Si \(u(a) > 0 \) et \(u(b) > 0 \) alors \(u(a) \geq 0 \) et \(u'(b) \leq 0 \); si de plus \(u'(a) > 0 \) et \(u'(b) < 0 \),

\[
0 > \int_a^b u'(b)u(b)^2 - u'(a)u(a)^2 - \left[\int_a^b u'(t)^2 G'(u(t)) + cu(t)G(u(t)) \right] dt
\]

\[
= \int_a^b f(t)G(u(t)) dt \geq 0.
\]

c'est qui est contradictoire, d'où \(u'(a) = 0 \) ou \(u'(b) = 0 \) ou \(u(a) \leq 0 \) ou \(u(b) \leq 0 \).

De même, on obtient une contradiction si \((u(a) > 0 \) et \(u'(a) > 0) \) ou \((u(b) > 0 \) et \(u'(b) < 0) \).

D'où \((u(a) \leq 0 \) ou \((u(a) > 0 \) et \(u'(a) = 0) \) et \((u(b) \leq 0 \) ou \((u(b) > 0 \) et \(u'(b) = 0) \) et \(\int_a^b u'(t)^2 G'(u(t)) + cu(t)G(u(t)) \right) dt = \int_a^b f(t)G(u(t)) dt.
\)

Supposons qu'il existe \(t_0 \in (a, b) \) tel que \(u(t_0) > 0 \); alors il existe un intervalle \((a', b') \subset (a, b) \) sur lequel \(u(t) > 0 \). Ainsi,

\[
0 > \int_a^b u'(t)^2 G'(u(t)) + cu(t)G(u(t)) dt = \int_a^b f(t)G(u(t)) dt \geq 0,
\]

c'est qui est contradictoire. D'où \(u(t) \leq 0, \ t \in [a, b]. \)

Annexe 3

Inversibilité des opérateurs

Pour montrer l'inversibilité de certains opérateurs considérés dans différents chapitres de ce texte, nous utiliserons le théorème de Stampacchia dont nous rappelons l'énoncé.

Soient \(H \) un espace de Hilbert et \(H' \) son dual topologique. Soit \(a: H \times H \to R \) une forme bilinéaire, continue (il existe \(c > 0 \) tel que \(|a(u, v)| \leq c \|u\| \|v\|, \ \forall u, v \in H \)) et coercitive (il existe \(\alpha > 0 \) tel que \(a(u, u) \geq \alpha \|u\|^2, \ \forall u \in H \)).

(A3.1) **Théorème (Stampacchia).** Soit \(a(u, v) \) une forme bilinéaire, continue et coercitive et soit \(K \) un convexe fermé non vide de \(H \). Alors pour tout \(\varphi \in H' \), il existe un unique \(u \in K \) tel que \(a(u, v - u) \geq \varphi(v - u) \) pour tout \(v \in K \).

Considérons les conditions aux limites suivantes:

\[(A3.1) \begin{cases} u(0) - \beta u'(0) = r, & \beta, \ b > 0, \\ u(1) + bu'(1) = s. \end{cases} \]

Posons \(H^2_0(0, 1) = \{ u \in H^2(0, 1) | u \text{ satisfait } (A3.1) \} \).

(A3.2) **Théorème.** Soit \(L: H^2_0(0, 1) \to L^2(0, 1) \), \(Lu = u'' \). Alors \(L \) est un opérateur inversible.
Preuve. Il suffit de montrer que \(L \) est bijectif. Montrons d'abord que \(L \) est injectif. En effet, si \(Lu = Lu_1 \) alors \(L(u - u_1) = 0 \) et \((u - u_1)(0) = \beta (u' - u'_1)(1) = \beta (u' - u'_1)(0) = 0 \), \((u - u_1)(1) = b(u' - u'_1)(1) = 0 \) et par le principe du maximum 1 (voir annexe 2) \(u_1 - u \leq 0 \) et \(u - u_1 \leq 0 \). Montrons maintenant que \(L \) est surjectif.

Posons

\[
K = \{ u \in H^1(0, 1) \mid u(0) = r \text{ si } \beta = 0 \text{ et } u(1) = s \text{ si } b = 0 \},
\]

\[
H^1_0(0, 1) = \{ u \in H^1(0, 1) \mid u(0) = 0 \text{ si } \beta = 0 \text{ et } u(1) = 0 \text{ si } b = 0 \}.
\]

Remarque. Si \(\beta, b > 0 \), \(K = H^1(0, 1) = H^1_0(0, 1) \).

