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Abstract. We show that for every ε > 0, there exists some g ≥ 2 such
that the set of closed hyperbolic surfaces of genus g whose systoles fill
has dimension at least (5 − ε)g. In particular, the dimension of this
set—proposed as a spine for moduli space by Thurston—is larger than
the virtual cohomological dimension of the mapping class group.

1. Introduction

A systole in a closed hyperbolic surface is a closed geodesic of minimal
length. The word “systole” is also used for the common length of these
geodesics. A set of closed geodesics fills if each component of the complement
of their union is contractible, in other words, if it cuts the surface into
polygons. Let Tg be the Teichmüller space of closed hyperbolic surfaces
of genus g and Xg the subset of such surfaces whose systoles fill. In a 3-
page preprint [Thu85], Thurston claimed to prove that Tg admits a mapping
class group equivariant deformation retract into Xg. The idea of the proof
is to construct a continuous mapping class group invariant vector field on
Tg which vanishes only on Xg and such that the systole length increases
along flow lines. As pointed out in [Ji14], this is not enough to guarantee
the existence of a deformation retraction into Xg since one can construct a
continuous vector field on a closed disk which vanishes only on the boundary,
yet the disk does not deformation retract into its boundary. Another reason
to be skeptical is that since the systole is a topological Morse function on Tg
[Akr03], one can also define an invariant vector field that vanishes only at the
critical points, but Tg does not deformation retract into this infinite discrete
set. The problem in both cases is that some flow lines flow away from the
zero set initially even though they eventually flow back into it elsewhere. In
general, finding spines is a very delicate business [PS08b, PS08a, Lac18].

The goal of this paper is to prove the following lower bound on the di-
mension of Xg in certain genera.

Theorem 1.1. For every ε > 0, there exists an integer g ≥ 2 such that Xg

has dimension at least (5− ε)g.

In particular, there exist infinitely many genera g such that the dimension
of Xg is strictly larger than 4g − 5, contrary to an earlier claim by Irmer in
Version 1 of [Irm22]. The number 4g− 5 is important because it is equal to
the virtual cohomological dimension of the mapping class group, which is
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theoretically the minimum possible for an equivariant spine of Tg. We had
previously shown that the dimension of Xg is at least 4g− 5 when g is even
and conjectured that its dimension is at least (6 − ε)g in certain genera g
for every ε > 0 [FB20, Theorem 7.1 and Conjecture 1.2].

The proof of Theorem 1.1 works by finding surfaces with roughly g systoles
that fill and then applying the implicit function theorem to get a submanifold
of codimension roughly g where these curves remain systoles. These surfaces
are built using a simplified variant of a construction from [FB20]. The part
that was missing in [FB20] to prove Theorem 1.1 was a submersion property,
which we were not able to prove because of the complexity of the graphs
used to glue the surfaces. This is remedied here by simplifying the structure
of the graphs. The drawback is that the number of systoles gets larger, so
we do not obtain the full (6− ε)g conjecture.

2. Surfaces from maps of large girth

In this section, we give a simple construction of a hyperbolic surface
X(t,M) that depends on a parameter t > 0 and a graph M satisfying
certain conditions such that for some t0 the systoles fill. This construction
is a special case of a more general one alluded to in [FB20, Remark 4.3]. We
give the full details here for completeness.

For every integer q ≥ 3 and parameter t > 0, there exists a unique right-
angled polygon P (t, q) with 2q sides, half of which have length t and the
other half some number s(t), alternately. To construct P (t, q), start with a
quadrilateral Q(t, q) with one vertex v0 of angle π/q, three right angles, and
one of the sides opposite to v0 of length t/2, then apply repeated reflections
in the sides adjacent to v0. To see why Q(t, q) exists and is unique, we start
with two rays r1, r2 at angle π/q < π/2 from the point v0. There is a point
w on the ray r2 such that the geodesic Γw through w and orthogonal to r2 is
asymptotic to r1. As w moves away from v0 along r2, the distance between
Γw and r1 is strictly increasing, continuous, and varies from 0 to ∞. By
the intermediate value theorem, there exists a choice of w such that this
distance is exactly t/2 and this choice is unique by strict monotonicity.

We will need the fact that the common length s(t) of the other sides of
P (t, q) is a strictly decreasing function of t. One reason why this is true is
because the quadrilaterals Q(t, q) all have the same area, so none of them is
contained in any other. This means that as one side gets further from r1, the
other side gets closer to r2. In fact, we have cos(π/q) = sinh(t/2) sinh(s(t)/2)
[Bus10, Equation 2.3.1(i) on p.454]. We will say that the sides of P (t, q) of
length t are blue and those of length s(t) are red.

