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Abstract. We adapt linear programming methods from sphere packings to closed hy-
perbolic surfaces and obtain new upper bounds on their systole, their kissing number, the
first positive eigenvalue of their Laplacian, the multiplicity of their first eigenvalue, and
their number of small eigenvalues. Apart from a few exceptions, the resulting bounds are
the current best known both in low genus and as the genus tends to infinity. Our methods
also provide lower bounds on the systole (achieved in genus 2 to 7, 14, and 17) that are
sufficient for surfaces to have a spectral gap larger than 1/4.
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Figure 1. Upper bounds and current record holders for the maximization
of geometric and spectral invariants associated to hyperbolic surfaces.
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1. Introduction

The goal of this paper is to prove new upper bounds on five invariants associated to a
closed, oriented, hyperbolic surface M :

(1) its systole sys(M), the length of any shortest non-contractible closed curve in M ;
(2) its kissing number kiss(M), the number of homotopy classes of oriented non-

contractible closed curves of minimal length in M ;
(3) the first positive eigenvalue λ1(M) (which coincides with the spectral gap) of the

Laplace–Beltrami operator ∆M on M ;
(4) the multiplicity m1(M) of the eigenvalue λ1(M), that is, the dimension of the

corresponding eigenspace;
(5) the number Nsmall(M), counting multiplicity, of small eigenvalues of ∆M , that is,

those contained in the interval [0, 1/4].

We bound the first four invariants in terms of the genus of M only, but the fifth one
in terms of the genus and the systole. In low genus (or for small systole), our bounds are
illustrated in Figures 1 and 2 (see also Tables 1 to 7). They beat all previous upper bounds
except for the systole and kissing number in genus 2, for λ1 in genus 2, 3, 4, and 6, and
for Nsmall when the systole is smaller than 2.317. Note that Nsmall(M) < 2 if and only if
λ1(M) > 1/4. We use this to show that there exist surfaces with a spectral gap larger than
1/4 in genus 4 to 7, 14, and 17 (this was already known in genus 2 and 3). Whether such
surfaces exist in every genus is a well-known open problem related to Selberg’s eigenvalue
conjecture [Sel65] (see e.g. [Mon15, Question 1.1] and [Wri20, Problem 10.4]). A lot of
progress on this question in high genus was made recently [MNP22, WX22, LW21, HM21].

In higher genus (or for larger systole), our asymptotic bounds are as follows.

Theorem 6.4. There exists some g0 ≥ 2 such that every closed hyperbolic surface M of
genus g ≥ g0 satisfies

sys(M) < 2 log(g) + 2.409.

Theorem 7.8. There exists some g0 ≥ 2 such that every closed hyperbolic surface M of
genus g ≥ g0 satisfies

kiss(M) <
4.873 · g2

log(g) + 1.2045
.

Theorem 8.3. There exists some g0 ≥ 2 such that every closed hyperbolic surface M of
genus g ≥ g0 satisfies

λ1(M) <
1

4
+

(
π

log(g) + 0.7436

)2

.

Theorem 9.5. There exists some g0 ≥ 2 such that every closed hyperbolic surface M of
genus g ≥ g0 satisfies

m1(M) ≤ 2g − 1.

Theorem 10.2. If M is a closed hyperbolic surface of genus g ≥ 2, then

Nsmall(M) < min

(
24π2(g − 1)

sys(M)3
,
16(g − 1)

sys(M)2

)
.
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These improve upon the previous best upper bounds established in [Bav96], [FBP22]
(previously [Par13]), [Che75], [Sév02], and [Hub76] respectively. While the previous bounds
used very different techniques from one invariant to another, our proofs are all based on
the same method, namely, linear programming.
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Figure 2. Upper bounds on the number of small eigenvalues and lower
bounds on the systole that imply a spectral gap larger than a quarter.

In addition to finding new examples of surfaces with λ1 > 1/4, we also improve the
previous best lower bounds of Colbois and Colin de Verdière [CCdV88] on the maximum
of m1 in genus 4, 7, 8, 10, 14 to 16, and 19.

Context. The invariants sys, kiss, λ1, m1, and Nsmall can be defined for any closed Rie-
mannian manifold (with 1/4 replaced by the bottom of the spectrum of the Laplacian
on the universal cover of M) and their maximization has been studied by several authors
for various classes of manifolds. For example, if we fix a topological manifold Σ, then
maximizing the systole over all Riemannian manifoldsM of a given volume that are home-
omorphic to Σ is called the isosystolic problem and it has been solved for the projective
plane [Pu52], the 2-dimensional torus (Loewner), and the Klein bottle [Bav86]. The maxi-
mum ofm1 is known for the same surfaces [Bes80, CdV87, Nad88] as well as for the 2-sphere
[Che75], while the maximum of λ1 is known for the closed orientable surface of genus 2
[JLN+05, NS19] in addition to all the previous surfaces [Her70, LY82, Nad96, ESGJ06].
Another much-studied case is that of flat d-dimensional tori of unit volume. In that

case, λ1(M) = (2π sys(M∗))2 and m1(M) = kiss(M∗)/2 where M∗ is the torus dual to
M , so the first four maximization problems above reduce to only two while the fifth is
trivial since the bottom of the spectrum of the Laplacian on Rd is 0. Furthermore, if
Λ is a lattice such that M ∼= Rd/Λ, then the balls of radius sys(M)/2 centered at the
points in Λ form a sphere packing of density 2−d sys(M)d vol(Bd

1), where B
d
1 is the unit ball

in Rd, and there are exactly kiss(M) balls tangent to any ball in this packing. In other
words, maximizing the systole and kissing number of flat tori of unit area is equivalent to
maximizing the packing density and kissing number among sphere packings whose centers
form a lattice. Both problems have been solved in dimensions 1 to 8 and 24 (see [CS93,
Table 1.1] and [CK09]). In some cases, the solutions to these problems were obtained by a
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method known as linear programming first introduced by Delsarte in the context of error-
correcting codes [Del72]. This was then adapted to prove bounds on the kissing numbers
of arbitrary sphere packings (not necessarily coming from lattices) in [DGS77] and then
on their packing density in [CE03]. In addition to giving optimal bounds in dimensions 8
[Via17] and 24 [CKM+17], this approach also yields the best known asymptotic bounds on
kissing numbers and packing density as the dimension tends to infinity [CZ14].

The five invariants we consider here were previously investigated for hyperbolic surfaces
in [Hub74, Che75, Hub76, Bus77, Hub80, Jen84, BC85, Bro88, BBD88, CCdV88, Bur90,
Sch93, Sch94, BS94, Bav96, Bav97, SS97, Ada98, Ham01, HK02, Kim03, CB05, KSV07,
Ota08, Gen09, OR09, Par13, SU13, FP15, Gen15, Coo18, PW18, Pet18, HM21, Jam21,
KMP21, LW21, Bon22, FBR22, Mon22, MNP22, WX22] among many others. For closed
surfaces, the only optimal bounds known to date are for the systole [Jen84] and kissing
number [Sch94] in genus 2, form1 in genus 3 [FBP21], and for Nsmall in every genus [OR09].
However, the known examples that maximize Nsmall have a short pants decomposition
[Bus77], which is why we are interested in improved bounds as the systole grows.

We previously adapted the linear programming method to hyperbolic surfaces in [FBP22]
and [FBP21] to prove bounds on kissing numbers in large genus and on m1 in small genus
respectively. Here we extend and improve our previous approach in a systematic way.

Organization. The paper is organized as follows. We start with preliminary sections on
the Fourier transform, the Selberg trace formula, the linear programming method, and
Bessel functions. This is followed by one section for each of the five invariants sys, kiss, λ1,
m1, and Nsmall. In each of these sections, we first present a general criterion for proving
upper bounds based on the Selberg trace formula. We then discuss the results that we have
obtained from this criterion in low genus (or for small systole) using numerical optimization
and conclude each section by proving an asymptotic bound. In both ranges, we compare
our bounds with the previous best. The lower bounds on the systole that are sufficient to
obtain a spectral gap larger than a quarter are described in subsection 10.4 and the new
examples with large m1 are presented in subsection 9.2.

Acknowledgements. We thank the CIRM for a research in residence during which part of
this work was carried out. We also thank Mathieu Pineault for uncovering a mistake in
one of our ancillary files, which has since been fixed. BP is grateful for the “Tremplins
nouveaux entrants” grant from Sorbonne Université, which allowed him to visit MFB at
the Université de Montréal. MFB was partially supported by NSERC Discovery Grant
RGPIN-2022-03649.

2. The Fourier transform

The Fourier transform of an integrable function f : R → C is defined by

f̂(y) :=
1√
2π

∫
R
f(x)e−iyxdx

for y ∈ R. If f̂ is integrable, then the Fourier inversion theorem says that its Fourier
transform is almost everywhere equal to x 7→ f(−x).
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We will frequently use the scaling property that for a > 0, the Fourier transform of

x 7→ f(ax) is y 7→ f̂(y/a)/a. If f and g are integrable, then

f̂ ∗ g =
√
2π f̂ ĝ

where ∗ denotes the convolution and if f̂ and ĝ are also integrable, then

f̂ g =
1√
2π
f̂ ∗ ĝ.

When f is an even function, which will be the case throughout the paper, its Fourier
transform reduces to the cosine transform

f̂(y) =

√
2

π

∫ ∞

0

f(x) cos(yx) dx

and is therefore even.
An integrable function f with integrable Fourier transform is said to be positive-definite

if f̂(y) ≥ 0 for every y ∈ R. This is not the usual definition, but is equivalent to it by
Bochner’s theorem. The set of positive-definite functions is closed under convolution and
multiplication.

3. The Selberg trace formula

Given a closed hyperbolic surface M (always assumed to be oriented), we list the eigen-
values of its Laplace–Beltrami operator (acting on square-integrable functions) in non-
decreasing order

0 = λ0(M) < λ1(M) ≤ λ2(M) ≤ · · ·
where each eigenvalue is repeated according to its multiplicity, i.e., the dimension of the
corresponding eigenspace.

The set of oriented closed geodesics in M is denoted by C(M). This means that each
unoriented closed geodesic appears twice in C(M), once for each orientation. The length of
a geodesic γ ∈ C(M) is denoted ℓ(γ) and its primitive length is denoted Λ(γ). The latter
is defined as the length of the shortest geodesic α such that γ = αk for some power k ≥ 1.
The geodesic α is called primitive because it cannot be expressed as a proper power of
another geodesic.

A function f : R → C is said to be admissible if it is even, integrable, and its Fourier

transform f̂ is holomorphic in a horizontal strip of the form{
z ∈ C : | Im(z)| < 1

2
+ ε

}
for some ε > 0 and satisfies the decay condition

|f̂(z)| = O

(
1

1 + |z|p

)
for some p > 2 in that strip. Note that the decay condition implies that f̂ and yf̂(y) are
integrable on the real line so that f itself must be continuously differentiable by Fourier
inversion and differentiation under the integral sign.
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With the above notation and normalizations, the Selberg trace formula [Bus10, Section
9.5] states that for every closed hyperbolic surface M of genus g and every admissible
function f : R → C, we have

∞∑
j=0

f̂
(√

λj(M)− 1
4

)
= 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx+
1√
2π

∑
γ∈C(M)

Λ(γ)f(ℓ(γ))

2 sinh(ℓ(γ)/2)
.

Since f̂ is even, it does not matter which square root we use on the left-hand side. It is
customary to write rj(M) for either of the two roots, so that rj(M)2 + 1

4
= λj(M). Note

that our convention for the Fourier transform differs from the one used in [Bus10] by a
factor of 1/

√
2π, which explains the appearance of this factor in the above formula.

4. Linear programming

Like the linear programming bounds of Cohn and Elkies [CE03] for the density of sphere
packings, for each of the five invariants sys, kiss, λ1, m1, and Nsmall, our criterion will take
the following form:

Suppose that f is an admissible function such that f and f̂ satisfy certain

linear inequalities over certain intervals. Then f and f̂ produce a bound on
the given invariant that holds for every closed hyperbolic surface (satisfying
certain conditions) in a given genus.

This is called “linear programming” because the inequalities are linear in the sense that
any positive linear combination of functions that satisfy the inequalities still satisfies the
inequalities. However, the function to be optimized (the resulting bound) is not linear in f .
Moreover, the space we are optimizing over is infinite-dimensional and there are infinitely
many inequalities to check (one at each point in the specified intervals). For these reasons,
classical linear programming algorithms do not work well, which led Cohn and Elkies to
devise the following strategy (adapted here to our setting).

The idea is to consider functions f of the form f(x) = p(x2)e−x2/2 where p is a poly-
nomial. Such a function is automatically admissible since its Fourier transform takes the

form f̂(y) = q(y2)e−y2/2 for some polynomial q, hence defines an entire function with
super-exponential decay in any horizontal strip. Moreover, the map p 7→ q is linear. In
fact, it is diagonal with entries (−1)n with respect to the basis of generalized Laguerre

polynomials L
(−1/2)
n . The upshot is that it is possible to impose linear equations on both

f and f̂ simultaneously. All one has to do is solve a linear system of equations to find the

coefficients of p and q. The conditions we impose are that f and f̂ have double zeros at
certain points x1, . . . , xm and y1, . . . , yn respectively.
The reason for imposing double zeros is that it prevents local changes of sign and with

enough double zeros at appropriate locations we are usually able to find some functions f

and f̂ that satisfy the required inequalities. Once we find such suitable zeros we then try
to wiggle them to decrease the resulting bound, then add more zeros and repeat.

For sphere packing bounds this scheme appears to converge quickly to a unique optimal
function f in each dimension. We have not found this to be the case for hyperbolic surfaces.

One important difference is that for sphere packings, Cohn and Elkies assume that f and f̂
have the same double zeros and the situation is fairly symmetric. This is not the case with
the Selberg trace formula and the actual optimizers for our problems appear to either have



LINEAR PROGRAMMING BOUNDS FOR HYPERBOLIC SURFACES 7

only finitely many zeros in some cases (but not their Fourier transform). Indeed, imposing
more zeros for f usually makes our bounds worse and the zeros have a tendency to fly off
to infinity or collide when we run the optimizer.

The strategy we have described above is the one we use in low genus (or for small systole).
In high genus (or for large systole), our asymptotic bounds are obtained by using special
test functions related to Bessel functions and optimizing over certain parameters.

4.1. Certifying inequalities on intervals. Despite the numerical optimization used to
produce our bounds, the end results are rigorous. The reason is that we work with rational
zeros and polynomials with rational coefficients, so the linear systems involved are solved
exactly over the rational numbers. The polynomials we get thus have actual double zeros
rather than approximate ones.

To ascertain that f(x) = p(x2)e−x2/2 ≥ 0 for every x in a given interval [a, b], we apply
Sturm’s theorem to count the number of distinct roots of p in that interval and make sure
that there are no more than the number of imposed double zeros. This implies that neither
p nor f changes sign on the interval, and it then suffices to check that p is strictly positive
at some point or that its second derivative is strictly positive at a double zero.

We will also sometimes need to certify inequalities involving transcendental functions
over intervals. In these cases, we approximate the transcendental functions with trun-
cated Taylor series and apply Sturm’s theorem to these approximation. The functions we
consider either have positive or alternating Taylor coefficients, allowing us to know if the
approximations are from below or above.

In some cases, we need to find the minimum of a function h(x) = r(x)e−x/2 on an
interval [a, b], where r is a polynomial. Since h′(x) = (r′(x) − r(x)/2)e−x/2 we can use
Sturm’s theorem to verify that h has at most one critical point on the interval. If it has
one, then it suffices to verify that r′(a) − r(a)/2 > 0 and r′(b) − r(b)/2 < 0 so that the
critical point is a local maximum. The minimum of h is then at one of the endpoints, and
this is also true if there is no critical point in the interval.