Soit \(f \in L^2(0, 1) \). Si \(u \in H^1_0(0, 1) \) est telle que \(u'(t) = f(t) \) p.p., \(t \in (0, 1) \), multiplions de chaque côté par \(v \in C^1[0, 1] \) et intégrons de 0 à 1. Par intégration par partie, il vient:

\[
u'(1)v(1) - u'(0)v(0) - \int_0^1 u'(t)v'(t)\,dt = \int_0^1 f(t)v(t)\,dt
\]

pour tout \(v \in C^1[0, 1] \).

Considérons le problème faible associé: on cherche \(u \in K \) tel que pour tout \(v \in H^1_0(0, 1) \)

\[
\int_0^1 u'(t)v'(t)\,dt + \frac{u(1)v(1)}{b} + \frac{u(0)v(0)}{\beta} = - \int_0^1 f(t)v(t)\,dt + \frac{s}{b}v(1) + \frac{r}{\beta}v(0)
\]

si \(b > 0, \beta > 0 \),

(A3.2) \[
\int_0^1 u'(t)v'(t)\,dt + \frac{u(1)v(1)}{b} = - \int_0^1 f(t)v(t)\,dt + \frac{s}{b}v(1) \quad \text{si } b > 0, \beta = 0,
\]

\[
\int_0^1 u'(t)v'(t)\,dt + \frac{u(0)v(0)}{\beta} = - \int_0^1 f(t)v(t)\,dt + \frac{r}{\beta}v(0) \quad \text{si } b = 0, \beta > 0,
\]

\[
\int_0^1 u'(t)v'(t)\,dt = - \int_0^1 f(t)v(t)\,dt \quad \text{si } b = 0, \beta = 0.
\]

Posons \(a: H^1(0, 1) \times H^1_0(0, 1) \rightarrow L^2(0, 1), \)

\[
a(u, v) = \begin{cases}
\frac{u(1)v(1)}{b} + \frac{u(0)v(0)}{\beta} + \int_0^1 u'v' \quad & \text{si } \beta > 0, b > 0, \\
\frac{u(1)v(1)}{b} + \int_0^1 u'v' \quad & \text{si } \beta = 0, b > 0, \\
\frac{u(0)v(0)}{\beta} + \int_0^1 u'v' \quad & \text{si } \beta > 0, b = 0, \\
\int_0^1 u'v' \quad & \text{si } \beta = 0, b = 0.
\end{cases}
\]

\(a \) est une forme bilinéaire, continue et pas nécessairement coercitive. Toutefois,

\(a(u, v) + \lambda \int_0^1 uv \) est coercitive pour un certain \(\lambda > 0 \).
Posons $\varphi_f: H^1(0, 1) \rightarrow \mathbb{R}$,

\[
\varphi_f(v) = \begin{cases}
\frac{s}{b} v(1) + \frac{r}{\beta} v(0) - \frac{1}{0} \int_0^1 f v & \text{si } \beta > 0, \ b > 0, \\
\frac{s}{b} v(1) - \frac{1}{0} \int_0^1 f v & \text{si } \beta = 0, \ b > 0, \\
\frac{r}{\beta} v(0) - \frac{1}{0} \int_0^1 f v & \text{si } \beta > 0, \ b = 0, \\
- \frac{1}{0} \int_0^1 f v & \text{si } \beta = 0, \ b = 0.
\end{cases}
\]

φ_f est linéaire et continue.

Par le théorème de Stampacchia, il existe un unique $u \in K$ tel que

\[
a(u, v - u) + \int_0^1 u(v - u) \geq \varphi_f(v - u)
\]

pour tout $v \in K$. Or si $v \in H^1_0(0, 1)$, $-v \in H^1_0(0, 1)$ et $(v + u), (-v + u) \in K$. D'où

\[
a(u, v) + \int_0^1 uv = \varphi_f(v)\]

pour tout $v \in H^1_0(0, 1)$.

