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AITOR AZEMAR AND MAXIME FORTIER BOURQUE

Abstract. We prove that the set of Busemann points (the limits of almost-
geodesic rays) is nowhere dense in the horoboundary of the Teichmüller
metric for all Teichmüller spaces of complex dimension strictly larger than
1. This shows that the Teichmüller metric is far from having non-positive
curvature in a certain sense.

1. Introduction

One may embed any metric space (X, d) into the vector space C(X)/R
of continuous real-valued functions on X (equipped with the compact-open
topology) modulo constants by sending any x ∈ X to the equivalence class
of the distance function y 7→ d(y, x). If (X, d) is proper, meaning that its
closed balls are compact, then the closure of the image of this map is compact
and called the horofunction compactification of (X, d) (see [Gro81, Section
1.2] and [Rie02, Section 4]). Its boundary points are called horofunctions and
the set of all horofunctions is the horoboundary. Busemann points are special
horofunctions obtained as limits of almost-geodesic rays, a generalization of
geodesic rays [Rie02, Section 4].

The horofunction compactification, horoboundary, or Busemann points, have
been calculated explicitly for a few families of metric spaces such as for CAT(0)
spaces (where all horofunctions are Busemann [BH99, Theorem 8.13]), Hilbert
geometries on convex bodies [Wal08], finite-dimensional normed vector spaces
[KMN06, Wal07], the continuous Heisenberg group equipped with either the
Korányi [KN09] or Carnot–Carathéodory metric [KN10], and Teichmüller space
equipped with the Thurston metric [Wal14].

For the Teichmüller space of a surface of finite type equipped with the Te-
ichmüller metric, Liu and Su [LS14] proved that the horofunction compactifi-
cation is isomorphic to the Gardiner–Masur compactification [GM91] obtained
by replacing hyperbolic length with (the square root of) extremal length in
Thurston’s compactification. In [Miy14], Miyachi proved the existence of non-
Busemann points in the closure of the set of Busemann points. In addition
to rederiving these two results in [Wal19], Walsh proved that all Busemann
points are limits of geodesic rays [Wal19, Theorem 3] and obtained explicit
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formulas for them in the Gardiner–Masur compactification [Wal19, Corollary
1]. Azemar used these formulas together with some horofunctions constructed
in [FB23] to show that Busemann points are not dense in the horoboundary
[Aze24, Theorem 1.8] unless the Teichmüller space is isometric to the hyper-
bolic plane.

Here we strengthen these results of Miyachi and Azemar by showing that
Busemann points are nowhere dense in the horoboundary of the Teichmüller
metric (for Teichmüller spaces of complex dimension larger than 1).

Theorem 1.1. Let g and p be non-negative integers such that 3g+p > 4 and let
Tg,p be the Teichmüller space of Riemann surfaces of genus g with p punctures.
Then the set of Busemann points is nowhere dense in the horoboundary of the
Teichmüller metric on Tg,p.

This means that the closure of the set of Busemann points has empty interior
as a subset of the horoboundary. Equivalently, the complement of the closure
of the set of Busemann points is dense in the horoboundary. Since the horo-
functions of a CAT(0) space are all Busemann points, Theorem 1.1 shows that
the Teichmüller metric is rather far from having non-positive curvature, adding
to several previous results in that direction [Mas75, MW95, Min96, FBR18].

By [KN09] and [KN10], the horoboundary of the continuous Heisenberg
group of dimension (2n+1) with respect to the Korányi or Carnot–Carathéo-
dory metric is homeomorphic to a closed disk of dimension 2n, with the set of
Busemann points given as the (2n−1)-dimensional spherical boundary of that
disk. In particular, Busemann points are also nowhere dense for continuous
Heisenberg groups, but they still form closed subsets while this is not the case
for the Teichmüller metric by Miyachi’s result. Furthermore, the horoboundary
of the Teichmüller metric appears to be more complicated topologically.

Indeed, recall that when when 2g + p > 2, the Teichmüller space Tg,p is
homeomorphic to R6g+2p−6. Its horoboundary containts a sphere of dimen-
sion 6g + 2p− 7 which can be identified with Thurston’s sphere of projective
measured foliations [GM91, Theorem 7.1] and onto which the horoboundary
admits a retraction [Aze24, Theorems 1.1 and 8.1]. One can therefore think of
the horoboundary of Tg,p as a (6g+2p−7)-dimensional sphere with spikes (the
fibers of the retraction) attached to it. The Thurston sphere is in some sense
on the outside of the horocompactification [Aze24, Proposition 6.3 and Corol-
lary 4.8] and the Busemann points are the tips of the inward spikes [Aze24,
Proposition 3.9]. Note that Busemann points are dense within the Thurston
sphere (this follows from the proof of [GM91, Theorem 7.1]), but the Thurston
sphere itself is nowhere dense within the horoboundary [Aze24, Theorem 7.5].
These results and Theorem 1.1 suggest that Tg,p sits in a rather convoluted
way inside its horofunction compactification, which for all we know could still



BUSEMANN POINTS ARE NOWHERE DENSE 3

be homeomorphic to a closed ball (see [Aze24, Figure 1] for a sketch of what
that might look like).

The paper is organized as follows. Section 2 gives necessary background in
Teichmüller theory and sets our notation. Section 3 recalls a strategy from
[Aze24] for constructing boundary points outside the closure of Busemann
points. Section 4 then shows how to construct a top-dimensional simplex of
points outside the closure of Busemann points by choosing a suitable branched
cover of our surface onto the five-times-punctured sphere. This simplex ∆X

depends on a choice of basepoint X and we show that by pushing X to in-
finity along certain Teichmüller rays, ∆X accumulates onto a top-dimensional
simplex ∆ of Busemann points corresponding to Jenkins-Strebel quadratic dif-
ferentials. Lastly, Section 5 shows that the mapping class group orbit of any
such top-dimensional Jenkins-Strebel simplex is dense among Busemann points
and uses this to prove Theorem 1.1. Note that the action of the mapping class
group on the horoboundary is not minimal (for instance, the Thurston sphere
is a closed invariant set), hence taking the orbit of a single point outside the
closure of Busemann point would not be enough to show that the complement
of the closure is dense.