4.2. Certifying error bounds on integrals. Another difference with sphere packing
bounds is that we have inequalities involving integrals that need to be checked. For exam-
ple, one of our bounds requires that

(4.1) f̂(i/2) ≥ 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx.

To obtain functions that satisfy this inequality, we first compute numerical approximations
In of the integrals ∫ ∞

0

L(−1/2)
n (x2)e−x2/2x tanh(πx) dx.

In our linear system of equations, we then impose that f̂(i/2) = q(−1/4)e1/8 is equal to

ρ times the numerical approximation of 2(g − 1)
∫∞
0
f̂(x)x tanh(πx) dx (given by a linear

combination of the approximations In), where ρ > 1 is some rational number. Technically,
we also replace e1/8 by a rational approximation in this equation.
Once we have found a good candidate function f , we verify a posteriori that inequality

(4.1) is satisfied. This is done by evaluating the left-hand side using interval arithmetic

(which provides true lower and upper bounds on f̂(i/2)) and finding certified bounds on
the integral.
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For a function h that is analytic in a neighborhood of a compact interval [a, b], the

Arb package [Joh17] in SageMath [The21] is able to compute the integral
∫ b

a
h(x) dx with

certified error bounds. However, improper integrals (and in particular infinite intervals)

cannot be handled. We thus use the Arb package to estimate
∫ b

0
f̂(x)x tanh(πx) dx for

some large b and then estimate the remainder
∫∞
b
f̂(x)x tanh(πx) dx separately. For this,

we use the inequalities

tanh(πb) ≤ tanh(πx) ≤ 1

for x ≥ b. In all cases, our hypotheses will require that f̂ is eventually of constant sign, so
it remains to estimate ∫ ∞

b

f̂(x)x dx =

∫ ∞

b

xq(x2)e−x2/2 dx.

However, since xq(x2) is an odd polynomial, the function xq(x2)e−x2/2 admits an explicit
primitive and the integral can be computed exactly.

We will sometimes have to deal with more complicated integrals, in which case we
estimate the remainder terms using ad hoc inequalities.

4.3. Ancillary files. Whenever we require certified error bounds on integrals in a proof,
we explain how to estimate these integrals in the proof and state the resulting estimate
that was obtained using interval arithmetic in SageMath. The calculations behind these es-
timates are all contained in the Jupyter notebook certified integrals.ipynb attached
as an ancillary file to the arXiv version of this paper.

Then there is one file verify invariant.ipynb for each of the invariants we consider.
Each such file contains a function invariant poly which computes a pair of polynomials

(p, q) such that f(x) = p(x2)e−x2/2 and f̂(x) = q(x2)e−x2/2 are the Fourier transform of
one another given a list of double zeros for each and perhaps additional data. Another

function invariant verify checks that all the required conditions on f and f̂ are satisfied
and outputs a resulting rigorous upper bound on the invariant in question. The lists of
input parameters that we used to produce the bounds in Tables 1 to 7 are stored in various
files parameters invariant.sobj that are loaded in the last cell of the verify invariant

notebook. Upon execution of this last cell, the program runs the invariant verify func-
tion on each of these input parameters and prints out the resulting bounds.

5. Bessel functions

Bessel functions were used in [CE03] to obtain a new proof of the second best asymptotic
upper bound on the density of sphere packings in Rn due to Levenshtein [Lev79]. We will
also use these functions to obtain our asymptotic bounds. We list some of their properties
here for later reference.

One of the many equivalent definitions [Wat95, p.40] of the Bessel function of the first
kind of order α is

Jα(z) :=
(z
2

)α ∞∑
n=0

(−1)n

n! Γ(n+ α + 1)

(z
2

)2n
when α is not a negative integer, where Γ is the classical gamma function. For non-integer
orders Jα is a multi-valued function, but by abuse of notation the quotient
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Jα(z)

zα
=

1

2α

∞∑
n=0

(−1)n

n! Γ(n+ α + 1)
z2n

defines an even entire function that takes the value 2−α/Γ(α+1) at the origin. This leads
us to define the normalized Bessel function

ηα(z) := Γ(α + 1)
∞∑
n=0

(−1)n

n! Γ(n+ α + 1)
z2n = 2αΓ(α + 1)

Jα(z)

zα

satisfying ηα(0) = 1. For α > −1/2, Poisson’s integral formula for Bessel functions [Wat95,
p.165] can be written as

ηα(x) =
1

B(1
2
, α+ 1

2
)

∫ 1

0

(1− t2)α−1/2 cos(xt) dt

where

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
is the Beta function. This means that ηα is the Fourier transform of

χα(t) =

√
π/2

B(1
2
, α+ 1

2
)
rect(t/2)(1− t2)α−1/2

where rect is the characteristic function of the interval
[
−1

2
, 1
2

]
. By Fourier inversion, we

have
η̂α(t) = χα(t)

whenever α > 1/2, which is when ηα is integrable. In particular, ηα is positive-definite
for α > 1/2 and its Fourier transform is supported in [−1, 1]. By the easy direction of
the Paley–Wiener theorem, this implies that ηα has exponential type 1. In fact, along the
imaginary axis we have the following exact asymptotic for every α ≥ −1/2 [Wat95, p.203]:

(5.1) Jα(ix) ∼
ex√
2πx

as x→ ∞ in R.

The above integrability condition on ψα follows from the asymptotic formula

(5.2) Jα(z) =

√
2

πz

(
cos
(
z − απ

2
− π

4

)
+O(e| Im z|/|z|)

)
as |z| → ∞ with | arg z| < π [AS64, p.364]. Also note that Jα(x) vanishes to order α at
the origin, so that for α ≥ −1/2 the function x 7→

√
xJα(x) is bounded near the origin and

hence on (0,∞) by continuity and the above asymptotic.
We will frequently make use of the even entire functions

φα(z) =
Jα(z/2)

2

z2α
=

(
ηα(z/2)

4αΓ(α + 1)

)2

and

ψα(z) =
Jα(z)

2

z2α(1− (z/jα)2)

where jα is the first positive root of Jα. These are such that φα(x) ≥ 0 for every x ∈ R
and ψα(x) ≤ 0 for |x| ≥ jα. Up to positive constants, φα(2x) is equal to χ̂α ∗ χα(x) so
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its Fourier transform is χα ∗ χα ≥ 0 as long as φα and χα are integrable, which holds
whenever α > 0. In other words, φα is positive-definite if α > 0, with Fourier transform
supported in [−1, 1]. It was also shown in [GIT20, Remark 1.1] that ψα is positive-definite

if α ≥ −1/2. Observe that φ̂α is admissible if α > 1/2 and ψ̂α is admissible if α > −1/2
by the asymptotic formula (5.2).

6. Systole

6.1. The criterion. The systole of a closed hyperbolic surface is defined as the length of
any of its shortest closed geodesics (also called systoles). Our criterion for bounding the
systole goes as follows.

Theorem 6.1. Let g ≥ 2. Suppose that f is a non-constant admissible function for which
there exists an R > 0 such that

• f(x) ≤ 0 if x ≥ R;

• f̂(ξ) ≥ 0 for every ξ ∈ R ∪ i
[
−1

2
, 1
2

]
;

• f̂(i/2) ≥ 2(g − 1)
∫∞
0
f̂(x)x tanh(πx) dx.

Then sys(M) ≤ R for every closed hyperbolic surface M of genus g.

Proof. Suppose that there is a hyperbolic surfaceM of genus g such that sys(M) > R. Then
sys(N) > R for every surface N in some connected neighborhood U of M in moduli space.

This implies that f(ℓ(γ)) ≤ 0 for every γ ∈ C(N) and we also have f̂
(√

λj(N)− 1
4

)
) ≥ 0

for every j ≥ 0 by the hypotheses on f and f̂ . From the Selberg trace formula, we obtain

f̂(i/2) ≤
∞∑
j=0

f̂
(√

λj(N)− 1
4

)
= 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx+
1√
2π

∑
γ∈C(N)

Λ(γ)f(ℓ(γ))

2 sinh(ℓ(γ)/2)

≤ 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx

≤ f̂(i/2)

for every N ∈ U . We conclude that f̂
(√

λj(N)− 1
4

)
= 0 for every j ≥ 1. Since f̂ is

holomorphic in a strip and not constant equal to zero, its zeros are isolated. This implies
that for every j ≥ 1, the eigenvalue λj(N) is a constant function of N ∈ U since eigenvalues
depend continuously on the metric (see e.g. [BU83]). Therefore, all the surfaces in U are
isospectral. However, Gel’fand proved that any continuous deformation ofM that preserves
the entire Laplace spectrum is constant [Gel63], which is a contradiction. □

Remark 6.2. The analogous result for flat tori was proved in [CE03, Theorem 3.2] using a
rescaling and limiting argument for the second half of the proof.

Remark 6.3. It is easy to see that if the inequality in the third bullet point is strict, then
the conclusion can be strengthened to a strict inequality. The proof proceeds similarly as
above, but the chain of inequalities directly leads to a contradiction.
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6.2. Low genus. The upper bounds we have obtained from Theorem 6.1 though numerical
optimization are listed in Table 1 for 2 ≤ g ≤ 20. The verification of these values is done
in the ancillary file verify systole.ipynb. They are lower than the previous best upper
bounds except in genus 2 where the optimal bound is 2 arccosh(1+

√
2) ≈ 3.057142 [Jen84].

In all other genera, the previous best upper bound was Bavard’s inequality [Bav96]

(6.1) sys(M) ≤ 2 arccosh

(
1

2 sin(π/(12g − 6))

)
,

which comes from a sharp upper bound on the radius of an embedded disk in M .
We have also listed the largest recorded value of the systole in some genera. Those

listed in genus 7, 14, and 17 come from Hurwitz surfaces. Technically, the values from
[Vog03] and [SS22] were obtained by numerical calculations in triangle groups and are not
completely rigorous, but they could be made rigorous in principle (this was done in [DT00]
for the Klein quartic and in [Woo01] for the Hurwitz surfaces of genus 14). For Hurwitz
surfaces, the calculations from [SS22] corroborate those of [Vog03].

Since the systole does not decrease under covers, one could fill in all the blanks in the
table with values in lower genera. Similarly, the value listed in genus 13 persists in every
genus g > 13 [FBR22]. We decided not to list these since better constructions surely exist.

Table 1. Bounds on the maximum of sys. The dagger indicates where the
linear programming bound fails to beat the previous best upper bound.

genus lower bound LP bound previous upper bound
2 3.057141 [Jen84] 3.156053† 3.057142 [Jen84]
3 3.983304 [Sch93] 4.194719 4.494373 [Bav96]
4 4.624499 [Sch93] 4.876863 5.176481 [Bav96]
5 4.91456 [Sch94] 5.381937 5.682841 [Bav96]
6 5.109 [CB05] 5.783671 6.086062 [Bav96]
7 5.796298 [Vog03] 6.117160 6.421249 [Bav96]
8 6.407734 6.708126 [Bav96]
9 5.376 [Sch93] 6.655635 6.958903 [Bav96]
10 6.880869 7.181671 [Bav96]
11 5.980406 [Sch93] 7.080715 7.382068 [Bav96]
12 7.262735 7.564184 [Bav96]
13 5.909039 [FBR22] 7.429527 7.731080 [Bav96]
14 6.887905 [Woo01, Vog03] 7.584859 7.885106 [Bav96]
15 7.729299 8.028108 [Bav96]
16 7.863529 8.161558 [Bav96]
17 7.609407 [Vog03] 7.988773 8.286655 [Bav96]
18 8.118854 8.404383 [Bav96]
19 7.358 [SS22] 8.220710 8.515562 [Bav96]
20 8.328393 8.620882 [Bav96]

6.3. Asymptotics. Note that the term sin(π/(12g − 6)) appearing in Bavard’s bound is
asymptotic to π

12g
as g → ∞ and

arccosh(x) = log(x+
√
x2 − 1) = log(x) + log(2) + o(1)
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as x→ ∞ so that Bavard’s bound (6.1) can be rewritten as

sys(M) ≤ 2 log

(
6g

π

)
+ 2 log(2) + o(1)

= 2 log(g) + 2 log

(
12

π

)
+ o(1)

= 2 log(g) + 2.680353 . . .+ o(1)

as g → ∞. By comparison, the elementary area bound coming from the fact that a disk
of radius sys(M)/2 is embedded is

sys(M) ≤ 4 arcsinh(
√
g − 1)

= 2 log(g) + 4 log(2) + o(1)

= 2 log(g) + 2.772588 . . .+ o(1)

as g → ∞.
We will decrease the additive constant in Bavard’s bound by roughly 0.271, which is

consistent with the improvement we have observed in small genus.

Theorem 6.4. There exists some g0 ≥ 2 such that every closed hyperbolic surface M of
genus g ≥ g0 satisfies

sys(M) < 2 log(g) + 2.409.

Remark 6.5. In terms of area, this result means that in large genus, a disk of radius
sys(M)/2 cannot occupy a proportion of more than

e2.409/2

4
≈ 0.833772 . . .

of M , while a maximal embedded disk can occupy as much as

3

π
≈ 0.954929 . . .

of the surface by Bavard’s result [Bav96].

Remark 6.6. In large genus, the constructions with the fastest growing systole known are
given by towers of principal congruence covers of arithmetic surfaces. For each such tower,
there is a constant c such that

sys(M) ≥ 4

3
log(g)− c

for every surface M of genus g in the tower [KSV07, Theorem 1.5].

The lengthy proof of Theorem 6.4 will require several estimates presented in the form of
lemmata below. The strategy is to apply Theorem 6.1 with functions f such that

f̂(x) = hc(bx)φα(Rx),

for some parameters α, b, c and R, where

hc(x) = (c− 1 + x2)e−x2/2 and φα(x) =
Jα(x/2)

2

x2α

with Jα the Bessel function of order α as in Section 5. We were led to these types of
functions by studying the numerical data gathered in small genus. We believe they are
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nearly optimal. Using functions of the form f̂(x) = φα(Rx) instead yields a bound of the
form 2 log(g) + c but with a c larger that Bavard’s, which is why we need to use more
complicated functions.

The parameters α, b, c will be fixed at some point and only R will depend on the genus.
Since we need

f̂(i/2) > 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx ≥ 0,

we require that

c− 1− b2/4 > 0 or equivalently c > 1 + b2/4,

which in turn implies that f̂ is non-negative on R ∪ i[−1
2
, 1
2
].

To apply Theorem 6.1, we need to show that f is eventually negative and to estimate
the location of its last sign change. By Fourier inversion and the convolution theorem, we
have

(6.2) f =
1√
2π

ĥbc ∗ φ̂R
α

where hbc(x) = hc(bx) and φ
R
α (x) = φα(Rx). Recall that φα is positive-definite with Fourier

transform supported in [−1, 1] provided that α > 0, as explained in Section 5. It follows

that φ̂R
α (x) = φ̂α(x/R)/R is non-negative and supported in [−R,R] while

ĥbc(x) =
1

b
ĥc(x/b) =

1

b
(c− x2/b2)e−x2/(2b2)

is non-positive outside [−b
√
c, b

√
c]. From this, it is easy to show that the convolution f is

non-positive outside [−R− b
√
c, R+ b

√
c]. However, f(R+ b

√
c) < 0 so that the last sign

change occurs before that. Here is how we can estimate its location more precisely.

Lemma 6.7. Suppose that κ0 ∈ R is such that∫ ∞

κ0

(x− κ0)
2α(c− x2)e−x2/2 dx < 0

and let f be defined as above with α ∈ (0, 1), b > 0, and c > 0. If κn → κ0 and Rn → ∞
as n→ ∞, then R2α+1

n f(Rn + bκn) converges to some limit µα,b,c,κ0 < 0 as n→ ∞, where
µα,b,c,κ0 depends continuously on the parameters. In particular, f(Rn + bκn) is negative
whenever n is large enough.

The proof will require the following lemma.