Considérons $\psi: L^2(0, 1) \rightarrow K$, $\psi(f) = u$ où $a(u, v) + \int_0^1 uv = \varphi_f(v)$ pour tout $v \in H^1_0(0, 1)$ et $\varphi: K \rightarrow H^1_0(0, 1)$, $\varphi(u) = u - u_0$ où $u_0 \in H^1_0(0, 1)$ et $u_0^* = \lambda u_0$, i.e. $u_0(t) = c_1 e^{\sqrt{\lambda} t} + c_2 e^{-\sqrt{\lambda} t}$ où c_1 et c_2 sont déterminées par $c_1 e^{\sqrt{\lambda} (1 - \beta \sqrt{\lambda})} + c_2 e^{-\sqrt{\lambda} (1 + \beta \sqrt{\lambda})} = r$ et $c_1 e^{\sqrt{\lambda} (1 + h \sqrt{\lambda})} + c_2 e^{-\sqrt{\lambda} (1 - h \sqrt{\lambda})} = s$.

$\psi \circ \varphi: L^2(0, 1) \rightarrow H^1_0(0, 1)$ est linéaire et continue. Posons $\Psi: L^2(0, 1) \rightarrow L^2(0, 1)$, $\Psi = j \circ \psi \circ \varphi$ où $j: H^1_0(0, 1) \hookrightarrow L^2(0, 1)$. Ψ est linéaire, continue et complètement continue. On a

\[
(A3.2) \quad \begin{cases} a(u, v) = \varphi_f(v) \quad \text{pour tout } v \in H^1_0(0, 1), \\
u \in K.
\end{cases}
\]

u est solution de

\[
(A3.2) \Leftrightarrow a(u, v) + \int_0^1 uv = \varphi_f(v) + \int_0^1 uv
\]

\[
\Leftrightarrow u = \psi(f - \lambda u)
\]

\[
\Leftrightarrow u - u_0 = \Psi(f - \lambda u)
\]

\[
\Leftrightarrow \frac{f - w}{\lambda} - u_0 = \Psi(w) \quad \text{où } w = f - \lambda u
\]

\[
\Leftrightarrow w + \lambda \Psi(w) = f - \lambda u_0 = f_1 \in L^2(0, 1).
\]

On applique l’alternative de Fredholm:

\[
R(I + \lambda \Psi) = L^2(0, 1) \quad \text{si et seulement si} \quad N(I + \lambda \Psi) = \{0\}.
\]
Or \(N(I + \lambda \Psi) = \{0\} \) si et seulement si \(L \) est injectif. Donc, pour tout \(f_1 \in L^2(0, 1) \), il existe un unique \(w \in L^2(0, 1) \) tel que \(w + \lambda \Psi(w) = f_1 \). Dès lors, pour tout \(f \in L^2(0, 1) \), il existe un unique \(u \in K \) tel que
\[
a(u, v) = \varphi_f(v) \quad \text{pour tout } v \in H^1_b(0, 1).
\]
Par conséquent \(\int_0^1 u' v' = -\int_0^1 f v \) pour tout \(v \in \mathcal{C}^1_c(0, 1) \), d'où \(u \in H^2(0, 1) \) et \(u''(t) = f(t) \) p.p. \(t \in (0, 1) \).

En intégrant par partie \(a(u, v) \), on obtient pour tout \(v \in H^1_b(0, 1) \),
\[
u'(1)v(1) - u'(0)v(0) + \frac{u(1)v(1)}{b} + \frac{u(0)v(0)}{\beta} - \int_0^1 u'' v = \frac{s}{b} v(1) + \frac{r}{\beta} v(0) - \int_0^1 f v
\]
si \(\beta > 0, \ b > 0 \),
\[
u'(1)v(1) + \frac{u(1)v(1)}{b} - \int_0^1 u'' v = \frac{s}{b} v(1) - \int_0^1 f v \quad \text{si } \beta = 0, \ b > 0 ,
\]
\[-u'(0)v(0) + \frac{u(0)v(0)}{\beta} - \int_0^1 u'' v = \frac{r}{\beta} v(0) - \int_0^1 f v \quad \text{si } \beta > 0, \ b = 0 ,
\]
\[-\int_0^1 u'' v = -\int_0^1 f v \quad \text{si } \beta = 0, \ b = 0 .
\]
Puisque \(u''(t) = f(t) \) p.p. \(t \in (0, 1) \) et \(u \in K \) alors on vérifie facilement que \(u \) satisfait les conditions aux limites.