2. Definitions and notation

We recall some standard definitions and set our notation here. We refer
the reader to [Hub06, FM12, FLP12] for further background on Teichmüller
theory.

2.1. Teichmüller space and the Teichmüller metric. Let S be a closed
orientable surface with finitely many points removed (perhaps none). We say
that S is a surface of finite type.

The Teichmüller space T (S) is the set of equivalence classes of pairs (X, f)
where X is a compact Riemann surface minus a finite number of points and
f : S → X is a marking, that is, an orientation-preserving homeomorphism.
Two such pairs (X, f) and (Y, g) are equivalent if g ◦ f−1 is homotopic to a
biholomorphism. We typically keep the marking implicit and simply write
X ∈ T (S) instead of [(X, f)] ∈ T (S). The mapping class group MCG(S) of
homotopy classes of orientation-preserving homeomorphisms h : S → S acts
on T (S) by [h] · [(X, f)] := [(X, f ◦ h−1)], which we denote by h(X) when the
marking is implicit.

The Teichmüller distance between two points [(X, f)], [(Y, g)] ∈ T (S) is
defined as

d(X, Y ) := inf
1

2
logK,

where the infimum is over the set of K ≥ 1 such that there exists a K-
quasiconformal homeomorphism homotopic to g ◦ f−1.
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2.2. Quadratic differentials and Teichmüller geodesics. A quadratic dif-
ferential on a Riemann surface X is a function q : TX → C such that
q(λv) = λ2q(v) for every v ∈ TX and every λ > 0. We only consider quadratic
differentials that are integrable, meaning that

∥q∥ :=

∫
X

|q| <∞,

and holomorphic, meaning that for any holomorphic vector field v defined on
an open set in X , the function q ◦ v is holomorphic. The set of all integrable
holomorphic quadratic differentials on X will be denoted Q(X) and its subset
of quadratic differentials of norm 1 will be denoted Q1(X).
A natural coordinate for a (non-identically zero) quadratic differential q is a

chart z : U → C from an open set U ⊂ X such that q = dz2 on TU . Natural
coordinates form a complex atlas on X minus the finite set of zeros of q whose
transition functions are half-translations of the form z 7→ ±z + c. One may
deform this atlas by post-composing each natural coordinate with the matrix(
et 0
0 e−t

)
for t ∈ R. By Teichmüller’s theorem, this path defines a geodesic

with respect to the Teichmüller metric, which we denote by Rq(t).

2.3. Measured foliations and extremal length. The space of measured
foliations a surface of finite-type S, up to measure-equivalence, is denoted by
MF(S) and PMF(S) = (MF(S) \ {0})/R>0. For example, for a non-trivial
quadratic differential q on a Riemann surface X, there is an associated vertival
foliation V (q) whose leaves map to vertical lines in the plane under natural
coordinates, equipped with the transverse measure

∣∣Re√q∣∣. The horizontal
foliation H(q) is defined analogously. We also define H(0) = V (0) to be the
zero or empty measured foliation. If [(X, f)] ∈ T (S), then we will abuse
notation and consider H(q) and V (q) as measured foliations on S (by pulling
them back by f).

A theorem of Hubbard and Masur [HM79] states that for any X ∈ T (S),
the map

Q(X) → MF(S)
q 7→ V (q)

is a homeomorphism, and similarly for the horizontal foliation map V . Since
V (λ2q) = λV (q) for λ > 0, these maps restrict to a homeomorphisms between
Q1(X) and PMF(S).

In particular, for every F ∈ MF(S) and every X ∈ T (S), there is a unique
qF ∈ Q(X) such that V (qF ) = F . One may use this to define the extremal
length of F on X as

EL(F,X) = ∥qF∥,
which agrees with the usual definition when F is a simple closed curve.
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2.4. The Gardiner–Masur boundary. Let

P
(
RMF(S)

≥0

)
=
(
RMF(S)

≥0 \ {0}
)
/R>0

be the space of non-trivial functions MF(S) → R≥0 up to multiplication by
strictly positive scalars.

By work of Gardiner and Masur [GM91, Theorem 6.1], the map

T (S) → P
(
RMF(S)

≥0

)
X 7→

[√
EL(F,X)

]
F∈MF(S)

is an embedding, and the closure of its image is compact, hence defines a com-
pactification called the Gardiner–Masur compactification of T (S). Note that
the initial definition by Gardiner and Masur used the subset of essential simple
curves on S instead of MF(S), but both yield isomorphic compactifications
[Wal19, Lemma 19]. There is also a non-projective version where one chooses
a particular scaling by fixing a basepoint in T (S).

2.5. The horoboundary and the visual boundary. We gave one defini-
tion of the horofunction compactification of a proper metric space (W,d) in
the introduction, but here is an equivalent one which is slightly more con-
crete. Fix a basepoint b ∈ W , then for every y ∈ W , associate the function
hy : W → R defined by hy(x) = d(x, y) − d(y, b). All these functions are 1-
Lipschitz and vanish at the point b. The map y 7→ hy is an embedding (since
hy has a unique minimum at y) and has compact closure with respect to the
compact-open topology. This closure is the horofunction compactification of
(W,d). Changing the basepoint yields isomorphic compactifications.
In the case where (W,d) is the Teichmüller space T (S) equipped with the

Teichmüller metric, Liu and Su [LS14] proved that the horofunction compacti-

fication, which we will denote by T h
(S), is isomorphic to the Gardiner–Masur

compactification. We will often confound these two compactifications.
Given a basepoint b ∈ T (S) and any unit quadratic differential q ∈ Q1(b),

the Teichmüller geodesic Rq(t) converges to some limit B(q) in the horobound-

ary ∂h T (S) := T h
(S) \ T (S), as follows from a more general result of Rieffel

[Rie02]. Conversely, every Busemann point (limit of an almost-geodesic ray)
in ∂h T (S) is equal to B(q) for a unique q ∈ Q1(b) [Wal19, Theorem 6]. We
will denote this set of Busemann points by B.

