Triangulated persistence categories

Jun Zhang CRM - Université de Montréal

Joint with P. Biran and O. Cornea (in progress)

Symplectic Zoominar September 25, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A fews words to start...

Slogan: study topology on the object-set of a category!

triangulated category

persistence \mathbf{k} -module \longrightarrow triangulated persistence category (TPC)

 \star TPC summarizes to be a refinement of a triangulated category, taking account of a *filtration structure* of the hom-sets.

* Recent studies in the similar directions:

• Orlov: Remarks on generators and dimensions of triangulated categories (2009).

• Dimitrov-Haiden-Katzarkov-Kontsevich: *Dynamical systems and categories* (2014).

• Fan-Filip: Asymptotic shifting numbers in triangulated categories (2020). (Suggested by L. Polterovich)

* (Communicated with M. Usher) TPC is different from *persistence triangulated category* (PTC).

Theorem (Biran-Cornea-Z., 2020)

Given a triangulated persistence category \mathscr{C} , for any $\mathscr{F} \subset Ob(\mathscr{C})$, the following quantities are well-defined,

- for $A, B \in Ob(\mathcal{C})$, the fragmentation pseudo-metric $d^{\mathscr{F}}(A, B)$;
- for endofunctor F on \mathscr{C} , the categorical entropy $h^{\mathscr{F}}(F) \in [0, \infty)$.

Moreover, $(Ob(\mathscr{C}), Top_{d^{\mathscr{F}}})$ is an H-space.

Example (Examples of TPC)

- (a) Homology category of a filtered pre-triangulated dg-category.
- (b) (In progress) Derived Fukaya category in an exact case.
- (c) Tamarkin category (constructed from microlocal sheaf theory).
- (d) Homotopy category of the cofibration category of topological spaces with potentials.
- (e) (*In progress*) Filtered singularity category via filtered homotopy category of matrix factorization.

In this talk, we will only focus on (a). Application (in discussion) = ,

Persistence category

View (\mathbb{R}, \leq) as a category, where $Mor_{\mathbb{R}}(r, s) = \{i_{r,s}\}$ only if $r \leq s$. It admits an additive structure, i.e. a bifunctor $\oplus : (\mathbb{R}, \leq) \times (\mathbb{R}, \leq) \to (\mathbb{R}, \leq)$.

Definition

A category \mathscr{C} is called a **persistence category** if for any $A, B \in Ob(\mathscr{C})$, there exists a functor $E_{A,B} : (\mathbb{R}, \leq) \to Vect_k$ satisfying

(i) the hom-set in \mathscr{C} is $\operatorname{Hom}_{\mathscr{C}}(A, B) = \{(f, r) | f \in E_{A,B}(r)\}$. For later use, denote $\operatorname{Mor}^{r}(A, B) := E_{A,B}(r)$, and $\overline{f} = (f, r)$ where $\lceil \overline{f} \rceil = r$.

(ii) for $r \leq r'$ and $s \leq s'$, we have the following commutative diagram

Each $E_{A,B}$ is called a persistence **k**-module (without regularity conditions) and $\{E_{A,B}(i_{r,s})\}_{r\leq s}$ are called structure maps. In general, given any persistence **k**-module $\mathbb{V} = \{V_t\}_{t\in\mathbb{R}}$, denote by $\mathbb{V}[r] := \{V_{t+r}\}_{t\in\mathbb{R}}$.

200

Induced categories from a persistence category

Definition

Let $\ensuremath{\mathscr{C}}$ be a persistence category.

(a) Denote by \mathscr{C}_0 the category with the same objects as \mathscr{C} but

$$\operatorname{Mor}_{\mathscr{C}_0}(A,B) := \operatorname{Mor}^0(A,B).$$

(b) Denote by \mathscr{C}_∞ the category with the same objects as \mathscr{C} but

$$\operatorname{Mor}_{\mathscr{C}_{\infty}}(A,B) := \varinjlim_{r \to \infty} \operatorname{Mor}^{r}(A,B)$$

where the direct limit is taken with respect to the morphisms $i_{r,s}$: Mor^r(A, B) \rightarrow Mor^s(A, B) for any $r \leq s$.

Remark

The induced categories \mathscr{C}_0 and \mathscr{C}_∞ are pre-additive, but \mathscr{C} is not.

Remark

When $Ob(\mathscr{C}) = \{*\}$, then \mathscr{C} is identified with a persistence k-algebra.