Lemma 6.8. For every α ∈ (0, 1), there exist constants cα, dα > 0 such that

R2αφ̂α

(
1− y

R

)
≤ dαy

2α

for every R > 0 and y > 0 and

lim
R→∞

R2αφ̂α

(
1− y

R

)
= cαy

2α

for every y > 0. Moreover, cα depends continuously on α.

Taking this lemma for granted for a moment, let us prove the preceding one.
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Proof of Lemma 6.7. We have

R2α+1f(R + bκ) =
1√
2π
R2α+1

∫ ∞

−∞
ĥbc(x)φ̂

R
α (R + bκ− x) dx

=
1

b
√
2π
R2α

∫ ∞

−∞
ĥc(x/b)φ̂α

(
1− x− bκ

R

)
dx

=
1√
2π

∫ ∞

−∞
ĥc(y)R

2αφ̂α

(
1− b

y − κ

R

)
dy

=
1√
2π

∫ ∞

κ

ĥc(y)R
2αφ̂α

(
1− b

y − κ

R

)
dy

by the change of variable y = x/b, where the last equality is because φ̂α vanishes after 1.

If y > κ, then R2αφ̂α

(
1− by−κ

R

)
≤ dα(b(y − κ))2α for some dα > 0 according to

Lemma 6.8. If we write κ = infn κn, then we have that ĥc(y)R
2α
n φ̂α

(
1− by−κn

Rn

)
is bounded

independently of n by the integrable function

dαb
2α(y − κ)2α|ĥc(y)|

on the interval [κ,∞). We can therefore apply the dominated convergence theorem to
conclude that

lim
Rn→∞

R2α+1
n f(Rn + bκn) =

cαb
2α

√
2π

∫ ∞

κ0

(y − κ0)
2αĥc(y) dy < 0,

where we used the limit from Lemma 6.8 and the hypothesis that the last integral is
negative. It follows that f(Rn + bκn) is eventually negative. That the limit depends
continuously on the parameters is a consequence of the dominated convergence theorem.

□

We now prove the lemma about the behaviour of φ̂α near the end of its support.

Proof of Lemma 6.8. Since φ̂α is continuous (because φα is integrable if α > 0) and sup-
ported in [−1, 1], we have φ̂α(1) = 0 and

φ̂α

(
1− y

R

)
= φ̂α

(
1− y

R

)
+ φ̂α

(
1 +

y

R

)
− 2φ̂α(1)

=

√
2

π

∫ ∞

0

φα(x)
(
cos
(
x− xy

R

)
+ cos

(
x+

xy

R

)
− 2 cos(x)

)
dx.

= 2

√
2

π

∫ ∞

0

φα(x) cos(x)
(
cos
(xy
R

)
− 1
)
dx

= R

√
8

π

∫ ∞

0

φα(Ru) cos(Ru) (cos(yu)− 1) du

by the change of variable u = x/R.
Observe that

R2α+1φα(Ru) =
1

u2α+1
RuJα(Ru/2)

2 ≤ Dα

u2α+1
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for some constant Dα > 0 since the function xJα(x/2)
2 is bounded on the positive real axis

(see Section 5). It follows that

R2αφ̂α

(
1− y

R

)
≤ Dα

√
8

π

∫ ∞

0

1− cos(yu)

u2α+1
du = y2αDα

√
8

π

∫ ∞

0

1− cos(v)

v2α+1
dv

where v = yu. The first assertion is thus proved with

dα = Dα

√
8

π

∫ ∞

0

1− cos(v)

v2α+1
dv,

which is finite because of the hypothesis on α. Indeed, 2α− 1 < 1 implies that

Gα(v) =
1− cos(v)

v2α+1

is integrable near the origin and 2α + 1 > 1 implies that it is integrable near infinity.
For the second assertion, we will use the asymptotic expansion of Bessel functions along

the real line. We have

(Ru)2α+1φα(Ru) = RuJα(Ru/2)
2

=
4

π

(
cos

(
Ru

2
− (2α + 1)π

4

)
+O

(
1

Ru

))2

=
4

π

(
cos2

(
Ru

2
− (2α + 1)π

4

)
+O

(
1

Ru

))
.

Moreover, recall that (Ru)2α+1φα(Ru) is uniformly bounded so that

R2α+1φα(Ru)(1− cos(yu)) = (Ru)2α+1φα(Ru)Gα(yu)y
2α+1

is bounded by an integrable function and similarly for

FR(u) =

(
R2α+1φα(Ru)−

4

πu2α+1
cos2

(
Ru

2
− (2α + 1)π

4

))
cos(Ru)(1− cos(yu)),

namely, by some constant multiple of Gα(yu). Furthermore, for every u > 0 we have that
FR(u) tends to zero as R → ∞ by the asymptotic expansion above. By the dominated
convergence theorem,

∫∞
0
FR(u) du→ 0 as R → ∞. We conclude that

lim
R→∞

∫ ∞

0

R2α+1φα(Ru) cos(Ru) (cos(yu)− 1) du

is equal to

−4y2α+1

π
lim
R→∞

∫ ∞

0

cos2
(
Ru

2
− (2α + 1)π

4

)
cos(Ru)Gα(yu) du

provided that either limit exists. Using the identity

cos2(a− b) =
1 + cos(2(a− b))

2
=

1

2
(1 + cos(2a) cos(2b) + sin(2a) sin(2b)) ,

we find that the integral inside the second limit is equal to

1

2

∫ ∞

0

(
1 + cos(Ru) cos

(
(2α + 1)π

2

)
+ sin(Ru) sin

(
(2α + 1)π

2

))
cos(Ru)Gα(yu)du,
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which we split into a sum of three terms. The first and last terms tend to zero as R → ∞ by
the Riemann–Lebesgue lemma, where we used the identity 2 cos(Ru) sin(Ru) = sin(2Ru).

Writing cos2(Ru) = 1+cos(2Ru)
2

and applying the Riemann–Lebesgue lemma again shows
that the middle term converges to

1

4
cos

(
(2α + 1)π

2

)∫ ∞

0

Gα(yu) du =
1

4y
cos

(
(2α + 1)π

2

)∫ ∞

0

Gα(v) dv.

The result then follows with

cα = −
(
2

π

)3/2

cos

(
(2α + 1)π

2

)∫ ∞

0

Gα(v) dv,

which is a positive number since (2α+1)π
2

∈
(
π, 3π

2

)
and Gα is integrable and non-negative.

That cα depends continuously on α follows from the continuity of the cosine function, the
continuous dependence of Gα on α, and the dominated convergence theorem. □

We now need to check that the hypothesis of Lemma 6.7 is satisfied for some specific
parameters.

Lemma 6.9. Let α = 0.559 and c = 2.3726. Then∫ ∞

κ

(x− κ)2α(c− x2)e−x2/2 dx < 0.

for every κ ≥ κ0 = 0.1814.

Proof. If κ ≥
√
c, then the result is obvious, because the integrand is non-positive. So we

concentrate on the interval [κ0,
√
c].

Let us denote by the integral in the statement of the lemma by I(κ). We first verify that
I(κ0) < 0 using interval arithmetic in SageMath. Since the integrand has a singularity at
κ0, we need to estimate the integral differently near there. We write∫ κ0+A

κ0

(x− κ0)
2α(c− x2)e−x2/2 dx ≤ A2α

∫ κ0+A

κ0

(c− x2)e−x2/2 dx

and then ∫ ∞

κ0+A

(x− κ0)
2α(c− x2)e−x2/2 dx ≤

∫ B

κ0+A

(x− κ0)
2α(c− x2)e−x2/2 dx

as long as A > 0, B ≥ κ0 + A, and B ≥
√
c. With A = 10−4 and B = 10, these estimates

provide the certified upper bound

I(κ0) ≤ −0.0000117812526025449 < 0.

We then show that I ′(κ) < 0 on [κ0, 0.7] as follows. By the change of variable y = x− κ
we get

I(κ) =

∫ ∞

0

y2α(c− (y + κ)2)e−(y+κ)2/2 dy

and then differentiation under the integral sign (which is justified because the derivative of
the integrand is uniformly bounded by a polynomial times a Gaussian for κ in a bounded
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interval) gives

I ′(κ) =

∫ ∞

0

y2α(y + κ)((y + κ)2 − (c+ 2))e−(y+κ)2/2 dy

=

∫ ∞

κ

(x− κ)2αx(x2 − (c+ 2))e−x2/2 dx

=

∫ √
c+2

κ

(x− κ)2αx(x2 − (c+ 2))e−x2/2 dx+

∫ ∞

√
c+2

(x− κ)2αx(x2 − (c+ 2))e−x2/2 dx

≤
∫ √

c+2

0.7

(x− 0.7)2αx(x2 − (c+ 2))e−x2/2 dx+

∫ ∞

√
c+2

(x− κ0)
2αx(x2 − (c+ 2))e−x2/2 dx

whenever κ0 ≤ κ ≤ 0.7. We verify that this sum of integrals is at most

−0.0464961225743898

(hence negative) using interval arithmetic (again splitting the integrals near 0.7 and ∞).
It follows that I is bounded above by I(κ0) < 0 on [κ0, 0.7].

For any κ ∈ [0.7,
√
c], we estimate

I(κ) =

∫ √
c

κ

(x− κ)2α(c− x2)e−x2/2 dx+

∫ ∞

√
c

(x− κ)2α(c− x2)e−x2/2 dx

≤
∫ √

c

0.7

(x− 0.7)2α(c− x2)e−x2/2 dx+

∫ ∞

√
c

(x−
√
c)2α(c− x2)e−x2/2 dx

≤ −0.0907427113682867

using interval arithmetic once again, which completes the proof. □

From the above lemma, we can deduce that the function f from equation (6.2) is non-
positive from R + bκ0 onwards provided that R is large enough.

Corollary 6.10. Let α = 0.559, b > 0, c = 2.3726, and κ0 = 0.1814. Then there exists
some R0 > 0 such that f(R + bκ) ≤ 0 for every R ≥ R0 and every κ ≥ κ0, where f is as
in equation (6.2).

Proof. If R > 0 and κ ≥
√
c, then

f(R + bκ) =
1√
2π

∫ ∞

κ

ĥc(y)φ̂α

(
1− b

y − κ

R

)
dy ≤ 0

because ĥc is non-positive after
√
c and φ̂α is non-negative, so their product is non-positive.

For every κ ∈ [κ0,
√
c] we have that R2α+1f(R + bκ) converges to some µα,b,c,κ < 0 as

R → ∞ by Lemma 6.7 and Lemma 6.9. Let

F (R, κ) :=

{
R2α+1f(R + bκ) if R ∈ (0,∞)

µα,b,c,κ if R = ∞
.

It follows form Lemma 6.7 that F is continuous at every point in {∞} × [κ0,
√
c] and the

continuity on (0,∞)× [κ0,
√
c] is a consequence of the dominated convergence theorem.

We deduce that every κ ∈ [κ0,
√
c], there exists some neighborhood U of κ and some

Rκ > 0 such that R2α+1f(R+bu) < 0 for every u ∈ U and every R ≥ Rκ. By compactness,
we can find an R0 > 0 that works for the whole interval [κ0,

√
c]. □
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Armed with this result, we can finally give the proof of Theorem 6.4.

Proof of Theorem 6.4. Let f̂(x) = hc(bx)φα(Rx) as before with α = 0.559, b = 1.0286,

c = 2.3726, and R > 0. Note that c > 1 + b2/4 as required, which implies that f̂ ≥ 0
on R ∪ i

[
1
2
, 1
2

]
. By Corollary 6.10, there exists some R0 > 0 such that if R ≥ R0, then

f(x) ≤ 0 whenever x ≥ R + bκ0, where κ0 = 0.1814 (recall that f itself depends on R,
which is why we need to consider the parameters κ ≥ κ0 to cover every x ≥ R + bκ0).
Therefore, R + bκ0 provides a bound on sys(M) as long as

f̂(i/2) ≥ 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx.

We will thus estimate both sides and choose R so that this inequality is satisfied.
For the left-hand side, we have

f̂(i/2) = hc(bi/2)φα(iR/2)

where

φα(iR/2) =
Jα(iR/4)

2

(R/2)2α
∼ 22α+1

π

eR/2

R2α+1

as R → ∞ by the asymptotic (5.1).
As for the integral term, we consider∫ ∞

0

hc(bx)x tanh(πx)R
2α+1φα(Rx) dx

and recall that for every x > 0 we have∣∣∣∣R2α+1φα(Rx)−
4

πx2α+1
cos2

(
Rx

2
− (2α + 1)π

4

)∣∣∣∣→ 0

as R → ∞ and by a similar argument as in the proof of Lemma 6.8, we have

lim
R→∞

R2α+1

∫ ∞

0

hc(bx)x tanh(πx)φα(Rx) dx

=
4

π
lim
R→∞

∫ ∞

0

hc(bx) tanh(πx)

x2α
cos2

(
Rx

2
− (2α + 1)π

4

)
dx.

Here observe that hc(bx) tanh(πx)
x2α is integrable as long as 2α− 1 < 1 or α < 1, which is what

is needed to apply the dominated convergence and obtain this equality. To compute the
integral inside the limit, we again write

cos2
(
Rx

2
− (2α + 1)π

4

)
=

1

2

(
1 + cos(Rx) cos

(
(2α + 1)π

2

)
+ sin(Rx) sin

(
(2α + 1)π

2

))
.

By the Riemann–Lebesgue lemma, the integrals of the terms with cos(Rx) or sin(Rx) tend
to zero as R → ∞ so that

4

π
lim
R→∞

∫ ∞

0

hc(bx) tanh(πx)

x2α
cos2

(
Rx

2
− (2α + 1)π

4

)
dx =

2

π

∫ ∞

0

hc(bx) tanh(πx)

x2α
dx.

We thus have
f̂(i/2)∫∞

0
f̂(x)x tanh(πx) dx

∼ 4αhc(bi/2)∫∞
0

hc(bx) tanh(πx)
x2α dx

eR/2
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as R → ∞.
For any ρ > 1 and g ≥ 2, if we choose R such that the right-hand side equal is equal

to 2(g − 1)ρ, then the left-hand side will be larger than 2(g − 1) provided that R is large
enough so that the asymptotic is sufficiently precise. We thus take

R = 2 log(g − 1) + 2 log

(
ρ

21−2α

hc(bi/2)

∫ ∞

0

hc(bx) tanh(πx)

x2α
dx

)
,

which tends to infinity as g → ∞. The hypotheses of Theorem 6.1 will then satisfied if g
is large enough, and we can further assume that R ≥ R0, so that the resulting bound on
the systole is

sys(M) ≤ R + bκ0

= 2 log(g − 1) + 2 log(ρ) + bκ0 + 2 log

(
21−2α

hc(bi/2)

∫ ∞

0

hc(bx) tanh(πx)

x2α
dx

)
according to Corollary 6.10. Since ρ > 1 was arbitrary, the additive constant can be taken
as close as we wish to

bκ0 + 2 log

(
21−2α

hc(bi/2)

∫ ∞

0

hc(bx) tanh(πx)

x2α
dx

)
.

To estimate the integral rigorously, we restrict to a compact interval [A,B] ⊂ (0,∞)
and estimate the remaining parts by∫

(0,∞)\[A,B]

hc(bx) tanh(πx)

x2α
dx ≤ π

∫ A

0

(c− 1 + b2A2)x1−2α dx+

∫ ∞

B

hc(bx)

x2α
dx

≤ π(c− 1 + b2A2)
A2−2α

2− 2α
+

hc(bB)

(2α− 1)B2α−1
,

as long as B is large enough so that hc is decreasing on [bB,∞). Since

h′c(x) = x((3− c)− x2)e−x2/2

is negative when x >
√
3− c and since our parameters satisfy

√
3− c < 1 < b, any B ≥ 1

works.
With A = 10−6 and B = 10, interval arithmetic in SageMath certifies that

bκ0 + 2 log

(
21−2α

hc(bi/2)

∫ ∞

0

hc(bx) tanh(πx)

x2α
dx

)
≤ 2.40896511079437 < 2.409

at the given parameters, as required. □

7. Kissing numbers

7.1. The criterion. The kissing number of a hyperbolic surfaceM is defined as its number
of oriented closed geodesics of minimal length. In the literature it is common to consider
the quantity 1

2
kiss(M), which counts the number of unoriented systoles inM . Our criterion

for bounding kissing numbers is the same as the one we used in [FBP22] for hyperbolic
manifolds in any dimension. We repeat the proof in the surface case for convenience.