One can also define a visual compactification of Teichmüller space by adding
a point at the end of each geodesic ray based at b (see e.g. [Ker80] or [Aze24,
Section 2.2]). Azemar [Aze24, Theorem 1.1] proved that there is a continuous
map

Πb : T
h
(S) → T (S) ∪Q1(b)



6 AITOR AZEMAR AND MAXIME FORTIER BOURQUE

from the horofunction compactification to this visual compactification such
that Πb ◦B = id on Q1(b), where B is the Busemann map defined above. This
means that any sequence in T (S) that converges to a point in the horoboun-
dary ∂h T (S) has a well-defined limiting direction from the point of view of
the basepoint b.

3. Horofunctions outside the closure of Busemann points

In this section, we mainly recall several results from [Aze24] that are needed
for our proof.

The first result we need provides a necessary criterion for a point in the
Gardiner–Masur boundary to be in the closure of Busemann points.

Proposition 3.1 ([Aze24, Proposition 6.2]). Let S be a surface of finite type,
let X ∈ T (S), let q ∈ Q1(X), let ξ ∈ B ∩ Π−1

X (q), and let Vj be the inde-
composable components of the vertical foliation V (q). Then the square of any
representative of ξ in the Gardiner–Masur compactification is a homogeneous

polynomial of degree 2 in the variables xj =
i(Vj ,·)

i(Vj ,H(q))
, where i denotes the

intersection number.

Recall that an indecomposable component of a measured foliation is either
a cylinder component or one of the ergodic parts of the transverse measure on
a minimal component.

In particular, each coordinate of any ξ ∈ B∩Π−1
X (q) (or more precisely, of ξ2

as a function in the deprojectivized Gardiner–Masur boundary) is smooth with
respect to the variables xj. Azemar uses this result to show that Busemann
points are not dense within the horoboundary by finding points in some Π−1

X (q)
which are not smooth in the xj’s. These strange boundary points, which were
first used in [FB23] and which we will need again here, are obtained as limits
of certain sequences of Dehn multitwists applied to any point in Teichmüller
space.

Lemma 3.2 (Extension of [FB23, Corollary 3.4]). Let γ1 ∪ · · · ∪ γk be a mul-
ticurve in a surface S of finite type, let τj be either the left or right Dehn twist
about γj, let w = (w1, . . . , wk) be a vector of positive weights, and for every

n ≥ 1, let ϕn = τ
⌊nw1⌋
1 ◦ · · · ◦ τ ⌊nwk⌋

k . Then for every X ∈ T (S), the sequence
(ϕn(X))∞n=1 converges to the projective class of the map

F 7→ ξw,X(F ) := EL1/2

(
k∑
j=1

wji(γj, F )γj, X

)
in the Gardiner–Masur compactification.
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The statement given in [FB23, Corollary 3.4] is less general but the same
proof yields the above version with weights, as observed in [Aze24].

We will want to show that the conclusion of Proposition 3.1 fails for certain
limit points resulting from Lemma 3.2. In order to do so, we will need to
know something about the quadratic differentials whose fiber contains such
limit points.

Lemma 3.3. With the same notation as in Lemma 3.2, the limit point [ξw,X ]
belongs to Π−1

X (ψ) for some quadratic differential ψ ∈ Q1(X) whose vertical
foliation is a positive linear combination of the curves γj.

Proof. By a result of Strebel [Str66], there is some M > 0 and a unique
quadratic differential ψ ∈ Q1(X) whose vertical foliation decomposes X into
k cylinders Cj, each with with core curve γj and modulus (the ratio of width
to circumference) equal to Mwj.
A standard application of the pigeonhole principle implies that for any ε > 0

and any N ∈ N, there is an n ≥ N such that {nwj} < ε for all j ∈ {1, . . . , k},
where {x} := x−⌊x⌋ denotes the fractional part. It follows that there exists a
sequence (nm)

∞
m=1 ⊆ N diverging to infinity such that {nmwj} → 0 as m→ ∞,

for every j.
Let

ht =

(
1 0
t 1

)
be the vertical shear by t with respect to the natural coordinates for ψ. Observe
that shearing the cylinder Cj by 1/(Mwj) performs the left Dehn twist τj
about αj. Thus, shearing X by nm/M is the same as twisting ⌊nmwj⌋ times
and then shearing by {nmwj}/(Mwj) in each cylinder Cj. The piecewise linear
map obtained by performing this last shear in each cylinder has quasiconformal
constant tending to 1 as m → ∞ since the shears tend to zero. Hence, the
Teichmüller distance between hnm/M(X) and ϕnm(X) tends to zero as m →
∞, where ϕn = τ

⌊nw1⌋
1 ◦ · · · ◦ τ ⌊nwk⌋

k . Therefore, the accumulation points of
the sequence ϕnm(X) in the horoboundary are contained in the accumulation
points of ht(X). Note that the path ht(X) is a horocycle in the Teichmüller
disk D through ψ which converges to the same limit point as the ray Rψ in
the visual compactification of D (which is isometric to the hyperbolic plane).
In particular, if we write ht(X) = Rψt(st) for some ψt ∈ Q1(X) and st ≥ 0,
then ψt → ψ and st → ∞ as t → ∞, so that ht(X) → ψ in the visual
compactification of T (S) as t → ∞. It follows that the accumulation points
of the path ht(X) in the horoboundary ∂h T (S) are all contained in Π−1

X (ψ),
hence so are those of the sequence (ϕnm(X))∞m=1.
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By Lemma 3.2, the sequence (ϕnm(X))∞m=1 converges to ξw,X in the Gardiner–
Masur compactification, and the above argument shows that the limit is con-
tained in Π−1

X (ψ). □

In view of the above results, in order to find boundary points outside the
closure of Busemann points, it suffices to find a multicurve

⋃
γj for which

EL

(
k∑
j=1

xjγj, X

)
is not a homogeneous polynomial of degree 2 in the xj’s. The following example
with two curves on a five-times punctured sphere was given in [Aze24, Lemma
7.2].