Other ingredients in a persistence category

• Persistence functor $\mathscr{F} : \mathscr{C} \to \mathscr{C}'$:

$$\mathscr{F}_{A,B} = \left\{ (\mathscr{F}_{A,B})_r : \operatorname{Mor}_{\mathscr{C}}^r(A,B) \to \operatorname{Mor}_{\mathscr{C}'}^r(\mathscr{F}(A),\mathscr{F}(B)) \right\}_{r \in \mathbb{R}}$$

In other words, a persistence morphism.

• Persistence natural transformation $\eta: \mathscr{F} \to \mathscr{G}$ of **shift** $\alpha \in \mathbb{R}$ is a natural transformation where

 $\eta_A \in \operatorname{Mor}^{\alpha}(\mathscr{F}(A), \mathscr{G}(A)) + \text{ other compatibility properties.}$

• <u>Shift functor</u> on \mathscr{C} is a \mathbb{R} -parametrized family of persistence functors on \mathscr{C} denoted by $\Sigma = \{\Sigma^r\}_{r \in \mathbb{R}}$ such that $\Sigma^r \circ \Sigma^s = \Sigma^{r+s}$ and for **any** $r, s \in \mathbb{R}$,

 $\eta_{r,s}: \Sigma^r \to \Sigma^s$ is a natural transformation of shift s-r.

In particular, for $A \in Ob(\mathscr{C})$, we have $\eta_{r,0}(A) \in Mor^{-r}(\Sigma^r A, A)$.

Acyclic objects

Definition

For
$$r \ge 0$$
, an object K in \mathscr{C} is r-acyclic if $i_{0,r}(e_K) = 0$.

Remark

An equivalent way to define K to be r-acyclic is $i_{-r,0}((\eta_{r,0})_{K}) = 0$. Recall that $(\eta_{r,0})_{K} \in \operatorname{Mor}^{-r}(\Sigma^{r}K,K)$ and $i_{-r,0}$ shifts it to level 0. For brevity, denote $\eta_{K}^{r} = i_{-r,0}((\eta_{r,0})_{K})$.

Remark (An equivalence relation on morphisms)

For $f, g \in Mor^{\alpha}(A, B)$, we call f and g are r-equivalent for some $r \ge 0$ if $i_{\alpha,\alpha+r}(f-g) = 0$. Denote by $f \simeq_r g$ if f and g are r-equivalent. (Then K is r-acyclic if $e_K \simeq_r 0$.)

Example

Let \mathscr{P} be the category of persistence **k**-modules (which admit barcodes). Then \mathscr{P} can be enriched to be a persistence category \mathscr{C} . The *r*-acyclic objects are precisely those persistence **k**-modules with only finite bars and boundary depths no greater than *r*.

Towards TPC

TPC \approx persistence category + triangulated structure.

* Naive goal: use *filtrations of morphisms* to associate weights to exact triangles Δ (such that certain properties are satisfied).

▲口> ▲圖> ▲理> ▲理> 三理 ---

* Our approach:

Triangulated persistence category

Definition

A triangulated persistence category (TPC) is a persistence category \mathscr{C} endowed with a shift functor Σ satisfying

- (i) the category \mathscr{C}_0 is triangulated, and for any $X \in Ob(\mathscr{C})$ and any $r \in \mathbb{R}$, the functors $Mor^r(X, \cdot)$ and $Mor^r(\cdot, X)$ are exact on \mathscr{C}_0 ;
- (ii) for any $r \ge 0$ and any $A \in Ob(\mathscr{C})$, the morphism $\eta_r^A : \Sigma^r A \to A$ embeds into an exact triangle of \mathscr{C}_0 as follows,

$$\Sigma^r A \xrightarrow{\eta^A_r} A \to K \to \Sigma^r A$$

(日) (國) (필) (필) (필) 표

which has the property that K is r-acyclic.

One should view condition (ii) above as a generalization of the axiom that $A \xrightarrow{e_A} A \to 0 \to A$ is an exact triangle in \mathscr{C}_0 .

Theorem

TPC admits a weighted version of triangulated axioms.

In this talk, we will only state the Weighted Octahedral Axiom.

