A Note On Upper And Lower Solutions For First Order Inclusions Of Upper Semicontinuous Or Lower Semicontinuous Type

R.P. Agarwal¹, M. Frigon², V. Lakshmikantham¹ and D. O'Regan³

¹Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida 32901-6975, U.S.A.

²Département de Mathématiques et Statistique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada

³Department of Mathematics, National University of Ireland, Galway, Ireland

Abstract. Existence results based on fixed point theorems for self maps are used to establish an upper and lower solutions theory for first order inclusions.

1 Introduction

This paper presents an upper and lower solutions theory for the first order inclusions

\[\begin{cases}
 x'(t) \in F(t, x(t)) & \text{a.e. } t \in [0, T] \\
 x(0) = r
\end{cases} \tag{1.1} \]

where \(F : [0, T] \times \mathbb{R} \to K(\mathbb{R}) \); here \(K(\mathbb{R}) \) denotes the family of nonempty, compact subsets of \(\mathbb{R} \). Throughout the paper our map \(x \mapsto F(t, x) \) is upper semicontinuous or lower semicontinuous for a.e. \(t \in [0, T] \). Recall a map \(G : \mathbb{R} \to K(\mathbb{R}) \) is lower semicontinuous (respectively upper semicontinuous) if the set \(\{ x \in \mathbb{R} : G(x) \cap A \neq \emptyset \} \) is open (respectively closed) for any open (respectively closed) subsets of \(\mathbb{R} \).
closed) set A in \mathbb{R}. Also a map $H : [0, T] \rightarrow K(\mathbb{R})$ is measurable if the set
\{ $t \in [0, T] : H(t) \cap A \neq \emptyset$ \} is measurable for any closed set A in $[0, T]$. The reader is referred to [1-4] for results on multivalued mappings.

We note that part of the theory presented in this paper was inspired by results in [5] for second order problems. Our results rely on the following existence results established in the literature [5, 6]. The first result follows immediately from Ky Fan's fixed point theorem and the second from the Bressan Colombo selection theorem and Schauder's fixed point theorem.

Theorem 1.1. Suppose $F : [0, T] \times \mathbb{R} \rightarrow CK(\mathbb{R})$ (here $CK(\mathbb{R})$ denotes the family of nonempty, convex, compact subsets of \mathbb{R}) satisfies the following conditions:

\[t \mapsto F(t, x) \text{ is measurable for every } x \in \mathbb{R} \quad (1.2) \]

\[x \mapsto F(t, x) \text{ is upper semicontinuous for a.e. } t \in [0, T] \quad (1.3) \]

and

\[\exists h \in L^1[0, T] \text{ with } |F(t, x)| \leq h(t) \text{ for a.e. } t \in [0, T] \text{ and } x \in \mathbb{R}. \quad (1.4) \]

Then (1.1) has a solution $y \in W^{1,1}[0, T]$.

Theorem 1.2. Suppose $F : [0, T] \times \mathbb{R} \rightarrow K(\mathbb{R})$ satisfies (1.4) and the following two conditions:

\[(t, x) \mapsto F(t, x) \text{ is } L \otimes B \text{ measurable} \quad (1.5) \]

and

\[x \mapsto F(t, x) \text{ is lower semicontinuous for a.e. } t \in [0, T]. \quad (1.6) \]

Then (1.1) has a solution $y \in W^{1,1}[0, T]$.

Remark 1.1. Recall $A \subseteq I \times \mathbb{R}$ is $L \otimes B$ measurable if A belongs to the σ algebra generated by all sets of the form $N \times D$ where N is Lebesgue measurable in $[0, T]$ and D is Borel measurable in \mathbb{R}.

2 Upper and lower solutions.

In this section we present an upper and lower solutions result for the first order inclusion

\[\begin{cases} x'(t) \in F(t, x(t)) & \text{a.e. } t \in [0, T] \\ x(0) = r \end{cases} \quad (2.1) \]

where $F : [0, T] \times \mathbb{R} \rightarrow K(\mathbb{R})$.

Definition 2.1. A function $\beta \in W^{1,1}[0, T]$ is said to be an upper solution for (2.1) if for almost every $t \in [0, T]$ there exists $v \in F(t, \beta(t))$ with $v \leq \beta'(t)$ (i.e. $F(t, \beta(t)) \cap (- \infty, \beta'(t)) \neq \emptyset$) and $\beta(0) \geq r$. Similarly a function $\alpha \in W^{1,1}[0, T]$ is said to be a lower solution for (2.1) if for almost every $t \in [0, T]$ there exists $v \in F(t, \alpha(t))$ with $v \geq \alpha'(t)$ (i.e. $F(t, \alpha(t)) \cap [\alpha'(t), \infty) \neq \emptyset$) and $\alpha(0) \leq r$.

