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Abstract. The well-rounded retract for SLn(Z) is defined as the set
of flat tori of unit volume and dimension n whose systoles generate a
finite-index subgroup in homology. This set forms an equivariant spine
of minimal dimension for the space of flat tori.

For both the Outer space Xn of metric graphs of rank n and the
Teichmüller space Tg of closed hyperbolic surfaces of genus g, we show
that the literal analogue of the well-rounded retract does not contain an
equivariant spine. We also prove that the sets of graphs whose systoles
fill either topologically or geometrically (two analogues of a set proposed
as a spine for Tg by Thurston) are spines for Xn but that their dimension
is larger than the virtual cohomological dimension of Out(Fn) in general.

1. Introduction

A systole in a compact metric space is a non-contractible closed curve of
minimal length among such curves. Ash [Ash77] defined the well-rounded
retract Wn of the space Tn of marked flat tori of unit volume and dimension
n as the set of tori T whose systoles generate a finite-index subgroup in
H1(T,Z), following work of Soulé [Sou75] in the case n = 3. He proved
that there is an SLn(Z)-equivariant deformation retraction of Tn onto Wn,
i.e., that Wn is an equivariant spine for Tn. Furthermore, the quotient
Wn/ SLn(Z) is compact and the dimension of Wn is equal to the virtual
cohomological dimension (vcd) of SLn(Z), the smallest possible for a spine.

Motivated by this, Thurston [Thu85] considered the set Vg of marked
closed hyperbolic surfaces of genus g whose systoles fill, meaning that each
component of the complement of their union is contractible (hence the in-
terior of a polygon). Equivalently, a set C of curves on a surface S fills
if every non-contractible closed curve in S intersects some element of C.
Thurston sketched a proof that there is a mapping class group equivariant
deformation retract of the Teichmüller space Tg onto Vg, but his argument
had gaps [Ji14]. Furthermore, the dimension of Vg is larger than the vcd of
the mapping class group Modg in general [FB23].

The third character in this story is the Culler–Vogtmann Outer space Xn

of marked metric graphs of unit volume and rank equal to n, upon which
the group Out(Fn) of outer automorphisms of the free group of rank n acts.
Culler and Vogtmann [CV86] found a cocompact equivariant spine Kn for
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Xn of dimension 2n−3, equal to the vcd of Out(Fn) (which was determined
using Kn). This spine Kn is not defined in terms of systoles.

If (E,G) is equal to either (Tn, SLn(Z)), (Tg,Modg), or (Xn,Out(Fn)),
and x ∈ E, then

dim(E) = vcd(G) + rank(H1(x,Z))− 1,

which suggests that one should use homology to define spines of minimal
dimension. A naive approach is to simply transpose the definition of the
well-rounded retract Wn in the other two settings. That is, we can define
the set Wn ⊂ Xn of graphs whose systoles generate a finite-index subgroup
in integral homology and the set Wg ⊂ Tg of hyperbolic surfaces whose
systoles generate a finite-index subgroup in integral homology. In his PhD
thesis [Bak11], Baker proved that W3 is a spine of minimal dimension for X3

different from K3. However, these analogues Wn and Wg of the well-rounded
retract fail to achieve their goal in general.

Theorem 1.1. There exist infinitely many n ≥ 2 such that Wn does not
contain any Out(Fn)-equivariant spine for Xn.

Theorem 1.2. There exist infinitely many g ≥ 2 such that Wg does not
contain any Modg-equivariant spine for Tg.

Note that the dimension of Wn (resp. Wg) is equal to the vcd of Out(Fn)
(resp. Modg). The obstruction comes instead from the fact that these sets
miss certain loci of fixed points of finite subgroups that have to intersect
any spine.

These theorems go in the same direction as results of Pettet and Souto
showing that Wn is a minimal spine [PS08a] and slightly modifying its de-
finition can yield sets of the same dimension that are not spines anymore
[PS08b]. In other words, spines are sensitive and thus tricky to find.

There is also an analogue of the Thurston set Vg in Xn. Indeed, consider
the set Vn ⊂ Xn of graphs whose systoles topologically fill, meaning that each
component of the complement of their union is contractible. Equivalently,
a set C of closed geodesics in a metric graph Γ topologically fills if every
non-contractible curve in Γ intersects some element of C. One could also
consider the set V ′

n of graphs whose systoles geometrically fill in the sense
that their union is equal to the whole graph. It is easy to see that

Wn ⊆ Vn and V ′
n ⊆ Vn.