Let p, q ≥ 3 be integers and let M be a finite orientable surface map of
type {p, q} and girth p. This means that M is a finite graph embedded in
a surface such that each vertex has degree q, each complementary face has
p sides, and we require that every embedded cycle in M has length at least
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p. The existence of such an M is proved in [Eva79, Theorem 11]. One can
further require that M is flag-transitive, but this will not be needed here.

We now describe a hyperbolic surface B(t,M) with boundary obtained by
gluing copies of P (t, q) along M . To each vertex v ∈ M corresponds a copy
of Pv of P (t, q). There is a cyclic ordering of the edges adjacent to v in M
coming from its embedding in a surface. We thus can thus associate the blue
sides of Pv with the edges adjacent to v in a way that respects this cyclic
ordering. For every edge e = {v, w} in M , we glue the polygons Pv and Pw

along their side associated to e in a way that respects the orientations on
Pv and Pw. Topologically, the resulting surface B(t,M) is a thickening of
the map M . Geometrically, it is a compact hyperbolic surface with geodesic
boundary tiled by copies of P (t, q). Each boundary component of B(t,M)
is a concatenation of exactly p red sides of polygons P (t, q) as it corresponds
to a face of M . Its length is thus s(t)p.

Finally, the surface X(t,M) is defined as the double of B(t,M) across
its boundary. This means that we take two copies of B(t,M) with opposite
orientations and glue corresponding boundary components without twist.
The blue arcs in the two copies of B(t,M) line up in pairs to form closed
geodesics of length 2t in X(t,M).

Another way to think of X(t,M) is to first double P (t, q) across its red
sides to form a sphere S(t, q) with q blue boundary components that come
with a natural cyclic ordering. Then X(t,M) is obtained by gluing copies
of S(t, q) along M . The special case where q = 3 is the familiar way of
assembling a surface out of pairs of pants without twists.

Let us count the number of red and blue curves in X(t,M) in terms of
its genus.

Lemma 2.1. If g is the genus of X(t,M), then its number of blue curves

is q
q−2(g − 1) and its number of red curves is 2q

p(q−2)(g − 1).

Proof. By the Gauss–Bonnet formula, the area of X(t,M) is 4π(g − 1) and
the area of P (t, q) is π(q − 2). Since there are 2V (M) polygons in X(t,M)
where V (M) is the number of vertices in M , we have

2(g − 1) = (q − 2)V (M).

The number of blue geodesics in X(t,M) is E(M), the number of edges
in M , while the number of red geodesics is F (M), the number of faces in
M . Since each edge of M belongs to two vertices and two faces, and each
face has p edges and each vertex belongs to q edges, we have

pF (M) = 2E(M) = qV (M).

We thus get

E(M) =
q

2
V (M) =

q

q − 2
(g − 1) and F (M) =

q

p
V (M) =

2q

p(q − 2)
(g − 1)

as required. □
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By taking p and q sufficiently large, we can make sure that there are fewer
than (1 + ε

2)(g − 1) blue curves and ε
2(g − 1) red curves for any ε > 0.

3. Systoles

We now determine which curves are the systoles in X(M) = X(t0,M)
where t0 is chosen in such a way that 2t0 = s(t0)p, so that the red and blue
curves have the same length.

The following lemma was proved in [FB20, Lemma 2.3] in the symmetric
case t = s(t), but the same argument works in the asymmetric case. We
repeat it for the sake of completeness.

Lemma 3.1. Every arc in P (t, q) between different red sides has length at
least t with equality only if it is a blue side and every arc between different
blue sides has length at least s(t) with equality only if it is a red side.

Proof. Let α be a geodesic arc of minimal length between two red sides.
Then α is orthogonal to the red sides of P (t, q) at its endpoints. If α is not
a blue side, then it joins two non-consecutive red sides. This implies that
the rotation of angle 2π/q of P (t, q) around its center sends α to an arc
β that intersects it, because their endpoints are intertwined along ∂P (t, q).
Following α initially and then continuing along β after the point of inter-
section produces an arc γ of the same length as α and β with endpoints in
distinct red sides. Since γ is not geodesic, we can produce a strictly shorter
arc, which is a contradiction. We conclude that α is a blue side. The other
statement follows by exchanging the words “red” and “blue” in the above
argument. □

We then move on to the double S(t, q) of P (t, q) across the red sides. The
proof of the following lemma is identical to analogous results in [FB20].

Lemma 3.2. For every t > 0, the systoles in S(t, q) are the boundary
geodesics of length 2t. The shortest arcs between distinct boundary com-
ponents of S(t, q) are the red arcs of length s(t). Finally, every arc from a
boundary component to itself in S(t, q) that cannot be homotoped into the
boundary has length strictly larger than t.