Theorem 7.1. Let s > 0 and suppose that f is an admissible function such that

• f̂(ξ) ≥ 0 for every ξ ∈ R ∪ i
[
−1

2
, 1
2

]
;

• f(x) ≤ 0 whenever x ≥ s and f(s) < 0.
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Then for every closed hyperbolic surface M of genus g ≥ 2 such that sys(M) = s we have

kiss(M) ≤ 4
√
2π(g − 1)

sinh(s/2)

s|f(s)|

∫ ∞

0

f̂(x)x tanh(πx) dx.

Proof. We have

0 ≤
∞∑
j=0

f̂

(√
λj(M)− 1

4

)

= 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx+
1√
2π

∑
γ∈C(M)

Λ(γ)

2 sinh(ℓ(γ)/2)
f(ℓ(γ))

≤ 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx+
kiss(M)√

2π

sys(M)

2 sinh(sys(M)/2)
f(sys(M))

since the contribution of geodesics longer than the systole is non-positive. Rearranging
gives the desired result. □

Remark 7.2. We could take the value of f̂(
√

−1/4) = f̂(i/2) into account to get an a priori
better bound, but in practice we have found that the optimal functions seem to satisfy

f̂(i/2) = 0. We therefore enforce this condition in our program to speed up convergence.

Definition 7.3. For s > 0, we define K(s) as the infimum of

4
√
2π

sinh(s/2)

s|f(s)|

∫ ∞

0

f̂(x)x tanh(πx) dx

over the functions f that satisfy the hypotheses of Theorem 7.1.

Theorem 7.1 can then be restated as saying that

kiss(M) ≤ K(sys(M))(g − 1).

The following monotonicity result will greatly simplify our task of finding a global bound
(independent of the systole) in each genus.

Lemma 7.4. The function K(s) is non-decreasing for s ∈ [6,∞).

Proof. Let f be a function that satisfies the hypotheses of Theorem 7.1 at some s2 > 6

and let s1 ∈ [6, s2). We then consider the function ϕ(x) = f
(

s2
s1
x
)
with ϕ̂(x) = s1

s2
f̂
(

s1
s2
x
)
.

By the hypotheses on f we have that ϕ(x) = f
(

s2
s1
x
)
≤ 0 whenever x ≥ s1, because that

implies s2
s1
x ≥ s2. Moreover, we have ϕ(s1) = f(s2) < 0. Secondly, if ξ ∈ R ∪ i

[
−1

2
, 1
2

]
,

then s1
s2
ξ ∈ R ∪ i

[
−1

2
s1
s2
, 1
2
s1
s2

]
⊂ R ∪ i

[
−1

2
, 1
2

]
so that ϕ̂(ξ) = s1

s2
f̂
(

s1
s2
ξ
)
≥ 0.
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It remains to estimate the resulting bounds on K. We compute

sinh(s1/2)

s1

∫ ∞

0

ϕ̂(x)x tanh(πx) dx =
sinh(s1/2)

s1

s1
s2

∫ ∞

0

f̂

(
s1
s2
x

)
x tanh(πx) dx

=
sinh(s1/2)s2

s21

∫ ∞

0

f̂(y)y tanh

(
s2
s1
πy

)
dy

≤ sinh(s1/2)s
2
2

s31

∫ ∞

0

f̂(y)y tanh (πy) dy.

We then claim that
sinh(s1/2)s

2
2

s31
≤ sinh(s2/2)

s2
.

Indeed, this is equivalent to saying that sinh(x/2)/x3 increases from s1 to s2 and elementary
computations show that the derivative of this function is non-negative provided that x is
at least 6 tanh(x/2), which is certainly true if x ≥ 6.
We conclude that

sinh(s1/2)

s1|ϕ(s1)|

∫ ∞

0

ϕ̂(x)x tanh(πx) dx ≤ sinh(s2/2)

s2|f(s2)|

∫ ∞

0

f̂(y)y tanh (πy) dy

and hence that K(s1) ≤ K(s2) upon taking the infimum over f . □

When the systole is sufficiently small, any two shortest closed geodesics are disjoint,
which implies a bound on the kissing number for topological reasons. More precisely, by
the collar lemma [Bus10, Theorem 4.1.6], if sys(M) ≤ 2 arcsinh(1), then kiss(M) ≤ 6(g−1)
(and this is optimal).

In order to obtain a global upper bound on the kissing number in a given genus g from
Theorem 7.1, it remains to prove an upper bound for K(s) when s ∈ [2 arcsinh(1), 6] and
at s = sys bound(g) where sys bound(g) is the bound on the systole in genus g coming
from the previous section. This is if sys bound(g) > 6, which happens as soon as g ≥ 7.
In lower genus, we only have to bound K(s) for s in [2 arcsinh(1), sys bound(g)].

7.2. Low genus. To deal with the interval [2 arcsinh(1), 6], we partition it into smaller
subintervals, and then optimize to find a single function f for each subinterval. One
subtlety is that to get an upper bound on K(s) when s belongs to an interval [a, b], we
need an upper bound on

sinh(s/2)

−sf(s)
for s in the same interval. Once we find a candidate upper bound numerically, we appro-
ximate sinh(s/2) and e−s2/2 by Taylor polynomials from the correct direction and then use

Sturm’s theorem to certify that the bound is valid (recall that f(s) = p(s2)e−s2/2 for some
polynomial p).

In other words, if we know that f(s) < 0 for every s ∈ [a, b], then

sinh(s/2)

−sf(s)
≤ B ⇐⇒ sinh(s/2) +Bs p(s2)e−s2/2 ≤ 0.

If Sn(x) ≥ sinh(x/2) and En(x) ≤ e−x2/2 are polynomial approximations, then it suffices
to check that

Sn(x) +Bxp(x2)En(x) < 0,
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on [a, b] (we are assuming that p(x2) < 0 there, hence the reversed inequality for En). We
can perform this verification by checking that Sn(x) + Bxp(x2)En(x) is negative at one
point (using interval arithmetic) and has no zeros in [a, b] (using Sturm’s theorem). For En,
we simply take the odd degree Taylor polynomials of the exponential evaluated at −x2/2
(the resulting series is alternating). For Sn, we use Taylor’s theorem with the Lagrange
form of the remainder to get

sinh(x/2) =
n−1∑
j=0

(x/2)2j+1

(2j + 1)!
+ cosh(ξx)

(x/2)2n+1

(2n+ 1)!

for some ξx ∈ [0, x] and thus

sinh(x/2) ≤
n−1∑
j=0

(x/2)2j+1

(2j + 1)!
+ cosh(b)

(b/2)2n+1

(2n+ 1)!

for every x ∈ [a, b] ⊂ [0, b]. We define Sn(x) by the above formula except that we replace
the last term involving b by a rational approximation from above, so that the computer
can apply Sturm’s theorem reliably.

The upper bounds on 1
2
kiss that result from the above strategy are shown in Table 2

for genus 2 to 20 and verified in the ancillary file verify kissing.ipynb. They improve
upon the previous best bounds in every genus except g = 2, where the optimal bound is 12
for the number of unoriented systoles [Sch94]. We remark that these upper bounds depend
in a very sensitive way on the upper bounds on the systole from Table 1, which are not as
small as possible because we took precautions to make sure that they were rigorous. Con-
sequently, the upper bounds in Table 2 could be decreased with more precision (especially
those towards the end of the table).

7.3. Asymptotics. To prove an asymptotic upper bound the kissing number, we start
with a proposition that bounds this quantity in terms of the systole.

Proposition 7.5. There exist some s0 > 0 such that

K(s) < 2.922 · 2 sinh(s/2)
s

for every s ≥ s0. In particular, every closed hyperbolic surface M of genus g ≥ 2 and
systole sys(M) ≥ s0 satisfies

kiss(M) < 2.922 · 2 sinh(sys(M)/2)

sys(M)
(g − 1).

Remark 7.6. This improves upon [FBP22, Remark 4.4], where we obtained the same in-
equality but with the constant 63.71 instead of 2.922.

Proof. Recall that

K(s) = 2
√
2π

2 sinh(s/2)

s
inf
f

{
1

−f(s)

∫ ∞

0

f̂(x)x tanh(x) dx

}
where the infimum is over admissible functions f such that f(x) ≤ 0 if x ≥ s, f(s) < 0,

and f̂(ξ) ≥ 0 if ξ ∈ R ∪ i[−1
2
, 1
2
].
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Table 2. Bounds on the maximum of 1
2
kiss. The dagger indicates where

the linear programming bound fails to beat the previous best upper bound.

genus lower bound LP bound previous upper bound
2 12 [Jen84] 14† 12 [Sch94]
3 24 [Sch93] 34 126 [MRT14]
4 36 [Sch93] 62 244 [FBP22]
5 48 [Sch93] 97 383 [FBP22]
6 39 [Ham01] 138 547 [FBP22]
7 126 [Vog03] 185 736 [FBP22]
8 240 950 [FBP22]
9 70 [Sch93] 299 1186 [FBP22]
10 364 1446 [FBP22]
11 120 [Sch93] 434 1728 [FBP22]
12 510 2032 [FBP22]
13 144 [FBR22] 591 2358 [FBP22]
14 364 [Vog03] 677 2706 [FBP22]
15 168 [FBR22] 771 3074 [FBP22]
16 180 [FBR22] 868 3464 [FBP22]
17 336 [Vog03] 970 3874 [FBP22]
18 204 [FBR22] 1083 4305 [FBP22]
19 216 [FBR22] 1209 4756 [FBP22]
20 228 [FBR22] 1333 5227 [FBP22]

To prove the desired inequality, we use the same functions as for the asymptotic systole
bound but choose the parameters differently. That is, we take f such that

f̂(x) = (c− 1 + b2x2)e−b2x2/2φα(Rx) = (c− 1 + b2x2)e−b2x2/2Jα(Rx/2)
2

(Rx)2α

for some parameters α, b, c and R but now set c = 1 + b2/4 so that f̂(i/2) = 0.
Recall from the proof of Lemma 6.7 that for any κ0 ∈ R we have that R2α+1f(R+ bκ0)

tends to

−L1 = −
4b2α cos

(
(2α+1)π

2

)
π

∫ ∞

0

1− cos(x)

x2α+1
dx

∫ ∞

κ0

(x− κ0)
2α(c− x2)e−x2/2 dx,

as R → ∞. We also saw in the proof of Theorem 6.4 that

L2 = lim
R→∞

R2α+1

∫ ∞

0

f̂(x)x tanh(πx) dx =
2b2

π

∫ ∞

0

tanh(πx)

x2α
(x2 + 1/4)e−b2x2/2 dx.

Our goal is thus to minimize the ratio L2/L1 over the parameters such that −L1 < 0
and such that f is non-positive from s = R + bκ0 onwards. At α = 0.592, b = 0.981 and
κ0 = 0.061, we obtain 2

√
2πL2/L1 < 2.922, which implies that

2
√
2π

1

−f(R + bκ0)

∫ ∞

0

f̂(x)x tanh(x) dx < 2.922
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if R is large enough. To prove that 2
√
2πL2/L1 < 2.922, we observe that∫ ∞

0

tanh(πx)

x2α
(x2 + 1/4)e−b2x2/2 dx

is bounded above by

π

(
A2 +

1

4

)
A2(1−α)

2(1− α)
+

∫ B

A

tanh(πx)

x2α
(x2 + 1/4)e−b2x2/2 dx+

1

B2α

∫ ∞

B

x3e−b2x2/2 dx

whenever 0 < A < 2 < B and estimate each term using interval arithmetic with A = 1/104

and B = 104, noting that the last term can be rewritten as

1

B2α

∫ ∞

B

x3e−b2x2/2 dx =
1

b4B2α

∫ ∞

bB

y3e−y2/2 dy =
(b2B2 + 2)

b4B2α
e−b2B2/2.

For L1, we need a lower bound. We have∫ ∞

0

1− cos(x)

x2α+1
dx ≥

∫ B

A

1− cos(x)

x2α+1
dx

since the integrand is non-negative. We then observe that

−
∫ ∞

κ0

(x− κ0)
2α(c− x2)e−x2/2 dx ≥ −

∫ B

κ0

(x− κ0)
2α(c− x2)e−x2/2 dx,

since B >
√
c. We split this last integral at κ0 + A and estimate

−
∫ κ0+A

κ0

(x− κ0)
2α(c− x2)e−x2/2 dx ≥ −A2α

∫ κ0+A

κ0

(c− x2)e−x2/2 dx

Putting all the estimates together, we obtain the certified upper bound

2
√
2π
L2

L1

≤ 2.92190512955185 < 2.922.

The last thing to check is that when R is large enough, we have f(x) ≤ 0 for every
x ≥ s = R+ bκ0. The proof of this fact is similar as for the systole bound, and is deferred
to the next lemma.

The resulting upper bound on kiss(M) when sys(M) ≥ s0 then follows from Theorem 7.1.
□

We now prove a small lemma which verifies that the function f used above satisfies the
hypotheses of Theorem 7.1 for s = R+ bκ0 whenever R is large enough. This is similar to
Lemma 6.9 and Corollary 6.10.

Lemma 7.7. Let f be as in Proposition 7.5 with α = 0.592, b = 0.981, c = 1 + b2/4, and
κ0 = 0.061. Then there exists some R0 > 0 such that f(x) ≤ 0 for every x ≥ R + bκ0 and
every R ≥ R0.

Proof. We begin by proving the pointwise result that for every κ ≥ κ0, we have that
f(R + bκ) ≤ 0 if R is sufficiently large. Since f is the convolution of a non-negative
function supported in [−R,R] and a function which is non-positive outside [−b

√
c, b

√
c],

it is obviously non-positive at points x with |x| ≥ R + b
√
c. In other words, the result is

obvious (and holds for every R > 0) if κ ≥
√
c.
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For κ ∈ [κ0,
√
c], we use the fact that R2α+1f(R+ bκ) converges to a positive multiple of

I(κ) =

∫ ∞

κ

(x− κ)2α(c− x2)e−x2/2 dx

as R → ∞, so it suffices to check that I(κ) < 0 for every κ ∈ [κ0,
√
c]. This is similar to

the statement of Lemma 6.9 but is easier to prove because I(κ0) is not close to 0, so coarse
bounds suffice. We write

I(κ) =

∫ √
c

κ

(x− κ)2α(c− x2)e−x2/2 dx+

∫ ∞

√
c

(x− κ)2α(c− x2)e−x2/2 dx

≤
∫ √

c

κ0

(x− κ0)
2α(c− x2)e−x2/2 dx+

∫ ∞

√
c

(x−
√
c)2α(c− x2)e−x2/2 dx

then split the first integral at κ0 + 1/100 and the second one at 100 to get that

I(κ) ≤ −0.276593809735452 < 0

for every κ ∈ [κ0,
√
c].

From this pointwise result and the same continuity and compactness argument as in
Corollary 6.10, we obtain that there exists some R0 > 0 such that f(R+ bκ) ≤ 0 for every
κ ≥ κ0 and every R ≥ R0. In other words, we have that f(x) ≤ 0 for every x ≥ R + bκ
and every R ≥ R0. □

We then combine the previous proposition with our asymptotic bound for the systole to
obtain the following bound on kissing numbers that only depends on the genus.

Theorem 7.8. There exists some g0 ≥ 2 such that every closed hyperbolic surface M of
genus g ≥ g0 satisfies

kiss(M) <
4.873 · g2

log(g) + 1.2045
.