Lemma 3.4 ([Aze24, Lemma 7.2]). Let X be a five-times punctured sphere
which admits an anti-conformal involution J fixing the five punctures and let
α and β be disjoint, non-homotopic, essential simple closed curves on X that
are both invariant under J . Then the function

t→ EL (α + tβ,X)

defined for t ≥ 0 is not C2 at t = 0.

This example can be exported to Teichmüller spaces of more complicated
surfaces via covering constructions, as done in [Aze24, Theorem 1.8], to yield
horofunctions outside the closure of Busemann points. We recall the reasoning
here.

In what follows, we write Sg,p for the genus g surface obtained by filling in
the p punctures of Sg,p, which then become marked points.

Definition 3.5. A branched cover Sg,p → Sh,q is admissible if it sends marked
points to marked points and is branched (i.e., not locally injective) at all
unmarked preimages of marked points.

We will need the fact that extremal length behaves well under admissible
branched covers, as proved in [FB23, p.1899–1900] (see also [FBMGVP21,
Lemma 4.1] and [Aze24, Lemma 7.3]).

Lemma 3.6. Let π : Sg,p → Sh,q be an admissible branched cover of degree d
and let ιπ : T (Sh,q) ↪→ T (Sg,p) be the induced isometric embedding obtained by
pulling back complex structures. Then for any measured foliation F on Sh,q
and any X ∈ T (Sh,q), we have

EL(π∗(F ), ιπ(X)) = d · EL(F,X).

That an admissible branched cover induces an isometric embedding between
Teichmüller spaces is shown for example in [CCF+18, Theorem 5].
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An immediate corollary of Lemma 3.6 is that the example from Lemma 3.4
can be lifted via admissible branched covers. The existence of admissible
branched covers Sg,p → S0,5 for every non-negative integers g and p such that
3g + p > 4 was shown in [GM20, Lemma 7.1], and this suffices to show that
Busemann points are not dense in the horoboundary of T (Sg,p).
However, to show that the set B of Busemann points is nowhere dense in the

horoboundary H = ∂h T (Sg,p), we need to prove that the complement of B in
H is dense in H. Hence, we need to find enough points in H \B to accumulate
everywhere. Our strategy for this is to find a 1-parameter family of simplices
∆s ⊂ H \ B which accumulates everywhere on a simplex ∆ ⊂ B of Busemann
points corresponding to Jenkins–Strebel differentials as s → ∞. We then
show that the mapping class group orbit of this simplex ∆ accumulates onto
all the Busemann points provided that it has maximal dimension 3g + p− 4,
or equivalently, corresponds to Jenkins–Strebel differentials whose core curves
form a maximal multicurve.

For this strategy to work, we need to choose admissible branched covers
π : Sg,p → S0,5 such that the pullback π∗(α + β) is a weighted maximal
multicurve, which we do in the next section.

4. Simplices outside the closure

As stated above, our goal is to find, whenever 3g + p > 4, an admissible
branched cover Sg,p → S0,5 such that the pullback of the pants decomposition
α + β of S0,5 from Lemma 3.4 forms a weighted pair of pants decomposition
on Sg,p.

Lemma 4.1. Suppose that 3g + p > 4 and let P5 be a pants decomposition
of S0,5. Then there exists an admissible branched cover π : Sg,p → S0,5 such
that π∗(P5) is measure-equivalent to a pants decomposition of Sg,p with positive
weights.

Proof. The idea of the proof, similarly as in [GM20, Lemma 7.1], is to construct
π inductively as a composition of admissible branched covers of degree 2. If
S is a punctured surface and A ⊂ S is a collection of disjoint simple proper
arcs, then we can construct a covering map f : R → S of degree 2 by taking
two copies of S cut along A and gluing each side of each slit in one copy to
the other side of the same slit in the other copy. The resulting surface R is
connected if and only if the union of the arcs does not separate S. In that case,
the genera of R and S satisfy g(R) = g(S)+ |A|−1. The map f extends to an
admissible branched cover F between the compactifications. We can further
unmark the preimages in R of marked points in S that are adjacent to only
one arc in A since F is not locally injective at such points.
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Let P be a set of curves that form a pants decomposition of S. We say
that A is compatible with P if the extremities of the arcs in A are all distinct
and each arc of A intersects at most one curve in P and does so at most
once (transversely). In that case, F ∗(P ) is measure-equivalent to a pants
decomposition of the surface T obtained by removing the marked points from
R, provided that we have unmarked the preimages of both extremities of each
arc that intersects P and the preimage of at least one extremity of each arc
that is disjoint from P . Indeed, each pair of pants in S \ P disjoint from A
lifts to two disjoint pairs of pants in T . If a pair of pants contains an arc α
in A, then its preimage in R a cylinder. If we unmark the preimages of both
extremities of α, then the cylinder is contained in T , hence its two boundary
curves are homotopic and can be merged together into a single curve with
twice the weight. If we unmark the preimage of only one extremity of α, then
the cylinder becomes a 1-cusped pair of pants in T . Finally, if a pair of pants
Π intersects an arc in A but does not contain it, then the hypothesis that A
is compatible with P implies that Π ∩ A is an arc between a puncture and
a pants curve. In that case, the double branched cover of Π becomes a pair
of pants after unmarking the branch point, similarly as in the previous case.
Therefore, after merging homotopic components together, all complementary
regions become pairs of pants. All three cases are illustrated in Figure 1.