Proof. Let γ be a systole in S(t, q). Then γ crosses at least two red arcs
since the complement of any (q − 1) red arcs in S(t, q) is simply connected.
Any segment of γ between two consecutive intersection points with the red
arcs stays in one of the two polygons P (t, q) and joins two distinct red sides,
hence has length at least t by the previous lemma. Thus, γ has length at
least 2t with equality only if it is a blue boundary geodesic.

Let α be an arc of minimal between distinct boundary components of
S(t, q). Such an arc is necessarily geodesic and orthogonal to the boundary
at endpoints. If α is not contained in one of the two copies of P (t, q),
then there is a non-geodesic arc of the same length that starts along α and
continues along its reflection across the red arcs after an intersection point,
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which is a contradiction. We conclude that α is contained in one of the two
copies of P (t, q), so that α has length at least s(t) by the previous lemma,
with equality only if it is a red arc.

Finally, let α be a non-trivial arc from a boundary component b to itself
of length at most t. The curve formed by α together with the shorter of the
two subarcs of b between its endpoints is homotopically non-trivial and of
length at most 2t. By the first paragraph of this proof, this curve must be
a boundary geodesic, which is a contradiction. □

Let X(M) = X(t0,M) where t0 is chosen as above so that 2t0 = p s(t0).
Then the systoles in X(M) are precisely the blue and the red curves.

Proposition 3.3. Let p, q ≥ 3 be integers and let M be a map of type {p, q}
and girth p. Then the systoles in X(M) are the blue curves and the red
curves. In particular, they fill.

Proof. Let γ be a closed geodesic in X(M) which is not a blue curve. Con-
sider the combinatorial shadow σ of γ in the map M , a loop that keeps track
of which subsurfaces S(t0, q) the curve γ visits. This shadow is well-defined
up to cyclic permutations since any eventual intersection between γ and the
blue curves is transverse. Thus if γ intersects a blue curve, then it traverses
from one copy of S(t0, q) to an adjacent one and the shadow σ traces the
corresponding edge in M .

If σ is non-contractible inM , then its length is at least p by the hypothesis
on the girth of M . This means that γ contains at least p segments that
connect distinct boundary components in copies of S(t0, q). By Lemma 3.2,
γ has length at least s(t0)p, with equality only if it is a red curve.

If σ is contractible in M , then it lifts to the universal cover of M , which
is a tree, hence σ itself traces the contour of a finite tree. If this finite tree
is a single point, then γ is contained in a single copy of S(t0, q). However,
by Lemma 3.2, every closed geodesic in the interior of S(t0, q) has length
strictly larger than 2t0 (the length of a blue curve), so γ is not a systole.
Otherwise, σ traces the contour of a non-trivial tree, hence it has at least two
backtracking points where it traverses an edge back and forth (there is one
backtrack for each leaf of the finite tree that is traced). These backtracking
points correspond to two disjoint subarcs in γ that go from one boundary
component of a copy of S(t0, q) to itself. By Lemma 3.2, each of these two
subarcs has length strictly larger than t0, so γ has length strictly larger than
2t0 = s(t0)p so it is not a systole.

We conclude that the shortest closed geodesics in X(M) are the blue
curves and the red curves. Since these curves cut the surface into polygons,
they fill. □
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4. Deformations preserving the systoles

Let X = X(M) = X(M, t0) be as before. We first perturb X to a nearby
surface Y so that the systoles remain the same but they do not intersect at
right angles anymore.

Lemma 4.1. There exists a hyperbolic surface Y whose systoles are in same
homotopy classes as on X and the angle of intersection between any two
intersecting ones is a common angle θ < π

2 .

Proof. Let L0 = 2t0 = s(t0)p be the systole length of X and let L1 > L0 be
the next shortest geodesic length. If t > t0, then the blue curves in X(M, t)
have length 2t > L0 and the red curves have length s(t)p < L0.

Perform a left twist deformation of length r > 0 around each blue curve
in X(M, t). Let us temporarily call “green” the geodesics in the same ho-
motopy classes as the red curves after twisting. We claim that all the green
curves have the same length and furthermore their angle of intersection with
blue curves is equal to a common value θ. This is because each green curve
follows a zigzag of red seams of length s(t) and blue arcs of length r. The
green curve is then obtained by connecting the midpoints of the red seams
and blue segments, bounding a sequence of right triangles along the way (the
resulting curve is geodesic and in the right homotopy class). The length µ
of the green curves thus satisfies

cosh(µ/(2p)) = cosh(r/2) cosh(s(t)/2)

by the hyperbolic Pythagoras formula. In particular, there exists a unique
r > 0 (depending continuously on t) such that µ = 2t, the length of the blue
curves. The counter-clockwise angle θ from green to blue can be calculated
from the trigonometric formula

sinh(s(t)/2) = sin(θ) sinh(µ/(2p)).