Furthermore, V ′
2 coincides with K2, the dual to the Farey triangulation, but

W2 = V2 is strictly larger (it contains the dumbbells with two loops of equal
length, which form spikes emanating from the midpoints of the edges in K2).

In contrast with Wn, the sets Vn and V ′
n are always spines.

Theorem 1.3. For every n ≥ 2, the set Vn is an Out(Fn)-equivariant spine
for Xn and V ′

n is an equivariant spine for Vn.

However, their dimension is too large in general.
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Theorem 1.4. For every ε ∈ (0, 1), there exists an n such that the dimen-
sion of V ′

n is at least (3− ε)n, hence larger than the vcd of Out(Fn).

Note that there is also a dynamically-defined notion of filling currents for
free groups due to Kapovich and Lustig [KL10]. We do not know whether
the set of graphs whose systoles fill in that sense forms a spine and if so,
what its dimension is.

One may wonder if there is a spine of the minimal dimension 2n− 3 con-
tained in V ′

n. However, it seems difficult to push the deformation retraction
defined in the proof of Theorem 1.3 much further. One can continue until
there is a systole passing through any pair of edges that are adjacent at a
vertex of degree 3 by folding these edges gradually otherwise, but the proof
of Theorem 1.4 implies that the dimension of the resulting set is still too
large in general.

Acknowledgements. I thank Thomas Haettel for making a remark which
sparked this project after a talk I gave at UQAM, Karen Vogtmann for
pointing out the reference [Bak11], and the referee for useful comments and
corrections.

2. Outer space

We start by proving the negative results regarding Outer space. The proof
of both Theorem 1.1 and Theorem 1.4 is based on the same family of graphs
that have a large automorphism group and few systoles that cover the whole
graph. These graphs were used in [FB20] to construct hyperbolic surfaces
with similar properties.

Given integers p, q ≥ 2, a map of type {p, q} is a connected graph of
constant valence (degree) q embedded in an oriented surface such that each
complementary region (whose closure is called a face) is a topological disk
whose boundary consists of p edges. This can also be phrased in terms of a
ribbon structure on the graph. A flag is a triple (v, e, f) where v is a vertex,
e is an edge, f is a face, and v ⊂ e ⊂ f . A map is flag-transitive if for any
two flags there is a homeomorphism of the underlying surface which sends
the map to itself and the first flag to the second. For now we consider our
maps as combinatorial graphs where each edge has length 1. The girth of a
combinatorial graph is the same as its systole, namely, the minimal length
of a cycle that is not contractible.

We will require a small variation of a result of Evans [Eva79, Theorem
11] about the existence of flag-transitive maps of large girth. The difference
here is that we want to make sure that only the obvious cycles have length
equal to the girth.

Lemma 2.1. For any q ≥ 3 and p ≥ 7, there exists a finite flag-transitive
map M of type {p, q} and girth p such that the only non-trivial cycles of
length p in M are the face boundaries.
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Proof. There is an infinite flag-transitive map Mp,q of type {p, q} embed-
ded in the hyperbolic plane H2 coming from the tiling by regular p-gons
with interior angles 2π/q. The automorphisms of Mp,q are realized by a
finitely-generated discrete group G of isometries of the hyperbolic plane.
By Mal’cev’s theorem [Mal65], G is residually finite, so there is a sequence
of normal subgroups Gk ◁ G of finite index such that

⋂
Gk = {id}. This

implies that Gk is eventually torsion-free and the closed hyperbolic surfaces
Sk = H2/Gk have injectivity radius going to infinity as k → ∞. If k is large
enough, then the projection Mk of Mp,q to Sk has type {p, q} because the
map H2 → Sk is a covering map. Furthermore, Mk is finite since Mp,q/G is
a half-edge and Gk has finite index in G. Lastly, Mk is flag-transitive via
the quotient group G/Gk acting on Sk.