We begin with the upper semicontinuous situation.
Theorem 2.1. Suppose \(F : [0, T] \times \mathbb{R} \to C(K) \) satisfies the following conditions:
\[
 t \mapsto F(t, x) \text{ is measurable for every } x \in \mathbb{R} \tag{2.2}
\]
\[
 x \mapsto F(t, x) \text{ is upper semicontinuous for a.e. } t \in [0, T] \tag{2.3}
\]
and
\[
 \left\{ \begin{array}{l}
 \text{for each } r > 0, \exists h_r \in L^1[0, T] \text{ with } |F(t, x)| \leq h_r(t) \\
 \text{for a.e. } t \in [0, T] \text{ and } x \in \mathbb{R} \text{ with } |x| \leq r.
\end{array} \right. \tag{2.4}
\]
Also assume there exists \(\alpha, \beta \in W^{1,1}[0, T] \) respectively lower and upper solutions of (2.1) with \(\alpha(t) \leq \beta(t) \) for \(t \in [0, T] \). Then (2.1) has a solution \(y \in W^{1,1}[0, T] \) with \(\alpha(t) \leq y(t) \leq \beta(t) \) for \(t \in [0, T] \).

PROOF: Let
\[
h(t, x) = \left\{ \begin{array}{ll}
 \alpha(t), & x < \alpha(t), \\
 \beta(t), & x > \beta(t); \\
 x, & \alpha(t) \leq x \leq \beta(t),
\end{array} \right.
\]
\[
\Gamma_+(t, x) = \left\{ \begin{array}{ll}
 \alpha'(t), & x < \alpha(t), \\
 \mathbb{R}, & \alpha(t) \leq x \leq \beta(t), \\
 (-\infty, \beta'(t)), & x > \beta(t);
\end{array} \right.
\]
and let
\[
 F_+(t, x) = F(t, h(t, x)) \cap \Gamma_+(t, x).
\]
Notice \(F_+ : [0, T] \times \mathbb{R} \to C(K) \) (notice the values are nonempty from the definition of upper and lower solutions). Also it is easy to see that \(x \mapsto \Gamma_+(t, x) \) is upper semicontinuous for a.e. \(t \in [0, T] \) so the map \(x \mapsto F_+(t, x) \) is upper semicontinuous for a.e. \(t \in [0, T] \). In addition the map \(t \mapsto F_+(t, x) \) is measurable for each \(x \in \mathbb{R} \). Consider the modified problem
\[
 \left\{ \begin{array}{l}
 x'(t) \in F_+(t, x(t)) \text{ a.e. } t \in [0, T] \\
 x(0) = r.
\end{array} \right. \tag{2.5}
\]
Now Theorem 1.1 guarantees that (2.5) has a solution \(y \in W^{1,1}[0, T] \). To finish the proof it suffices to show \(\alpha(t) \leq y(t) \leq \beta(t) \) for \(t \in [0, T] \). Suppose \(y(t) \not\leq \beta(t) \) for some \(t \in [0, T] \). Since \(y(0) = r \leq \beta(0) \) there exists \(t_1 < t_2 \in [0, T] \) with
\[
y(t_1) = \beta(t_1) \text{ and } y(t) > \beta(t) \text{ for } t \in (t_1, t_2).
\]
For almost every \(t \in (t_1, t_2) \), since \(y(t) > \beta(t) \) we have
\[
y'(t) = w(t) \text{ where } w(t) \in F_+(t, y(t)). \tag{2.6}
\]
In particular \(w(t) \in \Gamma_+(t, y(t)) \) so \(w(t) \in (-\infty, \beta'(t)) \). This together with (2.6) implies \(y'(t) \leq \beta'(t) \). Integration from \(t_1 \) to \(t_2 \) yields \(y(t_2) \leq \beta(t_2) \), a contradiction. Thus \(y(t) \leq \beta(t) \) for \(t \in [0, T] \). A similar argument shows \(y(t) \geq \alpha(t) \) for \(t \in [0, T] \).

Our next result concerns the lower semicontinuous situation.

Theorem 2.2. Suppose \(F : [0, T] \times \mathbb{R} \to K(\mathbb{R}) \) satisfies (2.4) and the following two conditions:
\[
 (t, x) \mapsto F(t, x) \text{ is } \mathcal{L} \otimes \mathcal{B} \text{ measurable} \tag{2.7}
\]
and
\[x \mapsto F(t, x) \text{ is lower semicontinuous for a.e. } t \in [0, T]. \tag{2.8} \]

Also assume there exists \(\alpha, \beta \in W^{1,1}[0, T] \) respectively lower and upper solutions of (2.1) with \(\alpha(t) \leq \beta(t) \) for \(t \in [0, T] \). Then (2.1) has a solution \(y \in W^{1,1}[0, T] \) with \(\alpha(t) \leq y(t) \leq \beta(t) \) for \(t \in [0, T] \).

