Infinite staircases of symplectic embeddings of ellipsoids into Hirzebruch surfaces

Morgan Weiler (Rice University)
joint with Maria Bertozzi, Tara Holm, Emily Maw, Dusa McDuff, Grace Mwakyoma, and Ana Rita Pires

Montreal, PU/IAS, Paris \& Tel-Aviv Symplectic Zoominar June 5, 2020

Gromov nonsqueezing

Let $\omega=\sum_{i=1}^{2} d x_{i} \wedge d y_{i}$ be the std. symplectic form on $\mathbb{R}^{4}=\mathbb{C}^{2}$.
Let $X, X^{\prime} \subset \mathbb{R}^{4}$. A symplectic embedding $\varphi: X \stackrel{s}{\hookrightarrow} X^{\prime}$ is a smooth embedding with $\varphi^{*} \omega=\omega$.

Gromov nonsqueezing

Let $\omega=\sum_{i=1}^{2} d x_{i} \wedge d y_{i}$ be the std. symplectic form on $\mathbb{R}^{4}=\mathbb{C}^{2}$.
Let $X, X^{\prime} \subset \mathbb{R}^{4}$. A symplectic embedding $\varphi: X \stackrel{s}{\hookrightarrow} X^{\prime}$ is a smooth embedding with $\varphi^{*} \omega=\omega . X \stackrel{s}{\hookrightarrow} X^{\prime} \Rightarrow \operatorname{vol}(X) \leq \operatorname{vol}\left(X^{\prime}\right)$.

Gromov nonsqueezing

Let $\omega=\sum_{i=1}^{2} d x_{i} \wedge d y_{i}$ be the std. symplectic form on $\mathbb{R}^{4}=\mathbb{C}^{2}$.
Let $X, X^{\prime} \subset \mathbb{R}^{4}$. A symplectic embedding $\varphi: X \stackrel{s}{\hookrightarrow} X^{\prime}$ is a smooth embedding with $\varphi^{*} \omega=\omega . X \stackrel{s}{\hookrightarrow} X^{\prime} \Rightarrow \operatorname{vol}(X) \leq \operatorname{vol}\left(X^{\prime}\right)$.

Define the ball

$$
B(c):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2}+\pi\left|z_{2}\right|^{2} \leq c\right\}
$$

and the cylinder

$$
Z(C):=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}|\pi| z_{1}\right|^{2} \leq C\right\}
$$

Theorem (Gromov '84)

$B(c) \stackrel{s}{\hookrightarrow} Z(C) \Rightarrow c \leq C$ (notice: no volume obstruction!).

The McDuff-Schlenk Fibonacci stairs

Generalize the ball to the ellipsoid

$$
E(a, b):=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \left\lvert\, \frac{\pi\left|z_{1}\right|^{2}}{a}+\frac{\pi\left|z_{2}\right|^{2}}{b} \leq 1\right.\right\}
$$

Define the ellipsoid embedding function of the ball

$$
c_{0}(a):=\inf \{\mu>0 \mid E(1, a) \stackrel{s}{\hookrightarrow} B(\mu)\}
$$

We know $c_{0}(a) \geq \sqrt{a}$ from the volume obstruction.

Theorem (McDuff-Schlenk '12)

c_{0} is piecewise linear or smooth and nonsmooth at infinitely many points. A subsequence of nonsmooth points accumulates from below at $\left(\tau^{4}, \tau^{2}\right)$, where $\tau=\frac{1+\sqrt{5}}{2}$. For large a, $c_{0}(a)=\sqrt{a}$.

Figure: Orange: volume obstruction \sqrt{a}. Blue: plot of c_{0}.

- The steps ascend from below.
- The x-coordinates of the outer corners are $2,5, \frac{13}{2}, \frac{34}{5}, \frac{89}{13}, \ldots$

Toric manifolds and toric domains

A toric domain X_{Ω} in \mathbb{C}^{2} is the preimage of a region $\Omega \subset \mathbb{R}_{\geq 0}^{2}$ under the map $\left(z_{1}, z_{2}\right) \mapsto\left(\pi\left|z_{1}\right|^{2}, \pi\left|z_{2}\right|^{2}\right)$.