Since the face boundaries in Mk have combinatorial length p, the girth of
Mk is at most p. Since the injectivity radius of Sk tends to infinity, any cycle
in Mk which is not contractible in Sk becomes arbitrarily long (with respect
to the hyperbolic metric and therefore also in terms of its number of edges)
as k tends to infinity. In particular, a cycle in Mk that is not contractible in
Sk has combinatorial length strictly larger than p if k is large enough. It is
also true that any cycle in Mk which is contractible in Sk (and hence lifts to
the universal cover) has combinatorial length at least p with equality only
if it is the boundary of a face. We can prove this as follows. Suppose that
γ is an embedded cycle of combinatorial length at most p in Mp,q. Let A be
the hyperbolic area of any face in the tiling, let N be the number of faces
enclosed by γ, and for a vertex v ∈ γ let kv be the geodesic curvature of γ
at v, that is, π minus the interior angle. Then the Gauss–Bonnet formula
yields

2π =
∑
v∈γ

kv −N ·A ≤ p

(
1− 2

q

)
π −A = 2π

so that in fact N = 1 and γ is the boundary of a face. □

To prove our results, we use this construction with q = 3 and p ≥ 7
arbitrarily large. Let M be a map satisfying the conclusions of Lemma 2.1
with these parameters and let V , E, and F be its number of vertices, edges,
and faces respectively. Then

3V = 2E = pF.

The rank n of M is such that its Euler characteristic is

1− n = V − E = −V/2

so that n = 1+V/2. By the lemma, the systoles in M are the faces bounda-
ries, so there are F = 3V/p = 6

p(n − 1) of them. In particular, the number

of systoles divided by the rank n is arbitrarily small if p is large enough.

Proof of Theorem 1.4. Given ε ∈ (0, 1), choose p ≥ 7 such that 6/p < ε,
then let M be a finite map of type {p, 3} as above whose combinatorial
systoles are the face boundaries.
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Let n be the rank of M , pick an arbitrary homotopy equivalence from
the bouquet on n circles to M to get a marking, and make all edges of M
of equal length 1/E so that its volume is 1. We can now consider M as
an element in the Outer space Xn. Since the systoles in M are the face
boundaries, they cover the whole graph so that M ∈ V ′

n.
We now want to deform M (i.e., vary the lengths on its edges) in such

a way that the systoles stay the same curves and thus still cover the whole
graph. Since competing curves are longer by a definite amount, near M
these curves will remain systoles as long as they stay of equal length.

If γ1, . . . , γF are the systoles, then this requires F − 1 equations, namely,

ℓ(γ1) = ℓ(γ2), ℓ(γ2) = ℓ(γ3), . . . , ℓ(γF−1) = ℓ(γF ).

In turn, each ℓ(γj) is equal to the sum of the lengths of the edges traversed
by γj , so this gives us F − 1 linear equations for the edge lengths. The
subspace of RE cut out by these equations has codimension at most F − 1
and then we intersect this with the hyperplane where the sum of the lengths
is equal to 1. The dimension of the intersection I is at least

E − F =

(
3− 6

p

)
(n− 1)

and this is larger than (3−ε)n provided that p (and hence n) is large enough.
As explained above, there is a neighborhood U of M in I where the face

boundaries will remain systoles and hence U ⊂ V ′
n. This shows that the

dimension of V ′
n is at least (3− ε)n. Since ε < 1, this is strictly larger than

2n− 3, the vcd of Out(Fn). □

To prove that the well-rounded set Wn does not contain an equivariant
spine, we will use the above construction together with the following ele-
mentary observation, in which Fix(H) denotes the set of all points fixed by
all the elements in H.

Lemma 2.2. Let G be a group acting on a topological space E and let S ⊆ E
be a G-equivariant spine for E. If H is a subgroup of G, then S ∩ Fix(H)
is a G-equivariant spine for Fix(H). In particular, if Fix(H) ̸= ∅ then
S ∩ Fix(H) ̸= ∅.