Weight r exact triangle in \mathscr{C} denoted by $w(\Delta) = r$

Definition ("oversimplified")

A strict exact triangle \triangle of weight r in \mathscr{C} is the following diagram

$$A \xrightarrow{\bar{u}} B \xrightarrow{\bar{v}} C \xrightarrow{\bar{w}} \Sigma^{-r} A$$

for $r \ge 0$ with $\bar{u} \in \operatorname{Mor}^{0}(A, B)$, $\bar{v} \in \operatorname{Mor}^{0}(B, C)$, $\bar{w} \in \operatorname{Mor}^{0}(C, \Sigma^{-r}A)$ such that there exists an exact triangle

$$A \xrightarrow{u} B \xrightarrow{v} C' \xrightarrow{w} A$$
 in \mathscr{C}_0 ,

and $\phi \in Mor^0(C', C)$ and $\psi \in Mor^0(\Sigma^r C, C')$ such that in the following diagram

we have $\bar{u} = u$, $\bar{v} = \phi \circ v$, $\Sigma^r \bar{w} = w \circ \psi$, and $\phi \circ \psi = \eta_r^C$.

Weighted Octahedral Axiom

Proposition

Consider the following diagram formed by two strict exact triangles $\Delta_1: E \to F \to X \xrightarrow{k} \Sigma^{-r} E \text{ and } \Delta_2: X \to A \to B \xrightarrow{b} \Sigma^{-s} X \text{ which satisfy}$ $w(\Delta_1) = r$ and $w(\Delta_2) = s$. $\stackrel{*}{X} \longrightarrow A \longrightarrow B \stackrel{b}{\longrightarrow} \Sigma^{-s}X$ k $\Sigma^{-r}F$

It can be completed into the following commutative diagram

Weighted Octahedral Axiom (continue)

Proposition

except that the right bottom square is r-commutative

where $\Delta_3 : F \to A \to C \to F$ and $\Delta_4 : E \to C \to B \to \Sigma^{-r-s}E$ are strict exact triangles satisfying $w(\Delta_3) = 0$ and $w(\Delta_4) = r + s$.

The way we chose to define the weight of a triangle is to guarantee that this weighted octahedral axiom behaves in the expected "additive" way.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ○ ◆

Iterated cone decomposition in \mathscr{C}

The following definition is an analogue of the cone-decomposition from Biran-Cornea's Lagrangian cobordism theory.

Definition

Let \mathscr{C} be a TPC and $X \in Ob(\mathscr{C})$. An **iterated cone decomposition** D **of** X **with the linearization** $(X_0, X_1, ..., X_n)$ where $X_i \in Ob(\mathscr{C})$ consists of a family of strict exact triangles in \mathscr{C}

$$\begin{array}{cccc} & \Delta_1 : & X_1 \to X_0 \to Y_1 \to \Sigma^{-r_1} X_1 \\ & \Delta_2 : & X_2 \to Y_1 \to Y_2 \to \Sigma^{-r_2} X_2 \\ & & \vdots \\ & & \Delta_{n-1} : & X_{n-1} \to Y_{n-2} \to Y_{n-1} \to \Sigma^{-r_{n-1}} X_{n-1} \\ & \Delta_n : & X_n \to Y_{n-1} \to X \to \Sigma^{-r_n} X_n. \end{array}$$

The weight of a cone decomposition is denoted by

$$w(D) = \sum_{i=1}^n w(\Delta_i).$$

For brevity, a linearization in a cone decomposition D is a denoted by $\ell(D) = (X_0, X_1, ..., X_n)$.

Iterated cone decomposition in \mathscr{C} (cont.)

* Passing to the K_0 -group (over \mathbb{Z}_2),

$$[X] = [X_n] + [Y_{n-1}] = [X_n] + ([X_{n-1}] + [Y_{n-2}]) = \dots = [X_n] + \dots + [X_0].$$

* A standard picture:

* Refinement:

Refinement of cone decomposition in *C*

Proposition

Suppose X admits an iterated cone decomposition D with linearization $(X_0, X_1, ..., X_n)$ and for some $i \in \{0, ..., n\}$, and X_i admits an iterated cone decomposition D' with linearization $(A_0, A_1, ..., A_k)$. Then X admits an iterated cone decomposition D'' of linearization

$$(X_0, ..., X_{i-1}, A_0, ..., A_k, X_{i+1}, ..., X_n).$$

Moreover, the weights of these cone decompositions satisfy the relation that w(D'') = w(D) + w(D'). D'' is called a **refinement** of D with respect to D'.