To prove the lemma, we first show that for each p ≥ 5, there exists an ad-
missible branched cover π : S0,p → S0,5 such that π∗(P5) is measure-equivalent
to a pants decomposition P which divides S0,p into two 2-cusped pants con-
nected by a sequence of 1-cusped pants. This statement, call it B(p), is clearly
true for p = 5. Now suppose B(p) is true for some p ≥ 5 and let πp be the
associated branched cover and let Pp be the associated pants decomposition.
Now take a proper simple arc α in S0,p disjoint from Pp (contained in one of
the two 2-cusped pants) and construct the associated double branched cover
F as above. Since the arc system A = {α} is compatible with Pp, we have
that F ∗(Pp) is measure-equivalent to a pants decomposition Q on the double
cover minus its marked points, which is either S0,2p−4 or S0,2p−3 depending
on how many points we unmark. Lastly, the arguments of the previous para-
graph imply that Q still divides this surface into two 2-cusped pants connected
by a sequence of 1-cusped pants. The composition π := πp ◦ F then shows
that B(2p − 4) and B(2p − 3) are true. Thus if B(p) is true for p = 4 + 2j

to p = 3 + 2j+1, then it is also true for p = 2(4 + 2j) − 4 = 4 + 2j+1 to
p = 2(3 + 2j+1) − 3 = 3 + 2j+2, which covers all the integers p ≥ 5 when we
start with j = 0.
For any q ≥ 5 and a pants decomposition Q on S0,q obtained as above, let

A be an arc system on S0,q consisting of the two proper arcs joining the two
punctures in each of the two 2-cusped pants, together with ⌊(q − 4)/2⌋ arcs
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Figure 1. Some double branched covers arising in the proof
of Lemma 4.1. Marked points are indicated by crosses and un-
marked branched points by dots. The arc systems used to define
the double branched covers are shown in red. The numbers in-
dicate weights on curves.

joining punctures of consecutive 1-cusped pants. This arc system is compatible
with Q and has cardinality ⌊q/2⌋. If A is any subset of A of cardinality
k ≤ ⌊q/2⌋ which contains at least one of the first two arcs, then the double
cover construction applied to A yields a surface of genus k − 1 with 2(q − 2k)
marked points if we unmark all the branch points, or 2(q − 2k) + 1 marked
points if we keep one branch point marked. Once again, the composition of
this branched cover with the previous branched cover πq : S0,q → S0,5 shows
that the statement of the lemma is satisfied for (g, p) = (k− 1, 2(q− 2k)) and
(g, p) = (k − 1, 2(q − 2k) + 1).
We can now finish the proof. Let g ≥ 0 and p ≥ 0 be such that 3g + p ≥ 5.

If g = 0, then we are done since B(p) it true, so we may assume that g ≥ 1.
If p is even, write p = 2n and let q := n + 2(g + 1), which is at least 5
since (g, p) ̸= (1, 0), and let k := g + 1 ≤ ⌊q/2⌋. By the previous paragraph,
the statement of the lemma is satisfied for this pair (g, p). If p is odd, write
p = 2n + 1 and let q := n + 2(g + 1) and k := g + 1. Once again q ≥ 5 since
(g, p) ̸= (1, 1) and we still have k ≤ ⌊q/2⌋, so the above reasoning shows that
the pair (g, p) can be obtained. □
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Using these particular branched covers and the results of the previous sec-
tion, we obtain simplices of large dimension outside the closure of Busemann
points.

Corollary 4.2. Suppose that 3g + p > 4. Then there is a a weighted pair of
pants decomposition γ =

∑k
j=1 λiγi on Sg,p and a non-empty totally geodesic

subset G ⊂ T (Sg,p) such that for any X ∈ G, and any vector w = (w1, . . . , wk)
of positive weights, the limit point [ξw,X ] from Lemma 3.2 is not in the closure
of the set of Busemann points. Furthermore, for any X ∈ G, the Teichmüller
ray in the direction of the quadratic differential q ∈ Q(X) with V (q) = γ is
contained in G.

Proof. Let J : S0,5 → S0,5 be an orientation-reversing involution that fixes the
five punctures and let P5 = α+β be a pants decomposition whose components
are both invariant under J . The subsetD ⊂ T (S0,5) of conformal structures for
which J is homotopic to an anti-conformal homeomorphism is totally geodesic
(it isometric to the space of conformal pentagons with labelled vertices).

Let π : Sg,p → S0,5 be an admissible branched cover provided by Lemma 4.1,
let d be its degree, and let ιπ : T (S0,5) ↪→ T (Sg,p) be the induced isometric
embedding. By construction, π∗(P5) is measure-equivalent to a weighted pants

decomposition γ =
∑k

j=1 λjγj of Sg,p. After relabelling the curves if necessary,

there is some m such that π∗(α) =
∑

j≤m λjγj and π
∗(β) =

∑
j>m λjγj.

Since ιπ is an isometric embedding, the set G := ιπ(D) is totally geodesic
in T (Sg,p). Furthermore, for any Y ∈ D, the unique quadratic differential
ϕ on Y with vertical foliation equal to α + β is invariant under J , hence so
is the Teichmüller ray in the direction of ϕ, so the latter is contained in D.
The image of that geodesic ray by ιπ is the Teichmüller ray in the direction of
q := π∗ϕ, which has vertical foliation π∗(α + β) = γ. This Teichmüller ray is
thus contained in G = ιπ(D).

Now fix a vector of positive weights w = (w1, . . . , wk) and an X = ιπ(Y ) ∈
G. By Lemma 3.3, there is some ψ ∈ Q1(X) with V (ψ) =

∑k
j=1 djγj for some

positive dj such that [ξw,X ] ∈ Π−1
X (ψ).

Suppose that [ξw,X ] is in the closure of Busemann points. Since [ξw,X ] be-
longs to Π−1

X (ψ), the square ξ2w,X is a polynomial of degree 2 in the variables

xj(·) =
i(γj, ·)

i(γj, H(ψ))

according to Proposition 3.1. Writing ξ2w,X in term of these variables, we find
that

ξw,X(F )
2 = EL

(∑
j

wjxj(F )i(γj, H(ψ))γj, Y

)
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for every measured foliation F . However, we will see that the last expression
is not smooth with respect to the variables xj.