It is obviously strictly smaller than π/2.
Now that we no longer have any use for the red seams, we will call the

green curves “red” again. For every t > t0, we have chosen r(t) > 0 in such
a way that the blue and red curves on the surface Yt obtained by twisting
X(M, t) by distance r(t) around each blue curve have the same length 2t.
By Wolpert’s lemma [Wol79, Lemma 3.1], the length of any closed geodesic

changes by a factor at most e2d(X,Yt) fromX to Yt, where d is the Teichmüller
distance. Since this distance tends to zero as t → t0 and since the length of
any closed geodesic other than the red and blue ones is at least L1 on X,
we can pick t close enough to t0 so that 2t < (L0 + L1)/2 and any other
closed geodesic in Yt has length at least (L0 + L1)/2. Let Y = Yt for any
such t. □

We now prove that at the point Y , the map that records the lengths of
the red curves restricted to the submanifold W of the Teichmüller space Tg
where the blue curves remain of length 2t is a submersion, as long as q is
odd.
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Proposition 4.2. Let R be the set of red curves in Y . If q is odd, then the
map L : W → RR defined by L(Z) = (ℓα(Z))α∈R is a submersion at the
point Y , where ℓα(Z) is the length of the geodesic α on Z.

Proof. We will show that for every red curve α ∈ R, the basis vector eα with
a one in the entry α and zeros elsewhere is in the image of the differential
dY L. To produce eα, we will use the left twist deformations τβ about some
blue curves β, which are tangent vectors to paths that remain in W . Recall
that α corresponds to a face in the map M . Pick any vertex v along this
face. The q edges adjacent to v in M correspond to q blue curves in Y that
cut out a sphere with q holes. Enumerate these blue curves as β1, . . . , βq
following the cyclic order around v such that β1 and βq are the two curves
intersecting α. Note that adjacent faces in M are distinct by the hypothesis
that its girth is p. That is, no face is glued to itself. This is why the q faces
around v are distinct. Let us label α1 to αq the q red curves corresponding
to these q faces around v, with αj intersecting precisely βj−1 and βj , where
indices are taken modulo q, so that α1 = α.

Consider the tangent vector ξ =
∑q

j=1(−1)jτβj
. The cosine formula of

Wolpert [Wol81] (see also [Ker83]) states that for any closed geodesic γ
transverse to a simple closed geodesic β, we have

dℓγ(τβ) =
∑

z∈γ∩β
cos∠z(γ, β)

where ∠z(γ, β) is the counter-clockwise angle from γ to β at the point z
and the sum runs over all intersection points. Any of the blue curves βj
intersects only the two red curves αj−1 and αj (each one in a single point)
and the angle from these red curves to βj at the intersection points is equal
to some fixed θ ̸= π

2 by Lemma 4.1.
For a red curve γ different from α1, . . . , αq, we have dℓγ(ξ) = 0 as there

is no intersection between γ and the curves βj . For 1 < j ≤ q, we have

dℓαj (ξ) = (−1)j−1dℓαj (τβj−1
) + (−1)jdℓαj (τβj

)

= (−1)j−1 cos θ + (−1)j cos θ = 0,

while for j = 1 we get

dℓα(ξ) = dℓα1(ξ) = (−1)qdℓα(τβq)− dℓα(τβ1) = −2 cos θ ̸= 0

since q is odd.
We have thus proved that a non-zero multiple of the basis vector eα is

in the image of dY L and hence that dY L is surjective since α ∈ R was
arbitrary. □

Theorem 1.1 follows easily from this proposition.

Proof of Theorem 1.1. Let Y be as above with q odd. Note that W is a
smooth submanifold of dimension (6 − q

q−2)(g − 1) inside Tg since we can

complete the set of blue curves into a pair of pants decomposition to define
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Fenchel–Nielsen coordinates, and W is the submanifold obtained by fixing
q

q−2(g − 1) of the coordinates constant equal to 2t, namely, the lengths of

the blue curves (the number of which was determined in Lemma 2.1).
By Proposition 4.2, L : W → RR is a submersion at the point Y , where

it takes the value L(Y ) = (2t, . . . , 2t). By the implicit function theorem,
near Y the inverse image L−1(2t, . . . , 2t) is a smooth submanifold of W of

codimension |R| = 2q
p(q−2)(g− 1) (see Lemma 2.1). Thus, there is a cell C of

dimension (
6− q

q − 2
− 2q

p(q − 2)

)
(g − 1)

through Y in Teichmüller space where the red and blue curves all remain
of length 2t. For any ε > 0, we can choose q odd large enough and p large
enough so that the above number is at least (5− ε)g.

By Wolpert’s lemma, close enough to Y in C, the systoles will remain
the red and blue curves and thus fill. This shows that Xg contains a cell of
dimension at least (5− ε)g. □
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