Nous avons donc montré que pour tout \(f \in L^2(0, 1) \), il existe un unique \(u \in H^2_b(0, 1) \) tel que \(u''(t) = f(t) \) p.p. \(t \in (0, 1) \), i.e. \(L \) est surjectif. D'où \(L \) est un opérateur inversible. \(\square \)

Considérons les conditions aux limites suivantes:
\[
\begin{align*}
au(0) - \beta u'(0) &= r; \quad a, \beta > 0, \ \max \{a, \beta\} > 0, \\
au(1) + bu'(1) &= s; \quad a, b > 0, \ \max \{a, b\} > 0.
\end{align*}
\]
Posons \(H^2_b(0, 1) = \{u \in H^2(0, 1) \mid u \text{ satisfait } (A3.3) \} \).

(A3.3) **Théorème.** Soit \(L: H^2_b(0, 1) \to L^2(0, 1) \), \(Lu = u'' - cu \), \(c > 0 \). Alors \(L \) est un opérateur inversible.

Preuve. Il suffit de montrer que \(L \) est bijectif. \(L \) est injectif par le principe du maximum 2 (voir annexe 2). Montrons la surjectivité de \(L \).

Posons
\[
K = \{u \in H^1(0, 1) \mid u(0) = r/a \text{ si } \beta = 0 \text{ et } u(1) = s/a \text{ si } b = 0 \}
\]
et
\[
H^1_b(0, 1) = \{u \in H^1(0, 1) \mid u(0) = 0 \text{ si } \beta = 0 \text{ et } u(1) = 0 \text{ si } b = 0 \}.
\]
Remarquons que \(K = H^1_b(0, 1) = H^1(0, 1) \) si \(\beta > 0 \) et \(b > 0 \).
Soit \(f \in L^2(0, 1) \). Soit \(u \in H^2(0, 1) \) telle que \(u'(t) - cu(t) = f(t) \) p.p. \(t \in (0, 1) \).

Multiples de chaque côté par \(v(t) \) et intégrons de 0 à 1. Par intégration par
partie il vient:

\[
 u'(1)v(1) - u'(0)v(0) - \int_0^1 (u'(t)v'(t) + cu(t)v(t)) \, dt = \int_0^1 f(t)v(t) \, dt.
\]

Posons \(A : H^1(0, 1) \times H^1(0, 1) \to L^2(0, 1) \),

\[
 A(u, v) = \begin{cases}
 \frac{au(1)v(1)}{b} + \frac{zu(0)v(0)}{\beta} + \int_0^1 u'v' + cuv & \text{si } \beta > 0, \ b > 0, \\
 \frac{au(1)v(1)}{b} + \int_0^1 u'v' + cuv & \text{si } \beta = 0, \ b > 0, \\
 \frac{zu(0)v(0)}{\beta} + \int_0^1 u'v' + cuv & \text{si } \beta > 0, \ b = 0, \\
 \int_0^1 u'v' + cuv & \text{si } \beta = 0, \ b = 0.
 \end{cases}
\]

\(A \) est une forme bilinéaire, continue et coercitive.

Posons \(\varphi_f : H^1(0, 1) \to L^2(0, 1) \),

\[
 \varphi_f(v) = \begin{cases}
 \frac{s}{b}v(1) + \frac{r}{\beta}v(0) - \int_0^1 fv & \text{si } \beta > 0, \ b > 0, \\
 \frac{s}{b}v(1) - \int_0^1 fv & \text{si } \beta = 0, \ b > 0, \\
 \frac{r}{\beta}v(0) - \int_0^1 fv & \text{si } \beta > 0, \ b = 0, \\
 -\int_0^1 fv & \text{si } \beta = 0, \ b = 0
 \end{cases}
\]

\(\varphi_f \) est linéaire et continue.

Considérons le problème faible associé:

\[
 \begin{aligned}
 A(u, v) &= \varphi_f(v) & \text{pour tout } v \in H^1_b(0, 1), \\
 u &\in K.
 \end{aligned}
\]

Par le théorème de Stampacchia, pour tout \(f \in L^2(0, 1) \), il existe un unique \(u \in K \) tel que \(A(u, v-u) \geq \varphi_f(v-u) \) pour tout \(v \in K \). Or pour \(v \in H^1_b(0, 1), (-v+u) \) et \((v+u) \in K \). D'où \(A(u, v) = \varphi_f(v) \) pour tout \(v \in H^1_b(0, 1) \).