Recall that for any pants decomposition γ =
∑k

j=1 γj of a surface S and
any non-negative numbers c1, . . . , ck, there is a measured foliation F such that
i(γj, F ) = ci for every c. Indeed, one can construct F in each pair of pants
using [FLP12, Proposition 6.7] and then glue the pieces together to get a global
measured foliation. It follows that for each t ≥ 0, there is a measured foliation
Ft on Sg,p such that xj(Ft) =

λj
wji(γj ,H(q̃))

for j ≤ m and xj(Ft) = t
λj

wji(γj ,H(q̃))

for j > m.
Observe that the xj depend affinely on t (hence smoothly), yet

ξw,X(Ft)
2 = EL

(∑
j

wjxj(Ft)i(γj, H(ψ))γj, X

)

= EL

(∑
j≤m

λjγj + t
∑
j>m

λjγj, X

)
= EL (π∗(α + tβ), ιπ(Y ))

= EL(α + tβ, Y )

is not smooth at t = 0 by Lemma 3.4. It follows that ξ2w,X is not a smooth
function of the xj’s, hence is not a polynomial, which is a contradiction. We
conclude that [ξw,X ] is not in the closure of the set of Busemann points. □

Observe that scaling w does not change the projective class of the limit
point ξw,X , hence for each fixed X ∈ G, the previous result yields an open
simplex

∆X :=

{
[ξw,X ] : wi > 0 for all i and

∑
i

wi = 1

}
contained in ∂h T (Sg,p) \ B. We now want to show that as X tends to infinity
along the Teichmüller ray Rq, the simplex ∆X accumulates onto the whole
simplex of Busemann points associated to quadratic differentials whose vertical
foliations are reweighings of γ.

To state this more precisely, we need some more notation. For a unit qua-
dratic differential ϕ, Walsh showed in [Wal19, Corollary 1] that the Busemann
point B(ϕ) corresponds to the projective class of

Eϕ(F ) =

(∑
j

i(Gj, F )
2

i(Gj, H(ϕ))

)1/2

in the Gardiner–Masur compactification, where the Gj are the indecomposable
components of V (ϕ). Our statement is then as follows.
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Proposition 4.3. Suppose that 3g + p > 4. Let G ⊂ T (Sg,p) and γ =∑k
j=1 λjγj be as in Corollary 4.2, let X ∈ G, let q ∈ Q1(X) be such that

V (q) is proportional to γ, and let ϕ ∈ Q1(X) be such that V (ϕ) is a posi-
tive linear combination of the γi. Then there is a vector w = (w1, . . . , wk) of
positive weights such that

lim
s→∞

esξw,Rq(s)(F ) = Eϕ(F )

for every F ∈ MF(Sg,p). In particular, [ξw,Rq(s)] converges to the Busemann
point B(ϕ) as s→ ∞, so that B(ϕ) is not in the interior of the closure of the
set of Busemann points.

The proof requires finding the limit of the extremal length of a foliation
when moving along a geodesic ray, which in turn requires the following results
from Walsh’s paper [Wal19].

Lemma 4.4 ([Wal19, Lemma 4]). Let q be a unit area quadratic differen-
tial with vertical indecomposable components G1, . . . , Gk. Suppose that F =∑
fjGj for some fj ≥ 0. Then,

lim inf
t→∞

e2t EL(F,Rq(t)) ≥
∑
j

f 2
j i(Gj, H(q)).

Lemma 4.5 ([Wal19, Lemma 3]). Let q be a unit area quadratic differential
with vertical indecomposable components G1, . . . , Gk. Then for any measured
foliation F and any t ≥ 0, we have

e−2t EL(F,Rq(t)) ≥
∑
j

i(Gj, F )
2

i(Gj, H(q))
.

Lemma 4.6 (Titu’s lemma). Let n ≥ 1, and let a, b ∈ [0,∞)n \ {0} be such
that there is no coordinate j for which aj and bj are both zero. Then the
function from [0,∞)n \ {0} to R defined by

x→

(∑n
j=1 ajxj

)2∑n
n=1 bjx

2
j

attains its maximum of
∑n

j=1 a
2
j/bj only when there is a constant C > 0 such

that xj = Caj/bj for all j.

We combine these results to obtain the rescaled limit of the extremal length
of foliations that get pinched along a Teichmüller ray. This should be compared
with [Wal19, Theorem 1], which gives the rescaled limit of the extremal length
for foliations that get stretched along the Teichmüller ray.
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Lemma 4.7. Let q be a unit area quadratic differential with vertical indecom-
posable components G1, . . . , Gk and let F =

∑
fjGj for some fj ≥ 0. Then

lim
t→∞

e2t EL(F,Rq(t)) =
∑
j

f 2
j i(Gj, H(q)).

Proof. By Lemma 4.4 we only need to prove the upper bound. For each t ∈ R,
let Ft be the horizontal foliation of the quadratic differential on Rq(t) with
vertical foliation F . Then

EL(F,Rq(t)) EL(Ft, Rq(t)) = i(F, Ft)
2

by the case of equality in Minsky’s inequality (see [GM91]). Thus,

lim sup
t→∞

e2t EL(F,Rq(t)) = lim sup
t→∞

i(F, Ft)
2

e−2t EL(Ft, Rq(t))

≤ lim sup
t→∞

sup
G∈MF

i(F,G)2

e−2t EL(G,Rq(t))

≤ sup
G∈MF

i(F,G)2∑
j

i(Gj ,G)2

i(Gj ,H(q))

,

where the last inequality is from Lemma 4.5. By applying Lemma 4.6 with
aj = fj, bj = 1/i(Gj, H(q)), and xj = i(Gj, G), we obtain

i(F,G)2∑
j

i(Gj ,G)2

i(Gj ,H(q))

=

(∑
j fji(Gj, G)

)2
∑

j
i(Gj ,G)2

i(Gj ,H(q))

≤
∑
j

f 2
j i(Gj, H(q))

for every G, which yields the desired inequality. □

We can now prove our result concerning the accumulation points of the
simplex ∆Rq(s) as s→ ∞.