Remark 7.9. For some towers of principal congruence covers of arithmetic surfaces, the
kissing number grows at least like g4/3−ε for any ε > 0 [SS97]. This was recently generalized
to higher dimensional hyperbolic manifolds in [DFM22] with g replaced by the volume and
an exponent that depends on the dimension.

Proof of Theorem 7.8. Recall that Theorem 6.4 states that

sys(M) ≤ 2 log(g) + 2.409

if g is large enough. Let s0 be as in Proposition 7.5. If g is sufficiently large, then
2 log(g) + 2.409 ≥ s0 and we get

K(2 log(g) + 2.409) ≤ 2.922
2 sinh((2 log(g) + 2.409)/2)

2 log(g) + 2.409

< 1.461
e1.2045g

log(g) + 1.2045

<
4.873 · g

log(g) + 1.2045

where we used the fact that 2 sinh(x/2) < ex/2 for every real number x.



26 MAXIME FORTIER BOURQUE AND BRAM PETRI

By Theorem 7.1, we have

kiss(M) ≤ K(sys(M))(g − 1).

Furthermore, Lemma 7.4 says that K is non-decreasing on [6,∞). We thus get that

kiss(M) ≤ K(2 log(g) + 2.409)(g − 1) <
4.873 · g2

log(g) + 1.2045
.

provided sys(M) ≥ 6 and 2 log(g) + 2.409 ≥ max{6, s0}, which holds whenever g is large
enough.

When the systole is at most 2 arcsinh(1), we noted previously that kiss(M) ≤ 6(g − 1)
by the collar lemma, and this quantity is smaller than the stated bound when g is large
enough (in fact, this is true for all g ≥ 2).
The only interval left to cover is [2 arcsinh(1), 6]. By the calculations used to produce

Table 2, the function K is bounded on that interval. One can also prove this using a single
function f defined by

f̂(x) = (x2 + 1/4)e−x2/2φα(Rx)

with R = 2arcsinh(1)−
√

5/4 > 0 and any α ∈ (0, 1), because it satisfies all the hypotheses
of Theorem 7.1 for every s ≥ 2 arcsinh(1). The resulting linear upper bound on kiss(M)

when sys(M) ∈ [2 arcsinh(1), 6] is eventually smaller than 4.873·g2
log(g)+1.2045

when g is large

enough. □

8. First eigenvalue

8.1. The criterion. The criterion for bounding the first positive eigenvalue λ1(M) of the
Laplacian on M goes as follows.

Theorem 8.1. Let g ≥ 2. Suppose that f is a non-constant admissible function for which
there exists an L > 0 such that

• f(x) ≥ 0 for all x ∈ R;
• f̂

(√
λ− 1

4

)
≤ 0 whenever λ ≥ L;

• f̂(i/2) ≤ 2(g − 1)
∫∞
0
f̂(x)x tanh(πx) dx;

Then λ1(M) ≤ L for every hyperbolic surface M of genus g.

Proof. Suppose that M is a hyperbolic surface with λ1(M) > L. By continuity, the same
inequality holds for every surface N in some neighborhood U of M in moduli space. Let
rj(N) ∈ C be such that rj(N)2 = λj(N)− 1

4
. The Selberg trace formula yields

∞∑
j=0

f̂(rj(N)) ≤ f̂(i/2)

≤ 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx

≤ 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx+
1√
2π

∑
γ∈C(N)

Λ(γ)f(ℓ(γ))

2 sinh(ℓ(γ)/2)

=
∞∑
j=0

f̂(rj(N))
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from which we conclude that f̂(rj(N)) = 0 for every j ≥ 1 and every N ∈ U . As in the

proof of Theorem 6.1, this leads to a contradiction since the zero set of f̂ is discrete and
there are no non-trivial isospectral deformations of a hyperbolic surface. We conclude that
λ1(M) ≤ L for every M . □

Remark 8.2. If the inequality in the third bullet point is strict, then the conclusion can be
strengthened to a strict inequality and this is easier to prove.

8.2. Low genus. The upper bounds on λ1(M) resulting from Theorem 8.1 and numerical
optimization are presented in Table 3 for 2 ≤ g ≤ 20 and their verification is done in the
file verify lambda.ipynb. Our bounds are smaller than the previous best upper bounds
in every genus except 2, 3, 4, and 6 where bounds from [KMP21], [Bon22] or [YY80] are
better.

Table 3. Bounds on the supremum of λ1. The daggers indicate where the
linear programming bounds fail to beat the previous best upper bound.

genus lower bound LP bound previous upper bound
2 3.838887 [SU13] 4.625307† 3.838898 [KMP21, Bon22]
3 2.6779 [Coo18] 2.816427† 2.678483 [KMP21, Bon22]
4 1.91556 [Coo18] 2.173806† 2.000000 [YY80]
5 0.728167 (§10.4) 1.836766 1.852651 [KMP21]
6 0.486360 (§10.4) 1.625596† 1.600000 [YY80]
7 0.691340 (§10.4) 1.480008 1.513268 [KMP21]
8 0.25 [BS07]+[BBD88] 1.372804 1.406905 [KMP21]
9 0.25 [BS07]+[BBD88] 1.289024 1.323482 [KMP21]
10 0.25 [BS07]+[BBD88] 1.222189 1.256022 [KMP21]
11 0.25 [BS07]+[BBD88] 1.168169 1.200153 [KMP21]
12 0.25 [BS07]+[BBD88] 1.122327 1.152986 [KMP21]
13 0.25 [BS07]+[BBD88] 1.083260 1.112535 [KMP21]
14 0.287470 (§10.4) 1.049217 1.077385 [KMP21]
15 0.25 [BS07]+[BBD88] 1.018005 1.046501 [KMP21]
16 0.25 [BS07]+[BBD88] 0.991735 1.019105 [KMP21]
17 0.403200 (§10.4) 0.968260 0.994601 [KMP21]
18 0.25 [BS07]+[BBD88] 0.947180 0.972525 [KMP21]
19 0.25 [BS07]+[BBD88] 0.928091 0.952510 [KMP21]
20 0.25 [BS07]+[BBD88] 0.911390 0.934260 [KMP21]

Some comments on the examples we used for the lower bounds are in order:

• Contrary to the other invariants considered in this paper, it is not known if the
supremum of λ1 is attained. For instance, we do not know if the entries equal to
1/4 in the table are attained (see below).

• In genus 2 and 3, the upper bounds from [KMP21, Bon22] are tantalizingly close to
the value of λ1 at the Bolza surface and the Klein quartic approximated numerically
in [SU13] and [Coo18] respectively, so these surfaces are the conjectured maximizers
in these genera. The authors of [KMP21] reproduced Cook’s numerical calculations
with more precision, arriving at the value 2.6779 instead of 2.6767 for the Klein
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quartic. The surface in genus 4 is Bring’s curve. Note that the values in genus
3 and 4 are based on finite element methods and are not rigorous. The value in
genus 2 is obtained using the trace formula and can be made rigorous according to
Strohmaier and Uski.

• In genus 5 to 7, 14, and 17, we apply linear programming to some of the surfaces
listed in Table 1 to obtain lower bounds on their first eigenvalue based on their
systole (see Section 10.4). The true value of λ1 for these surfaces is certainly larger
than the estimates we give since we discard all the geometric terms and the contri-
bution of higher eigenvalues in the Selberg trace formula, while the test functions
we use have only finitely many zeros. For instance, preliminary numerical calcu-
lations by Master’s student Mathieu Pineault indicate that the Fricke–Macbeath
curve in genus 7 has λ1 ≈ 1.239.

• If X → Y is a finite-sheeted covering of hyperbolic orbifolds, then λ1(Y ) ≥ λ1(X)
since any eigenfunction on Y lifts to an eigenfunction on X with the same eigen-
value. We will use this in the next bullet point.

• For the entries equal to 1/4 in the table, we use the fact that Selberg’s conjecture
is known to hold for the congruence subgroups Γ1(N) of square-free level N < 857
[BS07]. Since Γ1(N) < Γ0(N) as a finite-index subgroup, the conjecture also holds
for Γ0(N) for the same levels. If Γj(N) is torsion-free, then Xj(N) := H2/Γj(N)
(j = 0, 1) has no cone points and we can join its cusps in pairs to create thin
handles following [BBD88]. By the results in that paper, the spectrum of the
plumbed surface will be close to that of Xj(N) (which has a discrete spectrum
and a continuous spectrum equal to [1/4,∞) like all cusped surfaces). Since the
spectral gap of Xj(N) is 1/4 for square-free N < 857 [BS07], the plumbed surfaces
thus have λ1 as close to 1/4 as we wish in these cases. The genus of the plumbed
surfaces is equal to the genus of Xj(N) plus half its number of cusps. Table 4
shows which congruence group we use for each genus concerned. The fact that
these groups are indeed torsion free and that their signatures are as listed can be
found in [Miy06, Section 4.2]. This information about congruence groups is also
implemented in Sage.

• There are other well-known ways of proving lower bounds on λ1. The first of these
is Cheeger’s inequality λ1 ≥ h2/4 where h is the Cheeger constant [Che70]. In high
genus, this cannot be used to prove a lower bound of more than 1

π2 ≈ 0.1013 . . .
on λ1 [BCP22]. However, it is not clear what bounds this approach might give
in low genus as there are no explicit calculations of Cheeger constants for closed
surfaces yet [AM99, Ben15, BLT21]. The second approach is to use the Jacquet–
Langlands correspondence [JL70], which allows one to derive lower bounds on the
first eigenvalue of certain compact arithmetic surfaces from lower bounds on the
first discrete eigenvalue of corresponding congruence covers of the modular curve
(see [Ber16, Example 8.27] and [Hej85] for concrete examples). We are not aware
of any examples where both of the following hold: a better lower bound than 1/4 is
known for the cusped surface (see [Hux85, BSV06] for examples) and the Jacquet–
Langlands correspondence gives rise to a closed surface of genus at most 20 without
cone points.
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Table 4. Some congruence subgroups of the modular group, their signa-
tures, and the genus of their plumbing.

Γ (g, n) gplumbed

Γ1(13) (2, 12) 8
Γ1(15) (1, 16) 9
Γ0(107) (9, 2) 10
Γ0(87) (9, 4) 11
Γ0(86) (10, 4) 12
Γ1(17) (5, 16) 13
Γ0(78) (11, 8) 15
Γ1(19) (7, 18) 16
Γ0(134) (16, 4) 18
Γ0(102) (15, 8) 19
Γ0(227) (19, 2) 20

8.3. Asymptotics. A theorem of Cheng [Che75, Theorem 2.1] states that

(8.1) λ1(M) ≤ λ0(Ddiam(M)/2)

for any closed hyperbolic surface M , where DR is a hyperbolic disk of radius R, λ0(Ω)
is the smallest Dirichlet eigenvalue of Ω, and diam(M) is the diameter of M . From this,
Cheng deduces [Che75, Corollary 2.3] the more explicit bound

λ1(M) ≤ 1

4
+

(
4π

diam(M)

)2

.

However, this can be improved using an inequality of Gage [Gag80, Theorem 5.2(a)] on
the smallest eigenvalue of hyperbolic disks, which states that

(8.2) λ0(DR) ≤
1

4
+
π2

R2
− 1

4 sinh2(R)
.

If we ignore the last term (of smaller order), we obtain the improved inequality

λ1(M) ≤ 1

4
+

(
2π

diam(M)

)2

.

In turn, the best known lower bound on the diameter is Bavard’s bound

diam(M) ≥ arccosh

(
1√

3 tan(π/(12g − 6))

)
where g is the genus of M [Bav96]. Since the tan(x) ∼ x as x → 0 and arccosh(x) is
asymptotic to log(x) as x → ∞, Bavard’s inequality has the same asymptotic behaviour
as the more elementary inequalities

diam(M) ≥ 2 arcsinh(
√
g − 1) ≥ log(g − 1)

coming from area considerations, which result in

λ1(M) ≤ 1

4
+

(
2π

log(g − 1)

)2

.
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We will improve upon this by another factor of 4.

Theorem 8.3. There exists some g0 ≥ 2 such that every closed hyperbolic surface M of
genus g ≥ g0 satisfies

λ1(M) <
1

4
+

(
π

log(g) + 0.7436

)2

.

Remark 8.4. An inequality of Savo [Sav09, Theorem 5.6] states that

(8.3) λ0(DR) ≥
1

4
+
π2

R2
− 4π2

R3

for every R > 0. It follows that the leading terms in Gage’s upper bound (8.2) cannot
be improved. Moreover, there exist sequences of hyperbolic surfaces Mg of genus g whose
diameter is asymptotic to log(g) [BCP21]. It follows that no multiplicative improvement
as in Theorem 8.3 could be obtained from Cheng’s inequality (8.1).

Remark 8.5. As stated in the introduction, it is still unknown if there exist surfaces with
λ1(M) ≥ 1/4 in every genus. However, it was proved recently that for any ε > 0, there
exist surfaces with λ1(M) > 1/4− ε in large enough genus [HM21].

The proof of Theorem 8.3 will require the following technical lemma whose proof is
postponed until after the proof of the theorem.

Lemma 8.6. We have

lim
R→∞

R4

∫ ∞

0

sin2(πRx)

1− (Rx)2
x tanh(πx)

(Rx)2
dx =

π2

2

∫ ∞

0

sinh(x) cosh(x)− x

x3 cosh2(x)
dx > 4.20718.

We use this to prove the theorem.

Proof of Theorem 8.3. The idea of the proof is to apply Theorem 8.1 with functions of the

form fR(x) = f(x/R)/R for some fixed non-negative admissible function f such that f̂ is

non-positive on [1,∞), so that f̂R(x) = f̂(Rx) is non-positive on [1/R,∞). Then R = R(g)
must be chosen as large as possible such that the inequality

(8.4) f̂(Ri/2) ≤ 2(g − 1)

∫ ∞

0

f̂(Rx)x tanh(πx) dx

remains valid.
We choose

f(x) =

√
π

8
(2π − |x|+ sin |x|)χ[−2π,2π](x)

whose Fourier transform is equal to

f̂(x) =
sin2(πx)

x2(1− x2)
.

Note that f is non-negative on R and f̂ is non-positive on [1,∞), as required. We also

have that f is admissible since f̂ is entire and is O(|x|−4) on any horizontal strip of finite
height.
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For a given genus g ≥ 2, we want to find an R = R(g) > 0 such that inequality (8.4)
holds. We first compute

f̂(Ri/2) =
4 sinh2(πR/2)

R2(1 +R2/4)
<

4eπR

R4
.

For the integral term, we have

lim
R→∞

R4

∫ ∞

0

f̂(Rx)x tanh(πx) dx =
π2

2

∫ ∞

0

sinh(x) cosh(x)− x

x3 cosh2(x)
dx

by Lemma 8.6. If c is any positive number strictly smaller than the right-hand side (such
as 4.2071), then we have

(8.5)
f̂(Ri/2)∫∞

0
f̂(Rx)x tanh(πx) dx

<
4

c
eπR

provided thatR is large enough. If g is sufficiently large, then we can takeR = log(g−1)+log(c/2)
π

so that the right-hand side of (8.5) becomes equal to 2(g − 1). Then fR satisfies the hy-
potheses of Theorem 8.1, which proves the upper bound λ1(M) ≤ L for every closed
hyperbolic surface M of large enough genus g, where L is such that√

L− 1/4 = 1/R,

the point after which f̂R stays non-positive. This gives

L =
1

4
+

1

R2
=

1

4
+

π2

(log(g − 1) + log(c/2))2
.