(a) $B(1)$
(b) $E(1,2)$
(c) $P(1,2)$
(d) $\mathbb{C} P^{2} \# \overline{\mathbb{C}}_{\frac{1}{3}}^{2}$

Let M_{Ω} be the symplectic toric manifold with one of the above polytopes. Using Cristofaro-Gardiner-Holm-Mandini-Pires '20:

$$
E(a, b) \stackrel{s}{\hookrightarrow} X_{\Omega} \Leftrightarrow E(a, b) \stackrel{s}{\hookrightarrow} M_{\Omega}
$$

Other ellipsoid embedding functions

$$
\text { Let } \mu X_{\Omega}=X_{\mu \Omega} \text { (i.e. }\left|z_{i}\right|^{2} \text { scales by } \mu \text {.) }
$$

Define the ellipsoid embedding function of X_{Ω} by

$$
c_{X_{\Omega}}(a):=\inf \left\{\mu>0 \mid E(1, a) \stackrel{s}{\hookrightarrow} \mu X_{\Omega}\right\} \geq \sqrt{\frac{a}{\operatorname{vol}\left(X_{\Omega}\right)}}
$$

For a large enough $c_{X_{\Omega}}(a)=\sqrt{\frac{a}{\operatorname{vol}\left(X_{\Omega}\right)}}$.
We say $c_{X_{\Omega}}(a)$ has an infinite staircase if it is nonsmooth at infinitely many points.

What is known

Based on the vertices and edges of Ω, we know:
Ω has integer vertices: The most is known.
Cristofaro-Gardiner-Holm-Mandini-Pires '20 find 12
Ωs with infinite staircases, all ascending, including $\mathbb{C} P^{2} \# \overline{\mathbb{C}} \overline{\frac{1}{3}}_{2}^{2}$. They conjecture there are no others.
Ω has rational edge slopes, irrational vertices: One result to date.
Usher '18 found infinitely many ascending infinite staircases for polydisks $P(1, b), b \in \mathbb{R}-\mathbb{Q}$.
Ω has irrational edge slopes: Nothing is known.

New infinite staircases

Let Ω_{b} be the Delzant polytope of the Hirzebruch sfc. $\mathbb{C} P^{2} \# \overline{\mathbb{C P}}_{b}^{2}$, i.e., the trapezoid with corner $(b, 1-b)$. Let $c_{b}:=c_{X_{\Omega_{b}}}$.

Theorem (Bertozzi-Holm-Maw-McDuff-Mwakyoma-Pires-W i.p.)

Let

$$
b_{0}=\frac{5(165-7 \sqrt{5})}{2698} \approx 0.2767745073
$$

$c_{b_{0}}$ has an infinite staircase whose steps descend to accumulate at

Figure: $\Omega_{b_{0}}$

$$
\left(\frac{2443+3 \sqrt{5}}{418}, \frac{\sqrt{281981-2124 \sqrt{5}}}{209}\right) \approx(5.86054594,2.51927208)
$$

$c_{b_{0}}$ near the accumulation point

Figure: Max of blue and the many reds is $c_{b_{0}}$. Orange: volume constraint. Green: crosses $c_{b_{0}}$ at the accumulation point. The stairs descend instead of ascending like c_{0} 's.

Accumulation points

Recall Ω_{b} is the convex hull of $(0,1-b),(b, 1-b),(1,0),(0,0)$.

Theorem (C-G-H-M-P '20)

If c_{b} has an infinite staircase, the x-coordinate of its accumulation point, denoted by $\operatorname{acc}(b)$, is the larger of the solutions to

$$
x^{2}-\left(\frac{(3-b)^{2}}{1-b^{2}}-2\right) x+1=0
$$

The accumulation point will always be on the volume obstruction.

The accumulation point curve

Figure: Green: the parameterized curve $\left(\operatorname{acc}(b), \sqrt{\frac{\operatorname{acc}(b)}{\operatorname{vol}\left(X_{\Omega_{b}}\right)}}\right)$. Black: the accumulation point $\left(\tau^{4}, \tau^{2}\right)$ of the Fibonacci stairs. Red: accumulation point of the $b=\frac{1}{3}$ stairs.

Theorem ($\mathrm{B}-\mathrm{H}-\mathrm{M}^{3}-\mathrm{P}-\mathrm{W}$ in various states of progress)

There are five infinite sequences of bs where c_{b} has an ∞ staircase:

Figure: Orange, pink, and
are ascending staircases (x-values of nonsmooth points increase). Cyan and brown are descending.

There are likely many more such sequences of infinite staircases.

Zooming in near $b=\frac{1}{5}$

The accumulation point of $c_{b_{0}}$ is the leftmost cyan point.
The minimum
of $\sqrt{\frac{\operatorname{acc}(b)}{\operatorname{vol}\left(X_{\Omega_{b}}\right)}}$ occurs at $b=\frac{1}{5}$.
$c_{\frac{1}{5}}$ likely does
not have an infinite staircase:

Figure: $C_{\frac{1}{5}}$

ECH capacities and ellipsoid embedding functions

X_{Ω} has ECH
capacities $0=c_{0}(X)<$ $c_{1}(X) \leq c_{2}(X) \cdots \leq \infty$.
If Ω is convex,
$c_{X_{\Omega}}(a)=\sup _{k}\left\{\frac{c_{k}(E(1, a))}{c_{k}\left(X_{\Omega}\right)}\right\}$ (Cristofaro-Gardiner '19).