PROOF: Let
\[\Gamma_- (t, x) = \begin{cases} [\alpha'(t), \infty), & x \leq \alpha(t) \\ [\alpha(t), \beta(t)), & \alpha(t) < x < \beta(t) \\ (-\infty, \beta'(t)], & x \geq \beta(t) \end{cases} \]

and let
\[F_-(t, x) = F(t, h(t, x)) \cap \Gamma_-(t, x). \]

Notice \(F_- : [0, T] \times \mathbb{R} \to K(\mathbb{R}) \). We claim \(x \mapsto F_-(t, x) \) is lower semicontinuous for a.e. \(t \in [0, T] \). From (2.8) there exists a null set \(N \) with \(x \mapsto F(t, x) \) is lower semicontinuous for \(t \in [0, T] \setminus N \). Fix \(t \in [0, T] \setminus N \). To show \(F(t, \cdot) \) is lower semicontinuous for \(x \in \mathbb{R} \) take a sequence \(\{x_n\}^\infty_{n=0} \) in \(\mathbb{R} \) with \(x_n \to x \). Take any \(y \in F_-(t, x) \). We must show that there exists a subsequence \(S \) of \(N_0 = \{1, 2, \ldots\} \) and elements \(y_k \in F_-(t, x_k) \), \(k \in S \), with \(y_k \to y \) as \(k \to \infty \) in \(S \). The proof is broken into a number of cases. We discuss three such cases which illustrate the ideas involved. For the first case suppose \(\alpha(t) < x < \beta(t) \) and \(\alpha(t) < x_n < \beta(t) \) for \(n \in N_0 \). Then
\[y \in F(t, x) \cap \mathbb{R} = F(t, x). \]

Since \(x \mapsto F(t, x) \) is lower semicontinuous then there exists a subsequence \(S \) of \(N_0 \) and elements \(y_k \in F(t, x_k) \), \(k \in S \), with \(y_k \to y \) as \(k \to \infty \) in \(S \). Note \(y_k \in F_-(t, x_k) \), \(k \in S \), since \(\Gamma_-(t, x_k) = \mathbb{R} \) and \(F(t, h(t, x_k)) = F(t, x_k) \). For the second case suppose \(x \geq \beta(t) \) and assume \(x_n \geq \beta(t) \) for \(n \in N_0 \). Then
\[y \in F(t, \beta(t)) \cap (-\infty, \beta'(t)]. \]

Choose \(S = N_0 \) and \(y_k = y_k \), \(k \in S \). Notice \(y_k \in F_-(t, x_k) \), \(k \in S \), since \(x_n \geq \beta(t) \) for \(n \in N_0 \) implies \(F(t, h(t, x_k)) = F(t, \beta(t)) \) and \(\Gamma_-(t, x_k) = (-\infty, \beta'(t)] \). For the third case suppose \(x = \beta(t) \) and assume \(\alpha(t) < x_n < \beta(t) \) for \(n \in N_0 \). Then
\[y \in F(t, \beta(t)) \cap (-\infty, \beta'(t)] = F(t, x) \cap (-\infty, \beta'(t)]. \]

Since \(x \mapsto F(t, x) \) is lower semicontinuous then there exists a subsequence \(S \) of \(N_0 \) and elements \(y_k \in F(t, x_k) \), \(k \in S \), with \(y_k \to y \) as \(k \to \infty \) in \(S \). Note \(y_k \in F_-(t, x_k) \), \(k \in S \), since \(\alpha(t) < x_n < \beta(t) \) for \(n \in N_0 \) implies \(F_-(t, x_k) \cap \mathbb{R} = F(t, x_k) \). The other cases are similar, so as a result \(x \mapsto F_-(t, x) \) is lower semicontinuous for a.e. \(t \in [0, T] \). Consider the modified problem
\[\begin{cases} x'(t) \in F_-(t, x(t)) & \text{a.e. } t \in [0, T] \\ x(0) = r. \end{cases} \tag{2.9} \]

Now Theorem 1.2 guarantees that (2.9) has a solution \(y \in W^{1,1}[0, T] \), and essentially the same argument as in Theorem 2.1 yields \(\alpha(t) \leq y(t) \leq \beta(t) \) for \(t \in [0, T] \).
References

[1] C.D. Aliprantis and K.C. Border, Infinite dimensional analysis, Springer Ver-

[4] Y.G. Borisovich, B.G. Gel’man, A.D. Myshkis and V.V. Obukhovskii, Multi-

[5] M. Frigon, Théorèmes d'existence de solutions d'inclusions différentielles,
Topological Methods in Differential Equations and Inclusions (edited by A.

[6] D. O’Regan, Integral inclusions of upper semicontinuous or lower semicontin-