Proof of Proposition 4.3. Recall that V (q) = c
∑

j λjγj for some c > 0, which
has indecomposable components cλjγj. Thus, for any measured foliation F
and any weight vector w, we have

lim
s→∞

e2sξw,Rq(s)(F )
2 = lim

s→∞
e2s EL

(∑
j

wji(γj, F )γj, Rq(s)

)

=
∑
j

(
wji(γj, F )

cλj

)2

i(cλjγj, H(q))

=
∑
j

w2
j i(γj, F )

2

cλj
i(γj, H(q))

by Lemma 4.7.



16 AITOR AZEMAR AND MAXIME FORTIER BOURQUE

On the other hand, for any quadratic differential ϕ of unit area on X with
V (ϕ) =

∑
j djγj, we have

Eϕ(F )2 =
∑
j

i(djγj, F )
2

i(djγj, H(ϕ))
=
∑
j

dji(γj, F )
2

i(γj, H(ϕ))
,

so setting

wj =

(
cλjdj

i(γj, H(q))i(γj, H(ϕ))

)1/2

yields that
lim
s→∞

esξw,Rq(s)(F ) = Eϕ(F )

as required. This means that [ξw,Rq(s)] → [Eϕ] = B(ϕ) as s→ ∞. In particular,
any open neighborhood of B(ϕ) contains points of the form [ξw,Rq(s)], which

are not in B according to Corollary 4.2. In other words, B(ϕ) does not belong

to B◦
, where the interior is taken relative to the horoboundary (as opposed to

the whole compactification). □

Let Qγ
X ⊂ Q1(X) be the set of quadratic differentials of unit area on X

whose vertical foliation is a positive linear combination of the γi. Now that we
have found one simplex B(Qγ

X) disjoint from B◦
, we can obtain many others

using the action of the mapping class group, and then we can take the closure
of this orbit. In the next section, we show that this orbit closure contains B,
hence B, which implies that B◦

is empty. In other words, Busemann points
are nowhere dense within the boundary.

5. Orbits of top-dimensional simplices

The final step in the proof is to show that the mapping class group orbit
of the simplex B(Qγ

X) is dense among Busemann points. For this it, is useful
to recall a result of Walsh which characterizes when a sequence of Busemann
points converges to a Busemann point. In order to state the result, we first
introduce some terminology.

Definition 5.1. Let S be a surface of finite type and let F, Fn ∈ MF(S).
We say that Fn converges strongly to F as n → ∞ if the following conditions
hold:

(1) Fn converges to F in the usual (weak) sense as n→ ∞;
(2) For any sequence F jn

n of indecomposable components of Fn, any weak
limit of a subsequence of this sequence has to be indecomposable.

Recall that the zero foliation is considered to be indecomposable, so some
indecomposable components of Fn are allowed to disappear in the limit. In-
formally, the second condition means that no indecomposable component of
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Fn can “split” in the limit. However, distinct indecomposable components are
allowed to merge in the limit.

The convergence of the Busemann points associated to geodesic rays from
a common basepoint can be characterized as follows.

Theorem 5.2 ([Wal19, Theorem 10]). Let S be a surface of finite type, let
X ∈ T (S), and let q, qn ∈ Q1(X). Then B(qn) → B(q) as n→ ∞ if and only
if V (qn) converges strongly to V (q) as n→ ∞.

Note that the topology on B can be pulled back to Q1(X) via the Buse-
mann map B, and then to PMF(S) via the Hubbard–Masur map. In turn,
this defines a topology on MF(X), which is an infinite cone over PMF(S).
It follows from the above theorem that the notion of strong convergence in
MF(S) is compatible with this topology, which we thus call the strong topol-
ogy.

While weighted simple closed curves are dense in the weak topology on
MF(S), they can only converge strongly to indecomposable foliations. In
particular, weighted simple closed curves are not dense in the strong topology
unless S is a sphere with 4-times punctured sphere or a once-punctured torus.
However, we now show that weighted multicurves are still dense. In fact, the
mapping class group orbit of any single cone of weighted maximal multicurves
is dense.

Proposition 5.3. Let α =
∑

j αj be a pants decomposition of a surface S of

finite type. Let C(α) ⊂ MF(S) be the cone of positive linear combinations
of the curves αj. Then the set

⋃
f∈MCG(S) f(C(α)) is dense in MF(S) with

respect to the strong topology, where MCG(S) is the mapping class group of S.

Proof. Let β = β1 + α2 + · · · + αk be a pants decomposition adjacent to γ in
the pants graph (meaning that i(α1, β1) is equal to 1 or 2). Let τ be the Dehn
twist around β1. Then τn(α1)/n converges weakly to i(α1, β1)β1 as n → ∞,
hence strongly since the limit is indecomposable. Furthermore, if j ≥ 2 then
τn(αj) = αj for every n since β1 and αj are disjoint.

Let v = w1β1 + w2α2 + . . .+ wkαk be any point in C(β). Then

vn = τn

(
w1

ni(α1, β1)
α1 +

k∑
j=2

wjαj

)
=

w1

ni(α1, β1)
τn(α1) +

k∑
j=2

wjαj,

which converges strongly to v since with this labelling, the j-th indecomposable
component of vn converges to the j-th indecomposable component of v. Thus,
for any multicurve β adjacent to α in the pants graph, we have

(5.1) C(β) ⊆
⋃

f∈MCG(S)

f(C(α)),
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where the closure is with respect to the strong topology.
It follows that ⋃

f∈MCG(S)

f(C(β)) ⊆
⋃

f∈MCG(S)

f(C(α)).

because the right-hand side is mapping class group invariant and closed. Since
the pants graph is connected [HT22, Theorem 1.1], we can make chains of
inclusions of this form and conclude that Equation (5.1) hold for any pants
decomposition β of S.
Now let γ be a multicurve which is not maximal, and let γ̃ be a pants

decomposition containing γ. By decreasing the weights of the extra curves
to zero, we see that C(γ) is contained in the closure of C(γ̃), hence also in⋃
f∈MCG(S) f(C(α)).