Since log(4.20718/2) > 0.7436 and log(g)−log(g−1) tends to zero as g → ∞, the inequality

λ1(M) <
1

4
+

π2

(log(g) + 0.7436)2

holds for all closed hyperbolic surfaces of sufficiently large genus. □

Remark 8.7. The choice of f in the above proof is not at all random. It is proportional to
the function ψ1/2(j1/2x) from Section 5. It can be shown that this function is optimal for

the strategy we use. Indeed, the problem amounts to minimizing the growth of f̂(Ri/2)

among functions such that
∫∞
0
f̂(Rx)x tanh(πx) dx is eventually positive (so that equation

(8.4) has any chance of being satisfied). By a change of variable and an application of the
dominated convergence theorem (see the proof of Proposition 9.3 below), we get that a

necessary condition for this eventual positivity is that the second moment
∫∞
0
f̂(x)x2 dx is

non-negative. Moreover, by the Paley–Wiener theorem, the growth of f̂(Ri/2) is controlled
by the support of f . The question thus boils down to minimizing the support of f among
non-negative even functions whose Fourier transform is non-positive outside [−1, 1] and
has a non-negative second moment. According to [GIT20, Remark 1.2] (with d = s = 1,

m = 0, and f and f̂ interchanged), the optimal function for this problem is the one we
used.

We now prove the technical lemma.
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Proof of Lemma 8.6. We start by making the change of variable x = Ry to get

R2

∫ ∞

0

sin2(πRx)

1− (Rx)2
tanh(πx)

x
dx = πR

∫ ∞

0

sin2(πy)

1− y2
tanh(πy/R)

πy/R
dy.

Let F (y) = sin2(πy)
y

, GR(y) = R tanh(πy/R)
πy/R

, and HR(u) = GR(u− 1)−GR(u+1). Observe

that F is odd, GR is even, and HR is odd. For every b > 1, we have

2R

∫ b

0

sin2(πy)

1− y2
tanh(πy/R)

πy/R
dy =

∫ b+1

1

F (u)GR(u− 1) du−
∫ 1−b

1

F (v)GR(v − 1) dv

=

∫ b+1

1−b

F (u)GR(u− 1) du

by the changes of variable u = 1 + y and v = 1− y. We can rewrite this as∫ b+1

b−1

F (u)GR(u− 1) du+

∫ b−1

1−b

F (u)GR(u− 1) du

and by breaking up the second integral at u = 0 and using the symmetries of F and GR,
we obtain ∫ b+1

b−1

F (u)GR(u− 1) du+

∫ b−1

0

F (u)HR(u)du.

For every fixed R, we have that GR(y) is bounded between 0 and R so that∣∣∣∣∫ b+1

b−1

F (u)GR(u− 1) du

∣∣∣∣ ≤ R

∫ b+1

b−1

|F (u)| du

≤
∫ b+1

b−1

1

u
du

= log

(
b+ 1

b− 1

)
tends to zero as b→ ∞. We thus have

2R

∫ ∞

0

sin2(πy)

1− y2
tanh(πy/R)

πy/R
dy =

∫ ∞

0

F (u)HR(u) du.

Since 2uF (u) = 2 sin2(πu) = 1− cos(2πu), we obtain

2

∫ ∞

0

F (u)HR(u) du =

∫ ∞

0

HR(u)

u
du−

∫ ∞

0

cos(2πu)
HR(u)

u
du

=

∫ ∞

0

HR(Rx/π)

x
dx−

∫ ∞

0

cos(2Rx)
HR(Rx/π)

x
dx

by the change of variable u = Rx/π. We will show that the second term tends to zero
as R → ∞ and come back to the first term afterwards. If ϕR(x) := HR(Rx/π)/x did not
depend on R, this would follow directly from the Riemann–Lebesgue lemma. However,
the proof of the Riemann–Lebesgue lemma still implies the desired result with some work.
Since fR is even, we have

2

∫ ∞

0

cos(2Rx)ϕR(x)dx =

∫ ∞

−∞
cos(2Rx)fR(x)dx.
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By the change of variable x = y + π
2R
, we get∫ ∞

−∞
cos(2Rx)ϕR(x)dx = −

∫ ∞

−∞
cos(2Ry)ϕR

(
y +

π

2R

)
dy

so that ∫ ∞

−∞
cos(2Rx)ϕR(x)dx =

1

2

∫ ∞

−∞
cos(2Rx)

(
ϕR(x)− ϕR

(
x+

π

2R

))
dx.

It then suffices to check that ϕR(x)−ϕR

(
x+ π

2R

)
tends to zero as R → ∞ and is bounded

by an integrable function in absolute value. We have

ϕR(x) =
HR(Rx/π)

x
=
GR(Rx/π − 1)−GR(Rx/π + 1)

x

=
R

x

(
tanh(x− π/R)

x− π/R
− tanh(x+ π/R)

x+ π/R

)
Let h(x) = tanh(x)/x for x ̸= 0 and h(0) = 1. Then for every x ∈ R we have

lim
R→∞

h(x− π/R)− h(x+ π/R)

−2π/R
= h′(x)

by definition of the derivative and similarly

lim
R→∞

h(x− π
2R
)− h(x+ 3π

2R
)

−2π/R
= h′(x)

by the mean value theorem and the continuity of h′. It follows that ϕR(x) and ϕR

(
x+ π

2R

)
both converge to −2πh′(x)/x as R → ∞ and hence their difference tends to zero, at least
for every x ̸= 0.

It remains to show that ϕR(x) and ϕR

(
x+ π

2R

)
are bounded above by integrable functions

that do not depend on R. The Maclaurin series of h is 1− x2

3
+O(x4) so that

h(x− π/R)− h(x+ π/R) = h(π/R− x)− h(π/R + x)

=
(x+ π/R)2

3
− (x− π/R)2

3
+
h′′(ζ)

2
(−2x)2

=
4πx

3R
+ 2h′′(ζ)x2

for some ζ ∈ (π/R − x, π/R + x) by Taylor’s theorem. Since all the derivatives of h are
bounded on the real line, the error term is at most Ax2 for some constant A > 0 that does
not depend on R. This implies that

R

x
(h(x− π/R)− h(x+ π/R)) ≤ B

for some constant B > 0 whenever x ∈ [0, 2π/R].
We now estimate the function away from the origin. For every x ∈ R, there exists some

x∗ ∈ (x− π/R, x+ π/R) such that

h(x− π/R)− h(x+ π/R) = −(2π/R)h′(x∗)



34 MAXIME FORTIER BOURQUE AND BRAM PETRI

by the mean value theorem. We compute

−h′(x) =
tanh(x)− x

cosh2(x)

x2
≤ tanh(x)

x2
≤ 1

x2

whenever x > 0 so that −h′(x∗) ≤ 1/(x− π/R)2 and hence

R

x
(h(x− π/R)− h(x+ π/R)) ≤ 2π

x(x− π/R)2

provided that x > π/R. Also note that

1

x− π/R
≤ 2

x

if x ≥ 2π/R, which leads to the uniform estimate

R

x
(h(x− π/R)− h(x+ π/R)) ≤ 8π

x3

whenever x ≥ 2π/R. This is only useful if x ≥ 1, so we need a better bound on [2π/R, 1].
We can write

−h′(x) = sinh(x) cosh(x)− x

(x cosh(x))2
≤ sinh(x) cosh(x)− x

x2
=

sinh(2x)
2

− x

x2
.

By Taylor’s theorem, there exists some C > 0 such that

sinh(2x)

2
≤ x+

2

3
x3 + Cx5

whenever x ∈ [0, 2]. Therefore, if x ∈ [2π/R, 1] and R > π, then

x∗ ∈ (x− π/R, x+ π/R) ⊂ (π/R, 1 + π/R) ⊂ [0, 2]

so that

−h′(x∗) ≤ 2

3
x∗ + C · (x∗)3.

This gives the estimate

R

x
(h(x− π/R)− h(x+ π/R)) = −2πh′(x∗)

x
≤ 2π

2
3
(x+ π/R) + C · (x+ π/R)3

x

for every x ∈ [2π/R, 1] provided that R > π. It is easy to check that x+π/R
x

is decreasing

on that interval, hence is bounded by 3/2 while (x+π/R)3

x
is increasing and hence bounded

by (1 + π/R)3 ≤ 8.
Putting these estimates together, we get that there exists a constant D > 0 such that

ϕR(x) =
R
x
(h(x− π/R)− h(x+ π/R)) is bounded above by

µ(x) =

{
D if x ∈ [−1, 1]
8π
|x|3 if |x| > 1

for every x ∈ R provided that R > 2π. Note that µ is integrable. Similarly,

ϕR

(
x+

π

2R

)
≤ µ

(
x+

π

2R

)
≤ ν(x)
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where

ν(x) =

{
µ(x) if x ≥ −1

µ(x+ 1/4) if x < −1

is still integrable. We can therefore apply the dominated convergence theorem to conclude
that

lim
R→∞

∫ ∞

−∞
cos(2Rx)

(
ϕR(x)− ϕR

(
x+

π

2R

))
dx = 0

and hence

lim
R→∞

∫ ∞

0

cos(2Rx)
HR(Rx/π)

x
dx = 0,

as claimed.
Returning to the original problem, we have

lim
R→∞

R2

∫ ∞

0

sin2(πRx)

1− (Rx)2
tanh(πx)

x
dx =

π

2
lim
R→∞

∫ ∞

0

F (u)HR(u) du

=
π

4
lim
R→∞

∫ ∞

0

HR(Rx/π)

x
dx

=
π

4
lim
R→∞

∫ ∞

0

ϕR(x) dx

=
π

4

∫ ∞

0

lim
R→∞

ϕR(x) dx

=
π2

2

∫ ∞

0

−h′(x)
x

dx

=
π2

2

∫ ∞

0

sinh(x) cosh(x)− x

x3 cosh2(x)
dx

where we used the dominated convergence theorem to pass the limit inside the integral.
To get a rigorous lower bound this last integral, we observe that the integrand is positive

so that
π2

2

∫ ∞

0

sinh(x) cosh(x)− x

x3 cosh2(x)
dx ≥ π2

2

∫ B

A

sinh(x) cosh(x)− x

x3 cosh2(x)
dx

for any 0 < A < B. For A = 1/106 and B = 500, interval arithmetic in SageMath certifies
that the right-hand side is at least 4.20718596495552 > 4.20718. □

9. Multiplicity of the first eigenvalue

9.1. The criterion. We denote the multiplicity of the first positive eigenvalue of the
Laplacian on a hyperbolic surface M by m1(M). The following criterion for bounding m1

was first stated and proved in [FBP21, Lemma 3.2] in a slightly more general form.

Theorem 9.1. Let M be a closed hyperbolic surface of genus g ≥ 2 and suppose that f is
an admissible function such that

• f(x) ≥ 0 for all x ∈ R;
• f̂

(√
λ− 1

4

)
≤ 0 whenever λ ≥ λ1(M);

• f̂
(√

λ1(M)− 1
4

)
< 0.
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Then

m1(M) ≤
f̂(i/2)− 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx

−f̂
(√

λ1(M)− 1
4

) .

Proof. Let us write rj(M) =
√
λj(M)− 1

4
. The Selberg trace formula tells us that

f̂(i/2) +m1(M)f̂(r1(M)) ≥
∞∑
j=0

f̂(rj(M))

= 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx+
1√
2π

∑
γ∈C(M)

Λ(γ)f(ℓ(γ))

2 sinh(ℓ(γ)/2)

≥ 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx

since f̂(rj(M)) is non-positive for j ≥ 2 and f is non-negative on the length spectrum of
M . Rearranging yields the desired result. □

Observe that since we require f to be non-negative on R and not constant equal to zero,

we automatically have that f̂ is positive on the imaginary axis. In particular, Theorem 9.1
cannot be used to prove bounds on the multiplicity of λ1 for surfaces with λ1(M) ≤
1/4, because then

√
λ1(M)− 1/4 is on the imaginary axis. When applying the linear

programming method numerically, it also seems that the resulting bounds tend to infinity
as λ1(M) decreases to 1/4 in any fixed genus.
We thus have to use different methods in order to bound m1(M) when λ1(M) is close to

the interval [0, 1/4]. When λ1(M) ∈ [0, 1/4], a theorem of Otal [Ota08] (later generalized
in [OR09]) says that m1(M) ≤ 2g− 3. If λ1(M) is a little bit beyond 1/4, then the bound
gets slightly worse, namely, we have

m1(M) ≤

{
2g − 1 if λ1(M) ∈ (1/4, ag]

2g if λ1(M) ∈ (ag, bg)

where ag (resp. bg) is the smallest eigenvalue of the Laplacian on a hyperbolic disk of area
4π(g − 1) (resp. 2π(g − 1)) subject to Dirichlet boundary conditions [FBP21, Theorem
1.1]. Estimates for ag and bg are given in [FBP21, Section 2].

We thus use a combination of linear programming bounds and the above inequalities to
bound m1 in a given genus since we need to consider all possible values for λ1. Similarly
as for kissing numbers, when applying linear programming bounds over an interval I of
values for λ1, we need to subdivide it into smaller intervals and use a single function f on

each subinterval J , taking care to bound f̂
(√

λ− 1
4

)
for λ ∈ J .

9.2. Low genus. The bounds we have obtained on m1 for g between 2 and 20 are listed
in Table 5. They improve upon the previous best upper bound of 2g + 3 from [Sév02]
(which applies to all Schrödinger operators on Riemannian surfaces). In genus 2 and 3,
our bounds were previously obtained in [FBP21] and we do not repeat these calculations
in the ancillary file verify multiplicity.ipynb that certifies the other values.
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We now discuss lower bounds. In every genus g ≥ 3, Colbois and Colin de Verdière
[CCdV88] constructed closed hyperbolic surfaces satisfying m1(M) =

⌊
1
2

(
1 +

√
8g + 1

)⌋
.

This has the same order of growth as the maximum of
⌊
1
2

(
5 +

√
48g + 1

)⌋
among all closed,

connected, orientable Riemannian surfaces of genus g conjectured by Colin de Verdière
[CdV87]. We list these conjectured values in the table for comparison. In genus 2, Colin
de Verdière’s formula comes out to 7 but our upper bound is 6. The conjectured maximum
among hyperbolic surfaces is 3.

Table 5. Bounds on the maximum of the multiplicity m1.

genus lower bound conjecture LP bound previous bound
2 3 [FBP21] 3 (hyperbolic), 7 (Riemannian) 6 [FBP21] 7 [Sév02]
3 8 [FBP21] 8 8 [FBP21] 9 [Sév02]
4 4 (§9.2) or 6? [Coo18] 9 10 11 [Sév02]
5 3 [CCdV88] 10 11 13 [Sév02]
6 4 [CCdV88] 11 13 15 [Sév02]
7 7 (§9.2) 11 15 17 [Sév02]
8 6 (§9.2) 12 17 19 [Sév02]
9 4 [CCdV88] 12 19 21 [Sév02]
10 8 (§9.2) 13 20 23 [Sév02]
11 5 [CCdV88] 14 22 25 [Sév02]
12 5 [CCdV88] 14 24 27 [Sév02]
13 5 [CCdV88] 15 26 29 [Sév02]
14 12 (§9.2) 15 28 31 [Sév02]
15 7 (§9.2) 15 30 33 [Sév02]
16 8 (§9.2) 16 32 35 [Sév02]
17 6 [CCdV88] 16 34 37 [Sév02]
18 6 [CCdV88] 17 36 39 [Sév02]
19 8 (§9.2) 17 38 41 [Sév02]
20 6 [CCdV88] 18 40 43 [Sév02]

Colbois and Colin de Verdière modelled their examples on graphs and used a transver-
sality argument to control the multiplicity. Another way to obtain lower bounds on mul-
tiplicity is to use representation theory [Jen84, BC85, Coo18, FBP21] since the isometry
group of a closed hyperbolic surface is finite and acts on the eigenspaces of the Laplacian.
This means that if all the irreducible representations of a group have dimension at least d,
then the multiplicity of any eigenvalue is at least d. The problem is that there is always
the trivial representation of dimension 1, so one must find a way to rule out 1-dimensional
real representations from appearing in eigenspaces. Proposition 4.4 in [FBP21] gives such
a criterion for kaleidoscopic surfaces, as defined below.