This is handy, because $c_{k}\left(X_{\Omega}\right)$ is combinatorial.

Figure: Orange: volume obstruction. Blue: c_{0}. The obstructions $\frac{c_{2}(E(1, a))}{c_{2}(B(1))}$, $\frac{c_{5}(E(1, a))}{c_{5}(B(1))}, \frac{c_{20}(E(1, a))}{c_{20}(B(1))}$.

ECH capacities and ellipsoid embedding functions

X_{Ω} has ECH
capacities $0=c_{0}(X)<$ $c_{1}(X) \leq c_{2}(X) \cdots \leq \infty$.

If Ω is convex,
$c_{X_{\Omega}}(a)=\sup _{k}\left\{\frac{c_{k}(E(1, a))}{c_{k}\left(X_{\Omega}\right)}\right\}$ (Cristofaro-Gardiner '19).

This is handy, because $c_{k}\left(X_{\Omega}\right)$ is combinatorial.

But c_{b} is still a supremum over an infinite set!

Figure: Orange: volume obstruction. Blue: c_{0}. The obstructions $\frac{c_{2}(E(1, a))}{c_{2}(B(1))}$, $\frac{c_{5}(E(1, a))}{c_{5}(B(1))}, \frac{c_{20}(E(1, a))}{c_{20}(B(1))}$.

Identifying obstructive capacities

We ruled out many b for which

$$
c_{b}(\operatorname{acc}(b)) \geq \max _{k=1, \ldots, 25,000}\left\{\frac{c_{k}(E(1, \operatorname{acc}(b)))}{c_{k}\left(X_{\Omega_{b}}\right)}\right\}>\sqrt{\frac{\operatorname{acc}(b)}{\operatorname{vol}\left(X_{\Omega_{b}}\right)}}
$$

Figure: Orange: volume obstruction. Blue: c_{b}. Green: accumulation point curve. Cyan: $\frac{c_{k}(E(1, a))}{c_{k}\left(X_{\Omega_{b}}\right)}$.

Unviable regions of b

Each capacity rules out an infinite staircase for an interval of $b s$.

Figure: $c_{0.3}, k=125$
For example, $\frac{c_{125}(E(1, \operatorname{acc}(b)))}{c_{125}\left(X_{\Omega_{b}}\right)}>\sqrt{\frac{\operatorname{acc}(b)}{\operatorname{vol}\left(X_{\Omega_{b}}\right)}}$ for at least
$0.277<b<0.32475$
And $\frac{c_{2564}(E(1, \operatorname{acc}(b)))}{c_{2564}\left(X_{\Omega_{b}}\right)}>\sqrt{\frac{\operatorname{acc}(b)}{\operatorname{vol}\left(X_{\Omega_{b}}\right)}}$ for at least

$$
0.274398<b<0.27643
$$

Periodic continued fractions: hidden structure of the steps

Now we've ruled out many bs, we look for staircases in what's left.
The continued fraction expansion of a number a is the sequence $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ where $a=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\cdots}}$.
In known ∞ staircases, x-coords of the outer corners of stairs have periodic CFs. E.g. the Fibonacci stairs have outer corners

$$
\begin{aligned}
& \frac{13}{2}=[6,2], \frac{34}{5}=[6,1,4], \frac{89}{13}=[6,1,5,2], \frac{233}{34}=[6,1,5,1,4], \ldots \\
& \text { i.e. }\left[6,\{1,5\}^{k}, 2\right] \text { or }\left[6,\{1,5\}^{k}, 1,4\right]
\end{aligned}
$$

Accumulation points have infinite periodic CFs: $\tau^{4}=\left[6,\{1,5\}^{\infty}\right]$.

Climb (or descend) the periodic CFs to infinity!

We looked for sequences a_{k} such that:

- a_{k} has a periodic continued fraction
- $a_{k} \rightarrow \operatorname{acc}(b)$ and $\max _{k=1, \ldots, 25,000}\left\{\frac{c_{k}(E(1, \operatorname{acc}(b)))}{c_{k}\left(X_{\Omega_{b}}\right)}\right\}<\sqrt{\frac{\operatorname{acc}(b)}{\operatorname{vol}\left(X_{\Omega_{b}}\right)}}$

Such a_{k} could be outer corners of stairs in ∞ staircases. It worked!