Dès lors, \(\int_0^1 u'(t)v'(t) \, dt = -\int_0^1 (f(t) + cu(t))v(t) \, dt \) pour tout \(v \in C^1_c(0, 1) \),
d'où \(u \in H^2(0, 1) \) et \(u'(t) = f(t) + cu(t) \) p.p. \(t \in (0, 1) \). On montre aisément qu'en fait \(u \) satisfait les conditions aux limites.

Donc, pour tout \(f \in L^2(0, 1) \), il existe un unique \(u \in H^2_b(0, 1) \) tel que \(Lu = f \), i.e. \(L \) est surjectif. D'où l'inversibilité de l'opérateur \(L \). □
Commentaires

Nous présentons ici plusieurs résultats concernant des problèmes non linéaires et non continus pour des équations et inclusions différentielles ordinaires et qui sont obtenus par des méthodes topologiques. La liste des références donnée plus bas est reliée aux problèmes de ce texte et contient quelques références additionnelles qui donnent un bon aperçu des sujets reliés à ceux de ce texte et contiennent une large bibliographie: Aubin–Cellina [AC], Bernfeld–Lakshmikantham [BL], Blagodat’skikh–Filippov [BF], Borisovich–Geľman–Myshkis-Obukhovskii [BGMO], Fučik [FU], Granas–Guenther–Lee [GGL4], Jackson [JA2], Mawhin [MA1][MA2].

Méthodes topologiques

La théorie du degré de Leray–Schauder a ensuite été généralisée par la théorie du degré de coïncidence (où l'identité est remplacé par un opérateur de Fredholm d'indice zéro) et utilisée pour déduire l'existence de solutions à des problèmes aux limites. Cette méthode est présentée dans Gaines–Mawhin [GM], Mawhin [MA2][MA4]. Parmi les récentes contributions à la théorie du degré de coïncidence, on citera l'extension au cas multivoque due à Tarondar–Teo [TT] et à Pruszko [PR1][PR2].

Dans ce texte, la théorie du degré n'est pas utilisée. L'approche présentée ici est basée sur une application d'une notion élémentaire d'application essentielle et sur la théorie de la transversalité topologique pour des opérateurs compacts qui sont soit univoques continus, soit multivoques à valeurs convexes et semi-continus supérieurement, voir Dugundji–Granas [DG]. Cette théorie s'applique à des problèmes à valeur initiale ou aux limites en introduisant un paramètre et en considérant une famille de problèmes dont on majore les solutions a priori. Les problèmes sont alors transformés en problèmes de point fixe et par homotopie, on déduit l'existence de solutions.
Ce n'est que très récemment que cette méthode de la transversalité topologique a été appliquée pour donner des théorèmes d'existence de solutions à des inclusions différentielles, voir [FR1].

Pour de plus amples renseignements concernant les applications multi-voques ainsi que pour une large bibliographie sur le sujet, on pourra consulter Berge [BE], Borisovich-Gelman-Myshkis-Obukhovskii [BGMO] et Pruszko [PR2].

Problèmes à valeur initiale

Le théorème d'intervalle d'existence de solutions au problème de Cauchy:

\[y' = f(t, y(t)), \quad y(0) = a \]

lorsque \(f(t, y) \) est une fonction continue et bornée par une certaine fonction \(\psi (|f(t, y)|) \leq \psi (|y|) \) a été donné par Wintner (voir Hartman [HA]). Ce résultat classique a récemment été démontré de façon simple et plus courte par Lee et O'Regan [LO] en utilisant la théorie de la transversalité topologique. Le théorème (II.3) généralise ce résultat pour une fonction de Carathéodory (\(L^1 \)-Carathéodory) grâce à une formule de changement de variables pour une fonction mesurable bornée et non monotone (théorème A1.1).

Quant au problème à valeur initiale pour des inclusions différentielles, il a été traité pour donner des théorèmes d'existence de solutions par des méthodes de convergence [DA], par la théorie du degré [LA2] [LAO1], ou à l'aide de théorèmes de sélection et aussi par des méthodes de point fixe. Pour un exposé systématique de ces différentes méthodes et pour une large bibliographie sur le sujet, on pourra consulter Aubin-Cellina [AC]. Le théorème (II.9) généralise pour des inclusions différentielles, les théorèmes d'intervalle d'existence mentionnés plus haut et est démontré en utilisant la transversalité topologique. Ce résultat a paru pour la première fois dans [FR1].