Given integers 2 ≤ p ≤ q ≤ r, a (p, q, r)-triangle surface (sometimes called quasiplatonic)
is a hyperbolic surface of the form H2/Γ for some finite-index normal subgroup Γ of the
(p, q, r)-triangle group, that is, the group generated by rotations of order p, q, and r around
the vertices of a hyperbolic triangle with interior angles π

p
, π

q
, and π

r
at the corresponding

vertices. A kaleidoscopic surface is defined similarly but with the extended triangle group
generated by the reflections in the sides of a (p, q, r)-triangle.
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A hyperbolic surface that admits an orientation-reversing isometry is called symmetric,
reflexible, or real. Perhaps surprisingly, not every triangle surface is symmetric. In fact,
neither of the two Hurwitz surfaces in genus 17 is [Sin74, Theorem 5]. It is therefore
desirable to have a criterion for ruling out 1-dimensional real representations for asymmetric
surfaces. Even for kaleidoscopic surfaces, the representation theory of Isom+ can behave
better than that of Isom in some cases. We thus prove the following variant of [FBP21,
Proposition 4.4].

Lemma 9.2. IfM is a hyperbolic (p, q, r)-triangle surface of area at least 6πr
(

1
p
− 1

q
− 1

r

)
,

then no 1-dimensional real representations of Isom+(M) can occur in the eigenspace cor-
responding to λ1(M).

Proof. Suppose that f is an eigenfunction contained in a 1-dimensional representation of
Isom+(M) contained in the λ1-eigenspace. Then Isom+(M) acts by multiplication by ±1
on f so the set f−1(0) is invariant. By Courant’s nodal domain theorem, the complement
of this set (which is a union of analytic curves intersecting transversely [Che76]) has exactly
two connected components, so in particular f−1(0) is non-empty. We will show that this
leads to a contradiction.

Note that Isom+(M) ≥ G := Γ/π1(M) where Γ is the (p, q, r)-triangle group but a
priori the inclusion can be strict (because of inclusions between some triangle groups). We
will work G instead of Isom+(M) because that makes things simpler. Let T be the any

(2, q, r)-triangle used to define Γ, let T̃ be the tiling of H2 generated by the reflections in

the sides of T , and let T be the projection of T̃ to M . Since Γ acts simply transitively on

adjacent pairs of triangles in T̃ that share a particular kind of side (say joining the vertices
of type p and q), so does G on M . In other words, |G| = | T |/2 and

area(M) = 2|G| area(T ) = 2|G|π
(
1

p
− 1

q
− 1

r

)
.

From the hypothesis on area(M), we get |G| ≥ 3r.
Let Q = M/G, let π : M → Q be the quotient map, and let F = π(f−1(0)). We have

that Q is a sphere with three cone points and F is a finite analytic graph with no isolated
points and any vertices of degree 1 are contained in the cone points of Q.

Suppose that a component U of Q \ F contains exactly one cone point v of Q. Then
π−1(U) has |G|/k components, where k is one of p, q, or r, all of which are nodal domains.
By the above, we have |G|/k ≥ |G|/r ≥ 3, which contradicts Courant’s theorem.
If Q \ F has more than two connected components, then f has more than two nodal

domains (the preimages of these components). It follows that F contains at most one cycle.
Suppose that F does contain a cycle. Then Q \F has two connected components by the

Jordan curve theorem. Since each component contains either 0, 2, or 3 cone points by the
above argument, at least one of them, call it U , does not contain any. The quotient map
π : M → Q is thus unbranched over U , so that π−1(U) has |G| components, all of which
are nodal domains. This is again a contradiction since |G| > 2.

We conclude that F is a forest and in particular its complement is connected. Recall
that all the leaves of F are contained in the 3 cone points. Moreover, all the cone points
must belong to F since it has at least two leaves and if it has only two, then its complement
contains exactly one cone point, which is impossible by the above reasoning. We conclude
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that F is a tree. Once again, the map π is a covering map over the simply connected
domain Q \ F , so π−1(Q \ F ) has |G| > 2 components, contradiction. □

The list of all triangle surfaces in genus 2 to 101 was tabulated by Conder using Magma

and is available at [Con15]. We went through all examples in genus 2 to 20, verified if the
area hypothesis of [FBP21, Proposition 4.4] or of Lemma 9.2 was satisfied, calculated the
character tables for Isom+ and Isom using Sage/GAP, and then calculated the second small-
est dimension of an irreducible real representation of the group (or rather, a lower bound
for it). The cases where the resulting multiplicity is larger than the

⌊
1
2

(
1 +

√
8g + 1

)⌋
obtained in [CCdV88] are as follows:

• The Bolza surface of genus 2 and type (2, 3, 8) withm1 = 3. Jenni’s proof of this fact
in [Jen84] contained an error partially corrected in [Coo18] and fixed in [FBP21].
In this case, Isom admits some 2-dimensional irreducible real representations but
they can be ruled out with a more careful analysis.

• The Klein quartic of genus 3 and type (2, 3, 7) with m1 = 8 [FBP21] (the represen-
tation theory of Isom ∼= PGL(2, 7) only gives m1 ≥ 6 [Coo18]).

• Bring’s curve B of genus 4 and type (2, 4, 5), which satisfies Isom+(B) ∼= S5 and
Isom(B) ∼= S5 × (Z/2Z). While Isom(B) admits some 2-dimensional irreducible
real representations, Isom+(B) ∼= S5 has two real 1-dimensional representations and
then irreducible complex representations of dimensions 4, 5, and 6. In particular,
its irreducible real representations of dimension more than 1 have real dimension
at least 4. By Lemma 9.2, 1-dimensional real representations of Isom+(B) cannot
appear in the first eigenspace so we have m1(B) ≥ 4. Numerical evidence suggests
that the correct value is m1(B) = 6 [Coo18].

• The Fricke–Macbeath curve F of genus 7 is a Hurwitz surface (by definition, a
(2, 3, 7)-triangle surface) such that Isom+(F ) ∼= PSL(2, 8) = SL(2, 8) (see e.g.
[Sin74]). The non-trivial irreducible complex representations of this group have
complex dimensions 7, 8, and 9 [Ada02]. It follows from Lemma 9.2 thatm1(F ) ≥ 7.
Numerical calculations by Mathieu Pineault suggest that equality holds.

• The (2, 3, 8)-triangle surface of genus 8 labelled T8.1 in Conder’s list satisfiesm1 ≥ 6
due to the representation theory of Isom+.

• The (2, 4, 5)-triangle surface of genus 10 labelled T10.7 in Conder’s list satisfies
m1 ≥ 8 due to the representation theory of Isom.

• In genus 14, there are three distinct Hurwitz surfaces Xj, all with Isom+(Xj) ∼=
PSL(2, 13) (see [Sin74]) and whenever the group of orientation-preserving isometries
of a Hurwitz surface is PSL(2, q), its full group of isometries is PGL(2, q) [BBC+96,
Remark 2.3(2)]. The group PGL(2, 13) ∼= Isom(Xj) has two 1-dimensional real
representations (the trivial one and the sign representation) and then irreducible
complex representations of dimensions 12, 13, and 14 [Ada02]. By [FBP21, Propo-
sition 4.4], the three surfaces Xj all satisfy m1 ≥ 12.

• The (2, 3, 9)-triangle surface of genus 15 labelled T15.1 in Conder’s list satisfies
m1 ≥ 7 due to the representation theory of Isom+.

• The (2, 3, 8)-triangle surface of genus 16 labelled T16.1 in Conder’s list satisfies
m1 ≥ 8 due to the representation theory of Isom+.

• The (2, 4, 5)-triangle surface of genus 19 labelled T19.3 in Conder’s list satisfies
m1 ≥ 8 due to the representation theory of Isom.
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The ancillary file verify multiplicity examples.ipynb contains the computer code
that found these examples. Interestingly, in most genera the bound of Colbois and Colin
de Verdière is matched by some triangle surface. However, since the sum of the squares of
the degrees of the irreducible representations of a group is equal to the order of the group,
and since the isometry group of a closed hyperbolic surface of genus g has order at most
168(g − 1) [Hur92], the best this method could give is still O(

√
g).

Back to upper bounds, note that the linear programming bounds listed in Table 5 never
go below 2g in the range considered here, so we can assume that λ1 is between bg and the
upper bounds from Table 3 to prove them. For genus 6 onwards, our bounds are worse
when λ1 is close to (the estimate for) bg than at the upper bound on λ1. For example in
genus 20, we obtain an upper bound of 23 instead of 40 when λ1 ∈ [0.750384, 0.91139].
Our intuition is that m1 should be maximized among local maximizers of λ1. The fact
that the bound on m1 increases when λ1 decreases is an artefact of the method and is not
necessarily representative of the reality.

9.3. Asymptotics. In higher genus, we will decrease Sévennec’s upper bound by 4. We
start by proving a sublinear bound on m1 under the assumption that λ1 is fairly large. In
the statement below, jα stands for the first positive zero of the Bessel function Jα. The
k-th positive zero is denoted jα,k.

Proposition 9.3. For every p1, p2 ∈ (j0, π], there exists a constant C and some g0 ≥ 2
such that if g ≥ g0 and M is a closed hyperbolic surface of genus g with

λ1(M) ∈

[
1

4
+

(
p1

log(g)

)2

,
1

4
+

(
p2

log(g)

)2
]
,

then m1(M) ≤ Cg/ log(g)3.

Proof. We start by picking two constants α and c that only depend on p1 and p2 (and not
on g).

For every k ∈ N, the k-th zero jα,k of Jα is increasing as a function of α provided that
α ≥ 0 [Wat95, p.507]. Together with the interlacing property of the Bessel zeros [Wat95,
p.479], this implies that

j0,2 > j1,1 > j1/2,1 = π > j0,1 = j0.

In fact, much better numerics are known, namely, j0 ≈ 2.4048 and j0,2 ≈ 5.5201 [DK27].
In particular, we have

p1
p2
>
j0
π
>

j0
j0,2

.

Since jα,k depends continuously on α for every k [Wat95, p.507], there exists some α in
(0, 1/2) such that

p1 > jα and
p1
p2
>

jα
jα,2

.

We then take any c ∈ (jα/p1,min{jα,2/p2, 1}). This interval is not empty since jα/p1 < 1
and jα/p1 < jα,2/p2.
We set R = c log(g) and apply Theorem 9.1 with the function f such that

f̂(x) = ψα(Rx) =
Jα(Rx)

2

(Rx)2α(1−R2x2/j2α)
.



LINEAR PROGRAMMING BOUNDS FOR HYPERBOLIC SURFACES 41

The function f̂ is positive-definite by [GIT20, Remark 1.1] and

µ := min

{
−f̂(x) : x ∈

[
p1

log(g)
,

p2
log(g)

]}
= min {−ψα(y) : y ∈ [c p1, c p2] }

is a positive constant that only depends on our choice of parameters, but not on the genus.
Indeed, ψα is continuous and strictly negative on (jα, jα,2) ⊃ [c p1, c p2].
By the asymptotic behaviour of Bessel functions along the imaginary axis (5.1), we have

f̂(i/2) ∼ 1

π

eR

R2α+1(1 +R2/(4j2α))
= o

(
g

log(g)3

)
as g → ∞.

For the integral term, we make a change of variable to find that∣∣∣∣∫ ∞

0

f̂(x)x tanh(πx) dx

∣∣∣∣ = ∣∣∣∣∫ ∞

0

ψα(Rx)x tanh(πx) dx

∣∣∣∣
=

∣∣∣∣ πR3

∫ ∞

0

ψα(y)y
2 tanh(πy/R)

πy/R
dy

∣∣∣∣
≤ π

R3

∫ ∞

0

|ψα(y)|y2 dy

= O

(
1

log(g)3

)
.

Indeed, |ψα(y)|y2 is integrable by the asymptotic estimate (5.2) since α > 0.
By Theorem 9.1 applied with the function f , we obtain

m1(M) ≤ 1

µ

(
f̂(i/2)− 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx)dx

)
= O

(
g

log(g)3

)
if
√
λ1(M)− 1/4 ∈

[
p1

log(g)
, p2
log(g)

]
and if g is sufficiently large. □

Remark 9.4. It is easy to modify the proof of Theorem 9.1 to bound the total number of
eigenvalues in an interval [a, b] assuming that λ1(M) ∈ [a, b] (see [FBP21, Lemma 3.2]).
This more general version of the criterion implies that under the same hypotheses as above,
the total number of eigenvalues contained in the given interval is bounded by the same
quantity Cg/ log(g)3.

See [GLMST21, Corollary 1.7] for a similar result showing that for any compact interval
I contained in [0, 1/4) ∪ (1/4,∞), the multiplicity of any eigenvalue in I grows at most
sublinearly with the genus g with probability tending to 1 as g → ∞ with respect to the
Weil–Petersson measure. See also [Mon22, Corollary 6].

We then combine the sublinear upper bound from Proposition 9.3 with a previous (linear)
upper bound from [FBP21] for slightly smaller λ1 to obtain a global upper bound on m1

in large genus.

Theorem 9.5. There exists some g0 ≥ 2 such that every closed hyperbolic surface M of
genus g ≥ g0 satisfies

m1(M) ≤ 2g − 1.
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Proof. By Theorem 8.3, we can assume that

λ1(M) ≤ 1

4
+

(
π

log(g) + 0.7436

)2

≤ 1

4
+

(
π

log(g)

)2

.

Now pick any p ∈ (j0, π). Proposition 9.3 implies (a stronger version of) the result if

λ1(M) ≥ 1

4
+

(
p

log(g)

)2

.

It remains to consider the case where λ1(M) is smaller than this bound. This case was
already handled in [FBP21, Theorem 1.1], which states that m1(M) ≤ 2g − 1 whenever
λ1(M) ≤ ag, where ag is the smallest Dirichlet eigenvalue on a hyperbolic disk of area
4π(g − 1) and hence of radius 2 arcsinh(

√
g − 1). From Savo’s inequality (8.3), we have

ag −
1

4
≥ π2

4 arcsinh(
√
g − 1)2

− π2

2 arcsinh(
√
g − 1)3

∼ π2

log(g)2
as g → ∞.

In particular, when g is large enough we have

ag >
1

4
+

(
p

log(g)

)2

.

As such, all possibilities for λ1(M) are covered and the inequality is proved. □

Note that the proof relied partly on [FBP21, Theorem 1.1] whose proof is based on the
results of Sévennec [Sév02]. Different methods would be required to prove sublinear upper
bounds.

10. Small eigenvalues

10.1. The criterion. We start by proving a general criterion for bounding the number
N[0,L](M) of eigenvalues of ∆M in the interval [0, L] for any L > 0.

Theorem 10.1. Let L,R > 0 and suppose that f : R → R is an admissible function such
that

• f(x) ≤ 0 for every x ≥ R;

• f̂(ξ) ≥ 0 for every ξ ∈ R;
• f̂(

√
λ− 1/4) ≥ 1 for every λ ∈ [0, L];

Then every closed hyperbolic surface M of genus g ≥ 2 with sys(M) ≥ R satisfies

N[0,L](M) ≤ 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx+ 1− f̂(i/2).

Proof. By hypothesis, f̂(rj(M)) is at least 1 for all eigenvalues λj(M) in the interval [0, L]
and non-negative at all eigenvalues. Also note that λ0(M) = 0 ∈ [0, L] corresponds to the
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term f̂(i/2). We thus have

N[0,L](M)− 1 + f̂(i/2) ≤
∞∑
j=0

f̂(rj(M))

= 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx+
1√
2π

∑
γ∈C(M)

Λ(γ)f(ℓ(γ))

2 sinh(ℓ(γ)/2)

≤ 2(g − 1)

∫ ∞

0

f̂(x)x tanh(πx) dx

by the Selberg trace formula, where the last inequality is because the geometric terms are
non-positive by hypothesis. □

Recall that an eigenvalue of the Laplacian on M is small if it belongs to the interval
[0, 1/4]. The number Nsmall(M) of small eigenvalues of M is therefore equal to N[0,1/4](M).