Climb (or descend) the periodic CFs to infinity!

We looked for sequences a_{k} such that:

- a_{k} has a periodic continued fraction
- $a_{k} \rightarrow \operatorname{acc}(b)$ and $\max _{k=1, \ldots, 25,000}\left\{\frac{c_{k}(E(1, \operatorname{acc}(b)))}{c_{k}\left(X_{\Omega_{b}}\right)}\right\}<\sqrt{\frac{\operatorname{acc}(b)}{\operatorname{vol}\left(X_{\Omega_{b}}\right)}}$

Such a_{k} could be outer corners of stairs in ∞ staircases. It worked!

$$
\begin{aligned}
0 \leq b<\frac{1}{5}: & {\left[6,\{1+2 n, 5+2 n\}^{k}, \operatorname{End}_{i}(n)\right], \text { where } } \\
& \operatorname{End}_{1}(n)=2+2 n, \operatorname{End}_{2}(n)=\{1+2 n, 4+2 n\}
\end{aligned}
$$

Climb (or descend) the periodic CFs to infinity!

We looked for sequences a_{k} such that:

- a_{k} has a periodic continued fraction
- $a_{k} \rightarrow \operatorname{acc}(b)$ and $\max _{k=1, \ldots, 25,000}\left\{\frac{c_{k}(E(1, \operatorname{acc}(b)))}{c_{k}\left(X_{\Omega_{b}}\right)}\right\}<\sqrt{\frac{\operatorname{acc}(b)}{\operatorname{vol}\left(X_{\Omega_{b}}\right)}}$

Such a_{k} could be outer corners of stairs in ∞ staircases. It worked!

$$
\begin{aligned}
0 \leq b<\frac{1}{5}: & {\left[6,\{1+2 n, 5+2 n\}^{k}, \operatorname{End}_{i}(n)\right], \text { where } } \\
& \operatorname{End}_{1}(n)=2+2 n, \operatorname{End}_{2}(n)=\{1+2 n, 4+2 n\} \\
\frac{1}{5}<b<\frac{1}{3}: & {\left[5,1,6+2 n,\{5+2 n, 1+2 n\}^{k}, \text { end }_{i}(n)\right], \text { where } } \\
& \text { end }_{1}(n)=4+2 n, \operatorname{end}_{2}(n)=\{5+2 n, 2+2 n\} \\
& c_{b_{0}} \text { is the } n=0 \text { case, } b_{0}=\operatorname{acc}^{-1}\left(\left[5,1,6,\{5,1\}^{\infty}\right]\right)
\end{aligned}
$$

Climb (or descend) the periodic CFs to infinity!

We looked for sequences a_{k} such that:

- a_{k} has a periodic continued fraction
- $a_{k} \rightarrow \operatorname{acc}(b)$ and $\max _{k=1, \ldots, 25,000}\left\{\frac{c_{k}(E(1, \operatorname{acc}(b)))}{c_{k}\left(X_{\Omega_{b}}\right)}\right\}<\sqrt{\frac{\operatorname{acc}(b)}{\operatorname{vol}\left(X_{\Omega_{b}}\right)}}$

Such a_{k} could be outer corners of stairs in ∞ staircases. It worked!

$$
\begin{aligned}
& 0 \leq b<\frac{1}{5}: {\left[6,\{1+2 n, 5+2 n\}^{k}, \operatorname{End}_{i}(n)\right], \text { where } } \\
& \text { End }_{1}(n)=2+2 n, \operatorname{End}_{2}(n)=\{1+2 n, 4+2 n\} \\
& \frac{1}{5}<b<\frac{1}{3}: {\left[5,1,6+2 n,\{5+2 n, 1+2 n\}^{k}, \text { end }_{i}(n)\right], \text { where } } \\
& \text { end }_{1}(n)=4+2 n, \text { end }_{2}(n)=\{5+2 n, 2+2 n\} \\
& c_{b_{0}} \text { is the } n=0 \text { case, } b_{0}=\text { acc }^{-1}\left(\left[5,1,6,\{5,1\}^{\infty}\right]\right) \\
& \frac{1}{3}<b<1: \text { yellow }\left[\{7+2 n, 5+2 n, 3+2 n, 1+2 n\}^{k}, 6+2 n\right] ; \\
& {\left[7+2 n,\{5+2 n, 1+2 n\}^{k},\right. \text { end }} \\
& i(n)] ; \\
& {\left[\{5+2 n, 1+2 n\}^{k}, \text { end }_{i}(n)\right] }
\end{aligned}
$$

Proving we have a staircase

Proving we have a staircase

Would take us too long for today!

Thanks!

Thank you!