La même méthode est appliquée pour donner un théorème déterminant un domaine d'existence de solutions pour des problèmes à valeur initiale dans un domaine complexe (théorème (III.5)). Il généralise certains résultats obtenus par O'Regan [OR].

Problèmes aux limites

Cas univoque. La méthode de majoration a priori des solutions pour des problèmes aux limites remonte à S. Bernstein en 1912 [BER]. Dans son mémoire original, il a montré que plusieurs problèmes en calcul des variations se traduisent en problèmes de type Bernstein. La condition de croissance de type Bernstein a été introduite par Bernstein [BER] et généralisée par Nagumo [NA1] [NA2] (condition de croissance de type Bernstein-Nagumo). Elle a ensuite été développée dans de nombreuses directions et utilisée pour la résolution du problème de second ordre: \(y'' = f(t, y, y') \) où \(f \) est une fonction continue et les conditions aux limites sont soit linéaires: [GGL1] [GGL2]
[GGL3][LY][MA3], soit non linéaires: [GA][GGL4]. Nous étudions ici le cas où la fonction \(f \) est de Carathéodory et nous donnons un théorème d'existence de solutions dans l'espace de Sobolev \(H^2 \) (théorème (IV.6)).

Cas multivoque. Des problèmes aux limites pour des inclusions différentielles \(y'' \in F(t, y, y') \) ont été étudiés par Pruszko [PR1][PR2] à l'aide de la théorie du degré de coïncidence pour des applications multivoques. La théorie de transversalité topologique est utilisée ici pour déduire l'existence de solutions dans l'espace de Sobolev \(H^2 \), sous une condition de croissance de type Bernstein ou Bernstein–Nagumo et en appliquant la méthode de sous- et sur-solutions (théorèmes (V.6) et (VI.6)).

Existence sur l'intervalle \([0, \infty)\). L'existence sur l'intervalle \([0, \infty)\) de solutions à des problèmes du second ordre a été traitée lorsque \(f(t, y, p) \) est une fonction continue. L'approche utilisée ici est la même que celle employée par Jackson [JA1] et par Granas–Guenther–Lee–O'Regan [GGLO]. Les théorèmes (VII.2) et (VII.10) généralisent leurs résultats pour des équations différentielles non continues et aussi pour des inclusions différentielles. Furi–Pera [FP] déduisent l'existence de solutions sur des intervalles non compacts à l'aide d'une méthode de continuation qu'ils développent pour des espaces localement convexes et qui généralise le principe de continuation de Leray–Schauder.

Quelques résultats plus récents

Mentionnons plus particulièrement quelques nouveaux développements dans ce domaine, par exemple: en généralisant la formule de changement de variables pour des fonctions non bornées, certains résultats ont pu être obtenus...
pour des fonctions L^1-Carathéodory, voir [FGG], [GG], [GGL5], [GGL6].

Récemment, certains résultats ont été obtenus pour des problèmes aux limites pour des équations et inclusions différentielles sans condition de croissance [FR3], [FR4]. Aussi, des théorèmes d’existence pour des inclusions différentielles sans convexité ont dernièrement été donnés; mentionnons [FG], [TO]. Ici, la fonction multivoque doit satisfaire une hypothèse de semi-continuité inférieure.

Une nouvelle notion d’applications essentielles pour des fonctions multivoques a été introduite très récemment par Górniwick et Šlosarski [GS]. Grâce à cette notion, une plus grande classe d’inclusions différentielles pourra être considérée.

D’autre part, mentionnons que de nouveaux résultats concernant le problème à valeur initiale dans un domaine complexe ont dernièrement été obtenus par l’auteur [FR2].
Références

[FL] M. Frigon, F. C. Liu, Remarque sur une application de l'indicatrice de Banach au changement de variables dans une intégrale, Rapport de recherche, Université de Montréal, 85-34.

References

[GR2] --, Theorem on antipodes and theorems on fixed points for a certain class of multivalued maps in Banach spaces, ibid. 7(1959), 271-275.

[LAL2] --, Fixed-point theorems for multi-valued mappings and optimal control problems, ibid. 16(1968), 645-649.

Transversalité topologique et problèmes non linéaires

Quelques résultats plus récents

[GS] L. Górniewicz, M. Slosarski, Topological essentiality of multivalued mappings and some of its applications to differential inclusions (à paraître).

