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Gromov nonsqueezing
Let ω =

∑2
i=1 dxi ∧ dyi be the std. symplectic form on R4 = C2.

Let X ,X ′ ⊂ R4. A symplectic embedding ϕ : X
s
↪→ X ′ is a

smooth embedding with ϕ∗ω = ω.

X
s
↪→ X ′ ⇒ vol(X ) ≤ vol(X ′).

Define the ball

B(c) :=
{

(z1, z2) ∈ C2
∣∣π|z1|2 + π|z2|2 ≤ c

}
and the cylinder

Z (C ) :=
{

(z1, z2) ∈ C2
∣∣π|z1|2 ≤ C

}
Theorem (Gromov ’84)

B(c)
s
↪→ Z (C )⇒ c ≤ C (notice: no volume obstruction!).
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The McDuff-Schlenk Fibonacci stairs
Generalize the ball to the ellipsoid

E (a, b) :=

{
(z1, z2) ∈ C2

∣∣∣∣π|z1|2

a
+
π|z2|2

b
≤ 1

}
Define the ellipsoid embedding function of the ball

c0(a) := inf
{
µ > 0

∣∣∣E (1, a)
s
↪→ B(µ)

}
We know c0(a) ≥

√
a from the volume obstruction.

Theorem (McDuff-Schlenk ’12)

c0 is piecewise linear or smooth and nonsmooth at infinitely many
points. A subsequence of nonsmooth points accumulates from

below at (τ4, τ2), where τ = 1+
√

5
2 . For large a, c0(a) =

√
a.
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Figure: Orange: volume obstruction
√
a. Blue: plot of c0.

The steps ascend from below.

The x-coordinates of the outer corners are 2, 5, 13
2 ,

34
5 ,

89
13 , . . .

Morgan Weiler (Rice University) Infinite staircases of symplectic embeddings into CP2#CP2
b



Symplectic embeddings
Finding new staircases

Gromov nonzqueezing
Ellipsoid embedding functions
New infinite staircases

Toric manifolds and toric domains

A toric domain XΩ in C2 is the preimage of a region Ω ⊂ R2
≥0

under the map (z1, z2) 7→ (π|z1|2, π|z2|2).

1

1

(a) B(1)

1 2

1

(b) E(1, 2)

1 2

1

(c) P(1, 2)

1

2

3

(d) CP2#CP2
1
3

Let MΩ be the symplectic toric manifold with one of the above
polytopes. Using Cristofaro-Gardiner–Holm–Mandini–Pires ’20:

E (a, b)
s
↪→ XΩ ⇔ E (a, b)

s
↪→ MΩ
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Other ellipsoid embedding functions

Let µXΩ = XµΩ (i.e. |zi |2 scales by µ.)

Define the ellipsoid embedding function of XΩ by

cXΩ
(a) := inf

{
µ > 0

∣∣∣E (1, a)
s
↪→ µXΩ

}
≥
√

a

vol(XΩ)

For a large enough cXΩ
(a) =

√
a

vol(XΩ) .

We say cXΩ
(a) has an infinite staircase if it is nonsmooth at

infinitely many points.
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What is known

Based on the vertices and edges of Ω, we know:

Ω has integer vertices: The most is known.

Cristofaro-Gardiner–Holm–Mandini–Pires ’20 find 12
Ωs with infinite staircases, all ascending, including

CP2#CP2
1
3
. They conjecture there are no others.

Ω has rational edge slopes, irrational vertices: One result to date.

Usher ’18 found infinitely many ascending infinite
staircases for polydisks P(1, b), b ∈ R−Q.

Ω has irrational edge slopes: Nothing is known.
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New infinite staircases

Let Ωb be the Delzant polytope of the Hirzebruch sfc. CP2#CP2
b,

i.e., the trapezoid with corner (b, 1− b). Let cb := cXΩb
.

Theorem (Bertozzi-Holm-Maw-McDuff-Mwakyoma-Pires-W i.p.)

1

1 -
5 165-7 5 

2698

Figure: Ωb0

Let

b0 =
5(165− 7

√
5)

2698
≈ 0.2767745073

cb0 has an infinite staircase
whose steps descend to accumulate at(

2443 + 3
√

5

418
,

√
281981− 2124

√
5

209

)
≈ (5.86054594, 2.51927208)
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cb0
near the accumulation point

5.86055 5.86056 5.86057 5.86058

2.51927

2.51928

2.51928

Figure: Max of blue and the many reds is cb0 . Orange: volume
constraint. Green: crosses cb0 at the accumulation point. The stairs
descend instead of ascending like c0’s.
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Accumulation points

Recall Ωb is the convex hull of (0, 1− b), (b, 1− b), (1, 0), (0, 0).

