
>>

- Daniel bélanger (Fugue ensa inconnul)
<PPOUR N'IMPORTE OÜ jє M’عN FOUS> \gg
- Daniel bélanger (FOUS N'iMPORTE oü)

Leterrain DE jeu: UN GRAPHE

Lع jev: UNE MARCHE ALÉATOIRE

$$
X_{t}=u
$$

LA POSITION DE LA MARCHE

$$
\mathbb{P}\left\{X_{t+1}=v \mid X_{t}=u\right\}
$$

LA PROBABiLity d d TRANSition Dع u VERS

$$
X_{t}=u
$$

LA POSition de la marche AU TEMPS t

$$
p(u, v)
$$

LA PROBADILITÉ DE TRANSition De u verse V (ne dépend que de u et v)

LA PROPRIÉTघ $\bar{\varepsilon}$ MARKOV

Lع FUTUR DE LA MARGHE

LA PROPRIÉTघ $\bar{\varepsilon}$ MARKOV

Lع FUTUR DE LA MARCHE EST indépendant de son PASSĒ.

Ré R̄CURENCE.

LA RÉCURENCE.

LA PROBABILITE DE REUENIR AK POINT DE DEिPART हST 1.
(on y reviendra toujours aiun-miment dimé)

LAÉCURENCE.

$$
\lim _{\substack{\rightarrow \rightarrow \infty \\ \text { Distrisurion cimire? } \\ \text { TEHPS } \mathbb{D E} \text { Retour ? }}}\left\{X_{t}=u\right\}=?
$$

ᄂA
TRAUSiENCE.

Thansience.

LA MARCHE AL' \bar{A} TOUR SiMPLE SUR \mathbb{Z}

$$
\begin{aligned}
& p(i, i+1)=p \\
& p(i, i-1)=1-p=: 9
\end{aligned}
$$

UN
GRAPHE AL反́ATOIRع
percolation

UN GRAPHE ALEATOiRع

PERCOLATION
ARBRE DE GALTON-WATSON

un
GRaphe ALEATOIRE
percolation arbre de GALTON-WATSON FORÉT COUVRANTE uniforme ...

DES PROBABILITÉS DE TRANSITION ALÉATOIRES

ON MET UN POIDS SUR CHAQUE ARÊTE.

$$
p(u, v)=\frac{57}{2+19+57+42}
$$

proba. proportionelles AUX POIDS.

DES PROBABILITÉS DE TRANSITION ALÉATOIRES

DEUX <<́tapes>>
D'ALÉATOIRE.

Loi
Recuite

$$
\begin{aligned}
& \mathbb{P}\{x \in \cdots, \omega \in \cdots\} \\
& \quad=\mathbb{E}\left[P^{\omega}\{x \in \cdots\} \mathbb{1}\{\omega \in \cdots\}\right]
\end{aligned}
$$

La mesure produit pour l'environnement ET LA MARCHE.
4

AUTREEXEMPLE

La marche aléatcitr en MiLiعu ALÉatoire SUR \mathbb{Z}

$$
c(i, i+1)=e^{V(i)}
$$

Les polds.

$$
p(i, i+1)=\frac{c(i, i+1)}{c(i-1, i)+c(i, i+1)}
$$

La marche aléatcite en MiLiev ALÉatoire sur \mathbb{Z}

$$
\begin{aligned}
& p(i, i+1)=\frac{1}{1+e^{\Delta v(i-1)}} \\
& p(i, i-1)=1-p(i, i+1)
\end{aligned}
$$

LES PRORABILITES DE TRANSITION SONT iiD. Et ne dépendent que des $\Delta V(i)$.

$$
\text { Si } \mathrm{E}[\Delta V]<0, \mathrm{E}\left[e^{\Delta V}\right] \geqslant 1
$$

transient.

$$
\int \begin{aligned}
& \operatorname{sim} \sin \sin \\
& x_{t}=0
\end{aligned}
$$

whenars

$$
\lim _{t \rightarrow \infty} \frac{X_{t}}{t}=0
$$ N rēqime sous-ballistique

Pièges
DANS LE RĒGiME sous-ballistique.

I_ES FLUCTUATIONS DU POTENTIEL AUTOUR PE SON ESP乏́RANCE CRÉENT DES «PUITS》 DANS ĽENVIRONNEMENT.

LA MARCHE RESTE PIE்GÉE DANS un puits jusau'f ce qu'عue PARUIENNE À SURMONTER LA PROCMAINE BARRIERE.

Viعillissement
हN REGime sous-ballistique
supposons au'au TEMPS t on SE TROUVE DANS ce Piधंqध.

$H_{t}=O(\log t)$

$$
L_{t}=O(\log t)
$$

ON DÉNOTE PAR Tt LE tEPS REQUIS POUR JORTIR DU

Viعillissement
EN RĒGiMe SOUS-BALLISTIQUE

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left\{\left|x_{t}-x_{a t}\right|<\eta \log t\right\}=F(a)
$$

APRĖS UN TEMPS t

$$
O \dot{U} F(a)=\frac{\sin \pi \alpha}{\pi} \int_{1 / a}^{1} y^{\alpha-1}(1-y)^{-\alpha} d y
$$

POUR $a>1$.
LE TEMPS QUVIL FAUT
POUR S' ÉCARTER D'UNE
DISTANCE

$$
\log t
$$

EST D`ORDRE t.

Viعillissement عN RĒGIME sOUS-BALLISTIQUE

MERGI DE MAVOJR ĒCOUTĚE!

Q பestions?