Proof. Let (x, t) 7→ ft(x) be a continuous map from E× [0, 1] to E such that
f0 is the identity on E, f1(E) = S, ft(x) = x for every x ∈ S and every
t ∈ [0, 1], and ft(g(x)) = g(ft(x)) for every g ∈ G, every x ∈ X, and every
t ∈ [0, 1]. Then for every t ∈ [0, 1], every h ∈ H, and every x ∈ Fix(H), we
have

h(ft(x)) = ft(h(x)) = ft(x)

so that ft(x) ∈ Fix(H). This shows that ft restricts to a map from Fix(H)
to Fix(H) for all t ∈ [0, 1]. This restriction is still G-equivariant and equal
to the identity on S ∩ Fix(H). Finally, we have

f1(Fix(H)) ⊆ f1(E)∩Fix(H) = S ∩Fix(H) = f1(S ∩Fix(H)) ⊆ f1(Fix(H))
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so that f1(Fix(H)) = S ∩ Fix(H). In particular, if Fix(H) ̸= ∅ then

S ∩ Fix(H) = f1(Fix(H)) ̸= ∅. □

We can now prove that Wn does not contain any spine.

Proof of Theorem 1.1. Take any p ≥ 7 and let M be a finite flag-transitive
map of type {3, p} such that its systoles are the face boundaries. Recall that
there are 6

p(n−1) < (n−1) systoles in M where n is the rank. In particular,

the systoles in M do not generate a finite-index subgroup in H1(M,Z) ∼= Zn.
Considering M as a point in Xn after taking a marking and rescaling the
metric, this means that M /∈ Wn.

On the other hand, the stabilizer H of M in Out(Fn) is isomorphic to
the automorphism group of M via the homotopy equivalences between the
bouquet on n circles and M . Since the quotient M/Aut(M) is a half-edge
whose deformation space is a point, M is the unique fixed point of the
group H. If there is an equivariant spine S contained in Wn, then we have
M ∈ S ⊆ Wn by Lemma 2.2, contradicting M /∈ Wn. We conclude that Wn

does not contain a spine. □

Remark 2.3. By taking p sufficiently large in the above proof, we see that
for any ρ > 0, there exists some n such that the set of graphs in Xn that
have at least ρn systoles does not contain an equivariant spine.

We end this section by proving the positive result that the sets Vn and V ′
n

are spines for Xn. The proof is the same as for Ash’s well-rounded retract
Wn. Recall that Vn is the set of metric graphs (of volume 1 and rank n)
whose systoles are such that every component of the complement of their
union is contractible (hence a finite tree without its leaves) and V ′

n is the set
of graphs whose systoles cover the whole graph.

Proof of Theorem 1.3. The deformation retract is performed in stages. Let
Uk be the set of metric graphs such that the union of the systoles is a
(possibly disconnected) graph with first Betti number at least k. Note that
U1 = Xn, Un = Vn, and Uk ⊃ Uk+1 for every k. It thus suffices to construct
an equivariant deformation retraction of Uk onto Uk+1 for every k and then
a deformation retraction of Vn onto V ′

n.
Let Γ ∈ Uk \ Uk+1 for some k ≥ 1, let SΓ be the set of edges that belong

to some systole and let TΓ be the set of remaining edges. Let s = s(Γ) < 1
be the total length of SΓ so that the total length of TΓ is 1 − s > 0. For
0 ≤ t ≤ log(1/s), we define Γt by rescaling the edges in SΓ by a factor of et

and those in TΓ by a factor of 1−ets
1−s ≥ 0 so that the volume remains equal

to 1. For t sufficiently small, the set of systoles in Γt stays constant because
the next shortest closed geodesics in Γ are longer by a definite proportion.
In particular, Γt ∈ Uk \ Uk+1 for all small enough t ≥ 0. Let τ = τ(Γ) be
the supremum of times t ∈ [0, log(1/s)] such that Γt ∈ Uk \ Uk+1. Note
that Γτ ∈ Uk since Uk is closed and Γt varies continuously. On the other
hand, the union of the systoles in Γτ cannot be equal to a subgraph of rank
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exactly k otherwise we could continue the deformation for t > τ , so we have
Γτ ∈ Uk+1. This is unless τ = log(1/s), in which case the systoles in Γτ

cover the whole graph and thus Γτ ∈ V ′
n ⊆ Vn ⊆ Uk+1 in that case too.