Also note that λ ∈ [0, 1/4] if and only if
√
λ− 1/4 ∈ i[−1/2, 1/2]. In practice, we will

often use the weaker bound

Nsmall(M)

2(g − 1)
≤ inf

f

∫ ∞

0

f̂(x)x tanh(πx) dx

(where the infimum is over the functions f that satisfy the hypotheses of the theorem)
instead of the one given in Theorem 10.1 because the right-hand side only depends on
sys(M) and not on the genus. A theorem of Otal and Rosas [OR09] states that the left-
hand side is always bounded above by 1, and this sharp for surfaces with a very short pants
decomposition [Bus77] (see also [Bus10, Theorem 8.1.3]). Our goal is therefore to find the
smallest value of R = sys(M) for which the right-hand side becomes smaller than 1 and to
estimate how it decreases as the systole increases.

10.2. Asymptotics. We start with the asymptotics instead of the numerics for Nsmall

because they are easier to obtain than for the other invariants and they give us a point of
comparison for the numerics.

Theorem 10.2. If M is a closed hyperbolic surface of genus g ≥ 2, then

Nsmall(M) < min

(
24π2(g − 1)

sys(M)3
,
16(g − 1)

sys(M)2

)
.

Proof. Let f : R → R be an even, non-negative, admissible (hence continuous), positive-

definite function supported in [−1, 1] normalized so that f̂(0) = 1.
We then use the function fR(x) = f(x/R)/R in Theorem 10.1 with L = 1/4 and

R = sys(M). The first and second bullet points in the statement of the theorem are
satisfied by hypothesis on f while the third one follows from the non-negativity of f (and
hence of fR). Indeed,

f̂R(it) =

√
2

π

∫ ∞

0

fR(x) cosh(tx) dx ≥
√

2

π

∫ ∞

0

fR(x) dx = f̂R(0) = f̂(0) = 1

for every t ∈ R, with equality only if t = 0.
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If f̂ has a finite first moment on [0,∞), then we can estimate∫ ∞

0

f̂R(x)x tanh(πx) dx =

∫ ∞

0

f̂(Rx)x tanh(πx) dx

<

∫ ∞

0

f̂(Rx)x dx =
1

R2

∫ ∞

0

f̂(y)y dy.

The function f determined by f̂(x) = ηα(x/2)
2, where

ηα(x) = 2αΓ(α + 1)
Jα(x)

xα

is the normalized Bessel function, satisfies all the necessary requirements provided that
α > 1/2 (see Section 5). We then compute∫ ∞

0

f̂(y)y dy =

∫ ∞

0

ηα(y/2)
2y dy = 4

∫ ∞

0

ηα(x)
2x dx.

The recurrence formulae for Bessel functions [Wat95, p.2] imply that

η′α(x) =
−x

2(α + 1)
ηα+1(x) =

2α

x
(ηα−1(x)− ηα(x))

and from this it is easy to check that

1

2− 4α

(
4α2ηα−1(x)

2 + ηα(x)
2x2
)

is a primitive of ηα(x)
2x which vanishes at infinity. We thus have∫ ∞

0

f̂(y)y dy = 4

∫ ∞

0

ηα(x)
2x dx =

16α2

4α− 2

since ηβ(0) = 1 for every β. It is easy to check that this quantity is at least 8 with equality
only if α = 1 . For that parameter, the resulting inequality is

Nsmall(M) <
16(g − 1)

sys(M)2

if we ignore the term 1− f̂R(i/2) < 0.
We can also write∫ ∞

0

f̂R(x)x tanh(πx) dx =

∫ ∞

0

f̂(Rx)x tanh(πx) dx

< π

∫ ∞

0

f̂(Rx)x2 dx

=
π

R3

∫ ∞

0

f̂(y)y2 dy.

provided that f̂ has a finite second moment.

With the same function f̂(x) = ηα(x/2)
2 as before (but with α > 1 this time), we need

to compute ∫ ∞

0

f̂(y)y2 dy =

∫ ∞

0

ηα(y/2)
2y2 dy = 8

∫ ∞

0

ηα(x)
2x2 dx.



LINEAR PROGRAMMING BOUNDS FOR HYPERBOLIC SURFACES 45

Integration by parts with u = x and dv = ηα(x)
2x dx yields∫ ∞

0

ηα(x)
2x2 dx =

1

4α− 2

∫ ∞

0

(
4α2ηα−1(x)

2 + ηα(x)
2x2
)
dx

and hence ∫ ∞

0

ηα(x)
2x2 dx =

4α2

4α− 3

∫ ∞

0

ηα−1(x)
2dx.

Recall that

η̂β(t) =

√
π/2

B(1
2
, α+ 1

2
)
rect(t/2)(1− t2)β−1/2

for every β > 1/2 and every t ∈ R, where rect is the characteristic function of [−1/2, 1/2]
and B is the Beta function. By the convolution formula, we have∫ ∞

0

ηβ(x)
2dx =

√
π

2
η̂2β(0) =

1

2
η̂β ∗ η̂β(0)

=
1

2

( √
π/2

B(1
2
, β + 1

2
)

)2 ∫ 1

−1

(1− t2)2β−1 dt

=
π/2

B(1
2
, β + 1

2
)2

∫ 1

0

(1− t2)2β−1 dt

=
π/4

B(1
2
, β + 1

2
)2

∫ 1

0

u1/2−1(1− u)2β−1 du

=
π/4

B(1
2
, β + 1

2
)2
B(1

2
, 2β)

=
π

4

(
Γ(β + 1)

Γ(1/2)Γ(β + 1/2)

)2
Γ(1/2)Γ(2β)

Γ(2β + 1/2)
.

Using the recursion Γ(z + 1) = zΓ(z), Legendre’s duplication formula

Γ(z)Γ(z + 1/2) = 21−2z
√
πΓ(2z),

and the special value Γ(1/2) =
√
π, the above simplifies to∫ ∞

0

ηβ(x)
2dx =

28β−3

π

β2Γ(β)4

Γ(4β)
.

Returning to the original problem, we have∫ ∞

0

f̂(y)y2 dy = 8

∫ ∞

0

ηα(x)
2x2 dx =

32α2

4α− 3

∫ ∞

0

ηα−1(x)
2dx

=
28α−6

π

α2(α− 1)2

4α− 3

Γ(α− 1)4

Γ(4α− 4)
.

One can check that this function is minimized at α = 3/2, where it takes the value 12π.
The resulting inequality is

Nsmall(M) <
24π2(g − 1)

sys(M)3
. □
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Remark 10.3. Note that 24π2/x3 < 16/x2 if and only if x > 3π2/2 ≈ 14.8044 (for x > 0).

We now compare our inequality

Nsmall(M) <
24π2(g − 1)

sys(M)3

with Huber’s inequality

Nsmall(M) ≤ 3π2(g − 1)

8(log(cosh(sys(M)/4)))3

from [Hub76]. Since cosh(x) < ex for every x > 0, we have log(coshx) < x and hence

3π2(g − 1)

8(log(cosh(sys(M)/4)))3
>

3π2(g − 1)

8 sys(M)3/64
=

24π2(g − 1)

sys(M)3
,

so that our bound is better but only slightly. Indeed, the inequality cosh(x) > ex/2 implies
that the factors that multiply (g − 1) in the two inequalities are asymptotic to each other
as sys(M) → ∞ despite the fact that the two proofs use different functions (Huber uses
Legendre functions while we use Bessel functions).

From our inequality

Nsmall(M) <
16(g − 1)

sys(M)2

it follows that if sys(M) ≥
√
8, then Nsmall(M) < 2g − 2. In [Hub76], Huber also proves

the inequality

Nsmall(M) ≤ g − 1

2 log(cosh(sys(M)/4))
,

which implies that Nsmall(M) < 2g − 2 as soon as

sys(M) > 4 arccosh(e1/4) ≈ 2.947618.

This is better than the constant 3.46 recently obtained in [Jam21], but not as good as√
8 ≈ 2.828427. In fact, one can show that

16

x2
<

1

2 log(cosh(x/4))

for every x > 0, which means that our bound is better than Huber’s for every value of
sys(M). We will further decrease the lower bound on the systole sufficient to improve upon
the inequality Nsmall(M) ≤ 2g − 2 of Otal and Rosas in the next subsection.

10.3. Numerical results for small systole. Unsurprisingly, numerical optimization
yields better results than Theorem 10.2 when the systole is relatively small. For example,
the resulting bounds show that Nsmall(M) < 2g − 2 as soon as sys(M) ≥ 2.317 and that
Nsmall(M) < g − 1 if sys(M) ≥ 3.234. A list of lower bounds on sys(M) and the upper
bounds they imply on Nsmall(M)/(2g − 2) is given in Table 6. The verification of these
values is done in the ancillary file verify nsmall.ipynb. To produce the plot in Figure 2a,
we used these values as well as the bounds produced at many other points and took a spline
through this list of points. Thus, the plot itself is not rigorous, but the table is.
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Table 6. Lower bounds on sys(M) sufficient for Nsmall(M)/(2g − 2) to be
strictly smaller than given values.

lower bound on sys(M) strict upper bound on Nsmall(M)/(2g − 2)
2.317 1
3.234 1/2
3.919 1/3
4.486 1/4
4.978 1/5
5.409 1/6
5.818 1/7
6.180 1/8
6.505 1/9
6.894 1/10

10.4. Ramanujan surfaces. Borrowing terminology from graph theory, we say that a
hyperbolic surface M of finite area is Ramanujan if λ1(M) ≥ 1/4. We will also say that
M is strictly Ramanujan if λ1(M) > 1/4. Selberg’s eigenvalue conjecture [Sel65] states
that all congruence covers of the modular curve are Ramanujan. A related question is
whether there exist closed Ramanujan surfaces in every genus (see [Mon15, Question 1.1]
and [Wri20, Problem 10.4]). Thanks to the work of Hide and Magee [HM21], we now know
that in large genus, there exist closed surfaces that are nearly Ramanujan in the sense that
their first eigenvalue is arbitrarily close to 1/4.

Observe that

λ1(M) > L ⇐⇒ N[0,L](M) = 1 ⇐⇒ N[0,L](M) < 2.

This means that one can prove lower bounds on λ1 by bounding N[0,L] from above. In
particular,

λ1(M) >
1

4
⇐⇒ Nsmall(M) < 2 ⇐⇒ Nsmall(M)

2g − 2
<

1

g − 1
so the values in Table 6 give lower bounds on the systole that are sufficient for surfaces to
be strictly Ramanujan in genus 2 to 11. However, in obtaining these values we discarded

the term 1− f̂(i/2) appearing in Theorem 10.1. The lower bounds on the systole (sufficient
to be strictly Ramanujan) that we have obtained by taking this term into account are listed
in Table 7 for g between 2 and 20 and plotted in Figure 2b. The corresponding ancillary file
is verify ramanujan.ipynb. According to Table 1, there exist hyperbolic surfaces with
systole larger than these bounds, hence strictly Ramanujan, in genus 2 to 7, 14, and 17. For
these specific surfaces, we can increase L further as long as N[0,L] < 2 to obtain improved
lower bounds on λ1 still based only on the systole. The resulting bounds are listed in
Table 3 except in genus 2 to 4 where better data was already available. The corresponding
ancillary file is verify ramanujan examples.ipynb. These bounds are rigorous modulo
proving that the lower bounds on the systole in Table 1 are correct (as pointed out earlier,
some are rigorous but not all).

It seems very likely that surfaces with systole larger than the values listed in Table 7
exist in the remaining genera up to 20 as well. However, our numerical experiments suggest
that this method cannot prove that the next Hurwitz surface (of genus 118) is Ramanujan
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Table 7. Lower bounds on sys(M) sufficient for λ1(M) > 1/4.

genus lower bound on sys(M) sufficient for λ1(M) > 1/4 record systole
2 2.315 3.057141
3 3.218 3.983304
4 3.867 4.624499
5 4.380 4.91456
6 4.803 5.109
7 5.168 5.796298
8 5.482
9 5.760
10 6.010
11 6.236
12 6.443
13 6.632
14 6.808 6.887905
15 6.971
16 7.124
17 7.268 7.609407
18 7.403
19 7.531
20 7.651

using only its systole. Based on Figure 1a, Figure 2b, and Theorem 6.4, it seems reasonable
to make the following conjecture.

Conjecture 10.4. There exist constants c1 > c2 such that the smallest upper bound on the
systole that can be obtained from Theorem 6.1 and the smallest lower bound on the systole
sufficient to prove Nsmall < 2 (equivalently λ1 > 1/4) using Theorem 10.1 are of the form

2 log(g) + cj + o(1) as g → ∞.

It is unknown if there exist closed hyperbolic surfaces with systole asymptotic to r log(g)
for any r > 4/3, so even if the conjecture is true it is unlikely to be good enough to prove
the existence of Ramanujan surfaces in large genus.
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surface de Riemann à courbure constante. Comment. Math. Helv., 63(2):194–208, 1988.

[CdV87] Y. Colin de Verdière. Construction de laplaciens dont une partie finie du spectre est donnée.

Ann. Sci. École Norm. Sup. (4), 20:599–615, 1987.
[CE03] H. Cohn and N. Elkies. New upper bounds on sphere packings. I. Ann. of Math. (2),

157(2):689–714, 2003.
[Che70] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analysis

(Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), pages 195–
199. Princeton Univ. Press, Princeton, N. J., 1970.

https://arxiv.org/abs/2207.00469
https://arxiv.org/abs/1509.08993


50 MAXIME FORTIER BOURQUE AND BRAM PETRI

[Che75] S. Y. Cheng. Eigenvalue comparison theorems and its geometric applications. Math. Z.,
143(3):289–297, 1975.

[Che76] S. Y. Cheng. Eigenfunctions and nodal sets. Comment. Math. Helv., 51(1):43–55, 1976.
[CK09] H. Cohn and A. Kumar. Optimality and uniqueness of the Leech lattice among lattices. Ann.

of Math. (2), 170(3):1003–1050, 2009.
[CKM+17] H. Cohn, A. Kumar, S. D. Miller, D. Radchenko, and M. Viazovska. The sphere packing

problem in dimension 24. Ann. of Math. (2), 185(3):1017–1033, 2017.
[Con15] M. Conder. Quotients of triangle groups acting on surfaces of genus 2 to 101.

math.auckland.ac.nz/ conder/TriangleGroupQuotients101.txt, 2015.
[Coo18] J. Cook. Properties of eigenvalues on Riemann surfaces with large symmetry groups. PhD

thesis, Loughborough University, arXiv:2108.11825, 2018.
[CS93] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, volume 290 of

Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, New York, second edition, 1993. With additional contributions by
E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen
and B. B. Venkov.

[CZ14] H. Cohn and Y. Zhao. Sphere packing bounds via spherical codes. Duke Math. J.,
163(10):1965–2002, 2014.

[Del72] P. Delsarte. Bounds for unrestricted codes, by linear programming. Philips Res. Rep., 27:272–
289, 1972.
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[Ham01] U. Hamenstädt. New examples of maximal surfaces. Enseign. Math. (2), 47(1-2):65–101, 2001.

https://www.math.auckland.ac.nz/~conder/TriangleGroupQuotients101.txt
https://arxiv.org/abs/2108.11825
https://arxiv.org/abs/2210.00154
https://arxiv.org/abs/2111.14699


LINEAR PROGRAMMING BOUNDS FOR HYPERBOLIC SURFACES 51

[Hej85] D. A. Hejhal. A classical approach to a well-known spectral correspondence on quaternion
groups. In Number theory (New York, 1983–84), volume 1135 of Lecture Notes in Math.,
pages 127–196. Springer, Berlin, 1985.
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