Example

The Weighted Octahedral Axiom is an example of a refinement. In fact, B admits a cone decomposition D with linearization $\ell(D) = (A, X)$ and X admits a cone decomposition D' with linearization $\ell(D') = (F, E)$. Then consider refinement

$$D'' := \begin{cases} F \to A \to C \to F \\ E \to C \to B \to \Sigma^{-r-s}E \end{cases}$$

with $\ell(D'') = (A, F, E)$. Moreover, w(D'') = r + s = w(D) + w(D').

Definition (Corollary)

Let $\mathscr{F} \subset \mathrm{Ob}(\mathscr{C})$ be a family of objects of \mathscr{C} . For objects $X, X' \in \mathrm{Ob}(\mathscr{C})$,

$$\delta^{\mathscr{F}}(X,X') := \inf \left\{ w(D) \middle| \begin{array}{l} D \text{ is an iterated cone decomposition} \\ of X (in \mathscr{C}) \text{ with the linearization} \\ \ell(D) = (F_0,F_1,...,X',...,F_k) \text{ and} \\ \text{with the objects } F_i \in \mathscr{F}, \ k \in \mathbb{N}. \end{array} \right.$$

Define the fragmentation pseudo-metric on $\,\mathscr{C}\,$ associated to $\,\mathscr{F}\,$ by

$$d^{\mathscr{F}}(X,X') = \max\{\delta^{\mathscr{F}}(X,X'),\delta^{\mathscr{F}}(X',X)\}.$$

Example

When $\mathscr{F} = \{0\}$, one can check that $d^{\mathscr{F}}(X, X') = \inf\{r \ge 0 \mid X \simeq_r X'\}$. When $\mathscr{F} = \operatorname{Ob}(\mathscr{C})$, one can check that $d^{\mathscr{F}}(X, X') \equiv 0$.

Remark

(1) A geometric motivation of $d^{\mathscr{F}}$ above is the *shadow metric* from Biran-Cornea-Shelukhin's work on Lagrangian cobordism. (2) It's an interesting question that for which \mathscr{F} , the metric $d^{\mathscr{F}}$ is non-degenerate.

Definition (Corollary)

Let \mathscr{C} be a TPC and $F \in \mathscr{P}End(\mathscr{C})$. Suppose $0 \in \mathscr{F} \subset Ob(\mathscr{C})$. Then define **categorical entropy of** F (with respect to \mathscr{F}) by

$$h^{\mathscr{F}}(F) = \lim_{n \to \infty} \frac{d^{\mathscr{F}}(X, F^n(X))}{n}$$

where $0 \neq X \in \mathscr{F}$.

One needs to show that lim exists and is independent of $X \neq 0$ in \mathscr{F} .

• Recall that a topological space is called an *H*-space if there exists a continuous map $\mu: X \times X \to X$ with an identity element *e* such that $\mu(e, x) = \mu(x, e) = x$ for any $x \in X$.

Corollary

Set $Ob(\mathscr{C})$ together with the topology induced from the fragmentation pseudo-metric $d^{\mathscr{F}}$ is an H-space.

This is due to the following property. For $A, B, A', B' \in Ob(\mathscr{C})$, we have

$$d^{\mathscr{F}}(A \oplus B, A' \oplus B') \leq d^{\mathscr{F}}(A, A') + d^{\mathscr{F}}(B, B').$$

SAC

Passing to the limit category \mathscr{C}_{∞}

• When passing to the limit category \mathscr{C}_{∞} , any *r*-isomorphism will be an isomorphism since *r*-acyclic *K* in \mathscr{C} is isomorphic to 0 in \mathscr{C}_{∞} .

• The upshot is the following theorem.

Theorem

The limit category \mathscr{C}_{∞} is a triangulated category (in the classical sense).

What are the exact triangles in \mathscr{C}_{∞} ?