The deformation retraction Uk × [0, 1] → Uk onto Uk+1 is defined by
sending (Γ, t) to Γt·τ(Γ) if Γ ∈ Uk \ Uk+1 and to Γ if Γ ∈ Uk+1. This map
is clearly continuous, Out(Fn)-equivariant, equal to the identity on Uk at
t = 0 and on Uk+1 for all t, and a retract onto Uk+1 at t = 1.

The final deformation retraction of Vn onto V ′
n can be defined similarly,

by shrinking all the edges that do not belong to any systole (and expanding
the rest to keep the volume constant) until either the complementary com-
ponents have been shrunk to points or some new systole passing through a
complementary component appears. Once again, the deformation retraction
is performed in stages, ordered according to the number of edges that do not
belong to any systole (recall that the metric graphs in Xn are not allowed
to have vertices of degree 1 or 2, so there are at most 3n− 3 edges). □

3. Teichmüller space

It remains to prove Theorem 1.2 stating that the set Wg of surfaces in
Tg whose systoles generate a finite-index subgroup in homology does not
contain any equivariant spine. We simply explain how this follows from
results in [FB20] and [FB23].

Proof of Theorem 1.2. Theorem 1.1 in [FB20] states that for every ε > 0,
there exists some g ≥ 2 and a closed hyperbolic surface X such that the
systoles in X fill (so that X ∈ Vg) but there are fewer than εg of them. By
[FB20, Proposition 5.1], the surface constructed is such that Isom(X) acts
transitively on a tiling of X by copies of a quadrilateral Q with three right
angles and one angle of π/q for some large integer q. TakingH = Isom(X) as
a subgroup in the extended mapping class group Mod±g , we see that the locus
of fixed points Fix(H) in Tg is 1-dimensional because it is isometric to the
Teichmüller space of the quotient orbifold Q = X/ Isom(X). Trigonometric
identities between the side lengths of a quadrilateral with three right angles
[Bus10, p.454] imply that this space is 1-dimensional.

Now, varying the shape of Q has the effect of changing the right-angled
regular 2q-gon P used to construct X into a semi-regular right-angled poly-
gon with side lengths alternating between two values t and s(t) as in [FB23,
Section 2]. If we denote the deformed surface by Xt, then the arguments
in [FB23, Section 2] and [FB20, Proposition 4.1] can be easily modified to
show that the systoles in Xt are either the red curves or the blue curves (or
both) in the language of these papers. That is to say, the systoles in Xt

are a subset of those in X. In particular, there are fewer than εg systoles
in Xt for every Xt ∈ Fix(H). Since any finite-index subgroup of H1(X,Z)
has rank 2g, we obtain that Fix(H) is disjoint from Wg as long as ε < 2.
By Lemma 2.2, it follows that Wg does not contain any Mod±g -equivariant
spine, for otherwise Wg ∩ Fix(H) would be non-empty.
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We then extend this statement to the mapping class group Modg. Let
H+ ≤ H be the index-2 subgroup of orientation-preserving isometries. Then
Q+ = X/H+ is an oriented orbifold without boundary that covers Q with
degree two, hence is equal to the double of Q across its boundary, i.e., a
sphere with 4 cone points. The set Fix(H+) is isomorphic to the Teichmüller
space of Q+, which is isometric to the hyperbolic plane, so Fix(H+) is a
Teichmüller disk D containing the geodesic L = Fix(H).

Suppose that S ⊆ Wg is a Modg-equivariant spine for Tg. Since Wg is
disjoint from L, so is S. By Lemma 2.2, S∩D is a deformation retract of D,
so it is connected, hence contained in one of the two half planes bounded by
L. On the other hand, S∩D is invariant under the action of the stabilizer K
of D in Modg. This stabilizer K contains a copy of the pure mapping class
group PMod(Q+) since all homeomorphisms of Q+ fixing the cone points
lift to X. In turn, PMod(Q+) acts on H2 ∼= T (Q+) ∼= D as the principal
congruence subgroup of level two Γ(2), a finite-index subgroup in SL2(Z).
In particular, K is a lattice in Isom+(D), hence its limit set is all of ∂D.
This contradicts the previous observation that S ∩ D is K-invariant and
contained in a half-plane. □

Remark 3.1. Similarly as for Outer space, the above argument shows that
for any ρ > 0, the set of hyperbolic surfaces that have at least ρ g systoles
does not contain an equivariant spine for infinitely many g.
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