1

1 -
5 165-7 5 

2698

Theorem (C-G–H–M–P ’20)

If cb has an infinite staircase, the x-coordinate of its accumulation
point, denoted by acc(b), is the larger of the solutions to

x2 −
(

(3− b)2

1− b2
− 2

)
x + 1 = 0

The accumulation point will always be on the volume obstruction.
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The accumulation point curve

6 8 10 12

3

4
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7

Figure: Green: the parameterized curve
(

acc(b),
√

acc(b)
vol(XΩb

)

)
. Black: the

accumulation point (τ 4, τ 2) of the Fibonacci stairs. Red: accumulation
point of the b = 1

3 stairs.
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Theorem (B–H–M3–P–W in various states of progress)

There are five infinite sequences of bs where cb has an ∞ staircase:

6 7 8 9 10 11

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Figure: Orange, pink, and yellow are ascending staircases (x-values of
nonsmooth points increase). Cyan and brown are descending.

There are likely many more such sequences of infinite staircases.
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Zooming in near b = 1
5
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The accumulation point of cb0 is the leftmost cyan point.
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Figure: c 1
5

The minimum

of

√
acc(b)

vol(XΩb
) occurs at b = 1

5 .

c 1
5

likely does

not have an infinite staircase:
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ECH capacities and ellipsoid embedding functions
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Figure: Orange: volume obstruction.

Blue: c0. The obstructions c2(E(1,a))
c2(B(1)) ,

c5(E(1,a))
c5(B(1)) , c20(E(1,a))

c20(B(1)) .

XΩ has ECH
capacities 0 = c0(X ) <
c1(X ) ≤ c2(X ) · · · ≤ ∞.

If Ω is convex,

cXΩ
(a) = supk

{
ck (E(1,a))
ck (XΩ)

}
(Cristofaro-Gardiner ’19).

This is handy, because
ck(XΩ) is combinatorial.

But cb is still a supremum
over an infinite set!
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Identifying obstructive capacities

We ruled out many b for which

cb(acc(b)) ≥ max
k=1,...,25,000

{
ck(E (1, acc(b)))

ck(XΩb
)

}
>

√
acc(b)

vol(XΩb
)
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(a) c0.3, k = 125
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2.523
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2.525

(b) c0.275, k = 2564

5.856 5.858 5.860 5.862 5.864

2.5195

2.5200

2.5205

(c) c0.2765, k = 18, 559

Figure: Orange: volume obstruction. Blue: cb. Green: accumulation

point curve. Cyan: ck (E(1,a))
ck (XΩb

) .
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Unviable regions of b
Each capacity rules out an infinite staircase for an interval of bs.
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Figure: c0.3, k = 125

For example, c125(E(1,acc(b)))
c125(XΩb

) >

√
acc(b)

vol(XΩb
) for at least

0.277 < b < 0.32475

And c2564(E(1,acc(b)))
c2564(XΩb

) >

√
acc(b)

vol(XΩb
) for at least

0.274398 < b < 0.27643
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Periodic continued fractions: hidden structure of the steps

Now we’ve ruled out many bs, we look for staircases in what’s left.

The continued fraction expansion of a number a is the sequence
[a0, a1, a2, . . . ] where a = a0 + 1

a1+ 1
a2+···

.

In known ∞ staircases, x-coords of the outer corners of stairs have
periodic CFs. E.g. the Fibonacci stairs have outer corners

13

2
= [6, 2],

34

5
= [6, 1, 4],

89

13
= [6, 1, 5, 2],

233

34
= [6, 1, 5, 1, 4], . . .

i.e. [6, {1, 5}k , 2] or [6, {1, 5}k , 1, 4]

Accumulation points have infinite periodic CFs: τ4 = [6, {1, 5}∞].
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Climb (or descend) the periodic CFs to infinity!
We looked for sequences ak such that:

ak has a periodic continued fraction

ak → acc(b) and maxk=1,...,25,000

{
ck (E(1,acc(b)))

ck (XΩb
)

}
<
√

acc(b)
vol(XΩb

)

Such ak could be outer corners of stairs in ∞ staircases. It worked!

0 ≤ b < 1
5 : [6, {1 + 2n, 5 + 2n}k ,Endi (n)], where

End1(n) = 2 + 2n,End2(n) = {1 + 2n, 4 + 2n}
1
5 < b < 1

3 : [5, 1, 6 + 2n, {5 + 2n, 1 + 2n}k , endi (n)], where
end1(n) = 4 + 2n, end2(n) = {5 + 2n, 2 + 2n}
cb0 is the n = 0 case, b0 = acc−1([5, 1, 6, {5, 1}∞])

1
3 < b < 1: yellow [{7 + 2n, 5 + 2n, 3 + 2n, 1 + 2n}k , 6 + 2n];

[7 + 2n, {5 + 2n, 1 + 2n}k , endi (n)];
[{5 + 2n, 1 + 2n}k , endi (n)]
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Proving we have a staircase

Would take us too long for today!
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Thanks!

Thank you!
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