Definition

A triangle $\Delta : A \xrightarrow{u} B \xrightarrow{v} C \xrightarrow{w} A$ is called an **exact triangle in** \mathscr{C}_{∞} if there is a triangle $\overline{\Delta} : A \xrightarrow{\overline{u}} B \xrightarrow{\overline{v}} C \xrightarrow{\overline{w}} A$ in \mathscr{C} with $\max\{[\overline{u}], [\overline{v}], [\overline{w}]\} \ge 0$ and $[\overline{u}] = u, [\overline{v}] = v, [\overline{w}] = w$ such that the shifted triangle

$$\widetilde{\Delta} = \Sigma^{0, -\lceil \bar{u} \rceil, -\lceil \bar{u} \rceil - \lceil \bar{v} \rceil, -\lceil \bar{u} \rceil - \lceil \bar{v} \rceil - \lceil \bar{w} \rceil} \bar{\Delta}$$

is a strict exact triangle of weight $\lceil \bar{u} \rceil + \lceil \bar{v} \rceil + \lceil \bar{w} \rceil$ in \mathscr{C} . For brevity, the existence of such $\widetilde{\Delta}$ is denoted by $\Delta = [\widetilde{\Delta}]$.

Here,
$$\Sigma^{a,b,c,d}(A \to B \to C \to A) := \Sigma^a A \to \Sigma^b B \to \Sigma^c C \to \Sigma^d A.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - のへで

• One advantage of defining exact triangles in \mathscr{C}_{∞} from those weighted strict exact triangles in \mathscr{C} is that we can associate a "reduced" weight for each exact triangle in \mathscr{C}_{∞} . Explicitly,

$$w_{\infty}(\Delta) := \inf \left\{ w(\widetilde{\Delta}) \, \middle| \, \Delta = \left[\widetilde{\Delta} \right] \right\}.$$

Here, we take the convention that if there does not exist any $\tilde{\Delta}$ such that $\left[\tilde{\Delta}\right] = \Delta$, then $w_{\infty}(\Delta) = \infty$.

- \bullet By the same scheme as in ${\mathscr C},$ one can consider
 - (i) iterated cone decomposition of object in \mathscr{C}_{∞} (by using exact triangles in \mathscr{C}_{∞});
 - (ii) the weight of the iterated cone decomposition, which admits sub-additive property under refinement;
- (iii) fragmentation pseudo-metric over \mathscr{C}_{∞} .
- The upshot is that if a triangulated category $\mathscr{T} = \mathscr{C}_{\infty}$ for a TPC \mathscr{C} . Then we can study topology and dynamics on $Ob(\mathscr{T})$.

Filtered pre-triangulated dg-category

Filtered pre-triangulated dg-category \mathscr{C} is defined in three steps.

filtered dg-category $\mathscr{A} \longrightarrow$ filtered pre-triangulated hull $\mathscr{A}^{\text{hull}} \xrightarrow{\simeq} \mathscr{C}$.

where the second arrow is an equivalence, so let's elaborate \mathscr{A} and $\mathscr{A}^{\text{hull}}$.

Definition

A filtered dg-category is a preadditive category *A* where

- (i) for $A, B \in Ob(\mathcal{A})$, hom-set $Hom_{\mathcal{A}}(A, B)$ is a filtered chain complex;
- (ii) the composition morphism "°" is a 0-morphism and a chain map;
- (iii) for any inclusions $\iota_{rr'}^{AB}$ and $\iota_{ss'}^{BC}$, the composition morphism satisfies the compatibility condition

$$\iota_{s,s'}^{BC}(g) \circ \iota_{r,r'}^{AB}(f) = \iota_{r+s,r'+s'}^{AC}(g \circ f)$$

for any $f \in \operatorname{Hom}_{\mathscr{A}}^{\leq r}(A, B)$ and $g \in \operatorname{Hom}_{\mathscr{A}}^{\leq s}(B, C)$.

One can check that the homology category of \mathcal{A} , denoted by $H_{\bullet}(\mathcal{A})$, i.e., replacing Hom $_{\mathcal{A}}(A, B)$ by its associated persistence **k**-module, is a persistence category. ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Filtered pre-triangulated dg-category (continue)

Enlarge \mathscr{A} to be $\Sigma \mathscr{A}$ (**suspended category of** \mathscr{A}) where we add formal objects $\Sigma^r A[d]$ for any $r \in \mathbb{R}$, $d \in \mathbb{Z}$ and $A \in Ob(\mathscr{A})$, and the filtration function is defined by $\ell_{\Sigma^r A[d_A], \Sigma^s B[d_B]} = \ell_{A,B} + s - r$ for the filtered chain complex $\operatorname{Hom}_{\Sigma \mathscr{A}}(\Sigma^r A[d_A], \Sigma^s B[d_B])$.