Finally, let γ ∈ MF(S) be any measured foliation different from zero (which
is obviously in the closure of any cone). Then γ is a union of subfoliations γj
which are either weighted closed curves or minimal, all supported on disjoint
subsurfaces Sj. In turn, each minimal subfoliation γj is a finite sum of indepen-
dent ergodic measures (which are the indecomposable components of γj). By
[LM10, Theorem C], for any minimal foliation F on a surface R with ergodic
components ν1, . . . , νk, there is a sequence of weighted multicurves δn =

∑
i δ
i
n

such that δin → νi as n → ∞ for each i. In particular, δn converges strongly
to F as n → ∞. By applying this result to each minimal subfoliation γj of
γ and adding the curve components of γ, we obtain a sequence of weighted
multicurves ϵn on S which converges strongly to γ as n→ ∞.

We conclude that γ is in the closure of the sequence (ϵn)
∞
n=1, which is itself

in the closure of the orbit of C(α). This concludes the proof. □

Remark 5.4. We emphasize that the proposition is false for cones spanned by
measured foliations with fewer indecomposable components, since these can-
not accumulate onto foliations with a larger number of indecomposable com-
ponents in the strong topology. By the same argument, it follows from Propo-
sition 5.3 that the number of indecomposable components of any measured
foliation on Sg,p is bounded above by the cardinality of a pants decomposition,
which is 3g + p− 3.

It remains to apply the above result to prove that the mapping class group
orbit of the simplex B(Qγ

X) is dense among Busemann points. One slight issue
is that most mapping classes do not preserve the basepoint X, so we cannot
apply Theorem 5.2 directly, but this is easy to overcome.

We first recall the definition of modular equivalence from Walsh’s paper.

Definition 5.5. Two quadratic differentials q and q′ on possibly different
surfaces in T (S) aremodularly equivalent if there are indecomposable foliations
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Gj and constants C, aj, a
′
j > 0 such that V (q) =

∑
j ajGj, V (q′) =

∑
j ajGj,

and
aj

i(Gj, H(q))
= C

a′j
i(Gj, H(q′))

for every j.

Walsh proved in [Wal19, Theorem 4] that if X, Y ∈ T (S), ϕ ∈ Q1(X), and
ψ ∈ Q1(Y ), then B(ϕ) = B(ψ) if and only if ϕ and ψ are modularly equivalent.
Moreover, every modular equivalence class of quadratic differentials of unit
area contains a unique representative at any point in Teichmüller space [Wal19,
Theorem 5]. We use these results to change basepoints for our simplices.

Lemma 5.6. Let G ∈ MF(S) be a measured foliation with indecomposable
components Gj. For X ∈ T (S), denote by QG

X ⊂ Q1(X) the set of all qua-
dratic differentials of unit area on X whose vertical foliation is a positive linear
combination of the Gj. Then B(QG

X) = B(QG
Y ) for every X, Y ∈ T (S). In

particular, if f ∈ MCG(S), then

f
(
B
(
QG
X

))
= B

(
f
(
QG
X

))
= B

(
Q
f(G)
f(X)

)
= B

(
Q
f(G)
X

)
.

Proof. Let X, Y ∈ T (S), let q ∈ QG
X , and let q′ ∈ Q1(Y ) be modularly equiv-

alent to X. By definition of modular equivalence, V (q′) is a positive linear
combination of the Gj, so q′ ∈ QG

Y . Furthermore, B(q) = B(q′), so that
B
(
QG
X

)
⊆ B

(
QG
Y

)
. The reverse inclusion follows by switching X and Y .

If f ∈ MCG(S), then f ◦ B = B ◦ f since f sends any geodesic ray and its
limit point to a geodesic ray and its limit point since the mapping class group
acts by isometries (which extend continuously to the horofunction compacti-

fication). Then the equality f
(
QG
X

)
= Q

f(G)
f(X) simply follows from the action

of the mapping class group on quadratic differentials, and by the previous

paragraph B
(
Q
f(G)
f(X)

)
= B

(
Q
f(G)
X

)
. □

We now have all the ingredients to prove that Busemann points are nowhere
dense in the horoboundary.

Proof of Theorem 1.1. Let γ the weighted pair of pants decomposition and
G ⊂ T (Sg,p) the totally geodesic subset from Corollary 4.2. Then let X ∈ G
and let ψ ∈ Q1(X). We want to show that B(ψ) is in the closure of the orbit
of B(Qγ

X).
By Proposition 5.3, there exist sequences fn ∈ MCG(Sg,p) and γn ∈ C(γ)

(the set of reweighings of γ) such that Fn := fn(γn) converges strongly to

V (ψ). Let ψ̃n ∈ Q(X) be such that V
(
ψ̃n

)
= Fn and let ψn = ψ̃n/

∥∥∥ψ̃n∥∥∥.
Since the Hubbard–Masur map is a homeomorphism, ψ̃n → ψ as n → ∞. In
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particular, V (ψn) = Fn/
∥∥∥ψ̃n∥∥∥ converges strongly to V (ψ) because

∥∥∥ψ̃n∥∥∥→ 1.

By Walsh’s Theorem 5.2, B(ψn) → B(ψ) as n→ ∞.
Since γn ∈ C(γ), we have that Qγn

X = Qγ
X for every n. Furthermore, by

Lemma 5.6 we have

fn (B (Qγ
X)) = fn (B (Qγn

X )) = B
(
Q
fn(γn)
X

)
= B

(
QFn
X

)
.

As ψn ∈ QFn
X , this means that for each n there is a ζn ∈ B (Qγ

X) such that
fn(ζn) = B(ψn). By Proposition 4.3, for each n, ζn is not in the interior of

B. Now fn(B
◦
) = B◦

because fn acts by homeomorphisms, so the same is
true for fn(ζn) = B(ψn), and hence the same is true for the limit B(ψ) of this
sequence.

Since all the Busemann points are attainable through rays from any base-
point [Wal19, Theorem 6], this shows that B is disjoint from B◦

, hence B is

disjoint from B◦
, which means that B◦

is empty since it is a subset of B. In
other words, Busemann points are nowhere dense in the horoboundary. □
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2920, chemin de la Tour, Montréal (QC), H3T 1J4, Canada
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