Definition (Variation of Bondal-Kapranov's definition)

Let \mathscr{A} be a filtered dg-category. A **filtered one-sided twisted complex** of $\Sigma \mathscr{A}$ is a pair $A = \left(\bigoplus_{i=1}^{n} \Sigma^{r_i} A_i[d_i], q = (q_{ij})_{1 \le i,j \le n}\right)$ such that the following conditions hold.

- (i) $\Sigma^{r_i} A_i[d_i] \in Ob(\Sigma \mathscr{A})$, where $r_i \in \mathbb{R}$ and $d_i \in \mathbb{Z}$.
- (ii) $q_{ij} \in \text{Hom}_{\Sigma,\mathscr{A}}(\Sigma^{r_j}A_j[d_j], \Sigma^{r_i}A_i[d_i])$ with degree 1, and $q_{ij} = 0$ for $i \ge j$.

(iii)
$$d_{\text{Hom}}q_{ij} + \sum_{k=1}^{n} q_{ik} \circ q_{kj} = 0.$$

(iv) For any q_{ij} , $\ell_{\Sigma^{r_j}A_j[d_j]\Sigma^{r_i}A_i[d_i]}(q_{ij}) \leq 0$.

Remark

The only essentially new ingredient is the item (iv), and one can show that there is an inductive way to choose $\{r_i\}_{1 \le i \le n}$ such that (i) - (iv) are satisfied.

Filtered pre-triangulated dg-category (continue)

Definition

Given a filtered dg-category \mathscr{A} , define its **filtered pre-triangulated hull**, denoted by \mathscr{A}^{hull} , is a category where the following conditions hold.

- (i) $Ob(\mathscr{A}^{hull}) := \{ filtered one-sided twisted complex of \Sigma \mathscr{A} \}.$
- (ii) For $A = (\bigoplus \Sigma^{r_j} A_j[d_j], q)$ and $A' = (\bigoplus \Sigma^{r'_i} A'_i[d'_i], q')$ in $Ob(\mathscr{A}^{hull})$, a morphism $f \in Hom_{\mathscr{A}^{hull}}(A, A')$ is a matrix of morphisms denoted by $f = (f_{ij}) : A \to A'$, where $f_{ij} \in Hom_{\Sigma,\mathscr{A}}(\Sigma^{r_j} A_j[d_j], \Sigma^{r'_i} A'_i[d'_i])$.
- (iii) For any $f \in \operatorname{Hom}_{\mathscr{A}^{hull}}(A, A')$ as in (ii) above, define

$$d_{\mathscr{A}^{\mathrm{hull}}}(f) := (d_{\mathrm{Hom}}f_{ij}) + q'f + fq$$

where the right-hand side is written in terms of matrices. Moreover, the composition $f' \circ f$ is given by the matrix multiplication.

Example

Let \mathscr{A} be the category of filtered chain complexes, then \mathscr{A} is a filtered dg-category. Filtered one-sided twisted complexes include the classical filtered mapping cones and filtered mapping cylinders. For this case, $\mathscr{A}^{\text{hull}} = \mathscr{A}$.

Filtered pre-triangulated dg-category (continue)

One should view a (filtered) pre-triangulated hull as an algebraic structure built up from a given (filtered) dg-category such that one can work with it just like working with the category of (filtered) chain complexes.

Theorem

Let ${\mathscr A}$ be a filtered dg-category, then

(i) \mathscr{A}^{hull} is a filtered dg-category. In particular, $H_{\bullet}(\mathscr{A}^{hull})$ is a persistence category.

(ii) $H_0(\mathscr{A}^{hull})$ is a triangulated persistence category.

Remark

(1) The proof of (i) essentially uses the filtration condition (iv) in the definition of filtered one-side twisted complexes. (2) The proof of (ii) is very similar to the classical argument that a pre-triangulated hull of a dg-category is triangulated.

Remark

The example of a triangulated persistence category \mathscr{C} from a Tamarkin category is obtained in an opposite direction. We first have a well-defined derived category (denoted by $\mathscr{T}(M)$ over a closed manifold M, defined as a triangulated subcategory of $\mathscr{D}(\mathbf{k}_{M\times\mathbb{R}})$). This $\mathscr{T}(M)$ serves as \mathscr{C}_0 . On this category, there is a well-defined shift functor with the help of the \mathbb{R} -component, which results in a persistence category \mathscr{C} .

Thank you!

(日) (문) (문) (문) (문)